12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056 |
- /*
- * Read-Copy Update mechanism for mutual exclusion (tree-based version)
- * Internal non-public definitions that provide either classic
- * or preemptible semantics.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, you can access it online at
- * http://www.gnu.org/licenses/gpl-2.0.html.
- *
- * Copyright Red Hat, 2009
- * Copyright IBM Corporation, 2009
- *
- * Author: Ingo Molnar <mingo@elte.hu>
- * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
- */
- #include <linux/delay.h>
- #include <linux/gfp.h>
- #include <linux/oom.h>
- #include <linux/smpboot.h>
- #include "../time/tick-internal.h"
- #ifdef CONFIG_RCU_BOOST
- #include "../locking/rtmutex_common.h"
- /*
- * Control variables for per-CPU and per-rcu_node kthreads. These
- * handle all flavors of RCU.
- */
- static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
- DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
- DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
- DEFINE_PER_CPU(char, rcu_cpu_has_work);
- #else /* #ifdef CONFIG_RCU_BOOST */
- /*
- * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
- * all uses are in dead code. Provide a definition to keep the compiler
- * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
- * This probably needs to be excluded from -rt builds.
- */
- #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
- #endif /* #else #ifdef CONFIG_RCU_BOOST */
- #ifdef CONFIG_RCU_NOCB_CPU
- static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
- static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
- static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
- #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
- /*
- * Check the RCU kernel configuration parameters and print informative
- * messages about anything out of the ordinary. If you like #ifdef, you
- * will love this function.
- */
- static void __init rcu_bootup_announce_oddness(void)
- {
- if (IS_ENABLED(CONFIG_RCU_TRACE))
- pr_info("\tRCU debugfs-based tracing is enabled.\n");
- if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
- (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
- pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
- RCU_FANOUT);
- if (rcu_fanout_exact)
- pr_info("\tHierarchical RCU autobalancing is disabled.\n");
- if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
- pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
- if (IS_ENABLED(CONFIG_PROVE_RCU))
- pr_info("\tRCU lockdep checking is enabled.\n");
- if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE))
- pr_info("\tRCU torture testing starts during boot.\n");
- if (RCU_NUM_LVLS >= 4)
- pr_info("\tFour(or more)-level hierarchy is enabled.\n");
- if (RCU_FANOUT_LEAF != 16)
- pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
- RCU_FANOUT_LEAF);
- if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
- pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
- if (nr_cpu_ids != NR_CPUS)
- pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
- if (IS_ENABLED(CONFIG_RCU_BOOST))
- pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
- }
- #ifdef CONFIG_PREEMPT_RCU
- RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
- static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
- static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
- static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
- bool wake);
- /*
- * Tell them what RCU they are running.
- */
- static void __init rcu_bootup_announce(void)
- {
- pr_info("Preemptible hierarchical RCU implementation.\n");
- rcu_bootup_announce_oddness();
- }
- /* Flags for rcu_preempt_ctxt_queue() decision table. */
- #define RCU_GP_TASKS 0x8
- #define RCU_EXP_TASKS 0x4
- #define RCU_GP_BLKD 0x2
- #define RCU_EXP_BLKD 0x1
- /*
- * Queues a task preempted within an RCU-preempt read-side critical
- * section into the appropriate location within the ->blkd_tasks list,
- * depending on the states of any ongoing normal and expedited grace
- * periods. The ->gp_tasks pointer indicates which element the normal
- * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
- * indicates which element the expedited grace period is waiting on (again,
- * NULL if none). If a grace period is waiting on a given element in the
- * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
- * adding a task to the tail of the list blocks any grace period that is
- * already waiting on one of the elements. In contrast, adding a task
- * to the head of the list won't block any grace period that is already
- * waiting on one of the elements.
- *
- * This queuing is imprecise, and can sometimes make an ongoing grace
- * period wait for a task that is not strictly speaking blocking it.
- * Given the choice, we needlessly block a normal grace period rather than
- * blocking an expedited grace period.
- *
- * Note that an endless sequence of expedited grace periods still cannot
- * indefinitely postpone a normal grace period. Eventually, all of the
- * fixed number of preempted tasks blocking the normal grace period that are
- * not also blocking the expedited grace period will resume and complete
- * their RCU read-side critical sections. At that point, the ->gp_tasks
- * pointer will equal the ->exp_tasks pointer, at which point the end of
- * the corresponding expedited grace period will also be the end of the
- * normal grace period.
- */
- static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp,
- unsigned long flags) __releases(rnp->lock)
- {
- int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
- (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
- (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
- (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
- struct task_struct *t = current;
- /*
- * Decide where to queue the newly blocked task. In theory,
- * this could be an if-statement. In practice, when I tried
- * that, it was quite messy.
- */
- switch (blkd_state) {
- case 0:
- case RCU_EXP_TASKS:
- case RCU_EXP_TASKS + RCU_GP_BLKD:
- case RCU_GP_TASKS:
- case RCU_GP_TASKS + RCU_EXP_TASKS:
- /*
- * Blocking neither GP, or first task blocking the normal
- * GP but not blocking the already-waiting expedited GP.
- * Queue at the head of the list to avoid unnecessarily
- * blocking the already-waiting GPs.
- */
- list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
- break;
- case RCU_EXP_BLKD:
- case RCU_GP_BLKD:
- case RCU_GP_BLKD + RCU_EXP_BLKD:
- case RCU_GP_TASKS + RCU_EXP_BLKD:
- case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
- case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
- /*
- * First task arriving that blocks either GP, or first task
- * arriving that blocks the expedited GP (with the normal
- * GP already waiting), or a task arriving that blocks
- * both GPs with both GPs already waiting. Queue at the
- * tail of the list to avoid any GP waiting on any of the
- * already queued tasks that are not blocking it.
- */
- list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
- break;
- case RCU_EXP_TASKS + RCU_EXP_BLKD:
- case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
- case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
- /*
- * Second or subsequent task blocking the expedited GP.
- * The task either does not block the normal GP, or is the
- * first task blocking the normal GP. Queue just after
- * the first task blocking the expedited GP.
- */
- list_add(&t->rcu_node_entry, rnp->exp_tasks);
- break;
- case RCU_GP_TASKS + RCU_GP_BLKD:
- case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
- /*
- * Second or subsequent task blocking the normal GP.
- * The task does not block the expedited GP. Queue just
- * after the first task blocking the normal GP.
- */
- list_add(&t->rcu_node_entry, rnp->gp_tasks);
- break;
- default:
- /* Yet another exercise in excessive paranoia. */
- WARN_ON_ONCE(1);
- break;
- }
- /*
- * We have now queued the task. If it was the first one to
- * block either grace period, update the ->gp_tasks and/or
- * ->exp_tasks pointers, respectively, to reference the newly
- * blocked tasks.
- */
- if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
- rnp->gp_tasks = &t->rcu_node_entry;
- if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
- rnp->exp_tasks = &t->rcu_node_entry;
- raw_spin_unlock(&rnp->lock);
- /*
- * Report the quiescent state for the expedited GP. This expedited
- * GP should not be able to end until we report, so there should be
- * no need to check for a subsequent expedited GP. (Though we are
- * still in a quiescent state in any case.)
- */
- if (blkd_state & RCU_EXP_BLKD &&
- t->rcu_read_unlock_special.b.exp_need_qs) {
- t->rcu_read_unlock_special.b.exp_need_qs = false;
- rcu_report_exp_rdp(rdp->rsp, rdp, true);
- } else {
- WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
- }
- local_irq_restore(flags);
- }
- /*
- * Record a preemptible-RCU quiescent state for the specified CPU. Note
- * that this just means that the task currently running on the CPU is
- * not in a quiescent state. There might be any number of tasks blocked
- * while in an RCU read-side critical section.
- *
- * As with the other rcu_*_qs() functions, callers to this function
- * must disable preemption.
- */
- static void rcu_preempt_qs(void)
- {
- if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
- trace_rcu_grace_period(TPS("rcu_preempt"),
- __this_cpu_read(rcu_data_p->gpnum),
- TPS("cpuqs"));
- __this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
- barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
- current->rcu_read_unlock_special.b.need_qs = false;
- }
- }
- /*
- * We have entered the scheduler, and the current task might soon be
- * context-switched away from. If this task is in an RCU read-side
- * critical section, we will no longer be able to rely on the CPU to
- * record that fact, so we enqueue the task on the blkd_tasks list.
- * The task will dequeue itself when it exits the outermost enclosing
- * RCU read-side critical section. Therefore, the current grace period
- * cannot be permitted to complete until the blkd_tasks list entries
- * predating the current grace period drain, in other words, until
- * rnp->gp_tasks becomes NULL.
- *
- * Caller must disable preemption.
- */
- static void rcu_preempt_note_context_switch(void)
- {
- struct task_struct *t = current;
- unsigned long flags;
- struct rcu_data *rdp;
- struct rcu_node *rnp;
- if (t->rcu_read_lock_nesting > 0 &&
- !t->rcu_read_unlock_special.b.blocked) {
- /* Possibly blocking in an RCU read-side critical section. */
- rdp = this_cpu_ptr(rcu_state_p->rda);
- rnp = rdp->mynode;
- raw_spin_lock_irqsave(&rnp->lock, flags);
- smp_mb__after_unlock_lock();
- t->rcu_read_unlock_special.b.blocked = true;
- t->rcu_blocked_node = rnp;
- /*
- * Verify the CPU's sanity, trace the preemption, and
- * then queue the task as required based on the states
- * of any ongoing and expedited grace periods.
- */
- WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
- WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
- trace_rcu_preempt_task(rdp->rsp->name,
- t->pid,
- (rnp->qsmask & rdp->grpmask)
- ? rnp->gpnum
- : rnp->gpnum + 1);
- rcu_preempt_ctxt_queue(rnp, rdp, flags);
- } else if (t->rcu_read_lock_nesting < 0 &&
- t->rcu_read_unlock_special.s) {
- /*
- * Complete exit from RCU read-side critical section on
- * behalf of preempted instance of __rcu_read_unlock().
- */
- rcu_read_unlock_special(t);
- }
- /*
- * Either we were not in an RCU read-side critical section to
- * begin with, or we have now recorded that critical section
- * globally. Either way, we can now note a quiescent state
- * for this CPU. Again, if we were in an RCU read-side critical
- * section, and if that critical section was blocking the current
- * grace period, then the fact that the task has been enqueued
- * means that we continue to block the current grace period.
- */
- rcu_preempt_qs();
- }
- /*
- * Check for preempted RCU readers blocking the current grace period
- * for the specified rcu_node structure. If the caller needs a reliable
- * answer, it must hold the rcu_node's ->lock.
- */
- static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
- {
- return rnp->gp_tasks != NULL;
- }
- /*
- * Advance a ->blkd_tasks-list pointer to the next entry, instead
- * returning NULL if at the end of the list.
