fair.c 221 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. #include <linux/cpumask.h>
  25. #include <linux/cpuidle.h>
  26. #include <linux/slab.h>
  27. #include <linux/profile.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/mempolicy.h>
  30. #include <linux/migrate.h>
  31. #include <linux/task_work.h>
  32. #include <trace/events/sched.h>
  33. #include "sched.h"
  34. /*
  35. * Targeted preemption latency for CPU-bound tasks:
  36. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  37. *
  38. * NOTE: this latency value is not the same as the concept of
  39. * 'timeslice length' - timeslices in CFS are of variable length
  40. * and have no persistent notion like in traditional, time-slice
  41. * based scheduling concepts.
  42. *
  43. * (to see the precise effective timeslice length of your workload,
  44. * run vmstat and monitor the context-switches (cs) field)
  45. */
  46. unsigned int sysctl_sched_latency = 6000000ULL;
  47. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  48. /*
  49. * The initial- and re-scaling of tunables is configurable
  50. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  51. *
  52. * Options are:
  53. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  54. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  55. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  56. */
  57. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  58. = SCHED_TUNABLESCALING_LOG;
  59. /*
  60. * Minimal preemption granularity for CPU-bound tasks:
  61. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  62. */
  63. unsigned int sysctl_sched_min_granularity = 750000ULL;
  64. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  65. /*
  66. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  67. */
  68. static unsigned int sched_nr_latency = 8;
  69. /*
  70. * After fork, child runs first. If set to 0 (default) then
  71. * parent will (try to) run first.
  72. */
  73. unsigned int sysctl_sched_child_runs_first __read_mostly;
  74. /*
  75. * SCHED_OTHER wake-up granularity.
  76. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  77. *
  78. * This option delays the preemption effects of decoupled workloads
  79. * and reduces their over-scheduling. Synchronous workloads will still
  80. * have immediate wakeup/sleep latencies.
  81. */
  82. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  83. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  84. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  85. /*
  86. * The exponential sliding window over which load is averaged for shares
  87. * distribution.
  88. * (default: 10msec)
  89. */
  90. unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  91. #ifdef CONFIG_CFS_BANDWIDTH
  92. /*
  93. * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
  94. * each time a cfs_rq requests quota.
  95. *
  96. * Note: in the case that the slice exceeds the runtime remaining (either due
  97. * to consumption or the quota being specified to be smaller than the slice)
  98. * we will always only issue the remaining available time.
  99. *
  100. * default: 5 msec, units: microseconds
  101. */
  102. unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
  103. #endif
  104. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  105. {
  106. lw->weight += inc;
  107. lw->inv_weight = 0;
  108. }
  109. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  110. {
  111. lw->weight -= dec;
  112. lw->inv_weight = 0;
  113. }
  114. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  115. {
  116. lw->weight = w;
  117. lw->inv_weight = 0;
  118. }
  119. /*
  120. * Increase the granularity value when there are more CPUs,
  121. * because with more CPUs the 'effective latency' as visible
  122. * to users decreases. But the relationship is not linear,
  123. * so pick a second-best guess by going with the log2 of the
  124. * number of CPUs.
  125. *
  126. * This idea comes from the SD scheduler of Con Kolivas:
  127. */
  128. static unsigned int get_update_sysctl_factor(void)
  129. {
  130. unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
  131. unsigned int factor;
  132. switch (sysctl_sched_tunable_scaling) {
  133. case SCHED_TUNABLESCALING_NONE:
  134. factor = 1;
  135. break;
  136. case SCHED_TUNABLESCALING_LINEAR:
  137. factor = cpus;
  138. break;
  139. case SCHED_TUNABLESCALING_LOG:
  140. default:
  141. factor = 1 + ilog2(cpus);
  142. break;
  143. }
  144. return factor;
  145. }
  146. static void update_sysctl(void)
  147. {
  148. unsigned int factor = get_update_sysctl_factor();
  149. #define SET_SYSCTL(name) \
  150. (sysctl_##name = (factor) * normalized_sysctl_##name)
  151. SET_SYSCTL(sched_min_granularity);
  152. SET_SYSCTL(sched_latency);
  153. SET_SYSCTL(sched_wakeup_granularity);
  154. #undef SET_SYSCTL
  155. }
  156. void sched_init_granularity(void)
  157. {
  158. update_sysctl();
  159. }
  160. #define WMULT_CONST (~0U)
  161. #define WMULT_SHIFT 32
  162. static void __update_inv_weight(struct load_weight *lw)
  163. {
  164. unsigned long w;
  165. if (likely(lw->inv_weight))
  166. return;
  167. w = scale_load_down(lw->weight);
  168. if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
  169. lw->inv_weight = 1;
  170. else if (unlikely(!w))
  171. lw->inv_weight = WMULT_CONST;
  172. else
  173. lw->inv_weight = WMULT_CONST / w;
  174. }
  175. /*
  176. * delta_exec * weight / lw.weight
  177. * OR
  178. * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
  179. *
  180. * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
  181. * we're guaranteed shift stays positive because inv_weight is guaranteed to
  182. * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
  183. *
  184. * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
  185. * weight/lw.weight <= 1, and therefore our shift will also be positive.
  186. */
  187. static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
  188. {
  189. u64 fact = scale_load_down(weight);
  190. int shift = WMULT_SHIFT;
  191. __update_inv_weight(lw);
  192. if (unlikely(fact >> 32)) {
  193. while (fact >> 32) {
  194. fact >>= 1;
  195. shift--;
  196. }
  197. }
  198. /* hint to use a 32x32->64 mul */
  199. fact = (u64)(u32)fact * lw->inv_weight;
  200. while (fact >> 32) {
  201. fact >>= 1;
  202. shift--;
  203. }
  204. return mul_u64_u32_shr(delta_exec, fact, shift);
  205. }
  206. const struct sched_class fair_sched_class;
  207. /**************************************************************
  208. * CFS operations on generic schedulable entities:
  209. */
  210. #ifdef CONFIG_FAIR_GROUP_SCHED
  211. /* cpu runqueue to which this cfs_rq is attached */
  212. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  213. {
  214. return cfs_rq->rq;
  215. }
  216. /* An entity is a task if it doesn't "own" a runqueue */
  217. #define entity_is_task(se) (!se->my_q)
  218. static inline struct task_struct *task_of(struct sched_entity *se)
  219. {
  220. #ifdef CONFIG_SCHED_DEBUG
  221. WARN_ON_ONCE(!entity_is_task(se));
  222. #endif
  223. return container_of(se, struct task_struct, se);
  224. }
  225. /* Walk up scheduling entities hierarchy */
  226. #define for_each_sched_entity(se) \
  227. for (; se; se = se->parent)
  228. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  229. {
  230. return p->se.cfs_rq;
  231. }
  232. /* runqueue on which this entity is (to be) queued */
  233. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  234. {
  235. return se->cfs_rq;
  236. }
  237. /* runqueue "owned" by this group */
  238. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  239. {
  240. return grp->my_q;
  241. }
  242. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  243. {
  244. if (!cfs_rq->on_list) {
  245. /*
  246. * Ensure we either appear before our parent (if already
  247. * enqueued) or force our parent to appear after us when it is
  248. * enqueued. The fact that we always enqueue bottom-up
  249. * reduces this to two cases.
  250. */
  251. if (cfs_rq->tg->parent &&
  252. cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
  253. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  254. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  255. } else {
  256. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  257. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  258. }
  259. cfs_rq->on_list = 1;
  260. }
  261. }
  262. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  263. {
  264. if (cfs_rq->on_list) {
  265. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  266. cfs_rq->on_list = 0;
  267. }
  268. }
  269. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  270. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  271. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  272. /* Do the two (enqueued) entities belong to the same group ? */
  273. static inline struct cfs_rq *
  274. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  275. {
  276. if (se->cfs_rq == pse->cfs_rq)
  277. return se->cfs_rq;
  278. return NULL;
  279. }
  280. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  281. {
  282. return se->parent;
  283. }
  284. static void
  285. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  286. {
  287. int se_depth, pse_depth;
  288. /*
  289. * preemption test can be made between sibling entities who are in the
  290. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  291. * both tasks until we find their ancestors who are siblings of common
  292. * parent.
  293. */
  294. /* First walk up until both entities are at same depth */
  295. se_depth = (*se)->depth;
  296. pse_depth = (*pse)->depth;
  297. while (se_depth > pse_depth) {
  298. se_depth--;
  299. *se = parent_entity(*se);
  300. }
  301. while (pse_depth > se_depth) {
  302. pse_depth--;
  303. *pse = parent_entity(*pse);
  304. }
  305. while (!is_same_group(*se, *pse)) {
  306. *se = parent_entity(*se);
  307. *pse = parent_entity(*pse);
  308. }
  309. }
  310. #else /* !CONFIG_FAIR_GROUP_SCHED */
  311. static inline struct task_struct *task_of(struct sched_entity *se)
  312. {
  313. return container_of(se, struct task_struct, se);
  314. }
  315. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  316. {
  317. return container_of(cfs_rq, struct rq, cfs);
  318. }
  319. #define entity_is_task(se) 1
  320. #define for_each_sched_entity(se) \
  321. for (; se; se = NULL)
  322. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  323. {
  324. return &task_rq(p)->cfs;
  325. }
  326. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  327. {
  328. struct task_struct *p = task_of(se);
  329. struct rq *rq = task_rq(p);
  330. return &rq->cfs;
  331. }
  332. /* runqueue "owned" by this group */
  333. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  334. {
  335. return NULL;
  336. }
  337. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  338. {
  339. }
  340. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  341. {
  342. }
  343. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  344. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  345. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  346. {
  347. return NULL;
  348. }
  349. static inline void
  350. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  351. {
  352. }
  353. #endif /* CONFIG_FAIR_GROUP_SCHED */
  354. static __always_inline
  355. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
  356. /**************************************************************
  357. * Scheduling class tree data structure manipulation methods:
  358. */
  359. static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
  360. {
  361. s64 delta = (s64)(vruntime - max_vruntime);
  362. if (delta > 0)
  363. max_vruntime = vruntime;
  364. return max_vruntime;
  365. }
  366. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  367. {
  368. s64 delta = (s64)(vruntime - min_vruntime);
  369. if (delta < 0)
  370. min_vruntime = vruntime;
  371. return min_vruntime;
  372. }
  373. static inline int entity_before(struct sched_entity *a,
  374. struct sched_entity *b)
  375. {
  376. return (s64)(a->vruntime - b->vruntime) < 0;
  377. }
  378. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  379. {
  380. u64 vruntime = cfs_rq->min_vruntime;
  381. if (cfs_rq->curr)
  382. vruntime = cfs_rq->curr->vruntime;
  383. if (cfs_rq->rb_leftmost) {
  384. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  385. struct sched_entity,
  386. run_node);
  387. if (!cfs_rq->curr)
  388. vruntime = se->vruntime;
  389. else
  390. vruntime = min_vruntime(vruntime, se->vruntime);
  391. }
  392. /* ensure we never gain time by being placed backwards. */
  393. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  394. #ifndef CONFIG_64BIT
  395. smp_wmb();
  396. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  397. #endif
  398. }
  399. /*
  400. * Enqueue an entity into the rb-tree:
  401. */
  402. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  403. {
  404. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  405. struct rb_node *parent = NULL;
  406. struct sched_entity *entry;
  407. int leftmost = 1;
  408. /*
  409. * Find the right place in the rbtree:
  410. */
  411. while (*link) {
  412. parent = *link;
  413. entry = rb_entry(parent, struct sched_entity, run_node);
  414. /*
  415. * We dont care about collisions. Nodes with
  416. * the same key stay together.
  417. */
  418. if (entity_before(se, entry)) {
  419. link = &parent->rb_left;
  420. } else {
  421. link = &parent->rb_right;
  422. leftmost = 0;
  423. }
  424. }
  425. /*
  426. * Maintain a cache of leftmost tree entries (it is frequently
  427. * used):
  428. */
  429. if (leftmost)
  430. cfs_rq->rb_leftmost = &se->run_node;
  431. rb_link_node(&se->run_node, parent, link);
  432. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  433. }
  434. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  435. {
  436. if (cfs_rq->rb_leftmost == &se->run_node) {
  437. struct rb_node *next_node;
  438. next_node = rb_next(&se->run_node);
  439. cfs_rq->rb_leftmost = next_node;
  440. }
  441. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  442. }
  443. struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
  444. {
  445. struct rb_node *left = cfs_rq->rb_leftmost;
  446. if (!left)
  447. return NULL;
  448. return rb_entry(left, struct sched_entity, run_node);
  449. }
  450. static struct sched_entity *__pick_next_entity(struct sched_entity *se)
  451. {
  452. struct rb_node *next = rb_next(&se->run_node);
  453. if (!next)
  454. return NULL;
  455. return rb_entry(next, struct sched_entity, run_node);
  456. }
  457. #ifdef CONFIG_SCHED_DEBUG
  458. struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  459. {
  460. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  461. if (!last)
  462. return NULL;
  463. return rb_entry(last, struct sched_entity, run_node);
  464. }
  465. /**************************************************************
  466. * Scheduling class statistics methods:
  467. */
  468. int sched_proc_update_handler(struct ctl_table *table, int write,
  469. void __user *buffer, size_t *lenp,
  470. loff_t *ppos)
  471. {
  472. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  473. unsigned int factor = get_update_sysctl_factor();
  474. if (ret || !write)
  475. return ret;
  476. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  477. sysctl_sched_min_granularity);
  478. #define WRT_SYSCTL(name) \
  479. (normalized_sysctl_##name = sysctl_##name / (factor))
  480. WRT_SYSCTL(sched_min_granularity);
  481. WRT_SYSCTL(sched_latency);
  482. WRT_SYSCTL(sched_wakeup_granularity);
  483. #undef WRT_SYSCTL
  484. return 0;
  485. }
  486. #endif
  487. /*
  488. * delta /= w
  489. */
  490. static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
  491. {
  492. if (unlikely(se->load.weight != NICE_0_LOAD))
  493. delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
  494. return delta;
  495. }
  496. /*
  497. * The idea is to set a period in which each task runs once.
