123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223 |
- #include <linux/percpu.h>
- #include <linux/sched.h>
- #include <linux/osq_lock.h>
- /*
- * An MCS like lock especially tailored for optimistic spinning for sleeping
- * lock implementations (mutex, rwsem, etc).
- *
- * Using a single mcs node per CPU is safe because sleeping locks should not be
- * called from interrupt context and we have preemption disabled while
- * spinning.
- */
- static DEFINE_PER_CPU_SHARED_ALIGNED(struct optimistic_spin_node, osq_node);
- /*
- * We use the value 0 to represent "no CPU", thus the encoded value
- * will be the CPU number incremented by 1.
- */
- static inline int encode_cpu(int cpu_nr)
- {
- return cpu_nr + 1;
- }
- static inline struct optimistic_spin_node *decode_cpu(int encoded_cpu_val)
- {
- int cpu_nr = encoded_cpu_val - 1;
- return per_cpu_ptr(&osq_node, cpu_nr);
- }
- /*
- * Get a stable @node->next pointer, either for unlock() or unqueue() purposes.
- * Can return NULL in case we were the last queued and we updated @lock instead.
- */
- static inline struct optimistic_spin_node *
- osq_wait_next(struct optimistic_spin_queue *lock,
- struct optimistic_spin_node *node,
- struct optimistic_spin_node *prev)
- {
- struct optimistic_spin_node *next = NULL;
- int curr = encode_cpu(smp_processor_id());
- int old;
- /*
- * If there is a prev node in queue, then the 'old' value will be
- * the prev node's CPU #, else it's set to OSQ_UNLOCKED_VAL since if
- * we're currently last in queue, then the queue will then become empty.
- */
- old = prev ? prev->cpu : OSQ_UNLOCKED_VAL;
- for (;;) {
- if (atomic_read(&lock->tail) == curr &&
- atomic_cmpxchg_acquire(&lock->tail, curr, old) == curr) {
- /*
- * We were the last queued, we moved @lock back. @prev
- * will now observe @lock and will complete its
- * unlock()/unqueue().
- */
- break;
- }
- /*
- * We must xchg() the @node->next value, because if we were to
- * leave it in, a concurrent unlock()/unqueue() from
- * @node->next might complete Step-A and think its @prev is
- * still valid.
- *
- * If the concurrent unlock()/unqueue() wins the race, we'll
- * wait for either @lock to point to us, through its Step-B, or
- * wait for a new @node->next from its Step-C.
- */
- if (node->next) {
- next = xchg(&node->next, NULL);
- if (next)
- break;
- }
- cpu_relax_lowlatency();
- }
- return next;
- }
- bool osq_lock(struct optimistic_spin_queue *lock)
- {
- struct optimistic_spin_node *node = this_cpu_ptr(&osq_node);
- struct optimistic_spin_node *prev, *next;
- int curr = encode_cpu(smp_processor_id());
- int old;
- node->locked = 0;
- node->next = NULL;
- node->cpu = curr;
- /*
- * We need both ACQUIRE (pairs with corresponding RELEASE in
- * unlock() uncontended, or fastpath) and RELEASE (to publish
- * the node fields we just initialised) semantics when updating
- * the lock tail.
- */
- old = atomic_xchg(&lock->tail, curr);
- if (old == OSQ_UNLOCKED_VAL)
- return true;
- prev = decode_cpu(old);
- node->prev = prev;
- /*
- * osq_lock() unqueue
- *
- * node->prev = prev osq_wait_next()
- * WMB MB
- * prev->next = node next->prev = prev // unqueue-C
- *
- * Here 'node->prev' and 'next->prev' are the same variable and we need
- * to ensure these stores happen in-order to avoid corrupting the list.
- */
- smp_wmb();
- WRITE_ONCE(prev->next, node);
- /*
- * Normally @prev is untouchable after the above store; because at that
- * moment unlock can proceed and wipe the node element from stack.
- *
- * However, since our nodes are static per-cpu storage, we're
- * guaranteed their existence -- this allows us to apply
- * cmpxchg in an attempt to undo our queueing.
- */
- while (!READ_ONCE(node->locked)) {
- /*
- * If we need to reschedule bail... so we can block.
- */
- if (need_resched())
- goto unqueue;
- cpu_relax_lowlatency();
- }
- return true;
- unqueue:
- /*
- * Step - A -- stabilize @prev
- *
- * Undo our @prev->next assignment; this will make @prev's
- * unlock()/unqueue() wait for a next pointer since @lock points to us
- * (or later).
- */
- for (;;) {
- if (prev->next == node &&
- cmpxchg(&prev->next, node, NULL) == node)
- break;
- /*
- * We can only fail the cmpxchg() racing against an unlock(),
- * in which case we should observe @node->locked becomming
- * true.
- */
- if (smp_load_acquire(&node->locked))
- return true;
- cpu_relax_lowlatency();
- /*
- * Or we race against a concurrent unqueue()'s step-B, in which
- * case its step-C will write us a new @node->prev pointer.
- */
- prev = READ_ONCE(node->prev);
- }
- /*
- * Step - B -- stabilize @next
- *
- * Similar to unlock(), wait for @node->next or move @lock from @node
- * back to @prev.
- */
- next = osq_wait_next(lock, node, prev);
- if (!next)
- return false;
- /*
- * Step - C -- unlink
- *
- * @prev is stable because its still waiting for a new @prev->next
- * pointer, @next is stable because our @node->next pointer is NULL and
- * it will wait in Step-A.
- */
- WRITE_ONCE(next->prev, prev);
- WRITE_ONCE(prev->next, next);
- return false;
- }
- void osq_unlock(struct optimistic_spin_queue *lock)
- {
- struct optimistic_spin_node *node, *next;
- int curr = encode_cpu(smp_processor_id());
- /*
- * Fast path for the uncontended case.
- */
- if (likely(atomic_cmpxchg_release(&lock->tail, curr,
- OSQ_UNLOCKED_VAL) == curr))
- return;
- /*
- * Second most likely case.
- */
- node = this_cpu_ptr(&osq_node);
- next = xchg(&node->next, NULL);
- if (next) {
- WRITE_ONCE(next->locked, 1);
- return;
- }
- next = osq_wait_next(lock, node, NULL);
- if (next)
- WRITE_ONCE(next->locked, 1);
- }
|