- */
- static struct list_head *rcu_next_node_entry(struct task_struct *t,
- struct rcu_node *rnp)
- {
- struct list_head *np;
- np = t->rcu_node_entry.next;
- if (np == &rnp->blkd_tasks)
- np = NULL;
- return np;
- }
- /*
- * Return true if the specified rcu_node structure has tasks that were
- * preempted within an RCU read-side critical section.
- */
- static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
- {
- return !list_empty(&rnp->blkd_tasks);
- }
- /*
- * Handle special cases during rcu_read_unlock(), such as needing to
- * notify RCU core processing or task having blocked during the RCU
- * read-side critical section.
- */
- void rcu_read_unlock_special(struct task_struct *t)
- {
- bool empty_exp;
- bool empty_norm;
- bool empty_exp_now;
- unsigned long flags;
- struct list_head *np;
- bool drop_boost_mutex = false;
- struct rcu_data *rdp;
- struct rcu_node *rnp;
- union rcu_special special;
- /* NMI handlers cannot block and cannot safely manipulate state. */
- if (in_nmi())
- return;
- local_irq_save(flags);
- /*
- * If RCU core is waiting for this CPU to exit its critical section,
- * report the fact that it has exited. Because irqs are disabled,
- * t->rcu_read_unlock_special cannot change.
- */
- special = t->rcu_read_unlock_special;
- if (special.b.need_qs) {
- rcu_preempt_qs();
- t->rcu_read_unlock_special.b.need_qs = false;
- if (!t->rcu_read_unlock_special.s) {
- local_irq_restore(flags);
- return;
- }
- }
- /*
- * Respond to a request for an expedited grace period, but only if
- * we were not preempted, meaning that we were running on the same
- * CPU throughout. If we were preempted, the exp_need_qs flag
- * would have been cleared at the time of the first preemption,
- * and the quiescent state would be reported when we were dequeued.
- */
- if (special.b.exp_need_qs) {
- WARN_ON_ONCE(special.b.blocked);
- t->rcu_read_unlock_special.b.exp_need_qs = false;
- rdp = this_cpu_ptr(rcu_state_p->rda);
- rcu_report_exp_rdp(rcu_state_p, rdp, true);
- if (!t->rcu_read_unlock_special.s) {
- local_irq_restore(flags);
- return;
- }
- }
- /* Hardware IRQ handlers cannot block, complain if they get here. */
- if (in_irq() || in_serving_softirq()) {
- lockdep_rcu_suspicious(__FILE__, __LINE__,
- "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
- pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
- t->rcu_read_unlock_special.s,
- t->rcu_read_unlock_special.b.blocked,
- t->rcu_read_unlock_special.b.exp_need_qs,
- t->rcu_read_unlock_special.b.need_qs);
- local_irq_restore(flags);
- return;
- }
- /* Clean up if blocked during RCU read-side critical section. */
- if (special.b.blocked) {
- t->rcu_read_unlock_special.b.blocked = false;
- /*
- * Remove this task from the list it blocked on. The task
- * now remains queued on the rcu_node corresponding to
- * the CPU it first blocked on, so the first attempt to
- * acquire the task's rcu_node's ->lock will succeed.
- * Keep the loop and add a WARN_ON() out of sheer paranoia.
- */
- for (;;) {
- rnp = t->rcu_blocked_node;
- raw_spin_lock(&rnp->lock); /* irqs already disabled. */
- smp_mb__after_unlock_lock();
- if (rnp == t->rcu_blocked_node)
- break;
- WARN_ON_ONCE(1);
- raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
- }
- empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
- empty_exp = sync_rcu_preempt_exp_done(rnp);
- smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
- np = rcu_next_node_entry(t, rnp);
- list_del_init(&t->rcu_node_entry);
- t->rcu_blocked_node = NULL;
- trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
- rnp->gpnum, t->pid);
- if (&t->rcu_node_entry == rnp->gp_tasks)
- rnp->gp_tasks = np;
- if (&t->rcu_node_entry == rnp->exp_tasks)
- rnp->exp_tasks = np;
- if (IS_ENABLED(CONFIG_RCU_BOOST)) {
- if (&t->rcu_node_entry == rnp->boost_tasks)
- rnp->boost_tasks = np;
- /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
- drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
- }
- /*
- * If this was the last task on the current list, and if
- * we aren't waiting on any CPUs, report the quiescent state.
- * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
- * so we must take a snapshot of the expedited state.
- */
- empty_exp_now = sync_rcu_preempt_exp_done(rnp);
- if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
- trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
- rnp->gpnum,
- 0, rnp->qsmask,
- rnp->level,
- rnp->grplo,
- rnp->grphi,
- !!rnp->gp_tasks);
- rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
- } else {
- raw_spin_unlock_irqrestore(&rnp->lock, flags);
- }
- /* Unboost if we were boosted. */
- if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
- rt_mutex_unlock(&rnp->boost_mtx);
- /*
- * If this was the last task on the expedited lists,
- * then we need to report up the rcu_node hierarchy.
- */
- if (!empty_exp && empty_exp_now)
- rcu_report_exp_rnp(rcu_state_p, rnp, true);
- } else {
- local_irq_restore(flags);
- }
- }
- /*
- * Dump detailed information for all tasks blocking the current RCU
- * grace period on the specified rcu_node structure.
- */
- static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
- {
- unsigned long flags;
- struct task_struct *t;
- raw_spin_lock_irqsave(&rnp->lock, flags);
- if (!rcu_preempt_blocked_readers_cgp(rnp)) {
- raw_spin_unlock_irqrestore(&rnp->lock, flags);
- return;
- }
- t = list_entry(rnp->gp_tasks->prev,
- struct task_struct, rcu_node_entry);
- list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
- sched_show_task(t);
- raw_spin_unlock_irqrestore(&rnp->lock, flags);
- }
- /*
- * Dump detailed information for all tasks blocking the current RCU
- * grace period.
- */
- static void rcu_print_detail_task_stall(struct rcu_state *rsp)
- {
- struct rcu_node *rnp = rcu_get_root(rsp);
- rcu_print_detail_task_stall_rnp(rnp);
- rcu_for_each_leaf_node(rsp, rnp)
- rcu_print_detail_task_stall_rnp(rnp);
- }
- static void rcu_print_task_stall_begin(struct rcu_node *rnp)
- {
- pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
- rnp->level, rnp->grplo, rnp->grphi);
- }
- static void rcu_print_task_stall_end(void)
- {
- pr_cont("\n");
- }
- /*
- * Scan the current list of tasks blocked within RCU read-side critical
- * sections, printing out the tid of each.
- */
- static int rcu_print_task_stall(struct rcu_node *rnp)
- {
- struct task_struct *t;
- int ndetected = 0;
- if (!rcu_preempt_blocked_readers_cgp(rnp))
- return 0;
- rcu_print_task_stall_begin(rnp);
- t = list_entry(rnp->gp_tasks->prev,
- struct task_struct, rcu_node_entry);
- list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
- pr_cont(" P%d", t->pid);
- ndetected++;
- }
- rcu_print_task_stall_end();
- return ndetected;
- }
- /*
- * Scan the current list of tasks blocked within RCU read-side critical
- * sections, printing out the tid of each that is blocking the current
- * expedited grace period.
- */
- static int rcu_print_task_exp_stall(struct rcu_node *rnp)
- {
- struct task_struct *t;
- int ndetected = 0;
- if (!rnp->exp_tasks)
- return 0;
- t = list_entry(rnp->exp_tasks->prev,
- struct task_struct, rcu_node_entry);
- list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
- pr_cont(" P%d", t->pid);
- ndetected++;
- }
- return ndetected;
- }
- /*
- * Check that the list of blocked tasks for the newly completed grace
- * period is in fact empty. It is a serious bug to complete a grace
- * period that still has RCU readers blocked! This function must be
- * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
- * must be held by the caller.
- *
- * Also, if there are blocked tasks on the list, they automatically
- * block the newly created grace period, so set up ->gp_tasks accordingly.
- */
- static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
- {
- WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
- if (rcu_preempt_has_tasks(rnp))
- rnp->gp_tasks = rnp->blkd_tasks.next;
- WARN_ON_ONCE(rnp->qsmask);
- }
- /*
- * Check for a quiescent state from the current CPU. When a task blocks,
- * the task is recorded in the corresponding CPU's rcu_node structure,
- * which is checked elsewhere.
- *
- * Caller must disable hard irqs.
- */
- static void rcu_preempt_check_callbacks(void)
- {
- struct task_struct *t = current;
- if (t->rcu_read_lock_nesting == 0) {
- rcu_preempt_qs();
- return;
- }
- if (t->rcu_read_lock_nesting > 0 &&
- __this_cpu_read(rcu_data_p->core_needs_qs) &&
- __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
- t->rcu_read_unlock_special.b.need_qs = true;
- }
- #ifdef CONFIG_RCU_BOOST
- static void rcu_preempt_do_callbacks(void)
- {
- rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
- }
- #endif /* #ifdef CONFIG_RCU_BOOST */
- /*
- * Queue a preemptible-RCU callback for invocation after a grace period.
- */
- void call_rcu(struct rcu_head *head, rcu_callback_t func)
- {
- __call_rcu(head, func, rcu_state_p, -1, 0);
- }
- EXPORT_SYMBOL_GPL(call_rcu);
- /**
- * synchronize_rcu - wait until a grace period has elapsed.
- *
- * Control will return to the caller some time after a full grace
- * period has elapsed, in other words after all currently executing RCU
- * read-side critical sections have completed. Note, however, that
- * upon return from synchronize_rcu(), the caller might well be executing
- * concurrently with new RCU read-side critical sections that began while
- * synchronize_rcu() was waiting. RCU read-side critical sections are
- * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
- *
- * See the description of synchronize_sched() for more detailed information
- * on memory ordering guarantees.
- */
- void synchronize_rcu(void)
- {
- RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
- lock_is_held(&rcu_lock_map) ||
- lock_is_held(&rcu_sched_lock_map),
- "Illegal synchronize_rcu() in RCU read-side critical section");
- if (!rcu_scheduler_active)
- return;
- if (rcu_gp_is_expedited())
- synchronize_rcu_expedited();
- else
- wait_rcu_gp(call_rcu);
- }
- EXPORT_SYMBOL_GPL(synchronize_rcu);
- /*
- * Remote handler for smp_call_function_single(). If there is an
- * RCU read-side critical section in effect, request that the
- * next rcu_read_unlock() record the quiescent state up the
- * ->expmask fields in the rcu_node tree. Otherwise, immediately
- * report the quiescent state.
- */
- static void sync_rcu_exp_handler(void *info)
- {
- struct rcu_data *rdp;
- struct rcu_state *rsp = info;
- struct task_struct *t = current;
- /*
- * Within an RCU read-side critical section, request that the next
- * rcu_read_unlock() report. Unless this RCU read-side critical
- * section has already blocked, in which case it is already set
- * up for the expedited grace period to wait on it.