  498. *
  499. * When there are too many tasks (sched_nr_latency) we have to stretch
  500. * this period because otherwise the slices get too small.
  501. *
  502. * p = (nr <= nl) ? l : l*nr/nl
  503. */
  504. static u64 __sched_period(unsigned long nr_running)
  505. {
  506. if (unlikely(nr_running > sched_nr_latency))
  507. return nr_running * sysctl_sched_min_granularity;
  508. else
  509. return sysctl_sched_latency;
  510. }
  511. /*
  512. * We calculate the wall-time slice from the period by taking a part
  513. * proportional to the weight.
  514. *
  515. * s = p*P[w/rw]
  516. */
  517. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  518. {
  519. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  520. for_each_sched_entity(se) {
  521. struct load_weight *load;
  522. struct load_weight lw;
  523. cfs_rq = cfs_rq_of(se);
  524. load = &cfs_rq->load;
  525. if (unlikely(!se->on_rq)) {
  526. lw = cfs_rq->load;
  527. update_load_add(&lw, se->load.weight);
  528. load = &lw;
  529. }
  530. slice = __calc_delta(slice, se->load.weight, load);
  531. }
  532. return slice;
  533. }
  534. /*
  535. * We calculate the vruntime slice of a to-be-inserted task.
  536. *
  537. * vs = s/w
  538. */
  539. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  540. {
  541. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  542. }
  543. #ifdef CONFIG_SMP
  544. static int select_idle_sibling(struct task_struct *p, int cpu);
  545. static unsigned long task_h_load(struct task_struct *p);
  546. /*
  547. * We choose a half-life close to 1 scheduling period.
  548. * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
  549. * dependent on this value.
  550. */
  551. #define LOAD_AVG_PERIOD 32
  552. #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
  553. #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
  554. /* Give new sched_entity start runnable values to heavy its load in infant time */
  555. void init_entity_runnable_average(struct sched_entity *se)
  556. {
  557. struct sched_avg *sa = &se->avg;
  558. sa->last_update_time = 0;
  559. /*
  560. * sched_avg's period_contrib should be strictly less then 1024, so
  561. * we give it 1023 to make sure it is almost a period (1024us), and
  562. * will definitely be update (after enqueue).
  563. */
  564. sa->period_contrib = 1023;
  565. sa->load_avg = scale_load_down(se->load.weight);
  566. sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
  567. sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
  568. sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
  569. /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
  570. }
  571. #else
  572. void init_entity_runnable_average(struct sched_entity *se)
  573. {
  574. }
  575. #endif
  576. /*
  577. * Update the current task's runtime statistics.
  578. */
  579. static void update_curr(struct cfs_rq *cfs_rq)
  580. {
  581. struct sched_entity *curr = cfs_rq->curr;
  582. u64 now = rq_clock_task(rq_of(cfs_rq));
  583. u64 delta_exec;
  584. if (unlikely(!curr))
  585. return;
  586. delta_exec = now - curr->exec_start;
  587. if (unlikely((s64)delta_exec <= 0))
  588. return;
  589. curr->exec_start = now;
  590. schedstat_set(curr->statistics.exec_max,
  591. max(delta_exec, curr->statistics.exec_max));
  592. curr->sum_exec_runtime += delta_exec;
  593. schedstat_add(cfs_rq, exec_clock, delta_exec);
  594. curr->vruntime += calc_delta_fair(delta_exec, curr);
  595. update_min_vruntime(cfs_rq);
  596. if (entity_is_task(curr)) {
  597. struct task_struct *curtask = task_of(curr);
  598. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  599. cpuacct_charge(curtask, delta_exec);
  600. account_group_exec_runtime(curtask, delta_exec);
  601. }
  602. account_cfs_rq_runtime(cfs_rq, delta_exec);
  603. }
  604. static void update_curr_fair(struct rq *rq)
  605. {
  606. update_curr(cfs_rq_of(&rq->curr->se));
  607. }
  608. static inline void
  609. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  610. {
  611. schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
  612. }
  613. /*
  614. * Task is being enqueued - update stats:
  615. */
  616. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  617. {
  618. /*
  619. * Are we enqueueing a waiting task? (for current tasks
  620. * a dequeue/enqueue event is a NOP)
  621. */
  622. if (se != cfs_rq->curr)
  623. update_stats_wait_start(cfs_rq, se);
  624. }
  625. static void
  626. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  627. {
  628. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  629. rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
  630. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  631. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  632. rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
  633. #ifdef CONFIG_SCHEDSTATS
  634. if (entity_is_task(se)) {
  635. trace_sched_stat_wait(task_of(se),
  636. rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
  637. }
  638. #endif
  639. schedstat_set(se->statistics.wait_start, 0);
  640. }
  641. static inline void
  642. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  643. {
  644. /*
  645. * Mark the end of the wait period if dequeueing a
  646. * waiting task:
  647. */
  648. if (se != cfs_rq->curr)
  649. update_stats_wait_end(cfs_rq, se);
  650. }
  651. /*
  652. * We are picking a new current task - update its stats:
  653. */
  654. static inline void
  655. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  656. {
  657. /*
  658. * We are starting a new run period:
  659. */
  660. se->exec_start = rq_clock_task(rq_of(cfs_rq));
  661. }
  662. /**************************************************
  663. * Scheduling class queueing methods:
  664. */
  665. #ifdef CONFIG_NUMA_BALANCING
  666. /*
  667. * Approximate time to scan a full NUMA task in ms. The task scan period is
  668. * calculated based on the tasks virtual memory size and
  669. * numa_balancing_scan_size.
  670. */
  671. unsigned int sysctl_numa_balancing_scan_period_min = 1000;
  672. unsigned int sysctl_numa_balancing_scan_period_max = 60000;
  673. /* Portion of address space to scan in MB */
  674. unsigned int sysctl_numa_balancing_scan_size = 256;
  675. /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
  676. unsigned int sysctl_numa_balancing_scan_delay = 1000;
  677. static unsigned int task_nr_scan_windows(struct task_struct *p)
  678. {
  679. unsigned long rss = 0;
  680. unsigned long nr_scan_pages;
  681. /*
  682. * Calculations based on RSS as non-present and empty pages are skipped
  683. * by the PTE scanner and NUMA hinting faults should be trapped based
  684. * on resident pages
  685. */
  686. nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
  687. rss = get_mm_rss(p->mm);
  688. if (!rss)
  689. rss = nr_scan_pages;
  690. rss = round_up(rss, nr_scan_pages);
  691. return rss / nr_scan_pages;
  692. }
  693. /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
  694. #define MAX_SCAN_WINDOW 2560
  695. static unsigned int task_scan_min(struct task_struct *p)
  696. {
  697. unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
  698. unsigned int scan, floor;
  699. unsigned int windows = 1;
  700. if (scan_size < MAX_SCAN_WINDOW)
  701. windows = MAX_SCAN_WINDOW / scan_size;
  702. floor = 1000 / windows;
  703. scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
  704. return max_t(unsigned int, floor, scan);
  705. }
  706. static unsigned int task_scan_max(struct task_struct *p)
  707. {
  708. unsigned int smin = task_scan_min(p);
  709. unsigned int smax;
  710. /* Watch for min being lower than max due to floor calculations */
  711. smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
  712. return max(smin, smax);
  713. }
  714. static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
  715. {
  716. rq->nr_numa_running += (p->numa_preferred_nid != -1);
  717. rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
  718. }
  719. static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
  720. {
  721. rq->nr_numa_running -= (p->numa_preferred_nid != -1);
  722. rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
  723. }
  724. struct numa_group {
  725. atomic_t refcount;
  726. spinlock_t lock; /* nr_tasks, tasks */
  727. int nr_tasks;
  728. pid_t gid;
  729. struct rcu_head rcu;
  730. nodemask_t active_nodes;
  731. unsigned long total_faults;
  732. /*
  733. * Faults_cpu is used to decide whether memory should move
  734. * towards the CPU. As a consequence, these stats are weighted
  735. * more by CPU use than by memory faults.
  736. */
  737. unsigned long *faults_cpu;
  738. unsigned long faults[0];
  739. };
  740. /* Shared or private faults. */
  741. #define NR_NUMA_HINT_FAULT_TYPES 2
  742. /* Memory and CPU locality */
  743. #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
  744. /* Averaged statistics, and temporary buffers. */
  745. #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
  746. pid_t task_numa_group_id(struct task_struct *p)
  747. {
  748. return p->numa_group ? p->numa_group->gid : 0;
  749. }
  750. /*
  751. * The averaged statistics, shared & private, memory & cpu,
  752. * occupy the first half of the array. The second half of the
  753. * array is for current counters, which are averaged into the
  754. * first set by task_numa_placement.
  755. */
  756. static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
  757. {
  758. return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
  759. }
  760. static inline unsigned long task_faults(struct task_struct *p, int nid)
  761. {
  762. if (!p->numa_faults)
  763. return 0;
  764. return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
  765. p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
  766. }
  767. static inline unsigned long group_faults(struct task_struct *p, int nid)
  768. {
  769. if (!p->numa_group)
  770. return 0;
  771. return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
  772. p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
  773. }
  774. static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
  775. {
  776. return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
  777. group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
  778. }
  779. /* Handle placement on systems where not all nodes are directly connected. */
  780. static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
  781. int maxdist, bool task)
  782. {
  783. unsigned long score = 0;
  784. int node;
  785. /*
  786. * All nodes are directly connected, and the same distance
  787. * from each other. No need for fancy placement algorithms.
  788. */
  789. if (sched_numa_topology_type == NUMA_DIRECT)
  790. return 0;
  791. /*
  792. * This code is called for each node, introducing N^2 complexity,
  793. * which should be ok given the number of nodes rarely exceeds 8.
  794. */
  795. for_each_online_node(node) {
  796. unsigned long faults;
  797. int dist = node_distance(nid, node);
  798. /*
  799. * The furthest away nodes in the system are not interesting
  800. * for placement; nid was already counted.
  801. */
  802. if (dist == sched_max_numa_distance || node == nid)
  803. continue;
  804. /*
  805. * On systems with a backplane NUMA topology, compare groups
  806. * of nodes, and move tasks towards the group with the most
  807. * memory accesses. When comparing two nodes at distance
  808. * "hoplimit", only nodes closer by than "hoplimit" are part
  809. * of each group. Skip other nodes.
  810. */
  811. if (sched_numa_topology_type == NUMA_BACKPLANE &&
  812. dist > maxdist)
  813. continue;
  814. /* Add up the faults from nearby nodes. */
  815. if (task)
  816. faults = task_faults(p, node);
  817. else
  818. faults = group_faults(p, node);
  819. /*
  820. * On systems with a glueless mesh NUMA topology, there are
  821. * no fixed "groups of nodes". Instead, nodes that are not
  822. * directly connected bounce traffic through intermediate
  823. * nodes; a numa_group can occupy any set of nodes.
  824. * The further away a node is, the less the faults count.
  825. * This seems to result in good task placement.
  826. */
  827. if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
  828. faults *= (sched_max_numa_distance - dist);
  829. faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
  830. }
  831. score += faults;
  832. }
  833. return score;
  834. }
  835. /*
  836. * These return the fraction of accesses done by a particular task, or
  837. * task group, on a particular numa node. The group weight is given a
  838. * larger multiplier, in order to group tasks together that are almost
  839. * evenly spread out between numa nodes.
  840. */
  841. static inline unsigned long task_weight(struct task_struct *p, int nid,
  842. int dist)
  843. {
  844. unsigned long faults, total_faults;
  845. if (!p->numa_faults)
  846. return 0;
  847. total_faults = p->total_numa_faults;
  848. if (!total_faults)
  849. return 0;
  850. faults = task_faults(p, nid);
  851. faults += score_nearby_nodes(p, nid, dist, true);
  852. return 1000 * faults / total_faults;
  853. }
  854. static inline unsigned long group_weight(struct task_struct *p, int nid,
  855. int dist)
  856. {
  857. unsigned long faults, total_faults;
  858. if (!p->numa_group)
  859. return 0;
  860. total_faults = p->numa_group->total_faults;
  861. if (!total_faults)
  862. return 0;
  863. faults = group_faults(p, nid);
  864. faults += score_nearby_nodes(p, nid, dist, false);
  865. return 1000 * faults / total_faults;
  866. }
  867. bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
  868. int src_nid, int dst_cpu)
  869. {
  870. struct numa_group *ng = p->numa_group;
  871. int dst_nid = cpu_to_node(dst_cpu);
  872. int last_cpupid, this_cpupid;
  873. this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
  874. /*
  875. * Multi-stage node selection is used in conjunction with a periodic
  876. * migration fault to build a temporal task<->page relation. By using
  877. * a two-stage filter we remove short/unlikely relations.
  878. *
  879. * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
  880. * a task's usage of a particular page (n_p) per total usage of this
  881. * page (n_t) (in a given time-span) to a probability.
  882. *
  883. * Our periodic faults will sample this probability and getting the
  884. * same result twice in a row, given these samples are fully
  885. * independent, is then given by P(n)^2, provided our sample period
  886. * is sufficiently short compared to the usage pattern.