- */
- if (t->rcu_read_lock_nesting > 0 &&
- !t->rcu_read_unlock_special.b.blocked) {
- t->rcu_read_unlock_special.b.exp_need_qs = true;
- return;
- }
- /*
- * We are either exiting an RCU read-side critical section (negative
- * values of t->rcu_read_lock_nesting) or are not in one at all
- * (zero value of t->rcu_read_lock_nesting). Or we are in an RCU
- * read-side critical section that blocked before this expedited
- * grace period started. Either way, we can immediately report
- * the quiescent state.
- */
- rdp = this_cpu_ptr(rsp->rda);
- rcu_report_exp_rdp(rsp, rdp, true);
- }
- /**
- * synchronize_rcu_expedited - Brute-force RCU grace period
- *
- * Wait for an RCU-preempt grace period, but expedite it. The basic
- * idea is to invoke synchronize_sched_expedited() to push all the tasks to
- * the ->blkd_tasks lists and wait for this list to drain. This consumes
- * significant time on all CPUs and is unfriendly to real-time workloads,
- * so is thus not recommended for any sort of common-case code.
- * In fact, if you are using synchronize_rcu_expedited() in a loop,
- * please restructure your code to batch your updates, and then Use a
- * single synchronize_rcu() instead.
- */
- void synchronize_rcu_expedited(void)
- {
- struct rcu_node *rnp;
- struct rcu_node *rnp_unlock;
- struct rcu_state *rsp = rcu_state_p;
- unsigned long s;
- s = rcu_exp_gp_seq_snap(rsp);
- rnp_unlock = exp_funnel_lock(rsp, s);
- if (rnp_unlock == NULL)
- return; /* Someone else did our work for us. */
- rcu_exp_gp_seq_start(rsp);
- /* Initialize the rcu_node tree in preparation for the wait. */
- sync_rcu_exp_select_cpus(rsp, sync_rcu_exp_handler);
- /* Wait for snapshotted ->blkd_tasks lists to drain. */
- rnp = rcu_get_root(rsp);
- synchronize_sched_expedited_wait(rsp);
- /* Clean up and exit. */
- rcu_exp_gp_seq_end(rsp);
- mutex_unlock(&rnp_unlock->exp_funnel_mutex);
- }
- EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
- /**
- * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
- *
- * Note that this primitive does not necessarily wait for an RCU grace period
- * to complete. For example, if there are no RCU callbacks queued anywhere
- * in the system, then rcu_barrier() is within its rights to return
- * immediately, without waiting for anything, much less an RCU grace period.
- */
- void rcu_barrier(void)
- {
- _rcu_barrier(rcu_state_p);
- }
- EXPORT_SYMBOL_GPL(rcu_barrier);
- /*
- * Initialize preemptible RCU's state structures.
- */
- static void __init __rcu_init_preempt(void)
- {
- rcu_init_one(rcu_state_p, rcu_data_p);
- }
- /*
- * Check for a task exiting while in a preemptible-RCU read-side
- * critical section, clean up if so. No need to issue warnings,
- * as debug_check_no_locks_held() already does this if lockdep
- * is enabled.
- */
- void exit_rcu(void)
- {
- struct task_struct *t = current;
- if (likely(list_empty(¤t->rcu_node_entry)))
- return;
- t->rcu_read_lock_nesting = 1;
- barrier();
- t->rcu_read_unlock_special.b.blocked = true;
- __rcu_read_unlock();
- }
- #else /* #ifdef CONFIG_PREEMPT_RCU */
- static struct rcu_state *const rcu_state_p = &rcu_sched_state;
- static struct rcu_data __percpu *const rcu_data_p = &rcu_sched_data;
- /*
- * Tell them what RCU they are running.
- */
- static void __init rcu_bootup_announce(void)
- {
- pr_info("Hierarchical RCU implementation.\n");
- rcu_bootup_announce_oddness();
- }
- /*
- * Because preemptible RCU does not exist, we never have to check for
- * CPUs being in quiescent states.
- */
- static void rcu_preempt_note_context_switch(void)
- {
- }
- /*
- * Because preemptible RCU does not exist, there are never any preempted
- * RCU readers.
- */
- static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
- {
- return 0;
- }
- /*
- * Because there is no preemptible RCU, there can be no readers blocked.
- */
- static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
- {
- return false;
- }
- /*
- * Because preemptible RCU does not exist, we never have to check for
- * tasks blocked within RCU read-side critical sections.
- */
- static void rcu_print_detail_task_stall(struct rcu_state *rsp)
- {
- }
- /*
- * Because preemptible RCU does not exist, we never have to check for
- * tasks blocked within RCU read-side critical sections.
- */
- static int rcu_print_task_stall(struct rcu_node *rnp)
- {
- return 0;
- }
- /*
- * Because preemptible RCU does not exist, we never have to check for
- * tasks blocked within RCU read-side critical sections that are
- * blocking the current expedited grace period.
- */
- static int rcu_print_task_exp_stall(struct rcu_node *rnp)
- {
- return 0;
- }
- /*
- * Because there is no preemptible RCU, there can be no readers blocked,
- * so there is no need to check for blocked tasks. So check only for
- * bogus qsmask values.
- */
- static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
- {
- WARN_ON_ONCE(rnp->qsmask);
- }
- /*
- * Because preemptible RCU does not exist, it never has any callbacks
- * to check.
- */
- static void rcu_preempt_check_callbacks(void)
- {
- }
- /*
- * Wait for an rcu-preempt grace period, but make it happen quickly.
- * But because preemptible RCU does not exist, map to rcu-sched.
- */
- void synchronize_rcu_expedited(void)
- {
- synchronize_sched_expedited();
- }
- EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
- /*
- * Because preemptible RCU does not exist, rcu_barrier() is just
- * another name for rcu_barrier_sched().
- */
- void rcu_barrier(void)
- {
- rcu_barrier_sched();
- }
- EXPORT_SYMBOL_GPL(rcu_barrier);
- /*
- * Because preemptible RCU does not exist, it need not be initialized.
- */
- static void __init __rcu_init_preempt(void)
- {
- }
- /*
- * Because preemptible RCU does not exist, tasks cannot possibly exit
- * while in preemptible RCU read-side critical sections.
- */
- void exit_rcu(void)
- {
- }
- #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
- #ifdef CONFIG_RCU_BOOST
- #include "../locking/rtmutex_common.h"
- #ifdef CONFIG_RCU_TRACE
- static void rcu_initiate_boost_trace(struct rcu_node *rnp)
- {
- if (!rcu_preempt_has_tasks(rnp))
- rnp->n_balk_blkd_tasks++;
- else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
- rnp->n_balk_exp_gp_tasks++;
- else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
- rnp->n_balk_boost_tasks++;
- else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
- rnp->n_balk_notblocked++;
- else if (rnp->gp_tasks != NULL &&
- ULONG_CMP_LT(jiffies, rnp->boost_time))
- rnp->n_balk_notyet++;
- else
- rnp->n_balk_nos++;
- }
- #else /* #ifdef CONFIG_RCU_TRACE */
- static void rcu_initiate_boost_trace(struct rcu_node *rnp)
- {
- }
- #endif /* #else #ifdef CONFIG_RCU_TRACE */
- static void rcu_wake_cond(struct task_struct *t, int status)
- {
- /*
- * If the thread is yielding, only wake it when this
- * is invoked from idle
- */
- if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
- wake_up_process(t);
- }
- /*
- * Carry out RCU priority boosting on the task indicated by ->exp_tasks
- * or ->boost_tasks, advancing the pointer to the next task in the
- * ->blkd_tasks list.
- *
- * Note that irqs must be enabled: boosting the task can block.
- * Returns 1 if there are more tasks needing to be boosted.
- */
- static int rcu_boost(struct rcu_node *rnp)
- {
- unsigned long flags;
- struct task_struct *t;
- struct list_head *tb;
- if (READ_ONCE(rnp->exp_tasks) == NULL &&
- READ_ONCE(rnp->boost_tasks) == NULL)
- return 0; /* Nothing left to boost. */
- raw_spin_lock_irqsave(&rnp->lock, flags);
- smp_mb__after_unlock_lock();
- /*
- * Recheck under the lock: all tasks in need of boosting
- * might exit their RCU read-side critical sections on their own.
- */
- if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
- raw_spin_unlock_irqrestore(&rnp->lock, flags);
- return 0;
- }
- /*
- * Preferentially boost tasks blocking expedited grace periods.
- * This cannot starve the normal grace periods because a second
- * expedited grace period must boost all blocked tasks, including
- * those blocking the pre-existing normal grace period.
- */
- if (rnp->exp_tasks != NULL) {
- tb = rnp->exp_tasks;
- rnp->n_exp_boosts++;
- } else {
- tb = rnp->boost_tasks;
- rnp->n_normal_boosts++;
- }
- rnp->n_tasks_boosted++;
- /*
- * We boost task t by manufacturing an rt_mutex that appears to
- * be held by task t. We leave a pointer to that rt_mutex where
- * task t can find it, and task t will release the mutex when it
- * exits its outermost RCU read-side critical section. Then
- * simply acquiring this artificial rt_mutex will boost task
- * t's priority. (Thanks to tglx for suggesting this approach!)
- *
- * Note that task t must acquire rnp->lock to remove itself from
- * the ->blkd_tasks list, which it will do from exit() if from
- * nowhere else. We therefore are guaranteed that task t will
- * stay around at least until we drop rnp->lock. Note that
- * rnp->lock also resolves races between our priority boosting
- * and task t's exiting its outermost RCU read-side critical
- * section.
- */
- t = container_of(tb, struct task_struct, rcu_node_entry);
- rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
- raw_spin_unlock_irqrestore(&rnp->lock, flags);
- /* Lock only for side effect: boosts task t's priority. */
- rt_mutex_lock(&rnp->boost_mtx);
- rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
- return READ_ONCE(rnp->exp_tasks) != NULL ||
- READ_ONCE(rnp->boost_tasks) != NULL;
- }
- /*
- * Priority-boosting kthread, one per leaf rcu_node.
- */
- static int rcu_boost_kthread(void *arg)
- {
- struct rcu_node *rnp = (struct rcu_node *)arg;
- int spincnt = 0;
- int more2boost;
- trace_rcu_utilization(TPS("Start boost kthread@init"));
- for (;;) {
- rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
- trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
- rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
- trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
- rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
- more2boost = rcu_boost(rnp);
- if (more2boost)
- spincnt++;
- else
- spincnt = 0;
- if (spincnt > 10) {
- rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
- trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
- schedule_timeout_interruptible(2);
- trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
- spincnt = 0;
- }
- }
- /* NOTREACHED */
- trace_rcu_utilization(TPS("End boost kthread@notreached"));
- return 0;
- }
- /*
- * Check to see if it is time to start boosting RCU readers that are
- * blocking the current grace period, and, if so, tell the per-rcu_node
- * kthread to start boosting them. If there is an expedited grace
- * period in progress, it is always time to boost.
- *
- * The caller must hold rnp->lock, which this function releases.
- * The ->boost_kthread_task is immortal, so we don't need to worry
- * about it going away.
- */
- static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
- __releases(rnp->lock)
- {
- struct task_struct *t;
- if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
- rnp->n_balk_exp_gp_tasks++;
- raw_spin_unlock_irqrestore(&rnp->lock, flags);
- return;
- }
- if (rnp->exp_tasks != NULL ||
- (rnp->gp_tasks != NULL &&
- rnp->boost_tasks == NULL &&
- rnp->qsmask == 0 &&
- ULONG_CMP_GE(jiffies, rnp->boost_time))) {
- if (rnp->exp_tasks == NULL)
- rnp->boost_tasks = rnp->gp_tasks;
- raw_spin_unlock_irqrestore(&rnp->lock, flags);
- t = rnp->boost_kthread_task;
- if (t)
- rcu_wake_cond(t, rnp->boost_kthread_status);
- } else {
- rcu_initiate_boost_trace(rnp);
- raw_spin_unlock_irqrestore(&rnp->lock, flags);
- }
- }
- /*
- * Wake up the per-CPU kthread to invoke RCU callbacks.
- */
- static void invoke_rcu_callbacks_kthread(void)
- {
- unsigned long flags;
- local_irq_save(flags);
- __this_cpu_write(rcu_cpu_has_work, 1);
- if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
- current != __this_cpu_read(rcu_cpu_kthread_task)) {
- rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
- __this_cpu_read(rcu_cpu_kthread_status));
- }
- local_irq_restore(flags);
- }
- /*
- * Is the current CPU running the RCU-callbacks kthread?
- * Caller must have preemption disabled.
- */
- static bool rcu_is_callbacks_kthread(void)
- {
- return __this_cpu_read(rcu_cpu_kthread_task) == current;
- }
- #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
- /*
- * Do priority-boost accounting for the start of a new grace period.
- */
- static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
- {
- rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
- }
- /*
- * Create an RCU-boost kthread for the specified node if one does not
- * already exist. We only create this kthread for preemptible RCU.
- * Returns zero if all is well, a negated errno otherwise.
- */
- static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
- struct rcu_node *rnp)
- {
- int rnp_index = rnp - &rsp->node[0];
- unsigned long flags;
- struct sched_param sp;
- struct task_struct *t;
- if (rcu_state_p != rsp)
- return 0;
- if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
- return 0;
- rsp->boost = 1;
- if (rnp->boost_kthread_task != NULL)
- return 0;
- t = kthread_create(rcu_boost_kthread, (void *)rnp,
- "rcub/%d", rnp_index);
- if (IS_ERR(t))
- return PTR_ERR(t);
- raw_spin_lock_irqsave(&rnp->lock, flags);
- smp_mb__after_unlock_lock();
- rnp->boost_kthread_task = t;
- raw_spin_unlock_irqrestore(&rnp->lock, flags);
- sp.sched_priority = kthread_prio;
- sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
- wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
- return 0;
- }
- static void rcu_kthread_do_work(void)
- {
- rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
- rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
- rcu_preempt_do_callbacks();
- }
- static void rcu_cpu_kthread_setup(unsigned int cpu)
- {
- struct sched_param sp;
- sp.sched_priority = kthread_prio;
- sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
- }
- static void rcu_cpu_kthread_park(unsigned int cpu)
- {
- per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
- }
- static int rcu_cpu_kthread_should_run(unsigned int cpu)
- {
- return __this_cpu_read(rcu_cpu_has_work);
- }
- /*
- * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
- * RCU softirq used in flavors and configurations of RCU that do not
- * support RCU priority boosting.
- */
- static void rcu_cpu_kthread(unsigned int cpu)
- {
- unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
- char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
- int spincnt;
- for (spincnt = 0; spincnt < 10; spincnt++) {
- trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
- local_bh_disable();
- *statusp = RCU_KTHREAD_RUNNING;
- this_cpu_inc(rcu_cpu_kthread_loops);
- local_irq_disable();
- work = *workp;
- *workp = 0;
- local_irq_enable();
- if (work)
- rcu_kthread_do_work();
- local_bh_enable();
- if (*workp == 0) {
- trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
- *statusp = RCU_KTHREAD_WAITING;
- return;
- }
- }
- *statusp = RCU_KTHREAD_YIELDING;
- trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
- schedule_timeout_interruptible(2);
- trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
- *statusp = RCU_KTHREAD_WAITING;
- }
- /*
- * Set the per-rcu_node kthread's affinity to cover all CPUs that are
- * served by the rcu_node in question. The CPU hotplug lock is still
- * held, so the value of rnp->qsmaskinit will be stable.
- *
- * We don't include outgoingcpu in the affinity set, use -1 if there is
- * no outgoing CPU. If there are no CPUs left in the affinity set,
- * this function allows the kthread to execute on any CPU.
- */
- static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
- {
- struct task_struct *t = rnp->boost_kthread_task;
- unsigned long mask = rcu_rnp_online_cpus(rnp);
- cpumask_var_t cm;
- int cpu;
- if (!t)
- return;
- if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
- return;
- for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
- if ((mask & 0x1) && cpu != outgoingcpu)
- cpumask_set_cpu(cpu, cm);
- if (cpumask_weight(cm) == 0)
- cpumask_setall(cm);
- set_cpus_allowed_ptr(t, cm);
- free_cpumask_var(cm);
- }
- static struct smp_hotplug_thread rcu_cpu_thread_spec = {
- .store = &rcu_cpu_kthread_task,
- .thread_should_run = rcu_cpu_kthread_should_run,
- .thread_fn = rcu_cpu_kthread,
- .thread_comm = "rcuc/%u",
- .setup = rcu_cpu_kthread_setup,
- .park = rcu_cpu_kthread_park,
- };
- /*
- * Spawn boost kthreads -- called as soon as the scheduler is running.
- */
- static void __init rcu_spawn_boost_kthreads(void)
- {
- struct rcu_node *rnp;
- int cpu;
- for_each_possible_cpu(cpu)
- per_cpu(rcu_cpu_has_work, cpu) = 0;
- BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
- rcu_for_each_leaf_node(rcu_state_p, rnp)
- (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
- }
- static void rcu_prepare_kthreads(int cpu)
- {
- struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
- struct rcu_node *rnp = rdp->mynode;
- /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
- if (rcu_scheduler_fully_active)
- (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
- }
- #else /* #ifdef CONFIG_RCU_BOOST */
- static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
- __releases(rnp->lock)
- {
- raw_spin_unlock_irqrestore(&rnp->lock, flags);
- }
- static void invoke_rcu_callbacks_kthread(void)
- {
- WARN_ON_ONCE(1);
- }
- static bool rcu_is_callbacks_kthread(void)
- {
- return false;
- }
- static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
- {
- }
- static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
- {
- }
- static void __init rcu_spawn_boost_kthreads(void)
- {
- }
- static void rcu_prepare_kthreads(int cpu)
- {
- }
- #endif /* #else #ifdef CONFIG_RCU_BOOST */
- #if !defined(CONFIG_RCU_FAST_NO_HZ)
- /*
- * Check to see if any future RCU-related work will need to be done
- * by the current CPU, even if none need be done immediately, returning
- * 1 if so. This function is part of the RCU implementation; it is -not-
- * an exported member of the RCU API.
- *
- * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
- * any flavor of RCU.
- */
- int rcu_needs_cpu(u64 basemono, u64 *nextevt)
- {
- *nextevt = KTIME_MAX;
- return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
- ? 0 : rcu_cpu_has_callbacks(NULL);
- }
- /*
- * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
- * after it.
- */
- static void rcu_cleanup_after_idle(void)
- {
- }
- /*
- * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
- * is nothing.
- */
- static void rcu_prepare_for_idle(void)
- {
- }
- /*
- * Don't bother keeping a running count of the number of RCU callbacks
- * posted because CONFIG_RCU_FAST_NO_HZ=n.
- */
- static void rcu_idle_count_callbacks_posted(void)
- {
- }
- #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
- /*
- * This code is invoked when a CPU goes idle, at which point we want
- * to have the CPU do everything required for RCU so that it can enter
- * the energy-efficient dyntick-idle mode. This is handled by a
- * state machine implemented by rcu_prepare_for_idle() below.
- *
- * The following three proprocessor symbols control this state machine:
- *
- * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
- * to sleep in dyntick-idle mode with RCU callbacks pending. This
- * is sized to be roughly one RCU grace period. Those energy-efficiency
- * benchmarkers who might otherwise be tempted to set this to a large
- * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
- * system. And if you are -that- concerned about energy efficiency,
- * just power the system down and be done with it!
- * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
- * permitted to sleep in dyntick-idle mode with only lazy RCU
- * callbacks pending. Setting this too high can OOM your system.
- *
- * The values below work well in practice. If future workloads require
- * adjustment, they can be converted into kernel config parameters, though
- * making the state machine smarter might be a better option.
- */
- #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
- #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
- static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
- module_param(rcu_idle_gp_delay, int, 0644);
- static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
- module_param(rcu_idle_lazy_gp_delay, int, 0644);
- /*
- * Try to advance callbacks for all flavors of RCU on the current CPU, but
- * only if it has been awhile since the last time we did so. Afterwards,
- * if there are any callbacks ready for immediate invocation, return true.
- */
- static bool __maybe_unused rcu_try_advance_all_cbs(void)
- {
- bool cbs_ready = false;
- struct rcu_data *rdp;
- struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
- struct rcu_node *rnp;
- struct rcu_state *rsp;
- /* Exit early if we advanced recently. */
- if (jiffies == rdtp->last_advance_all)
- return false;
- rdtp->last_advance_all = jiffies;
- for_each_rcu_flavor(rsp) {
- rdp = this_cpu_ptr(rsp->rda);
- rnp = rdp->mynode;
- /*
- * Don't bother checking unless a grace period has
- * completed since we last checked and there are
- * callbacks not yet ready to invoke.
- */
- if ((rdp->completed != rnp->completed ||
- unlikely(READ_ONCE(rdp->gpwrap))) &&
- rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
- note_gp_changes(rsp, rdp);
- if (cpu_has_callbacks_ready_to_invoke(rdp))
- cbs_ready = true;
- }
- return cbs_ready;
- }
- /*
- * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
- * to invoke. If the CPU has callbacks, try to advance them. Tell the
- * caller to set the timeout based on whether or not there are non-lazy
- * callbacks.
- *
- * The caller must have disabled interrupts.
- */
- int rcu_needs_cpu(u64 basemono, u64 *nextevt)
- {
- struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
- unsigned long dj;
- if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
- *nextevt = KTIME_MAX;
- return 0;
- }
- /* Snapshot to detect later posting of non-lazy callback. */
- rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
- /* If no callbacks, RCU doesn't need the CPU. */
- if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
- *nextevt = KTIME_MAX;
- return 0;
- }
- /* Attempt to advance callbacks. */
- if (rcu_try_advance_all_cbs()) {
- /* Some ready to invoke, so initiate later invocation. */
- invoke_rcu_core();
- return 1;
- }
- rdtp->last_accelerate = jiffies;
- /* Request timer delay depending on laziness, and round. */
- if (!rdtp->all_lazy) {
- dj = round_up(rcu_idle_gp_delay + jiffies,
- rcu_idle_gp_delay) - jiffies;
- } else {
- dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
- }
- *nextevt = basemono + dj * TICK_NSEC;
- return 0;
- }
- /*
- * Prepare a CPU for idle from an RCU perspective. The first major task
- * is to sense whether nohz mode has been enabled or disabled via sysfs.