  887. *
  888. * This quadric squishes small probabilities, making it less likely we
  889. * act on an unlikely task<->page relation.
  890. */
  891. last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
  892. if (!cpupid_pid_unset(last_cpupid) &&
  893. cpupid_to_nid(last_cpupid) != dst_nid)
  894. return false;
  895. /* Always allow migrate on private faults */
  896. if (cpupid_match_pid(p, last_cpupid))
  897. return true;
  898. /* A shared fault, but p->numa_group has not been set up yet. */
  899. if (!ng)
  900. return true;
  901. /*
  902. * Do not migrate if the destination is not a node that
  903. * is actively used by this numa group.
  904. */
  905. if (!node_isset(dst_nid, ng->active_nodes))
  906. return false;
  907. /*
  908. * Source is a node that is not actively used by this
  909. * numa group, while the destination is. Migrate.
  910. */
  911. if (!node_isset(src_nid, ng->active_nodes))
  912. return true;
  913. /*
  914. * Both source and destination are nodes in active
  915. * use by this numa group. Maximize memory bandwidth
  916. * by migrating from more heavily used groups, to less
  917. * heavily used ones, spreading the load around.
  918. * Use a 1/4 hysteresis to avoid spurious page movement.
  919. */
  920. return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
  921. }
  922. static unsigned long weighted_cpuload(const int cpu);
  923. static unsigned long source_load(int cpu, int type);
  924. static unsigned long target_load(int cpu, int type);
  925. static unsigned long capacity_of(int cpu);
  926. static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
  927. /* Cached statistics for all CPUs within a node */
  928. struct numa_stats {
  929. unsigned long nr_running;
  930. unsigned long load;
  931. /* Total compute capacity of CPUs on a node */
  932. unsigned long compute_capacity;
  933. /* Approximate capacity in terms of runnable tasks on a node */
  934. unsigned long task_capacity;
  935. int has_free_capacity;
  936. };
  937. /*
  938. * XXX borrowed from update_sg_lb_stats
  939. */
  940. static void update_numa_stats(struct numa_stats *ns, int nid)
  941. {
  942. int smt, cpu, cpus = 0;
  943. unsigned long capacity;
  944. memset(ns, 0, sizeof(*ns));
  945. for_each_cpu(cpu, cpumask_of_node(nid)) {
  946. struct rq *rq = cpu_rq(cpu);
  947. ns->nr_running += rq->nr_running;
  948. ns->load += weighted_cpuload(cpu);
  949. ns->compute_capacity += capacity_of(cpu);
  950. cpus++;
  951. }
  952. /*
  953. * If we raced with hotplug and there are no CPUs left in our mask
  954. * the @ns structure is NULL'ed and task_numa_compare() will
  955. * not find this node attractive.
  956. *
  957. * We'll either bail at !has_free_capacity, or we'll detect a huge
  958. * imbalance and bail there.
  959. */
  960. if (!cpus)
  961. return;
  962. /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
  963. smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
  964. capacity = cpus / smt; /* cores */
  965. ns->task_capacity = min_t(unsigned, capacity,
  966. DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
  967. ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
  968. }
  969. struct task_numa_env {
  970. struct task_struct *p;
  971. int src_cpu, src_nid;
  972. int dst_cpu, dst_nid;
  973. struct numa_stats src_stats, dst_stats;
  974. int imbalance_pct;
  975. int dist;
  976. struct task_struct *best_task;
  977. long best_imp;
  978. int best_cpu;
  979. };
  980. static void task_numa_assign(struct task_numa_env *env,
  981. struct task_struct *p, long imp)
  982. {
  983. if (env->best_task)
  984. put_task_struct(env->best_task);
  985. env->best_task = p;
  986. env->best_imp = imp;
  987. env->best_cpu = env->dst_cpu;
  988. }
  989. static bool load_too_imbalanced(long src_load, long dst_load,
  990. struct task_numa_env *env)
  991. {
  992. long imb, old_imb;
  993. long orig_src_load, orig_dst_load;
  994. long src_capacity, dst_capacity;
  995. /*
  996. * The load is corrected for the CPU capacity available on each node.
  997. *
  998. * src_load dst_load
  999. * ------------ vs ---------
  1000. * src_capacity dst_capacity
  1001. */
  1002. src_capacity = env->src_stats.compute_capacity;
  1003. dst_capacity = env->dst_stats.compute_capacity;
  1004. /* We care about the slope of the imbalance, not the direction. */
  1005. if (dst_load < src_load)
  1006. swap(dst_load, src_load);
  1007. /* Is the difference below the threshold? */
  1008. imb = dst_load * src_capacity * 100 -
  1009. src_load * dst_capacity * env->imbalance_pct;
  1010. if (imb <= 0)
  1011. return false;
  1012. /*
  1013. * The imbalance is above the allowed threshold.
  1014. * Compare it with the old imbalance.
  1015. */
  1016. orig_src_load = env->src_stats.load;
  1017. orig_dst_load = env->dst_stats.load;
  1018. if (orig_dst_load < orig_src_load)
  1019. swap(orig_dst_load, orig_src_load);
  1020. old_imb = orig_dst_load * src_capacity * 100 -
  1021. orig_src_load * dst_capacity * env->imbalance_pct;
  1022. /* Would this change make things worse? */
  1023. return (imb > old_imb);
  1024. }
  1025. /*
  1026. * This checks if the overall compute and NUMA accesses of the system would
  1027. * be improved if the source tasks was migrated to the target dst_cpu taking
  1028. * into account that it might be best if task running on the dst_cpu should
  1029. * be exchanged with the source task
  1030. */
  1031. static void task_numa_compare(struct task_numa_env *env,
  1032. long taskimp, long groupimp)
  1033. {
  1034. struct rq *src_rq = cpu_rq(env->src_cpu);
  1035. struct rq *dst_rq = cpu_rq(env->dst_cpu);
  1036. struct task_struct *cur;
  1037. long src_load, dst_load;
  1038. long load;
  1039. long imp = env->p->numa_group ? groupimp : taskimp;
  1040. long moveimp = imp;
  1041. int dist = env->dist;
  1042. bool assigned = false;
  1043. rcu_read_lock();
  1044. raw_spin_lock_irq(&dst_rq->lock);
  1045. cur = dst_rq->curr;
  1046. /*
  1047. * No need to move the exiting task or idle task.
  1048. */
  1049. if ((cur->flags & PF_EXITING) || is_idle_task(cur))
  1050. cur = NULL;
  1051. else {
  1052. /*
  1053. * The task_struct must be protected here to protect the
  1054. * p->numa_faults access in the task_weight since the
  1055. * numa_faults could already be freed in the following path:
  1056. * finish_task_switch()
  1057. * --> put_task_struct()
  1058. * --> __put_task_struct()
  1059. * --> task_numa_free()
  1060. */
  1061. get_task_struct(cur);
  1062. }
  1063. raw_spin_unlock_irq(&dst_rq->lock);
  1064. /*
  1065. * Because we have preemption enabled we can get migrated around and
  1066. * end try selecting ourselves (current == env->p) as a swap candidate.
  1067. */
  1068. if (cur == env->p)
  1069. goto unlock;
  1070. /*
  1071. * "imp" is the fault differential for the source task between the
  1072. * source and destination node. Calculate the total differential for
  1073. * the source task and potential destination task. The more negative
  1074. * the value is, the more rmeote accesses that would be expected to
  1075. * be incurred if the tasks were swapped.
  1076. */
  1077. if (cur) {
  1078. /* Skip this swap candidate if cannot move to the source cpu */
  1079. if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
  1080. goto unlock;
  1081. /*
  1082. * If dst and source tasks are in the same NUMA group, or not
  1083. * in any group then look only at task weights.
  1084. */
  1085. if (cur->numa_group == env->p->numa_group) {
  1086. imp = taskimp + task_weight(cur, env->src_nid, dist) -
  1087. task_weight(cur, env->dst_nid, dist);
  1088. /*
  1089. * Add some hysteresis to prevent swapping the
  1090. * tasks within a group over tiny differences.
  1091. */
  1092. if (cur->numa_group)
  1093. imp -= imp/16;
  1094. } else {
  1095. /*
  1096. * Compare the group weights. If a task is all by
  1097. * itself (not part of a group), use the task weight
  1098. * instead.
  1099. */
  1100. if (cur->numa_group)
  1101. imp += group_weight(cur, env->src_nid, dist) -
  1102. group_weight(cur, env->dst_nid, dist);
  1103. else
  1104. imp += task_weight(cur, env->src_nid, dist) -
  1105. task_weight(cur, env->dst_nid, dist);
  1106. }
  1107. }
  1108. if (imp <= env->best_imp && moveimp <= env->best_imp)
  1109. goto unlock;
  1110. if (!cur) {
  1111. /* Is there capacity at our destination? */
  1112. if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
  1113. !env->dst_stats.has_free_capacity)
  1114. goto unlock;
  1115. goto balance;
  1116. }
  1117. /* Balance doesn't matter much if we're running a task per cpu */
  1118. if (imp > env->best_imp && src_rq->nr_running == 1 &&
  1119. dst_rq->nr_running == 1)
  1120. goto assign;
  1121. /*
  1122. * In the overloaded case, try and keep the load balanced.
  1123. */
  1124. balance:
  1125. load = task_h_load(env->p);
  1126. dst_load = env->dst_stats.load + load;
  1127. src_load = env->src_stats.load - load;
  1128. if (moveimp > imp && moveimp > env->best_imp) {
  1129. /*
  1130. * If the improvement from just moving env->p direction is
  1131. * better than swapping tasks around, check if a move is
  1132. * possible. Store a slightly smaller score than moveimp,
  1133. * so an actually idle CPU will win.
  1134. */
  1135. if (!load_too_imbalanced(src_load, dst_load, env)) {
  1136. imp = moveimp - 1;
  1137. put_task_struct(cur);
  1138. cur = NULL;
  1139. goto assign;
  1140. }
  1141. }
  1142. if (imp <= env->best_imp)
  1143. goto unlock;
  1144. if (cur) {
  1145. load = task_h_load(cur);
  1146. dst_load -= load;
  1147. src_load += load;
  1148. }
  1149. if (load_too_imbalanced(src_load, dst_load, env))
  1150. goto unlock;
  1151. /*
  1152. * One idle CPU per node is evaluated for a task numa move.
  1153. * Call select_idle_sibling to maybe find a better one.
  1154. */
  1155. if (!cur)
  1156. env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
  1157. assign:
  1158. assigned = true;
  1159. task_numa_assign(env, cur, imp);
  1160. unlock:
  1161. rcu_read_unlock();
  1162. /*
  1163. * The dst_rq->curr isn't assigned. The protection for task_struct is
  1164. * finished.
  1165. */
  1166. if (cur && !assigned)
  1167. put_task_struct(cur);
  1168. }
  1169. static void task_numa_find_cpu(struct task_numa_env *env,
  1170. long taskimp, long groupimp)
  1171. {
  1172. int cpu;
  1173. for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
  1174. /* Skip this CPU if the source task cannot migrate */
  1175. if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
  1176. continue;
  1177. env->dst_cpu = cpu;
  1178. task_numa_compare(env, taskimp, groupimp);
  1179. }
  1180. }
  1181. /* Only move tasks to a NUMA node less busy than the current node. */
  1182. static bool numa_has_capacity(struct task_numa_env *env)
  1183. {
  1184. struct numa_stats *src = &env->src_stats;
  1185. struct numa_stats *dst = &env->dst_stats;
  1186. if (src->has_free_capacity && !dst->has_free_capacity)
  1187. return false;
  1188. /*
  1189. * Only consider a task move if the source has a higher load
  1190. * than the destination, corrected for CPU capacity on each node.
  1191. *
  1192. * src->load dst->load
  1193. * --------------------- vs ---------------------
  1194. * src->compute_capacity dst->compute_capacity
  1195. */
  1196. if (src->load * dst->compute_capacity * env->imbalance_pct >
  1197. dst->load * src->compute_capacity * 100)
  1198. return true;
  1199. return false;
  1200. }
  1201. static int task_numa_migrate(struct task_struct *p)
  1202. {
  1203. struct task_numa_env env = {
  1204. .p = p,
  1205. .src_cpu = task_cpu(p),
  1206. .src_nid = task_node(p),
  1207. .imbalance_pct = 112,
  1208. .best_task = NULL,
  1209. .best_imp = 0,
  1210. .best_cpu = -1
  1211. };
  1212. struct sched_domain *sd;
  1213. unsigned long taskweight, groupweight;
  1214. int nid, ret, dist;
  1215. long taskimp, groupimp;
  1216. /*
  1217. * Pick the lowest SD_NUMA domain, as that would have the smallest
  1218. * imbalance and would be the first to start moving tasks about.
  1219. *
  1220. * And we want to avoid any moving of tasks about, as that would create
  1221. * random movement of tasks -- counter the numa conditions we're trying
  1222. * to satisfy here.
  1223. */
  1224. rcu_read_lock();
  1225. sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
  1226. if (sd)
  1227. env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
  1228. rcu_read_unlock();
  1229. /*
  1230. * Cpusets can break the scheduler domain tree into smaller
  1231. * balance domains, some of which do not cross NUMA boundaries.
  1232. * Tasks that are "trapped" in such domains cannot be migrated
  1233. * elsewhere, so there is no point in (re)trying.