- * The second major task is to check to see if a non-lazy callback has
- * arrived at a CPU that previously had only lazy callbacks. The third
- * major task is to accelerate (that is, assign grace-period numbers to)
- * any recently arrived callbacks.
- *
- * The caller must have disabled interrupts.
- */
- static void rcu_prepare_for_idle(void)
- {
- bool needwake;
- struct rcu_data *rdp;
- struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
- struct rcu_node *rnp;
- struct rcu_state *rsp;
- int tne;
- if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL))
- return;
- /* Handle nohz enablement switches conservatively. */
- tne = READ_ONCE(tick_nohz_active);
- if (tne != rdtp->tick_nohz_enabled_snap) {
- if (rcu_cpu_has_callbacks(NULL))
- invoke_rcu_core(); /* force nohz to see update. */
- rdtp->tick_nohz_enabled_snap = tne;
- return;
- }
- if (!tne)
- return;
- /* If this is a no-CBs CPU, no callbacks, just return. */
- if (rcu_is_nocb_cpu(smp_processor_id()))
- return;
- /*
- * If a non-lazy callback arrived at a CPU having only lazy
- * callbacks, invoke RCU core for the side-effect of recalculating
- * idle duration on re-entry to idle.
- */
- if (rdtp->all_lazy &&
- rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
- rdtp->all_lazy = false;
- rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
- invoke_rcu_core();
- return;
- }
- /*
- * If we have not yet accelerated this jiffy, accelerate all
- * callbacks on this CPU.
- */
- if (rdtp->last_accelerate == jiffies)
- return;
- rdtp->last_accelerate = jiffies;
- for_each_rcu_flavor(rsp) {
- rdp = this_cpu_ptr(rsp->rda);
- if (!*rdp->nxttail[RCU_DONE_TAIL])
- continue;
- rnp = rdp->mynode;
- raw_spin_lock(&rnp->lock); /* irqs already disabled. */
- smp_mb__after_unlock_lock();
- needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
- raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
- if (needwake)
- rcu_gp_kthread_wake(rsp);
- }
- }
- /*
- * Clean up for exit from idle. Attempt to advance callbacks based on
- * any grace periods that elapsed while the CPU was idle, and if any
- * callbacks are now ready to invoke, initiate invocation.
- */
- static void rcu_cleanup_after_idle(void)
- {
- if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
- rcu_is_nocb_cpu(smp_processor_id()))
- return;
- if (rcu_try_advance_all_cbs())
- invoke_rcu_core();
- }
- /*
- * Keep a running count of the number of non-lazy callbacks posted
- * on this CPU. This running counter (which is never decremented) allows
- * rcu_prepare_for_idle() to detect when something out of the idle loop
- * posts a callback, even if an equal number of callbacks are invoked.
- * Of course, callbacks should only be posted from within a trace event
- * designed to be called from idle or from within RCU_NONIDLE().
- */
- static void rcu_idle_count_callbacks_posted(void)
- {
- __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
- }
- /*
- * Data for flushing lazy RCU callbacks at OOM time.
- */
- static atomic_t oom_callback_count;
- static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
- /*
- * RCU OOM callback -- decrement the outstanding count and deliver the
- * wake-up if we are the last one.
- */
- static void rcu_oom_callback(struct rcu_head *rhp)
- {
- if (atomic_dec_and_test(&oom_callback_count))
- wake_up(&oom_callback_wq);
- }
- /*
- * Post an rcu_oom_notify callback on the current CPU if it has at
- * least one lazy callback. This will unnecessarily post callbacks
- * to CPUs that already have a non-lazy callback at the end of their
- * callback list, but this is an infrequent operation, so accept some
- * extra overhead to keep things simple.
- */
- static void rcu_oom_notify_cpu(void *unused)
- {
- struct rcu_state *rsp;
- struct rcu_data *rdp;
- for_each_rcu_flavor(rsp) {
- rdp = raw_cpu_ptr(rsp->rda);
- if (rdp->qlen_lazy != 0) {
- atomic_inc(&oom_callback_count);
- rsp->call(&rdp->oom_head, rcu_oom_callback);
- }
- }
- }
- /*
- * If low on memory, ensure that each CPU has a non-lazy callback.
- * This will wake up CPUs that have only lazy callbacks, in turn
- * ensuring that they free up the corresponding memory in a timely manner.
- * Because an uncertain amount of memory will be freed in some uncertain
- * timeframe, we do not claim to have freed anything.
- */
- static int rcu_oom_notify(struct notifier_block *self,
- unsigned long notused, void *nfreed)
- {
- int cpu;
- /* Wait for callbacks from earlier instance to complete. */
- wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
- smp_mb(); /* Ensure callback reuse happens after callback invocation. */
- /*
- * Prevent premature wakeup: ensure that all increments happen
- * before there is a chance of the counter reaching zero.
- */
- atomic_set(&oom_callback_count, 1);
- for_each_online_cpu(cpu) {
- smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
- cond_resched_rcu_qs();
- }
- /* Unconditionally decrement: no need to wake ourselves up. */
- atomic_dec(&oom_callback_count);
- return NOTIFY_OK;
- }
- static struct notifier_block rcu_oom_nb = {
- .notifier_call = rcu_oom_notify
- };
- static int __init rcu_register_oom_notifier(void)
- {
- register_oom_notifier(&rcu_oom_nb);
- return 0;
- }
- early_initcall(rcu_register_oom_notifier);
- #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
- #ifdef CONFIG_RCU_FAST_NO_HZ
- static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
- {
- struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
- unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
- sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
- rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
- ulong2long(nlpd),
- rdtp->all_lazy ? 'L' : '.',
- rdtp->tick_nohz_enabled_snap ? '.' : 'D');
- }
- #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
- static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
- {
- *cp = '\0';
- }
- #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
- /* Initiate the stall-info list. */
- static void print_cpu_stall_info_begin(void)
- {
- pr_cont("\n");
- }
- /*
- * Print out diagnostic information for the specified stalled CPU.
- *
- * If the specified CPU is aware of the current RCU grace period
- * (flavor specified by rsp), then print the number of scheduling
- * clock interrupts the CPU has taken during the time that it has
- * been aware. Otherwise, print the number of RCU grace periods
- * that this CPU is ignorant of, for example, "1" if the CPU was
- * aware of the previous grace period.
- *
- * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
- */
- static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
- {
- char fast_no_hz[72];
- struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
- struct rcu_dynticks *rdtp = rdp->dynticks;
- char *ticks_title;
- unsigned long ticks_value;
- if (rsp->gpnum == rdp->gpnum) {
- ticks_title = "ticks this GP";
- ticks_value = rdp->ticks_this_gp;
- } else {
- ticks_title = "GPs behind";
- ticks_value = rsp->gpnum - rdp->gpnum;
- }
- print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
- pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
- cpu,
- "O."[!!cpu_online(cpu)],
- "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
- "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
- ticks_value, ticks_title,
- atomic_read(&rdtp->dynticks) & 0xfff,
- rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
- rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
- READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
- fast_no_hz);
- }
- /* Terminate the stall-info list. */
- static void print_cpu_stall_info_end(void)
- {
- pr_err("\t");
- }
- /* Zero ->ticks_this_gp for all flavors of RCU. */
- static void zero_cpu_stall_ticks(struct rcu_data *rdp)
- {
- rdp->ticks_this_gp = 0;
- rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
- }
- /* Increment ->ticks_this_gp for all flavors of RCU. */
- static void increment_cpu_stall_ticks(void)
- {
- struct rcu_state *rsp;
- for_each_rcu_flavor(rsp)
- raw_cpu_inc(rsp->rda->ticks_this_gp);
- }
- #ifdef CONFIG_RCU_NOCB_CPU
- /*
- * Offload callback processing from the boot-time-specified set of CPUs
- * specified by rcu_nocb_mask. For each CPU in the set, there is a
- * kthread created that pulls the callbacks from the corresponding CPU,
- * waits for a grace period to elapse, and invokes the callbacks.
- * The no-CBs CPUs do a wake_up() on their kthread when they insert
- * a callback into any empty list, unless the rcu_nocb_poll boot parameter
- * has been specified, in which case each kthread actively polls its
- * CPU. (Which isn't so great for energy efficiency, but which does
- * reduce RCU's overhead on that CPU.)
- *
- * This is intended to be used in conjunction with Frederic Weisbecker's
- * adaptive-idle work, which would seriously reduce OS jitter on CPUs
- * running CPU-bound user-mode computations.
- *
- * Offloading of callback processing could also in theory be used as
- * an energy-efficiency measure because CPUs with no RCU callbacks
- * queued are more aggressive about entering dyntick-idle mode.
- */
- /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
- static int __init rcu_nocb_setup(char *str)
- {
- alloc_bootmem_cpumask_var(&rcu_nocb_mask);
- have_rcu_nocb_mask = true;
- cpulist_parse(str, rcu_nocb_mask);
- return 1;
- }
- __setup("rcu_nocbs=", rcu_nocb_setup);
- static int __init parse_rcu_nocb_poll(char *arg)
- {
- rcu_nocb_poll = 1;
- return 0;
- }
- early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
- /*
- * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
- * grace period.
- */
- static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
- {
- wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
- }
- /*
- * Set the root rcu_node structure's ->need_future_gp field
- * based on the sum of those of all rcu_node structures. This does
- * double-count the root rcu_node structure's requests, but this
- * is necessary to handle the possibility of a rcu_nocb_kthread()
- * having awakened during the time that the rcu_node structures
- * were being updated for the end of the previous grace period.
- */
- static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
- {
- rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
- }
- static void rcu_init_one_nocb(struct rcu_node *rnp)
- {
- init_waitqueue_head(&rnp->nocb_gp_wq[0]);
- init_waitqueue_head(&rnp->nocb_gp_wq[1]);
- }
- #ifndef CONFIG_RCU_NOCB_CPU_ALL
- /* Is the specified CPU a no-CBs CPU? */
- bool rcu_is_nocb_cpu(int cpu)
- {
- if (have_rcu_nocb_mask)
- return cpumask_test_cpu(cpu, rcu_nocb_mask);
- return false;
- }
- #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
- /*
- * Kick the leader kthread for this NOCB group.
- */
- static void wake_nocb_leader(struct rcu_data *rdp, bool force)
- {
- struct rcu_data *rdp_leader = rdp->nocb_leader;
- if (!READ_ONCE(rdp_leader->nocb_kthread))
- return;
- if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
- /* Prior smp_mb__after_atomic() orders against prior enqueue. */
- WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
- wake_up(&rdp_leader->nocb_wq);
- }
- }
- /*
- * Does the specified CPU need an RCU callback for the specified flavor
- * of rcu_barrier()?