  1234. */
  1235. if (unlikely(!sd)) {
  1236. p->numa_preferred_nid = task_node(p);
  1237. return -EINVAL;
  1238. }
  1239. env.dst_nid = p->numa_preferred_nid;
  1240. dist = env.dist = node_distance(env.src_nid, env.dst_nid);
  1241. taskweight = task_weight(p, env.src_nid, dist);
  1242. groupweight = group_weight(p, env.src_nid, dist);
  1243. update_numa_stats(&env.src_stats, env.src_nid);
  1244. taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
  1245. groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
  1246. update_numa_stats(&env.dst_stats, env.dst_nid);
  1247. /* Try to find a spot on the preferred nid. */
  1248. if (numa_has_capacity(&env))
  1249. task_numa_find_cpu(&env, taskimp, groupimp);
  1250. /*
  1251. * Look at other nodes in these cases:
  1252. * - there is no space available on the preferred_nid
  1253. * - the task is part of a numa_group that is interleaved across
  1254. * multiple NUMA nodes; in order to better consolidate the group,
  1255. * we need to check other locations.
  1256. */
  1257. if (env.best_cpu == -1 || (p->numa_group &&
  1258. nodes_weight(p->numa_group->active_nodes) > 1)) {
  1259. for_each_online_node(nid) {
  1260. if (nid == env.src_nid || nid == p->numa_preferred_nid)
  1261. continue;
  1262. dist = node_distance(env.src_nid, env.dst_nid);
  1263. if (sched_numa_topology_type == NUMA_BACKPLANE &&
  1264. dist != env.dist) {
  1265. taskweight = task_weight(p, env.src_nid, dist);
  1266. groupweight = group_weight(p, env.src_nid, dist);
  1267. }
  1268. /* Only consider nodes where both task and groups benefit */
  1269. taskimp = task_weight(p, nid, dist) - taskweight;
  1270. groupimp = group_weight(p, nid, dist) - groupweight;
  1271. if (taskimp < 0 && groupimp < 0)
  1272. continue;
  1273. env.dist = dist;
  1274. env.dst_nid = nid;
  1275. update_numa_stats(&env.dst_stats, env.dst_nid);
  1276. if (numa_has_capacity(&env))
  1277. task_numa_find_cpu(&env, taskimp, groupimp);
  1278. }
  1279. }
  1280. /*
  1281. * If the task is part of a workload that spans multiple NUMA nodes,
  1282. * and is migrating into one of the workload's active nodes, remember
  1283. * this node as the task's preferred numa node, so the workload can
  1284. * settle down.
  1285. * A task that migrated to a second choice node will be better off
  1286. * trying for a better one later. Do not set the preferred node here.
  1287. */
  1288. if (p->numa_group) {
  1289. if (env.best_cpu == -1)
  1290. nid = env.src_nid;
  1291. else
  1292. nid = env.dst_nid;
  1293. if (node_isset(nid, p->numa_group->active_nodes))
  1294. sched_setnuma(p, env.dst_nid);
  1295. }
  1296. /* No better CPU than the current one was found. */
  1297. if (env.best_cpu == -1)
  1298. return -EAGAIN;
  1299. /*
  1300. * Reset the scan period if the task is being rescheduled on an
  1301. * alternative node to recheck if the tasks is now properly placed.
  1302. */
  1303. p->numa_scan_period = task_scan_min(p);
  1304. if (env.best_task == NULL) {
  1305. ret = migrate_task_to(p, env.best_cpu);
  1306. if (ret != 0)
  1307. trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
  1308. return ret;
  1309. }
  1310. ret = migrate_swap(p, env.best_task);
  1311. if (ret != 0)
  1312. trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
  1313. put_task_struct(env.best_task);
  1314. return ret;
  1315. }
  1316. /* Attempt to migrate a task to a CPU on the preferred node. */
  1317. static void numa_migrate_preferred(struct task_struct *p)
  1318. {
  1319. unsigned long interval = HZ;
  1320. /* This task has no NUMA fault statistics yet */
  1321. if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
  1322. return;
  1323. /* Periodically retry migrating the task to the preferred node */
  1324. interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
  1325. p->numa_migrate_retry = jiffies + interval;
  1326. /* Success if task is already running on preferred CPU */
  1327. if (task_node(p) == p->numa_preferred_nid)
  1328. return;
  1329. /* Otherwise, try migrate to a CPU on the preferred node */
  1330. task_numa_migrate(p);
  1331. }
  1332. /*
  1333. * Find the nodes on which the workload is actively running. We do this by
  1334. * tracking the nodes from which NUMA hinting faults are triggered. This can
  1335. * be different from the set of nodes where the workload's memory is currently
  1336. * located.
  1337. *
  1338. * The bitmask is used to make smarter decisions on when to do NUMA page
  1339. * migrations, To prevent flip-flopping, and excessive page migrations, nodes
  1340. * are added when they cause over 6/16 of the maximum number of faults, but
  1341. * only removed when they drop below 3/16.
  1342. */
  1343. static void update_numa_active_node_mask(struct numa_group *numa_group)
  1344. {
  1345. unsigned long faults, max_faults = 0;
  1346. int nid;
  1347. for_each_online_node(nid) {
  1348. faults = group_faults_cpu(numa_group, nid);
  1349. if (faults > max_faults)
  1350. max_faults = faults;
  1351. }
  1352. for_each_online_node(nid) {
  1353. faults = group_faults_cpu(numa_group, nid);
  1354. if (!node_isset(nid, numa_group->active_nodes)) {
  1355. if (faults > max_faults * 6 / 16)
  1356. node_set(nid, numa_group->active_nodes);
  1357. } else if (faults < max_faults * 3 / 16)
  1358. node_clear(nid, numa_group->active_nodes);
  1359. }
  1360. }
  1361. /*
  1362. * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
  1363. * increments. The more local the fault statistics are, the higher the scan
  1364. * period will be for the next scan window. If local/(local+remote) ratio is
  1365. * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
  1366. * the scan period will decrease. Aim for 70% local accesses.
  1367. */
  1368. #define NUMA_PERIOD_SLOTS 10
  1369. #define NUMA_PERIOD_THRESHOLD 7
  1370. /*
  1371. * Increase the scan period (slow down scanning) if the majority of
  1372. * our memory is already on our local node, or if the majority of
  1373. * the page accesses are shared with other processes.
  1374. * Otherwise, decrease the scan period.
  1375. */
  1376. static void update_task_scan_period(struct task_struct *p,
  1377. unsigned long shared, unsigned long private)
  1378. {
  1379. unsigned int period_slot;
  1380. int ratio;
  1381. int diff;
  1382. unsigned long remote = p->numa_faults_locality[0];
  1383. unsigned long local = p->numa_faults_locality[1];
  1384. /*
  1385. * If there were no record hinting faults then either the task is
  1386. * completely idle or all activity is areas that are not of interest
  1387. * to automatic numa balancing. Related to that, if there were failed
  1388. * migration then it implies we are migrating too quickly or the local
  1389. * node is overloaded. In either case, scan slower
  1390. */
  1391. if (local + shared == 0 || p->numa_faults_locality[2]) {
  1392. p->numa_scan_period = min(p->numa_scan_period_max,
  1393. p->numa_scan_period << 1);
  1394. p->mm->numa_next_scan = jiffies +
  1395. msecs_to_jiffies(p->numa_scan_period);
  1396. return;
  1397. }
  1398. /*
  1399. * Prepare to scale scan period relative to the current period.
  1400. * == NUMA_PERIOD_THRESHOLD scan period stays the same
  1401. * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
  1402. * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
  1403. */
  1404. period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
  1405. ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
  1406. if (ratio >= NUMA_PERIOD_THRESHOLD) {
  1407. int slot = ratio - NUMA_PERIOD_THRESHOLD;
  1408. if (!slot)
  1409. slot = 1;
  1410. diff = slot * period_slot;
  1411. } else {
  1412. diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
  1413. /*
  1414. * Scale scan rate increases based on sharing. There is an
  1415. * inverse relationship between the degree of sharing and
  1416. * the adjustment made to the scanning period. Broadly
  1417. * speaking the intent is that there is little point
  1418. * scanning faster if shared accesses dominate as it may
  1419. * simply bounce migrations uselessly
  1420. */
  1421. ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
  1422. diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
  1423. }
  1424. p->numa_scan_period = clamp(p->numa_scan_period + diff,
  1425. task_scan_min(p), task_scan_max(p));
  1426. memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
  1427. }
  1428. /*
  1429. * Get the fraction of time the task has been running since the last
  1430. * NUMA placement cycle. The scheduler keeps similar statistics, but
  1431. * decays those on a 32ms period, which is orders of magnitude off
  1432. * from the dozens-of-seconds NUMA balancing period. Use the scheduler
  1433. * stats only if the task is so new there are no NUMA statistics yet.
  1434. */
  1435. static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
  1436. {
  1437. u64 runtime, delta, now;
  1438. /* Use the start of this time slice to avoid calculations. */
  1439. now = p->se.exec_start;
  1440. runtime = p->se.sum_exec_runtime;
  1441. if (p->last_task_numa_placement) {
  1442. delta = runtime - p->last_sum_exec_runtime;
  1443. *period = now - p->last_task_numa_placement;
  1444. } else {
  1445. delta = p->se.avg.load_sum / p->se.load.weight;
  1446. *period = LOAD_AVG_MAX;
  1447. }
  1448. p->last_sum_exec_runtime = runtime;
  1449. p->last_task_numa_placement = now;
  1450. return delta;
  1451. }
  1452. /*
  1453. * Determine the preferred nid for a task in a numa_group. This needs to
  1454. * be done in a way that produces consistent results with group_weight,
  1455. * otherwise workloads might not converge.
  1456. */
  1457. static int preferred_group_nid(struct task_struct *p, int nid)
  1458. {
  1459. nodemask_t nodes;
  1460. int dist;
  1461. /* Direct connections between all NUMA nodes. */
  1462. if (sched_numa_topology_type == NUMA_DIRECT)
  1463. return nid;
  1464. /*
  1465. * On a system with glueless mesh NUMA topology, group_weight
  1466. * scores nodes according to the number of NUMA hinting faults on
  1467. * both the node itself, and on nearby nodes.
  1468. */
  1469. if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
  1470. unsigned long score, max_score = 0;
  1471. int node, max_node = nid;
  1472. dist = sched_max_numa_distance;
  1473. for_each_online_node(node) {
  1474. score = group_weight(p, node, dist);
  1475. if (score > max_score) {
  1476. max_score = score;
  1477. max_node = node;
  1478. }
  1479. }
  1480. return max_node;
  1481. }
  1482. /*
  1483. * Finding the preferred nid in a system with NUMA backplane
  1484. * interconnect topology is more involved. The goal is to locate
  1485. * tasks from numa_groups near each other in the system, and
  1486. * untangle workloads from different sides of the system. This requires
  1487. * searching down the hierarchy of node groups, recursively searching
  1488. * inside the highest scoring group of nodes. The nodemask tricks
  1489. * keep the complexity of the search down.
  1490. */
  1491. nodes = node_online_map;
  1492. for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
  1493. unsigned long max_faults = 0;
  1494. nodemask_t max_group = NODE_MASK_NONE;
  1495. int a, b;
  1496. /* Are there nodes at this distance from each other? */
  1497. if (!find_numa_distance(dist))
  1498. continue;
  1499. for_each_node_mask(a, nodes) {
  1500. unsigned long faults = 0;
  1501. nodemask_t this_group;
  1502. nodes_clear(this_group);
  1503. /* Sum group's NUMA faults; includes a==b case. */
  1504. for_each_node_mask(b, nodes) {
  1505. if (node_distance(a, b) < dist) {
  1506. faults += group_faults(p, b);
  1507. node_set(b, this_group);
  1508. node_clear(b, nodes);
  1509. }
  1510. }
  1511. /* Remember the top group. */
  1512. if (faults > max_faults) {
  1513. max_faults = faults;
  1514. max_group = this_group;
  1515. /*
  1516. * subtle: at the smallest distance there is
  1517. * just one node left in each "group", the
  1518. * winner is the preferred nid.
  1519. */
  1520. nid = a;
  1521. }
  1522. }
  1523. /* Next round, evaluate the nodes within max_group. */
  1524. if (!max_faults)
  1525. break;
  1526. nodes = max_group;
  1527. }
  1528. return nid;
  1529. }
  1530. static void task_numa_placement(struct task_struct *p)
  1531. {
  1532. int seq, nid, max_nid = -1, max_group_nid = -1;
  1533. unsigned long max_faults = 0, max_group_faults = 0;
  1534. unsigned long fault_types[2] = { 0, 0 };
  1535. unsigned long total_faults;
  1536. u64 runtime, period;
  1537. spinlock_t *group_lock = NULL;
  1538. /*
  1539. * The p->mm->numa_scan_seq field gets updated without
  1540. * exclusive access. Use READ_ONCE() here to ensure
  1541. * that the field is read in a single access:
  1542. */
  1543. seq = READ_ONCE(p->mm->numa_scan_seq);
  1544. if (p->numa_scan_seq == seq)
  1545. return;
  1546. p->numa_scan_seq = seq;
  1547. p->numa_scan_period_max = task_scan_max(p);
  1548. total_faults = p->numa_faults_locality[0] +
  1549. p->numa_faults_locality[1];
  1550. runtime = numa_get_avg_runtime(p, &period);
  1551. /* If the task is part of a group prevent parallel updates to group stats */
  1552. if (p->numa_group) {
  1553. group_lock = &p->numa_group->lock;
  1554. spin_lock_irq(group_lock);
  1555. }
  1556. /* Find the node with the highest number of faults */
  1557. for_each_online_node(nid) {
  1558. /* Keep track of the offsets in numa_faults array */
  1559. int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
  1560. unsigned long faults = 0, group_faults = 0;
  1561. int priv;
  1562. for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
  1563. long diff, f_diff, f_weight;
  1564. mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
  1565. membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
  1566. cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
  1567. cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
  1568. /* Decay existing window, copy faults since last scan */
  1569. diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
  1570. fault_types[priv] += p->numa_faults[membuf_idx];
  1571. p->numa_faults[membuf_idx] = 0;
  1572. /*
  1573. * Normalize the faults_from, so all tasks in a group
  1574. * count according to CPU use, instead of by the raw
  1575. * number of faults. Tasks with little runtime have
  1576. * little over-all impact on throughput, and thus their
  1577. * faults are less important.
  1578. */
  1579. f_weight = div64_u64(runtime << 16, period + 1);
  1580. f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
  1581. (total_faults + 1);
  1582. f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
  1583. p->numa_faults[cpubuf_idx] = 0;
  1584. p->numa_faults[mem_idx] += diff;
  1585. p->numa_faults[cpu_idx] += f_diff;
  1586. faults += p->numa_faults[mem_idx];
  1587. p->total_numa_faults += diff;
  1588. if (p->numa_group) {
  1589. /*
  1590. * safe because we can only change our own group
  1591. *
  1592. * mem_idx represents the offset for a given
  1593. * nid and priv in a specific region because it
  1594. * is at the beginning of the numa_faults array.
  1595. */
  1596. p->numa_group->faults[mem_idx] += diff;
  1597. p->numa_group->faults_cpu[mem_idx] += f_diff;
  1598. p->numa_group->total_faults += diff;
  1599. group_faults += p->numa_group->faults[mem_idx];
  1600. }
  1601. }
  1602. if (faults > max_faults) {
  1603. max_faults = faults;
  1604. max_nid = nid;
  1605. }
  1606. if (group_faults > max_group_faults) {
  1607. max_group_faults = group_faults;
  1608. max_group_nid = nid;
  1609. }
  1610. }
  1611. update_task_scan_period(p, fault_types[0], fault_types[1]);
  1612. if (p->numa_group) {
  1613. update_numa_active_node_mask(p->numa_group);
  1614. spin_unlock_irq(group_lock);
  1615. max_nid = preferred_group_nid(p, max_group_nid);
  1616. }
  1617. if (max_faults) {
  1618. /* Set the new preferred node */
  1619. if (max_nid != p->numa_preferred_nid)
  1620. sched_setnuma(p, max_nid);
  1621. if (task_node(p) != p->numa_preferred_nid)
  1622. numa_migrate_preferred(p);
  1623. }
  1624. }
  1625. static inline int get_numa_group(struct numa_group *grp)
  1626. {
  1627. return atomic_inc_not_zero(&grp->refcount);
  1628. }
  1629. static inline void put_numa_group(struct numa_group *grp)
  1630. {
  1631. if (atomic_dec_and_test(&grp->refcount))
  1632. kfree_rcu(grp, rcu);
  1633. }
  1634. static void task_numa_group(struct task_struct *p, int cpupid, int flags,
  1635. int *priv)
  1636. {
  1637. struct numa_group *grp, *my_grp;
  1638. struct task_struct *tsk;
  1639. bool join = false;
  1640. int cpu = cpupid_to_cpu(cpupid);
  1641. int i;
  1642. if (unlikely(!p->numa_group)) {
  1643. unsigned int size = sizeof(struct numa_group) +
  1644. 4*nr_node_ids*sizeof(unsigned long);
  1645. grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
  1646. if (!grp)
  1647. return;
  1648. atomic_set(&grp->refcount, 1);
  1649. spin_lock_init(&grp->lock);
  1650. grp->gid = p->pid;
  1651. /* Second half of the array tracks nids where faults happen */
  1652. grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
  1653. nr_node_ids;
  1654. node_set(task_node(current), grp->active_nodes);
  1655. for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
  1656. grp->faults[i] = p->numa_faults[i];
  1657. grp->total_faults = p->total_numa_faults;
  1658. grp->nr_tasks++;
  1659. rcu_assign_pointer(p->numa_group, grp);
  1660. }
  1661. rcu_read_lock();
  1662. tsk = READ_ONCE(cpu_rq(cpu)->curr);
  1663. if (!cpupid_match_pid(tsk, cpupid))
  1664. goto no_join;
  1665. grp = rcu_dereference(tsk->numa_group);
  1666. if (!grp)
  1667. goto no_join;
  1668. my_grp = p->numa_group;
  1669. if (grp == my_grp)
  1670. goto no_join;
  1671. /*
  1672. * Only join the other group if its bigger; if we're the bigger group,
  1673. * the other task will join us.
  1674. */
  1675. if (my_grp->nr_tasks > grp->nr_tasks)
  1676. goto no_join;
  1677. /*
  1678. * Tie-break on the grp address.
  1679. */
  1680. if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
  1681. goto no_join;
  1682. /* Always join threads in the same process. */
  1683. if (tsk->mm == current->mm)
  1684. join = true;
  1685. /* Simple filter to avoid false positives due to PID collisions */
  1686. if (flags & TNF_SHARED)
  1687. join = true;
  1688. /* Update priv based on whether false sharing was detected */
  1689. *priv = !join;
  1690. if (join && !get_numa_group(grp))
  1691. goto no_join;
  1692. rcu_read_unlock();
  1693. if (!join)
  1694. return;
  1695. BUG_ON(irqs_disabled());
  1696. double_lock_irq(&my_grp->lock, &grp->lock);
  1697. for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
  1698. my_grp->faults[i] -= p->numa_faults[i];
  1699. grp->faults[i] += p->numa_faults[i];
  1700. }
  1701. my_grp->total_faults -= p->total_numa_faults;
  1702. grp->total_faults += p->total_numa_faults;
  1703. my_grp->nr_tasks--;
  1704. grp->nr_tasks++;
  1705. spin_unlock(&my_grp->lock);
  1706. spin_unlock_irq(&grp->lock);
  1707. rcu_assign_pointer(p->numa_group, grp);
  1708. put_numa_group(my_grp);
  1709. return;
  1710. no_join:
  1711. rcu_read_unlock();
  1712. return;
  1713. }
  1714. void task_numa_free(struct task_struct *p)
  1715. {
  1716. struct numa_group *grp = p->numa_group;
  1717. void *numa_faults = p->numa_faults;
  1718. unsigned long flags;
  1719. int i;
  1720. if (grp) {
  1721. spin_lock_irqsave(&grp->lock, flags);
  1722. for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
  1723. grp->faults[i] -= p->numa_faults[i];
  1724. grp->total_faults -= p->total_numa_faults;
  1725. grp->nr_tasks--;
  1726. spin_unlock_irqrestore(&grp->lock, flags);
  1727. RCU_INIT_POINTER(p->numa_group, NULL);
  1728. put_numa_group(grp);
  1729. }
  1730. p->numa_faults = NULL;
  1731. kfree(numa_faults);
  1732. }
  1733. /*
  1734. * Got a PROT_NONE fault for a page on @node.
  1735. */
  1736. void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
  1737. {
  1738. struct task_struct *p = current;
  1739. bool migrated = flags & TNF_MIGRATED;
  1740. int cpu_node = task_node(current);
  1741. int local = !!(flags & TNF_FAULT_LOCAL);
  1742. int priv;
  1743. if (!static_branch_likely(&sched_numa_balancing))
  1744. return;
  1745. /* for example, ksmd faulting in a user's mm */
  1746. if (!p->mm)
  1747. return;
  1748. /* Allocate buffer to track faults on a per-node basis */
  1749. if (unlikely(!p->numa_faults)) {
  1750. int size = sizeof(*p->numa_faults) *
  1751. NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
  1752. p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
  1753. if (!p->numa_faults)
  1754. return;
  1755. p->total_numa_faults = 0;
  1756. memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
  1757. }
  1758. /*
  1759. * First accesses are treated as private, otherwise consider accesses
  1760. * to be private if the accessing pid has not changed
  1761. */
  1762. if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
  1763. priv = 1;
  1764. } else {
  1765. priv = cpupid_match_pid(p, last_cpupid);
  1766. if (!priv && !(flags & TNF_NO_GROUP))
  1767. task_numa_group(p, last_cpupid, flags, &priv);
  1768. }
  1769. /*
  1770. * If a workload spans multiple NUMA nodes, a shared fault that
  1771. * occurs wholly within the set of nodes that the workload is
  1772. * actively using should be counted as local. This allows the
  1773. * scan rate to slow down when a workload has settled down.
  1774. */
  1775. if (!priv && !local && p->numa_group &&
  1776. node_isset(cpu_node, p->numa_group->active_nodes) &&
  1777. node_isset(mem_node, p->numa_group->active_nodes))
  1778. local = 1;
  1779. task_numa_placement(p);
  1780. /*
  1781. * Retry task to preferred node migration periodically, in case it
  1782. * case it previously failed, or the scheduler moved us.
  1783. */
  1784. if (time_after(jiffies, p->numa_migrate_retry))
  1785. numa_migrate_preferred(p);
  1786. if (migrated)
  1787. p->numa_pages_migrated += pages;
  1788. if (flags & TNF_MIGRATE_FAIL)
  1789. p->numa_faults_locality[2] += pages;
  1790. p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
  1791. p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
  1792. p->numa_faults_locality[local] += pages;
  1793. }
  1794. static void reset_ptenuma_scan(struct task_struct *p)
  1795. {
  1796. /*
  1797. * We only did a read acquisition of the mmap sem, so
  1798. * p->mm->numa_scan_seq is written to without exclusive access
  1799. * and the update is not guaranteed to be atomic. That's not
  1800. * much of an issue though, since this is just used for
  1801. * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
  1802. * expensive, to avoid any form of compiler optimizations:
  1803. */
  1804. WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
  1805. p->mm->numa_scan_offset = 0;
  1806. }
  1807. /*
  1808. * The expensive part of numa migration is done from task_work context.
  1809. * Triggered from task_tick_numa().
  1810. */
  1811. void task_numa_work(struct callback_head *work)
  1812. {
  1813. unsigned long migrate, next_scan, now = jiffies;
  1814. struct task_struct *p = current;
  1815. struct mm_struct *mm = p->mm;
  1816. struct vm_area_struct *vma;
  1817. unsigned long start, end;
  1818. unsigned long nr_pte_updates = 0;
  1819. long pages, virtpages;
  1820. WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
  1821. work->next = work; /* protect against double add */
  1822. /*
  1823. * Who cares about NUMA placement when they're dying.
  1824. *
  1825. * NOTE: make sure not to dereference p->mm before this check,
  1826. * exit_task_work() happens _after_ exit_mm() so we could be called
  1827. * without p->mm even though we still had it when we enqueued this
  1828. * work.
  1829. */
  1830. if (p->flags & PF_EXITING)
  1831. return;
  1832. if (!mm->numa_next_scan) {
  1833. mm->numa_next_scan = now +
  1834. msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  1835. }
  1836. /*
  1837. * Enforce maximal scan/migration frequency..
  1838. */
  1839. migrate = mm->numa_next_scan;
  1840. if (time_before(now, migrate))
  1841. return;
  1842. if (p->numa_scan_period == 0) {
  1843. p->numa_scan_period_max = task_scan_max(p);
  1844. p->numa_scan_period = task_scan_min(p);
  1845. }
  1846. next_scan = now + msecs_to_jiffies(p->numa_scan_period);
  1847. if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
  1848. return;
  1849. /*
  1850. * Delay this task enough that another task of this mm will likely win
  1851. * the next time around.
  1852. */
  1853. p->node_stamp += 2 * TICK_NSEC;
  1854. start = mm->numa_scan_offset;
  1855. pages = sysctl_numa_balancing_scan_size;
  1856. pages <<= 20 - PAGE_SHIFT; /* MB in pages */
  1857. virtpages = pages * 8; /* Scan up to this much virtual space */
  1858. if (!pages)
  1859. return;
  1860. if (!down_read_trylock(&mm->mmap_sem))
  1861. return;
  1862. vma = find_vma(mm, start);
  1863. if (!vma) {
  1864. reset_ptenuma_scan(p);
  1865. start = 0;
  1866. vma = mm->mmap;
  1867. }
  1868. for (; vma; vma = vma->vm_next) {
  1869. if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
  1870. is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
  1871. continue;
  1872. }
  1873. /*
  1874. * Shared library pages mapped by multiple processes are not
  1875. * migrated as it is expected they are cache replicated. Avoid
  1876. * hinting faults in read-only file-backed mappings or the vdso
  1877. * as migrating the pages will be of marginal benefit.
  1878. */
  1879. if (!vma->vm_mm ||
  1880. (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
  1881. continue;
  1882. /*
  1883. * Skip inaccessible VMAs to avoid any confusion between
  1884. * PROT_NONE and NUMA hinting ptes
  1885. */
  1886. if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
  1887. continue;
  1888. do {
  1889. start = max(start, vma->vm_start);
  1890. end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
  1891. end = min(end, vma->vm_end);
  1892. nr_pte_updates = change_prot_numa(vma, start, end);
  1893. /*
  1894. * Try to scan sysctl_numa_balancing_size worth of
  1895. * hpages that have at least one present PTE that
  1896. * is not already pte-numa. If the VMA contains
  1897. * areas that are unused or already full of prot_numa
  1898. * PTEs, scan up to virtpages, to skip through those
  1899. * areas faster.
  1900. */
  1901. if (nr_pte_updates)
  1902. pages -= (end - start) >> PAGE_SHIFT;
  1903. virtpages -= (end - start) >> PAGE_SHIFT;
  1904. start = end;
  1905. if (pages <= 0 || virtpages <= 0)
  1906. goto out;
  1907. cond_resched();
  1908. } while (end != vma->vm_end);
  1909. }
  1910. out:
  1911. /*
  1912. * It is possible to reach the end of the VMA list but the last few
  1913. * VMAs are not guaranteed to the vma_migratable. If they are not, we
  1914. * would find the !migratable VMA on the next scan but not reset the
  1915. * scanner to the start so check it now.