- */
- static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
- {
- struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
- unsigned long ret;
- #ifdef CONFIG_PROVE_RCU
- struct rcu_head *rhp;
- #endif /* #ifdef CONFIG_PROVE_RCU */
- /*
- * Check count of all no-CBs callbacks awaiting invocation.
- * There needs to be a barrier before this function is called,
- * but associated with a prior determination that no more
- * callbacks would be posted. In the worst case, the first
- * barrier in _rcu_barrier() suffices (but the caller cannot
- * necessarily rely on this, not a substitute for the caller
- * getting the concurrency design right!). There must also be
- * a barrier between the following load an posting of a callback
- * (if a callback is in fact needed). This is associated with an
- * atomic_inc() in the caller.
- */
- ret = atomic_long_read(&rdp->nocb_q_count);
- #ifdef CONFIG_PROVE_RCU
- rhp = READ_ONCE(rdp->nocb_head);
- if (!rhp)
- rhp = READ_ONCE(rdp->nocb_gp_head);
- if (!rhp)
- rhp = READ_ONCE(rdp->nocb_follower_head);
- /* Having no rcuo kthread but CBs after scheduler starts is bad! */
- if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
- rcu_scheduler_fully_active) {
- /* RCU callback enqueued before CPU first came online??? */
- pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
- cpu, rhp->func);
- WARN_ON_ONCE(1);
- }
- #endif /* #ifdef CONFIG_PROVE_RCU */
- return !!ret;
- }
- /*
- * Enqueue the specified string of rcu_head structures onto the specified
- * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
- * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
- * counts are supplied by rhcount and rhcount_lazy.
- *
- * If warranted, also wake up the kthread servicing this CPUs queues.
- */
- static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
- struct rcu_head *rhp,
- struct rcu_head **rhtp,
- int rhcount, int rhcount_lazy,
- unsigned long flags)
- {
- int len;
- struct rcu_head **old_rhpp;
- struct task_struct *t;
- /* Enqueue the callback on the nocb list and update counts. */
- atomic_long_add(rhcount, &rdp->nocb_q_count);
- /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
- old_rhpp = xchg(&rdp->nocb_tail, rhtp);
- WRITE_ONCE(*old_rhpp, rhp);
- atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
- smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
- /* If we are not being polled and there is a kthread, awaken it ... */
- t = READ_ONCE(rdp->nocb_kthread);
- if (rcu_nocb_poll || !t) {
- trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
- TPS("WakeNotPoll"));
- return;
- }
- len = atomic_long_read(&rdp->nocb_q_count);
- if (old_rhpp == &rdp->nocb_head) {
- if (!irqs_disabled_flags(flags)) {
- /* ... if queue was empty ... */
- wake_nocb_leader(rdp, false);
- trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
- TPS("WakeEmpty"));
- } else {
- rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
- trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
- TPS("WakeEmptyIsDeferred"));
- }
- rdp->qlen_last_fqs_check = 0;
- } else if (len > rdp->qlen_last_fqs_check + qhimark) {
- /* ... or if many callbacks queued. */
- if (!irqs_disabled_flags(flags)) {
- wake_nocb_leader(rdp, true);
- trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
- TPS("WakeOvf"));
- } else {
- rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
- trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
- TPS("WakeOvfIsDeferred"));
- }
- rdp->qlen_last_fqs_check = LONG_MAX / 2;
- } else {
- trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
- }
- return;
- }
- /*
- * This is a helper for __call_rcu(), which invokes this when the normal
- * callback queue is inoperable. If this is not a no-CBs CPU, this
- * function returns failure back to __call_rcu(), which can complain
- * appropriately.
- *
- * Otherwise, this function queues the callback where the corresponding
- * "rcuo" kthread can find it.
- */
- static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
- bool lazy, unsigned long flags)
- {
- if (!rcu_is_nocb_cpu(rdp->cpu))
- return false;
- __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
- if (__is_kfree_rcu_offset((unsigned long)rhp->func))
- trace_rcu_kfree_callback(rdp->rsp->name, rhp,
- (unsigned long)rhp->func,
- -atomic_long_read(&rdp->nocb_q_count_lazy),
- -atomic_long_read(&rdp->nocb_q_count));
- else
- trace_rcu_callback(rdp->rsp->name, rhp,
- -atomic_long_read(&rdp->nocb_q_count_lazy),
- -atomic_long_read(&rdp->nocb_q_count));
- /*
- * If called from an extended quiescent state with interrupts
- * disabled, invoke the RCU core in order to allow the idle-entry
- * deferred-wakeup check to function.
- */
- if (irqs_disabled_flags(flags) &&
- !rcu_is_watching() &&
- cpu_online(smp_processor_id()))
- invoke_rcu_core();
- return true;
- }
- /*
- * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
- * not a no-CBs CPU.
- */
- static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
- struct rcu_data *rdp,
- unsigned long flags)
- {
- long ql = rsp->qlen;
- long qll = rsp->qlen_lazy;
- /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
- if (!rcu_is_nocb_cpu(smp_processor_id()))
- return false;
- rsp->qlen = 0;
- rsp->qlen_lazy = 0;
- /* First, enqueue the donelist, if any. This preserves CB ordering. */
- if (rsp->orphan_donelist != NULL) {
- __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
- rsp->orphan_donetail, ql, qll, flags);
- ql = qll = 0;
- rsp->orphan_donelist = NULL;
- rsp->orphan_donetail = &rsp->orphan_donelist;
- }
- if (rsp->orphan_nxtlist != NULL) {
- __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
- rsp->orphan_nxttail, ql, qll, flags);
- ql = qll = 0;
- rsp->orphan_nxtlist = NULL;
- rsp->orphan_nxttail = &rsp->orphan_nxtlist;
- }
- return true;
- }
- /*
- * If necessary, kick off a new grace period, and either way wait
- * for a subsequent grace period to complete.
- */
- static void rcu_nocb_wait_gp(struct rcu_data *rdp)
- {
- unsigned long c;
- bool d;
- unsigned long flags;
- bool needwake;
- struct rcu_node *rnp = rdp->mynode;
- raw_spin_lock_irqsave(&rnp->lock, flags);
- smp_mb__after_unlock_lock();
- needwake = rcu_start_future_gp(rnp, rdp, &c);
- raw_spin_unlock_irqrestore(&rnp->lock, flags);
- if (needwake)
- rcu_gp_kthread_wake(rdp->rsp);
- /*
- * Wait for the grace period. Do so interruptibly to avoid messing
- * up the load average.
- */
- trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
- for (;;) {
- wait_event_interruptible(
- rnp->nocb_gp_wq[c & 0x1],
- (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
- if (likely(d))
- break;
- WARN_ON(signal_pending(current));
- trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
- }
- trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
- smp_mb(); /* Ensure that CB invocation happens after GP end. */
- }
- /*
- * Leaders come here to wait for additional callbacks to show up.
- * This function does not return until callbacks appear.
- */
- static void nocb_leader_wait(struct rcu_data *my_rdp)
- {
- bool firsttime = true;
- bool gotcbs;
- struct rcu_data *rdp;
- struct rcu_head **tail;
- wait_again:
- /* Wait for callbacks to appear. */
- if (!rcu_nocb_poll) {
- trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
- wait_event_interruptible(my_rdp->nocb_wq,
- !READ_ONCE(my_rdp->nocb_leader_sleep));
- /* Memory barrier handled by smp_mb() calls below and repoll. */
- } else if (firsttime) {
- firsttime = false; /* Don't drown trace log with "Poll"! */
- trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
- }
- /*
- * Each pass through the following loop checks a follower for CBs.
- * We are our own first follower. Any CBs found are moved to
- * nocb_gp_head, where they await a grace period.
- */
- gotcbs = false;
- for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
- rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
- if (!rdp->nocb_gp_head)
- continue; /* No CBs here, try next follower. */
- /* Move callbacks to wait-for-GP list, which is empty. */
- WRITE_ONCE(rdp->nocb_head, NULL);
- rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
- gotcbs = true;
- }
- /*
- * If there were no callbacks, sleep a bit, rescan after a
- * memory barrier, and go retry.
- */
- if (unlikely(!gotcbs)) {
- if (!rcu_nocb_poll)
- trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
- "WokeEmpty");
- WARN_ON(signal_pending(current));
- schedule_timeout_interruptible(1);
- /* Rescan in case we were a victim of memory ordering. */
- my_rdp->nocb_leader_sleep = true;
- smp_mb(); /* Ensure _sleep true before scan. */
- for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
- if (READ_ONCE(rdp->nocb_head)) {
- /* Found CB, so short-circuit next wait. */
- my_rdp->nocb_leader_sleep = false;
- break;
- }
- goto wait_again;
- }
- /* Wait for one grace period. */
- rcu_nocb_wait_gp(my_rdp);
- /*
- * We left ->nocb_leader_sleep unset to reduce cache thrashing.
- * We set it now, but recheck for new callbacks while
- * traversing our follower list.
- */
- my_rdp->nocb_leader_sleep = true;
- smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
- /* Each pass through the following loop wakes a follower, if needed. */
- for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
- if (READ_ONCE(rdp->nocb_head))
- my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
- if (!rdp->nocb_gp_head)
- continue; /* No CBs, so no need to wake follower. */
- /* Append callbacks to follower's "done" list. */
- tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
- *tail = rdp->nocb_gp_head;
- smp_mb__after_atomic(); /* Store *tail before wakeup. */
- if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
- /*
- * List was empty, wake up the follower.
- * Memory barriers supplied by atomic_long_add().
- */
- wake_up(&rdp->nocb_wq);
- }
- }
- /* If we (the leader) don't have CBs, go wait some more. */
- if (!my_rdp->nocb_follower_head)
- goto wait_again;
- }
- /*
- * Followers come here to wait for additional callbacks to show up.
- * This function does not return until callbacks appear.
- */
- static void nocb_follower_wait(struct rcu_data *rdp)
- {
- bool firsttime = true;
- for (;;) {
- if (!rcu_nocb_poll) {
- trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
- "FollowerSleep");
- wait_event_interruptible(rdp->nocb_wq,
- READ_ONCE(rdp->nocb_follower_head));
- } else if (firsttime) {
- /* Don't drown trace log with "Poll"! */
- firsttime = false;
- trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
- }
- if (smp_load_acquire(&rdp->nocb_follower_head)) {
- /* ^^^ Ensure CB invocation follows _head test. */
- return;
- }
- if (!rcu_nocb_poll)
- trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
- "WokeEmpty");
- WARN_ON(signal_pending(current));
- schedule_timeout_interruptible(1);
- }
- }
- /*
- * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
- * callbacks queued by the corresponding no-CBs CPU, however, there is
- * an optional leader-follower relationship so that the grace-period
- * kthreads don't have to do quite so many wakeups.