  1916. */
  1917. if (vma)
  1918. mm->numa_scan_offset = start;
  1919. else
  1920. reset_ptenuma_scan(p);
  1921. up_read(&mm->mmap_sem);
  1922. }
  1923. /*
  1924. * Drive the periodic memory faults..
  1925. */
  1926. void task_tick_numa(struct rq *rq, struct task_struct *curr)
  1927. {
  1928. struct callback_head *work = &curr->numa_work;
  1929. u64 period, now;
  1930. /*
  1931. * We don't care about NUMA placement if we don't have memory.
  1932. */
  1933. if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
  1934. return;
  1935. /*
  1936. * Using runtime rather than walltime has the dual advantage that
  1937. * we (mostly) drive the selection from busy threads and that the
  1938. * task needs to have done some actual work before we bother with
  1939. * NUMA placement.
  1940. */
  1941. now = curr->se.sum_exec_runtime;
  1942. period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
  1943. if (now > curr->node_stamp + period) {
  1944. if (!curr->node_stamp)
  1945. curr->numa_scan_period = task_scan_min(curr);
  1946. curr->node_stamp += period;
  1947. if (!time_before(jiffies, curr->mm->numa_next_scan)) {
  1948. init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
  1949. task_work_add(curr, work, true);
  1950. }
  1951. }
  1952. }
  1953. #else
  1954. static void task_tick_numa(struct rq *rq, struct task_struct *curr)
  1955. {
  1956. }
  1957. static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
  1958. {
  1959. }
  1960. static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
  1961. {
  1962. }
  1963. #endif /* CONFIG_NUMA_BALANCING */
  1964. static void
  1965. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1966. {
  1967. update_load_add(&cfs_rq->load, se->load.weight);
  1968. if (!parent_entity(se))
  1969. update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
  1970. #ifdef CONFIG_SMP
  1971. if (entity_is_task(se)) {
  1972. struct rq *rq = rq_of(cfs_rq);
  1973. account_numa_enqueue(rq, task_of(se));
  1974. list_add(&se->group_node, &rq->cfs_tasks);
  1975. }
  1976. #endif
  1977. cfs_rq->nr_running++;
  1978. }
  1979. static void
  1980. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1981. {
  1982. update_load_sub(&cfs_rq->load, se->load.weight);
  1983. if (!parent_entity(se))
  1984. update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
  1985. if (entity_is_task(se)) {
  1986. account_numa_dequeue(rq_of(cfs_rq), task_of(se));
  1987. list_del_init(&se->group_node);
  1988. }
  1989. cfs_rq->nr_running--;
  1990. }
  1991. #ifdef CONFIG_FAIR_GROUP_SCHED
  1992. # ifdef CONFIG_SMP
  1993. static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
  1994. {
  1995. long tg_weight;
  1996. /*
  1997. * Use this CPU's real-time load instead of the last load contribution
  1998. * as the updating of the contribution is delayed, and we will use the
  1999. * the real-time load to calc the share. See update_tg_load_avg().
  2000. */
  2001. tg_weight = atomic_long_read(&tg->load_avg);
  2002. tg_weight -= cfs_rq->tg_load_avg_contrib;
  2003. tg_weight += cfs_rq->load.weight;
  2004. return tg_weight;
  2005. }
  2006. static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  2007. {
  2008. long tg_weight, load, shares;
  2009. tg_weight = calc_tg_weight(tg, cfs_rq);
  2010. load = cfs_rq->load.weight;
  2011. shares = (tg->shares * load);
  2012. if (tg_weight)
  2013. shares /= tg_weight;
  2014. if (shares < MIN_SHARES)
  2015. shares = MIN_SHARES;
  2016. if (shares > tg->shares)
  2017. shares = tg->shares;
  2018. return shares;
  2019. }
  2020. # else /* CONFIG_SMP */
  2021. static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  2022. {
  2023. return tg->shares;
  2024. }
  2025. # endif /* CONFIG_SMP */
  2026. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  2027. unsigned long weight)
  2028. {
  2029. if (se->on_rq) {
  2030. /* commit outstanding execution time */
  2031. if (cfs_rq->curr == se)
  2032. update_curr(cfs_rq);
  2033. account_entity_dequeue(cfs_rq, se);
  2034. }
  2035. update_load_set(&se->load, weight);
  2036. if (se->on_rq)
  2037. account_entity_enqueue(cfs_rq, se);
  2038. }
  2039. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
  2040. static void update_cfs_shares(struct cfs_rq *cfs_rq)
  2041. {
  2042. struct task_group *tg;
  2043. struct sched_entity *se;
  2044. long shares;
  2045. tg = cfs_rq->tg;
  2046. se = tg->se[cpu_of(rq_of(cfs_rq))];
  2047. if (!se || throttled_hierarchy(cfs_rq))
  2048. return;
  2049. #ifndef CONFIG_SMP
  2050. if (likely(se->load.weight == tg->shares))
  2051. return;
  2052. #endif
  2053. shares = calc_cfs_shares(cfs_rq, tg);
  2054. reweight_entity(cfs_rq_of(se), se, shares);
  2055. }
  2056. #else /* CONFIG_FAIR_GROUP_SCHED */
  2057. static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
  2058. {
  2059. }
  2060. #endif /* CONFIG_FAIR_GROUP_SCHED */
  2061. #ifdef CONFIG_SMP
  2062. /* Precomputed fixed inverse multiplies for multiplication by y^n */
  2063. static const u32 runnable_avg_yN_inv[] = {
  2064. 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
  2065. 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
  2066. 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
  2067. 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
  2068. 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
  2069. 0x85aac367, 0x82cd8698,
  2070. };
  2071. /*
  2072. * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
  2073. * over-estimates when re-combining.
  2074. */
  2075. static const u32 runnable_avg_yN_sum[] = {
  2076. 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
  2077. 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
  2078. 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
  2079. };
  2080. /*
  2081. * Approximate:
  2082. * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
  2083. */
  2084. static __always_inline u64 decay_load(u64 val, u64 n)
  2085. {
  2086. unsigned int local_n;
  2087. if (!n)
  2088. return val;
  2089. else if (unlikely(n > LOAD_AVG_PERIOD * 63))
  2090. return 0;
  2091. /* after bounds checking we can collapse to 32-bit */
  2092. local_n = n;
  2093. /*
  2094. * As y^PERIOD = 1/2, we can combine
  2095. * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
  2096. * With a look-up table which covers y^n (n<PERIOD)
  2097. *
  2098. * To achieve constant time decay_load.
  2099. */
  2100. if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
  2101. val >>= local_n / LOAD_AVG_PERIOD;
  2102. local_n %= LOAD_AVG_PERIOD;
  2103. }
  2104. val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
  2105. return val;
  2106. }
  2107. /*
  2108. * For updates fully spanning n periods, the contribution to runnable
  2109. * average will be: \Sum 1024*y^n
  2110. *
  2111. * We can compute this reasonably efficiently by combining:
  2112. * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
  2113. */
  2114. static u32 __compute_runnable_contrib(u64 n)
  2115. {
  2116. u32 contrib = 0;
  2117. if (likely(n <= LOAD_AVG_PERIOD))
  2118. return runnable_avg_yN_sum[n];
  2119. else if (unlikely(n >= LOAD_AVG_MAX_N))
  2120. return LOAD_AVG_MAX;
  2121. /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
  2122. do {
  2123. contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
  2124. contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
  2125. n -= LOAD_AVG_PERIOD;
  2126. } while (n > LOAD_AVG_PERIOD);
  2127. contrib = decay_load(contrib, n);
  2128. return contrib + runnable_avg_yN_sum[n];
  2129. }
  2130. #if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10
  2131. #error "load tracking assumes 2^10 as unit"
  2132. #endif
  2133. #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
  2134. /*
  2135. * We can represent the historical contribution to runnable average as the
  2136. * coefficients of a geometric series. To do this we sub-divide our runnable
  2137. * history into segments of approximately 1ms (1024us); label the segment that
  2138. * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
  2139. *
  2140. * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
  2141. * p0 p1 p2
  2142. * (now) (~1ms ago) (~2ms ago)
  2143. *
  2144. * Let u_i denote the fraction of p_i that the entity was runnable.
  2145. *
  2146. * We then designate the fractions u_i as our co-efficients, yielding the
  2147. * following representation of historical load:
  2148. * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
  2149. *
  2150. * We choose y based on the with of a reasonably scheduling period, fixing:
  2151. * y^32 = 0.5
  2152. *
  2153. * This means that the contribution to load ~32ms ago (u_32) will be weighted
  2154. * approximately half as much as the contribution to load within the last ms
  2155. * (u_0).
  2156. *
  2157. * When a period "rolls over" and we have new u_0`, multiplying the previous
  2158. * sum again by y is sufficient to update:
  2159. * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
  2160. * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
  2161. */
  2162. static __always_inline int
  2163. __update_load_avg(u64 now, int cpu, struct sched_avg *sa,
  2164. unsigned long weight, int running, struct cfs_rq *cfs_rq)
  2165. {
  2166. u64 delta, scaled_delta, periods;
  2167. u32 contrib;
  2168. unsigned int delta_w, scaled_delta_w, decayed = 0;
  2169. unsigned long scale_freq, scale_cpu;
  2170. delta = now - sa->last_update_time;
  2171. /*
  2172. * This should only happen when time goes backwards, which it
  2173. * unfortunately does during sched clock init when we swap over to TSC.
  2174. */
  2175. if ((s64)delta < 0) {
  2176. sa->last_update_time = now;
  2177. return 0;
  2178. }
  2179. /*
  2180. * Use 1024ns as the unit of measurement since it's a reasonable
  2181. * approximation of 1us and fast to compute.
  2182. */
  2183. delta >>= 10;
  2184. if (!delta)
  2185. return 0;
  2186. sa->last_update_time = now;
  2187. scale_freq = arch_scale_freq_capacity(NULL, cpu);
  2188. scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
  2189. /* delta_w is the amount already accumulated against our next period */
  2190. delta_w = sa->period_contrib;
  2191. if (delta + delta_w >= 1024) {
  2192. decayed = 1;
  2193. /* how much left for next period will start over, we don't know yet */
  2194. sa->period_contrib = 0;
  2195. /*
  2196. * Now that we know we're crossing a period boundary, figure
  2197. * out how much from delta we need to complete the current
  2198. * period and accrue it.
  2199. */
  2200. delta_w = 1024 - delta_w;
  2201. scaled_delta_w = cap_scale(delta_w, scale_freq);
  2202. if (weight) {
  2203. sa->load_sum += weight * scaled_delta_w;
  2204. if (cfs_rq) {
  2205. cfs_rq->runnable_load_sum +=
  2206. weight * scaled_delta_w;
  2207. }
  2208. }
  2209. if (running)
  2210. sa->util_sum += scaled_delta_w * scale_cpu;
  2211. delta -= delta_w;
  2212. /* Figure out how many additional periods this update spans */
  2213. periods = delta / 1024;
  2214. delta %= 1024;
  2215. sa->load_sum = decay_load(sa->load_sum, periods + 1);
  2216. if (cfs_rq) {
  2217. cfs_rq->runnable_load_sum =
  2218. decay_load(cfs_rq->runnable_load_sum, periods + 1);
  2219. }
  2220. sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
  2221. /* Efficiently calculate \sum (1..n_period) 1024*y^i */
  2222. contrib = __compute_runnable_contrib(periods);
  2223. contrib = cap_scale(contrib, scale_freq);
  2224. if (weight) {
  2225. sa->load_sum += weight * contrib;
  2226. if (cfs_rq)
  2227. cfs_rq->runnable_load_sum += weight * contrib;
  2228. }
  2229. if (running)
  2230. sa->util_sum += contrib * scale_cpu;
  2231. }
  2232. /* Remainder of delta accrued against u_0` */
  2233. scaled_delta = cap_scale(delta, scale_freq);
  2234. if (weight) {
  2235. sa->load_sum += weight * scaled_delta;
  2236. if (cfs_rq)
  2237. cfs_rq->runnable_load_sum += weight * scaled_delta;
  2238. }
  2239. if (running)
  2240. sa->util_sum += scaled_delta * scale_cpu;
  2241. sa->period_contrib += delta;
  2242. if (decayed) {
  2243. sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
  2244. if (cfs_rq) {
  2245. cfs_rq->runnable_load_avg =
  2246. div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
  2247. }
  2248. sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
  2249. }
  2250. return decayed;
  2251. }
  2252. #ifdef CONFIG_FAIR_GROUP_SCHED
  2253. /*
  2254. * Updating tg's load_avg is necessary before update_cfs_share (which is done)
  2255. * and effective_load (which is not done because it is too costly).
  2256. */
  2257. static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
  2258. {
  2259. long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
  2260. if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
  2261. atomic_long_add(delta, &cfs_rq->tg->load_avg);
  2262. cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
  2263. }
  2264. }
  2265. #else /* CONFIG_FAIR_GROUP_SCHED */
  2266. static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
  2267. #endif /* CONFIG_FAIR_GROUP_SCHED */
  2268. static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
  2269. /*
  2270. * Unsigned subtract and clamp on underflow.
  2271. *
  2272. * Explicitly do a load-store to ensure the intermediate value never hits
  2273. * memory. This allows lockless observations without ever seeing the negative
  2274. * values.