- */
- static int rcu_nocb_kthread(void *arg)
- {
- int c, cl;
- struct rcu_head *list;
- struct rcu_head *next;
- struct rcu_head **tail;
- struct rcu_data *rdp = arg;
- /* Each pass through this loop invokes one batch of callbacks */
- for (;;) {
- /* Wait for callbacks. */
- if (rdp->nocb_leader == rdp)
- nocb_leader_wait(rdp);
- else
- nocb_follower_wait(rdp);
- /* Pull the ready-to-invoke callbacks onto local list. */
- list = READ_ONCE(rdp->nocb_follower_head);
- BUG_ON(!list);
- trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
- WRITE_ONCE(rdp->nocb_follower_head, NULL);
- tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
- /* Each pass through the following loop invokes a callback. */
- trace_rcu_batch_start(rdp->rsp->name,
- atomic_long_read(&rdp->nocb_q_count_lazy),
- atomic_long_read(&rdp->nocb_q_count), -1);
- c = cl = 0;
- while (list) {
- next = list->next;
- /* Wait for enqueuing to complete, if needed. */
- while (next == NULL && &list->next != tail) {
- trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
- TPS("WaitQueue"));
- schedule_timeout_interruptible(1);
- trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
- TPS("WokeQueue"));
- next = list->next;
- }
- debug_rcu_head_unqueue(list);
- local_bh_disable();
- if (__rcu_reclaim(rdp->rsp->name, list))
- cl++;
- c++;
- local_bh_enable();
- cond_resched_rcu_qs();
- list = next;
- }
- trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
- smp_mb__before_atomic(); /* _add after CB invocation. */
- atomic_long_add(-c, &rdp->nocb_q_count);
- atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
- rdp->n_nocbs_invoked += c;
- }
- return 0;
- }
- /* Is a deferred wakeup of rcu_nocb_kthread() required? */
- static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
- {
- return READ_ONCE(rdp->nocb_defer_wakeup);
- }
- /* Do a deferred wakeup of rcu_nocb_kthread(). */
- static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
- {
- int ndw;
- if (!rcu_nocb_need_deferred_wakeup(rdp))
- return;
- ndw = READ_ONCE(rdp->nocb_defer_wakeup);
- WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
- wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
- trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
- }
- void __init rcu_init_nohz(void)
- {
- int cpu;
- bool need_rcu_nocb_mask = true;
- struct rcu_state *rsp;
- #ifdef CONFIG_RCU_NOCB_CPU_NONE
- need_rcu_nocb_mask = false;
- #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
- #if defined(CONFIG_NO_HZ_FULL)
- if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
- need_rcu_nocb_mask = true;
- #endif /* #if defined(CONFIG_NO_HZ_FULL) */
- if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
- if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
- pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
- return;
- }
- have_rcu_nocb_mask = true;
- }
- if (!have_rcu_nocb_mask)
- return;
- #ifdef CONFIG_RCU_NOCB_CPU_ZERO
- pr_info("\tOffload RCU callbacks from CPU 0\n");
- cpumask_set_cpu(0, rcu_nocb_mask);
- #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
- #ifdef CONFIG_RCU_NOCB_CPU_ALL
- pr_info("\tOffload RCU callbacks from all CPUs\n");
- cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
- #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
- #if defined(CONFIG_NO_HZ_FULL)
- if (tick_nohz_full_running)
- cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
- #endif /* #if defined(CONFIG_NO_HZ_FULL) */
- if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
- pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
- cpumask_and(rcu_nocb_mask, cpu_possible_mask,
- rcu_nocb_mask);
- }
- pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
- cpumask_pr_args(rcu_nocb_mask));
- if (rcu_nocb_poll)
- pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
- for_each_rcu_flavor(rsp) {
- for_each_cpu(cpu, rcu_nocb_mask)
- init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
- rcu_organize_nocb_kthreads(rsp);
- }
- }
- /* Initialize per-rcu_data variables for no-CBs CPUs. */
- static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
- {
- rdp->nocb_tail = &rdp->nocb_head;
- init_waitqueue_head(&rdp->nocb_wq);
- rdp->nocb_follower_tail = &rdp->nocb_follower_head;
- }
- /*
- * If the specified CPU is a no-CBs CPU that does not already have its
- * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
- * brought online out of order, this can require re-organizing the
- * leader-follower relationships.
- */
- static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
- {
- struct rcu_data *rdp;
- struct rcu_data *rdp_last;
- struct rcu_data *rdp_old_leader;
- struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
- struct task_struct *t;
- /*
- * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
- * then nothing to do.
- */
- if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
- return;
- /* If we didn't spawn the leader first, reorganize! */
- rdp_old_leader = rdp_spawn->nocb_leader;
- if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
- rdp_last = NULL;
- rdp = rdp_old_leader;
- do {
- rdp->nocb_leader = rdp_spawn;
- if (rdp_last && rdp != rdp_spawn)
- rdp_last->nocb_next_follower = rdp;
- if (rdp == rdp_spawn) {
- rdp = rdp->nocb_next_follower;
- } else {
- rdp_last = rdp;
- rdp = rdp->nocb_next_follower;
- rdp_last->nocb_next_follower = NULL;
- }
- } while (rdp);
- rdp_spawn->nocb_next_follower = rdp_old_leader;
- }
- /* Spawn the kthread for this CPU and RCU flavor. */
- t = kthread_run(rcu_nocb_kthread, rdp_spawn,
- "rcuo%c/%d", rsp->abbr, cpu);
- BUG_ON(IS_ERR(t));
- WRITE_ONCE(rdp_spawn->nocb_kthread, t);
- }
- /*
- * If the specified CPU is a no-CBs CPU that does not already have its
- * rcuo kthreads, spawn them.
- */
- static void rcu_spawn_all_nocb_kthreads(int cpu)
- {
- struct rcu_state *rsp;
- if (rcu_scheduler_fully_active)
- for_each_rcu_flavor(rsp)
- rcu_spawn_one_nocb_kthread(rsp, cpu);
- }
- /*
- * Once the scheduler is running, spawn rcuo kthreads for all online
- * no-CBs CPUs. This assumes that the early_initcall()s happen before
- * non-boot CPUs come online -- if this changes, we will need to add
- * some mutual exclusion.
- */
- static void __init rcu_spawn_nocb_kthreads(void)
- {
- int cpu;
- for_each_online_cpu(cpu)
- rcu_spawn_all_nocb_kthreads(cpu);
- }
- /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
- static int rcu_nocb_leader_stride = -1;
- module_param(rcu_nocb_leader_stride, int, 0444);
- /*
- * Initialize leader-follower relationships for all no-CBs CPU.
- */
- static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
- {
- int cpu;
- int ls = rcu_nocb_leader_stride;
- int nl = 0; /* Next leader. */
- struct rcu_data *rdp;
- struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
- struct rcu_data *rdp_prev = NULL;
- if (!have_rcu_nocb_mask)
- return;
- if (ls == -1) {
- ls = int_sqrt(nr_cpu_ids);
- rcu_nocb_leader_stride = ls;
- }
- /*
- * Each pass through this loop sets up one rcu_data structure and
- * spawns one rcu_nocb_kthread().
- */
- for_each_cpu(cpu, rcu_nocb_mask) {
- rdp = per_cpu_ptr(rsp->rda, cpu);
- if (rdp->cpu >= nl) {
- /* New leader, set up for followers & next leader. */
- nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
- rdp->nocb_leader = rdp;
- rdp_leader = rdp;
- } else {
- /* Another follower, link to previous leader. */
- rdp->nocb_leader = rdp_leader;
- rdp_prev->nocb_next_follower = rdp;
- }
- rdp_prev = rdp;
- }
- }
- /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
- static bool init_nocb_callback_list(struct rcu_data *rdp)
- {
- if (!rcu_is_nocb_cpu(rdp->cpu))
- return false;
- /* If there are early-boot callbacks, move them to nocb lists. */
- if (rdp->nxtlist) {
- rdp->nocb_head = rdp->nxtlist;
- rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
- atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
- atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
- rdp->nxtlist = NULL;
- rdp->qlen = 0;
- rdp->qlen_lazy = 0;
- }
- rdp->nxttail[RCU_NEXT_TAIL] = NULL;
- return true;
- }
- #else /* #ifdef CONFIG_RCU_NOCB_CPU */
- static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
- {
- WARN_ON_ONCE(1); /* Should be dead code. */
- return false;
- }
- static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
- {
- }
- static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
- {
- }
- static void rcu_init_one_nocb(struct rcu_node *rnp)
- {
- }
- static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
- bool lazy, unsigned long flags)
- {
- return false;
- }
- static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
- struct rcu_data *rdp,
- unsigned long flags)
- {
- return false;
- }
- static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
- {
- }
- static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
- {
- return false;
- }
- static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
- {
- }
- static void rcu_spawn_all_nocb_kthreads(int cpu)
- {
- }
- static void __init rcu_spawn_nocb_kthreads(void)
- {
- }
- static bool init_nocb_callback_list(struct rcu_data *rdp)
- {
- return false;
- }
- #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
- /*
- * An adaptive-ticks CPU can potentially execute in kernel mode for an
- * arbitrarily long period of time with the scheduling-clock tick turned
- * off. RCU will be paying attention to this CPU because it is in the
- * kernel, but the CPU cannot be guaranteed to be executing the RCU state
- * machine because the scheduling-clock tick has been disabled. Therefore,
- * if an adaptive-ticks CPU is failing to respond to the current grace
- * period and has not be idle from an RCU perspective, kick it.
- */
- static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
- {
- #ifdef CONFIG_NO_HZ_FULL
- if (tick_nohz_full_cpu(cpu))
- smp_send_reschedule(cpu);
- #endif /* #ifdef CONFIG_NO_HZ_FULL */
- }
- #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
- static int full_sysidle_state; /* Current system-idle state. */
- #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
- #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
- #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
- #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
- #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
- /*
- * Invoked to note exit from irq or task transition to idle. Note that
- * usermode execution does -not- count as idle here! After all, we want
- * to detect full-system idle states, not RCU quiescent states and grace
- * periods. The caller must have disabled interrupts.
- */
- static void rcu_sysidle_enter(int irq)
- {
- unsigned long j;
- struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
- /* If there are no nohz_full= CPUs, no need to track this. */
- if (!tick_nohz_full_enabled())
- return;
- /* Adjust nesting, check for fully idle. */
- if (irq) {
- rdtp->dynticks_idle_nesting--;
- WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
- if (rdtp->dynticks_idle_nesting != 0)
- return; /* Still not fully idle. */
- } else {
- if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
- DYNTICK_TASK_NEST_VALUE) {
- rdtp->dynticks_idle_nesting = 0;
- } else {
- rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
- WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
- return; /* Still not fully idle. */
- }
- }
- /* Record start of fully idle period. */
- j = jiffies;
- WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
- smp_mb__before_atomic();
- atomic_inc(&rdtp->dynticks_idle);
- smp_mb__after_atomic();
- WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
- }
- /*
- * Unconditionally force exit from full system-idle state. This is
- * invoked when a normal CPU exits idle, but must be called separately
- * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
- * is that the timekeeping CPU is permitted to take scheduling-clock
- * interrupts while the system is in system-idle state, and of course
- * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
- * interrupt from any other type of interrupt.
- */
- void rcu_sysidle_force_exit(void)
- {
- int oldstate = READ_ONCE(full_sysidle_state);
- int newoldstate;
- /*
- * Each pass through the following loop attempts to exit full
- * system-idle state. If contention proves to be a problem,
- * a trylock-based contention tree could be used here.
- */
- while (oldstate > RCU_SYSIDLE_SHORT) {
- newoldstate = cmpxchg(&full_sysidle_state,
- oldstate, RCU_SYSIDLE_NOT);
- if (oldstate == newoldstate &&
- oldstate == RCU_SYSIDLE_FULL_NOTED) {
- rcu_kick_nohz_cpu(tick_do_timer_cpu);
- return; /* We cleared it, done! */
- }
- oldstate = newoldstate;
- }
- smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
- }
- /*
- * Invoked to note entry to irq or task transition from idle. Note that
- * usermode execution does -not- count as idle here! The caller must
- * have disabled interrupts.
- */
- static void rcu_sysidle_exit(int irq)
- {
- struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
- /* If there are no nohz_full= CPUs, no need to track this. */
- if (!tick_nohz_full_enabled())
- return;
- /* Adjust nesting, check for already non-idle. */
- if (irq) {
- rdtp->dynticks_idle_nesting++;
- WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
- if (rdtp->dynticks_idle_nesting != 1)
- return; /* Already non-idle. */
- } else {
- /*
- * Allow for irq misnesting. Yes, it really is possible
- * to enter an irq handler then never leave it, and maybe
- * also vice versa. Handle both possibilities.
- */
- if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
- rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
- WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
- return; /* Already non-idle. */
- } else {
- rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
- }
- }
- /* Record end of idle period. */
- smp_mb__before_atomic();
- atomic_inc(&rdtp->dynticks_idle);
- smp_mb__after_atomic();
- WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
- /*
- * If we are the timekeeping CPU, we are permitted to be non-idle
- * during a system-idle state. This must be the case, because
- * the timekeeping CPU has to take scheduling-clock interrupts
- * during the time that the system is transitioning to full
- * system-idle state. This means that the timekeeping CPU must
- * invoke rcu_sysidle_force_exit() directly if it does anything
- * more than take a scheduling-clock interrupt.
- */
- if (smp_processor_id() == tick_do_timer_cpu)
- return;
- /* Update system-idle state: We are clearly no longer fully idle! */
- rcu_sysidle_force_exit();
- }
- /*
- * Check to see if the current CPU is idle. Note that usermode execution
- * does not count as idle. The caller must have disabled interrupts,
- * and must be running on tick_do_timer_cpu.
- */
- static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
- unsigned long *maxj)
- {
- int cur;
- unsigned long j;
- struct rcu_dynticks *rdtp = rdp->dynticks;
- /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
- if (!tick_nohz_full_enabled())
- return;
- /*
- * If some other CPU has already reported non-idle, if this is
- * not the flavor of RCU that tracks sysidle state, or if this
- * is an offline or the timekeeping CPU, nothing to do.
- */
- if (!*isidle || rdp->rsp != rcu_state_p ||
- cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
- return;
- /* Verify affinity of current kthread. */
- WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
- /* Pick up current idle and NMI-nesting counter and check. */
- cur = atomic_read(&rdtp->dynticks_idle);
- if (cur & 0x1) {
- *isidle = false; /* We are not idle! */
- return;
- }
- smp_mb(); /* Read counters before timestamps. */
- /* Pick up timestamps. */
- j = READ_ONCE(rdtp->dynticks_idle_jiffies);
- /* If this CPU entered idle more recently, update maxj timestamp. */
- if (ULONG_CMP_LT(*maxj, j))
- *maxj = j;
- }
- /*
- * Is this the flavor of RCU that is handling full-system idle?
- */
- static bool is_sysidle_rcu_state(struct rcu_state *rsp)
- {
- return rsp == rcu_state_p;
- }
- /*
- * Return a delay in jiffies based on the number of CPUs, rcu_node
- * leaf fanout, and jiffies tick rate. The idea is to allow larger
- * systems more time to transition to full-idle state in order to
- * avoid the cache thrashing that otherwise occur on the state variable.
- * Really small systems (less than a couple of tens of CPUs) should
- * instead use a single global atomically incremented counter, and later
- * versions of this will automatically reconfigure themselves accordingly.
- */
- static unsigned long rcu_sysidle_delay(void)
- {
- if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
- return 0;
- return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
- }
- /*
- * Advance the full-system-idle state. This is invoked when all of
- * the non-timekeeping CPUs are idle.
- */
- static void rcu_sysidle(unsigned long j)
- {
- /* Check the current state. */
- switch (READ_ONCE(full_sysidle_state)) {
- case RCU_SYSIDLE_NOT:
- /* First time all are idle, so note a short idle period. */
- WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
- break;
- case RCU_SYSIDLE_SHORT:
- /*
- * Idle for a bit, time to advance to next state?
- * cmpxchg failure means race with non-idle, let them win.
- */
- if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
- (void)cmpxchg(&full_sysidle_state,
- RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
- break;
- case RCU_SYSIDLE_LONG:
- /*
- * Do an additional check pass before advancing to full.
- * cmpxchg failure means race with non-idle, let them win.
- */
- if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
- (void)cmpxchg(&full_sysidle_state,
- RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
- break;
- default:
- break;
- }
- }
- /*
- * Found a non-idle non-timekeeping CPU, so kick the system-idle state
- * back to the beginning.
- */
- static void rcu_sysidle_cancel(void)
- {
- smp_mb();
- if (full_sysidle_state > RCU_SYSIDLE_SHORT)
- WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
- }
- /*
- * Update the sysidle state based on the results of a force-quiescent-state
- * scan of the CPUs' dyntick-idle state.
- */
- static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
- unsigned long maxj, bool gpkt)
- {
- if (rsp != rcu_state_p)
- return; /* Wrong flavor, ignore. */
- if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
- return; /* Running state machine from timekeeping CPU. */
- if (isidle)
- rcu_sysidle(maxj); /* More idle! */
- else
- rcu_sysidle_cancel(); /* Idle is over. */
- }
- /*
- * Wrapper for rcu_sysidle_report() when called from the grace-period
- * kthread's context.
- */
- static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
- unsigned long maxj)
- {
- /* If there are no nohz_full= CPUs, no need to track this. */
- if (!tick_nohz_full_enabled())
- return;
- rcu_sysidle_report(rsp, isidle, maxj, true);
- }
- /* Callback and function for forcing an RCU grace period. */
- struct rcu_sysidle_head {
- struct rcu_head rh;
- int inuse;
- };
- static void rcu_sysidle_cb(struct rcu_head *rhp)
- {
- struct rcu_sysidle_head *rshp;
- /*
- * The following memory barrier is needed to replace the
- * memory barriers that would normally be in the memory
- * allocator.
- */
- smp_mb(); /* grace period precedes setting inuse. */
- rshp = container_of(rhp, struct rcu_sysidle_head, rh);
- WRITE_ONCE(rshp->inuse, 0);
- }
- /*
- * Check to see if the system is fully idle, other than the timekeeping CPU.
- * The caller must have disabled interrupts. This is not intended to be
- * called unless tick_nohz_full_enabled().
- */
- bool rcu_sys_is_idle(void)
- {
- static struct rcu_sysidle_head rsh;
- int rss = READ_ONCE(full_sysidle_state);
- if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
- return false;
- /* Handle small-system case by doing a full scan of CPUs. */
- if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
- int oldrss = rss - 1;
- /*
- * One pass to advance to each state up to _FULL.
- * Give up if any pass fails to advance the state.
- */
- while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
- int cpu;
- bool isidle = true;
- unsigned long maxj = jiffies - ULONG_MAX / 4;
- struct rcu_data *rdp;
- /* Scan all the CPUs looking for nonidle CPUs. */
- for_each_possible_cpu(cpu) {
- rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
- rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
- if (!isidle)
- break;
- }
- rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
- oldrss = rss;
- rss = READ_ONCE(full_sysidle_state);
- }
- }
- /* If this is the first observation of an idle period, record it. */
- if (rss == RCU_SYSIDLE_FULL) {
- rss = cmpxchg(&full_sysidle_state,
- RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
- return rss == RCU_SYSIDLE_FULL;
- }
- smp_mb(); /* ensure rss load happens before later caller actions. */
- /* If already fully idle, tell the caller (in case of races). */
- if (rss == RCU_SYSIDLE_FULL_NOTED)
- return true;
- /*
- * If we aren't there yet, and a grace period is not in flight,
- * initiate a grace period. Either way, tell the caller that
- * we are not there yet. We use an xchg() rather than an assignment
- * to make up for the memory barriers that would otherwise be
- * provided by the memory allocator.
- */
- if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
- !rcu_gp_in_progress(rcu_state_p) &&
- !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
- call_rcu(&rsh.rh, rcu_sysidle_cb);
- return false;
- }
- /*
- * Initialize dynticks sysidle state for CPUs coming online.
- */
- static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
- {
- rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
- }
- #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
- static void rcu_sysidle_enter(int irq)
- {
- }
- static void rcu_sysidle_exit(int irq)
- {
- }
- static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
- unsigned long *maxj)
- {
- }
- static bool is_sysidle_rcu_state(struct rcu_state *rsp)
- {
- return false;
- }
- static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
- unsigned long maxj)
- {
- }
- static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
- {
- }
- #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
- /*
- * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
- * grace-period kthread will do force_quiescent_state() processing?
- * The idea is to avoid waking up RCU core processing on such a
- * CPU unless the grace period has extended for too long.
- *
- * This code relies on the fact that all NO_HZ_FULL CPUs are also
- * CONFIG_RCU_NOCB_CPU CPUs.
- */
- static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
- {
- #ifdef CONFIG_NO_HZ_FULL
- if (tick_nohz_full_cpu(smp_processor_id()) &&
- (!rcu_gp_in_progress(rsp) ||
- ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
- return true;
- #endif /* #ifdef CONFIG_NO_HZ_FULL */
- return false;
- }
- /*
- * Bind the grace-period kthread for the sysidle flavor of RCU to the
- * timekeeping CPU.
- */
- static void rcu_bind_gp_kthread(void)
- {
- int __maybe_unused cpu;
- if (!tick_nohz_full_enabled())
- return;
- #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
- cpu = tick_do_timer_cpu;
- if (cpu >= 0 && cpu < nr_cpu_ids)
- set_cpus_allowed_ptr(current, cpumask_of(cpu));
- #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
- housekeeping_affine(current);
- #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
- }
- /* Record the current task on dyntick-idle entry. */
- static void rcu_dynticks_task_enter(void)
- {
- #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
- WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
- #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
- }
- /* Record no current task on dyntick-idle exit. */
- static void rcu_dynticks_task_exit(void)
- {
- #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
- WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
- #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
- }
|