  2275. */
  2276. #define sub_positive(_ptr, _val) do { \
  2277. typeof(_ptr) ptr = (_ptr); \
  2278. typeof(*ptr) val = (_val); \
  2279. typeof(*ptr) res, var = READ_ONCE(*ptr); \
  2280. res = var - val; \
  2281. if (res > var) \
  2282. res = 0; \
  2283. WRITE_ONCE(*ptr, res); \
  2284. } while (0)
  2285. /* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
  2286. static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
  2287. {
  2288. struct sched_avg *sa = &cfs_rq->avg;
  2289. int decayed, removed = 0;
  2290. if (atomic_long_read(&cfs_rq->removed_load_avg)) {
  2291. s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
  2292. sub_positive(&sa->load_avg, r);
  2293. sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
  2294. removed = 1;
  2295. }
  2296. if (atomic_long_read(&cfs_rq->removed_util_avg)) {
  2297. long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
  2298. sub_positive(&sa->util_avg, r);
  2299. sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
  2300. }
  2301. decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
  2302. scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
  2303. #ifndef CONFIG_64BIT
  2304. smp_wmb();
  2305. cfs_rq->load_last_update_time_copy = sa->last_update_time;
  2306. #endif
  2307. return decayed || removed;
  2308. }
  2309. /* Update task and its cfs_rq load average */
  2310. static inline void update_load_avg(struct sched_entity *se, int update_tg)
  2311. {
  2312. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2313. u64 now = cfs_rq_clock_task(cfs_rq);
  2314. int cpu = cpu_of(rq_of(cfs_rq));
  2315. /*
  2316. * Track task load average for carrying it to new CPU after migrated, and
  2317. * track group sched_entity load average for task_h_load calc in migration
  2318. */
  2319. __update_load_avg(now, cpu, &se->avg,
  2320. se->on_rq * scale_load_down(se->load.weight),
  2321. cfs_rq->curr == se, NULL);
  2322. if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
  2323. update_tg_load_avg(cfs_rq, 0);
  2324. }
  2325. static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2326. {
  2327. if (!sched_feat(ATTACH_AGE_LOAD))
  2328. goto skip_aging;
  2329. /*
  2330. * If we got migrated (either between CPUs or between cgroups) we'll
  2331. * have aged the average right before clearing @last_update_time.
  2332. */
  2333. if (se->avg.last_update_time) {
  2334. __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
  2335. &se->avg, 0, 0, NULL);
  2336. /*
  2337. * XXX: we could have just aged the entire load away if we've been
  2338. * absent from the fair class for too long.
  2339. */
  2340. }
  2341. skip_aging:
  2342. se->avg.last_update_time = cfs_rq->avg.last_update_time;
  2343. cfs_rq->avg.load_avg += se->avg.load_avg;
  2344. cfs_rq->avg.load_sum += se->avg.load_sum;
  2345. cfs_rq->avg.util_avg += se->avg.util_avg;
  2346. cfs_rq->avg.util_sum += se->avg.util_sum;
  2347. }
  2348. static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2349. {
  2350. __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
  2351. &se->avg, se->on_rq * scale_load_down(se->load.weight),
  2352. cfs_rq->curr == se, NULL);
  2353. sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
  2354. sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
  2355. sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
  2356. sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
  2357. }
  2358. /* Add the load generated by se into cfs_rq's load average */
  2359. static inline void
  2360. enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2361. {
  2362. struct sched_avg *sa = &se->avg;
  2363. u64 now = cfs_rq_clock_task(cfs_rq);
  2364. int migrated, decayed;
  2365. migrated = !sa->last_update_time;
  2366. if (!migrated) {
  2367. __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
  2368. se->on_rq * scale_load_down(se->load.weight),
  2369. cfs_rq->curr == se, NULL);
  2370. }
  2371. decayed = update_cfs_rq_load_avg(now, cfs_rq);
  2372. cfs_rq->runnable_load_avg += sa->load_avg;
  2373. cfs_rq->runnable_load_sum += sa->load_sum;
  2374. if (migrated)
  2375. attach_entity_load_avg(cfs_rq, se);
  2376. if (decayed || migrated)
  2377. update_tg_load_avg(cfs_rq, 0);
  2378. }
  2379. /* Remove the runnable load generated by se from cfs_rq's runnable load average */
  2380. static inline void
  2381. dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2382. {
  2383. update_load_avg(se, 1);
  2384. cfs_rq->runnable_load_avg =
  2385. max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
  2386. cfs_rq->runnable_load_sum =
  2387. max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
  2388. }
  2389. #ifndef CONFIG_64BIT
  2390. static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
  2391. {
  2392. u64 last_update_time_copy;
  2393. u64 last_update_time;
  2394. do {
  2395. last_update_time_copy = cfs_rq->load_last_update_time_copy;
  2396. smp_rmb();
  2397. last_update_time = cfs_rq->avg.last_update_time;
  2398. } while (last_update_time != last_update_time_copy);
  2399. return last_update_time;
  2400. }
  2401. #else
  2402. static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
  2403. {
  2404. return cfs_rq->avg.last_update_time;
  2405. }
  2406. #endif
  2407. /*
  2408. * Task first catches up with cfs_rq, and then subtract
  2409. * itself from the cfs_rq (task must be off the queue now).
  2410. */
  2411. void remove_entity_load_avg(struct sched_entity *se)
  2412. {
  2413. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2414. u64 last_update_time;
  2415. /*
  2416. * Newly created task or never used group entity should not be removed
  2417. * from its (source) cfs_rq
  2418. */
  2419. if (se->avg.last_update_time == 0)
  2420. return;
  2421. last_update_time = cfs_rq_last_update_time(cfs_rq);
  2422. __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
  2423. atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
  2424. atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
  2425. }
  2426. /*
  2427. * Update the rq's load with the elapsed running time before entering
  2428. * idle. if the last scheduled task is not a CFS task, idle_enter will
  2429. * be the only way to update the runnable statistic.
  2430. */
  2431. void idle_enter_fair(struct rq *this_rq)
  2432. {
  2433. }
  2434. /*
  2435. * Update the rq's load with the elapsed idle time before a task is
  2436. * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
  2437. * be the only way to update the runnable statistic.
  2438. */
  2439. void idle_exit_fair(struct rq *this_rq)
  2440. {
  2441. }
  2442. static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
  2443. {
  2444. return cfs_rq->runnable_load_avg;
  2445. }
  2446. static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
  2447. {
  2448. return cfs_rq->avg.load_avg;
  2449. }
  2450. static int idle_balance(struct rq *this_rq);
  2451. #else /* CONFIG_SMP */
  2452. static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
  2453. static inline void
  2454. enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
  2455. static inline void
  2456. dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
  2457. static inline void remove_entity_load_avg(struct sched_entity *se) {}
  2458. static inline void
  2459. attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
  2460. static inline void
  2461. detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
  2462. static inline int idle_balance(struct rq *rq)
  2463. {
  2464. return 0;
  2465. }
  2466. #endif /* CONFIG_SMP */
  2467. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2468. {
  2469. #ifdef CONFIG_SCHEDSTATS
  2470. struct task_struct *tsk = NULL;
  2471. if (entity_is_task(se))
  2472. tsk = task_of(se);
  2473. if (se->statistics.sleep_start) {
  2474. u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
  2475. if ((s64)delta < 0)
  2476. delta = 0;
  2477. if (unlikely(delta > se->statistics.sleep_max))
  2478. se->statistics.sleep_max = delta;
  2479. se->statistics.sleep_start = 0;
  2480. se->statistics.sum_sleep_runtime += delta;
  2481. if (tsk) {
  2482. account_scheduler_latency(tsk, delta >> 10, 1);
  2483. trace_sched_stat_sleep(tsk, delta);
  2484. }
  2485. }
  2486. if (se->statistics.block_start) {
  2487. u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
  2488. if ((s64)delta < 0)
  2489. delta = 0;
  2490. if (unlikely(delta > se->statistics.block_max))
  2491. se->statistics.block_max = delta;
  2492. se->statistics.block_start = 0;
  2493. se->statistics.sum_sleep_runtime += delta;
  2494. if (tsk) {
  2495. if (tsk->in_iowait) {
  2496. se->statistics.iowait_sum += delta;
  2497. se->statistics.iowait_count++;
  2498. trace_sched_stat_iowait(tsk, delta);
  2499. }
  2500. trace_sched_stat_blocked(tsk, delta);
  2501. /*
  2502. * Blocking time is in units of nanosecs, so shift by
  2503. * 20 to get a milliseconds-range estimation of the
  2504. * amount of time that the task spent sleeping:
  2505. */
  2506. if (unlikely(prof_on == SLEEP_PROFILING)) {
  2507. profile_hits(SLEEP_PROFILING,
  2508. (void *)get_wchan(tsk),
  2509. delta >> 20);
  2510. }
  2511. account_scheduler_latency(tsk, delta >> 10, 0);
  2512. }
  2513. }
  2514. #endif
  2515. }
  2516. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2517. {
  2518. #ifdef CONFIG_SCHED_DEBUG
  2519. s64 d = se->vruntime - cfs_rq->min_vruntime;
  2520. if (d < 0)
  2521. d = -d;
  2522. if (d > 3*sysctl_sched_latency)
  2523. schedstat_inc(cfs_rq, nr_spread_over);
  2524. #endif
  2525. }
  2526. static void
  2527. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  2528. {
  2529. u64 vruntime = cfs_rq->min_vruntime;
  2530. /*
  2531. * The 'current' period is already promised to the current tasks,
  2532. * however the extra weight of the new task will slow them down a
  2533. * little, place the new task so that it fits in the slot that
  2534. * stays open at the end.
  2535. */
  2536. if (initial && sched_feat(START_DEBIT))
  2537. vruntime += sched_vslice(cfs_rq, se);
  2538. /* sleeps up to a single latency don't count. */
  2539. if (!initial) {
  2540. unsigned long thresh = sysctl_sched_latency;
  2541. /*
  2542. * Halve their sleep time's effect, to allow
  2543. * for a gentler effect of sleepers:
  2544. */
  2545. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  2546. thresh >>= 1;
  2547. vruntime -= thresh;
  2548. }
  2549. /* ensure we never gain time by being placed backwards. */
  2550. se->vruntime = max_vruntime(se->vruntime, vruntime);
  2551. }
  2552. static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
  2553. static void
  2554. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  2555. {
  2556. /*
  2557. * Update the normalized vruntime before updating min_vruntime
  2558. * through calling update_curr().
  2559. */
  2560. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  2561. se->vruntime += cfs_rq->min_vruntime;
  2562. /*
  2563. * Update run-time statistics of the 'current'.
  2564. */
  2565. update_curr(cfs_rq);
  2566. enqueue_entity_load_avg(cfs_rq, se);
  2567. account_entity_enqueue(cfs_rq, se);
  2568. update_cfs_shares(cfs_rq);
  2569. if (flags & ENQUEUE_WAKEUP) {
  2570. place_entity(cfs_rq, se, 0);
  2571. enqueue_sleeper(cfs_rq, se);
  2572. }
  2573. update_stats_enqueue(cfs_rq, se);
  2574. check_spread(cfs_rq, se);
  2575. if (se != cfs_rq->curr)
  2576. __enqueue_entity(cfs_rq, se);
  2577. se->on_rq = 1;
  2578. if (cfs_rq->nr_running == 1) {
  2579. list_add_leaf_cfs_rq(cfs_rq);
  2580. check_enqueue_throttle(cfs_rq);
  2581. }
  2582. }
  2583. static void __clear_buddies_last(struct sched_entity *se)
  2584. {
  2585. for_each_sched_entity(se) {
  2586. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2587. if (cfs_rq->last != se)
  2588. break;
  2589. cfs_rq->last = NULL;
  2590. }
  2591. }
  2592. static void __clear_buddies_next(struct sched_entity *se)
  2593. {
  2594. for_each_sched_entity(se) {
  2595. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2596. if (cfs_rq->next != se)
  2597. break;
  2598. cfs_rq->next = NULL;
  2599. }
  2600. }
  2601. static void __clear_buddies_skip(struct sched_entity *se)
  2602. {
  2603. for_each_sched_entity(se) {
  2604. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2605. if (cfs_rq->skip != se)
  2606. break;
  2607. cfs_rq->skip = NULL;
  2608. }
  2609. }
  2610. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2611. {
  2612. if (cfs_rq->last == se)
  2613. __clear_buddies_last(se);
  2614. if (cfs_rq->next == se)
  2615. __clear_buddies_next(se);
  2616. if (cfs_rq->skip == se)
  2617. __clear_buddies_skip(se);
  2618. }
  2619. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  2620. static void
  2621. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  2622. {
  2623. /*
  2624. * Update run-time statistics of the 'current'.
  2625. */
  2626. update_curr(cfs_rq);
  2627. dequeue_entity_load_avg(cfs_rq, se);
  2628. update_stats_dequeue(cfs_rq, se);
  2629. if (flags & DEQUEUE_SLEEP) {
  2630. #ifdef CONFIG_SCHEDSTATS
  2631. if (entity_is_task(se)) {
  2632. struct task_struct *tsk = task_of(se);
  2633. if (tsk->state & TASK_INTERRUPTIBLE)
  2634. se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
  2635. if (tsk->state & TASK_UNINTERRUPTIBLE)
  2636. se->statistics.block_start = rq_clock(rq_of(cfs_rq));
  2637. }
  2638. #endif
  2639. }
  2640. clear_buddies(cfs_rq, se);
  2641. if (se != cfs_rq->curr)
  2642. __dequeue_entity(cfs_rq, se);
  2643. se->on_rq = 0;
  2644. account_entity_dequeue(cfs_rq, se);
  2645. /*
  2646. * Normalize the entity after updating the min_vruntime because the
  2647. * update can refer to the ->curr item and we need to reflect this
  2648. * movement in our normalized position.
  2649. */
  2650. if (!(flags & DEQUEUE_SLEEP))
  2651. se->vruntime -= cfs_rq->min_vruntime;
  2652. /* return excess runtime on last dequeue */
  2653. return_cfs_rq_runtime(cfs_rq);
  2654. update_min_vruntime(cfs_rq);
  2655. update_cfs_shares(cfs_rq);
  2656. }
  2657. /*
  2658. * Preempt the current task with a newly woken task if needed:
  2659. */
  2660. static void
  2661. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  2662. {
  2663. unsigned long ideal_runtime, delta_exec;
  2664. struct sched_entity *se;
  2665. s64 delta;
  2666. ideal_runtime = sched_slice(cfs_rq, curr);
  2667. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  2668. if (delta_exec > ideal_runtime) {
  2669. resched_curr(rq_of(cfs_rq));
  2670. /*
  2671. * The current task ran long enough, ensure it doesn't get
  2672. * re-elected due to buddy favours.
  2673. */
  2674. clear_buddies(cfs_rq, curr);
  2675. return;
  2676. }
  2677. /*
  2678. * Ensure that a task that missed wakeup preemption by a
  2679. * narrow margin doesn't have to wait for a full slice.
  2680. * This also mitigates buddy induced latencies under load.
  2681. */
  2682. if (delta_exec < sysctl_sched_min_granularity)
  2683. return;
  2684. se = __pick_first_entity(cfs_rq);
  2685. delta = curr->vruntime - se->vruntime;
  2686. if (delta < 0)
  2687. return;
  2688. if (delta > ideal_runtime)
  2689. resched_curr(rq_of(cfs_rq));
  2690. }
  2691. static void
  2692. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2693. {
  2694. /* 'current' is not kept within the tree. */
  2695. if (se->on_rq) {
  2696. /*
  2697. * Any task has to be enqueued before it get to execute on
  2698. * a CPU. So account for the time it spent waiting on the
  2699. * runqueue.
  2700. */
  2701. update_stats_wait_end(cfs_rq, se);
  2702. __dequeue_entity(cfs_rq, se);
  2703. update_load_avg(se, 1);
  2704. }
  2705. update_stats_curr_start(cfs_rq, se);
  2706. cfs_rq->curr = se;
  2707. #ifdef CONFIG_SCHEDSTATS
  2708. /*
  2709. * Track our maximum slice length, if the CPU's load is at
  2710. * least twice that of our own weight (i.e. dont track it
  2711. * when there are only lesser-weight tasks around):
  2712. */
  2713. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  2714. se->statistics.slice_max = max(se->statistics.slice_max,
  2715. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  2716. }
  2717. #endif
  2718. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  2719. }
  2720. static int
  2721. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  2722. /*
  2723. * Pick the next process, keeping these things in mind, in this order:
  2724. * 1) keep things fair between processes/task groups
  2725. * 2) pick the "next" process, since someone really wants that to run
  2726. * 3) pick the "last" process, for cache locality
  2727. * 4) do not run the "skip" process, if something else is available
  2728. */
  2729. static struct sched_entity *
  2730. pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  2731. {
  2732. struct sched_entity *left = __pick_first_entity(cfs_rq);
  2733. struct sched_entity *se;
  2734. /*
  2735. * If curr is set we have to see if its left of the leftmost entity
  2736. * still in the tree, provided there was anything in the tree at all.
  2737. */
  2738. if (!left || (curr && entity_before(curr, left)))
  2739. left = curr;
  2740. se = left; /* ideally we run the leftmost entity */
  2741. /*
  2742. * Avoid running the skip buddy, if running something else can
  2743. * be done without getting too unfair.
  2744. */
  2745. if (cfs_rq->skip == se) {
  2746. struct sched_entity *second;
  2747. if (se == curr) {
  2748. second = __pick_first_entity(cfs_rq);
  2749. } else {
  2750. second = __pick_next_entity(se);
  2751. if (!second || (curr && entity_before(curr, second)))
  2752. second = curr;
  2753. }
  2754. if (second && wakeup_preempt_entity(second, left) < 1)
  2755. se = second;
  2756. }
  2757. /*
  2758. * Prefer last buddy, try to return the CPU to a preempted task.
  2759. */
  2760. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  2761. se = cfs_rq->last;
  2762. /*
  2763. * Someone really wants this to run. If it's not unfair, run it.
  2764. */
  2765. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  2766. se = cfs_rq->next;
  2767. clear_buddies(cfs_rq, se);
  2768. return se;
  2769. }
  2770. static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  2771. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  2772. {
  2773. /*
  2774. * If still on the runqueue then deactivate_task()
  2775. * was not called and update_curr() has to be done:
  2776. */
  2777. if (prev->on_rq)
  2778. update_curr(cfs_rq);
  2779. /* throttle cfs_rqs exceeding runtime */
  2780. check_cfs_rq_runtime(cfs_rq);
  2781. check_spread(cfs_rq, prev);
  2782. if (prev->on_rq) {
  2783. update_stats_wait_start(cfs_rq, prev);
  2784. /* Put 'current' back into the tree. */
  2785. __enqueue_entity(cfs_rq, prev);
  2786. /* in !on_rq case, update occurred at dequeue */
  2787. update_load_avg(prev, 0);
  2788. }
  2789. cfs_rq->curr = NULL;
  2790. }
  2791. static void
  2792. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  2793. {
  2794. /*
  2795. * Update run-time statistics of the 'current'.
  2796. */
  2797. update_curr(cfs_rq);
  2798. /*
  2799. * Ensure that runnable average is periodically updated.
  2800. */
  2801. update_load_avg(curr, 1);
  2802. update_cfs_shares(cfs_rq);
  2803. #ifdef CONFIG_SCHED_HRTICK
  2804. /*
  2805. * queued ticks are scheduled to match the slice, so don't bother
  2806. * validating it and just reschedule.
  2807. */
  2808. if (queued) {
  2809. resched_curr(rq_of(cfs_rq));
  2810. return;
  2811. }
  2812. /*
  2813. * don't let the period tick interfere with the hrtick preemption
  2814. */
  2815. if (!sched_feat(DOUBLE_TICK) &&
  2816. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  2817. return;
  2818. #endif
  2819. if (cfs_rq->nr_running > 1)
  2820. check_preempt_tick(cfs_rq, curr);
  2821. }
  2822. /**************************************************
  2823. * CFS bandwidth control machinery
  2824. */
  2825. #ifdef CONFIG_CFS_BANDWIDTH
  2826. #ifdef HAVE_JUMP_LABEL
  2827. static struct static_key __cfs_bandwidth_used;
  2828. static inline bool cfs_bandwidth_used(void)
  2829. {
  2830. return static_key_false(&__cfs_bandwidth_used);
  2831. }
  2832. void cfs_bandwidth_usage_inc(void)
  2833. {
  2834. static_key_slow_inc(&__cfs_bandwidth_used);
  2835. }
  2836. void cfs_bandwidth_usage_dec(void)
  2837. {
  2838. static_key_slow_dec(&__cfs_bandwidth_used);
  2839. }
  2840. #else /* HAVE_JUMP_LABEL */
  2841. static bool cfs_bandwidth_used(void)
  2842. {
  2843. return true;
  2844. }
  2845. void cfs_bandwidth_usage_inc(void) {}
  2846. void cfs_bandwidth_usage_dec(void) {}
  2847. #endif /* HAVE_JUMP_LABEL */
  2848. /*
  2849. * default period for cfs group bandwidth.
  2850. * default: 0.1s, units: nanoseconds
  2851. */
  2852. static inline u64 default_cfs_period(void)
  2853. {
  2854. return 100000000ULL;
  2855. }
  2856. static inline u64 sched_cfs_bandwidth_slice(void)
  2857. {
  2858. return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
  2859. }
  2860. /*
  2861. * Replenish runtime according to assigned quota and update expiration time.
  2862. * We use sched_clock_cpu directly instead of rq->clock to avoid adding
  2863. * additional synchronization around rq->lock.
  2864. *
  2865. * requires cfs_b->lock
  2866. */
  2867. void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
  2868. {
  2869. u64 now;
  2870. if (cfs_b->quota == RUNTIME_INF)
  2871. return;
  2872. now = sched_clock_cpu(smp_processor_id());
  2873. cfs_b->runtime = cfs_b->quota;
  2874. cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
  2875. }
  2876. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  2877. {
  2878. return &tg->cfs_bandwidth;
  2879. }
  2880. /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
  2881. static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
  2882. {
  2883. if (unlikely(cfs_rq->throttle_count))
  2884. return cfs_rq->throttled_clock_task;
  2885. return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
  2886. }
  2887. /* returns 0 on failure to allocate runtime */
  2888. static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  2889. {
  2890. struct task_group *tg = cfs_rq->tg;
  2891. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
  2892. u64 amount = 0, min_amount, expires;
  2893. /* note: this is a positive sum as runtime_remaining <= 0 */
  2894. min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
  2895. raw_spin_lock(&cfs_b->lock);
  2896. if (cfs_b->quota == RUNTIME_INF)
  2897. amount = min_amount;
  2898. else {
  2899. start_cfs_bandwidth(cfs_b);
  2900. if (cfs_b->runtime > 0) {
  2901. amount = min(cfs_b->runtime, min_amount);
  2902. cfs_b->runtime -= amount;
  2903. cfs_b->idle = 0;
  2904. }
  2905. }
  2906. expires = cfs_b->runtime_expires;
  2907. raw_spin_unlock(&cfs_b->lock);
  2908. cfs_rq->runtime_remaining += amount;
  2909. /*
  2910. * we may have advanced our local expiration to account for allowed
  2911. * spread between our sched_clock and the one on which runtime was
  2912. * issued.
  2913. */
  2914. if ((s64)(expires - cfs_rq->runtime_expires) > 0)
  2915. cfs_rq->runtime_expires = expires;
  2916. return cfs_rq->runtime_remaining > 0;
  2917. }
  2918. /*
  2919. * Note: This depends on the synchronization provided by sched_clock and the
  2920. * fact that rq->clock snapshots this value.
  2921. */
  2922. static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  2923. {
  2924. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  2925. /* if the deadline is ahead of our clock, nothing to do */
  2926. if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
  2927. return;
  2928. if (cfs_rq->runtime_remaining < 0)
  2929. return;
  2930. /*
  2931. * If the local deadline has passed we have to consider the
  2932. * possibility that our sched_clock is 'fast' and the global deadline
  2933. * has not truly expired.
  2934. *
  2935. * Fortunately we can check determine whether this the case by checking
  2936. * whether the global deadline has advanced. It is valid to compare
  2937. * cfs_b->runtime_expires without any locks since we only care about
  2938. * exact equality, so a partial write will still work.
  2939. */
  2940. if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
  2941. /* extend local deadline, drift is bounded above by 2 ticks */
  2942. cfs_rq->runtime_expires += TICK_NSEC;
  2943. } else {
  2944. /* global deadline is ahead, expiration has passed */
  2945. cfs_rq->runtime_remaining = 0;
  2946. }
  2947. }
  2948. static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
  2949. {
  2950. /* dock delta_exec before expiring quota (as it could span periods) */
  2951. cfs_rq->runtime_remaining -= delta_exec;
  2952. expire_cfs_rq_runtime(cfs_rq);
  2953. if (likely(cfs_rq->runtime_remaining > 0))
  2954. return;
  2955. /*
  2956. * if we're unable to extend our runtime we resched so that the active
  2957. * hierarchy can be throttled
  2958. */
  2959. if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
  2960. resched_curr(rq_of(cfs_rq));
  2961. }
  2962. static __always_inline
  2963. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
  2964. {
  2965. if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
  2966. return;
  2967. __account_cfs_rq_runtime(cfs_rq, delta_exec);
  2968. }
  2969. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  2970. {
  2971. return cfs_bandwidth_used() && cfs_rq->throttled;
  2972. }
  2973. /* check whether cfs_rq, or any parent, is throttled */
  2974. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  2975. {
  2976. return cfs_bandwidth_used() && cfs_rq->throttle_count;
  2977. }
  2978. /*
  2979. * Ensure that neither of the group entities corresponding to src_cpu or
  2980. * dest_cpu are members of a throttled hierarchy when performing group
  2981. * load-balance operations.
  2982. */
  2983. static inline int throttled_lb_pair(struct task_group *tg,
  2984. int src_cpu, int dest_cpu)
  2985. {
  2986. struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
  2987. src_cfs_rq = tg->cfs_rq[src_cpu];
  2988. dest_cfs_rq = tg->cfs_rq[dest_cpu];
  2989. return throttled_hierarchy(src_cfs_rq) ||
  2990. throttled_hierarchy(dest_cfs_rq);
  2991. }
  2992. /* updated child weight may affect parent so we have to do this bottom up */
  2993. static int tg_unthrottle_up(struct task_group *tg, void *data)
  2994. {
  2995. struct rq *rq = data;
  2996. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  2997. cfs_rq->throttle_count--;
  2998. #ifdef CONFIG_SMP
  2999. if (!cfs_rq->throttle_count) {
  3000. /* adjust cfs_rq_clock_task() */
  3001. cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
  3002. cfs_rq->throttled_clock_task;
  3003. }
  3004. #endif
  3005. return 0;
  3006. }
  3007. static int tg_throttle_down(struct task_group *tg, void *data)
  3008. {
  3009. struct rq *rq = data;
  3010. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  3011. /* group is entering throttled state, stop time */
  3012. if (!cfs_rq->throttle_count)
  3013. cfs_rq->throttled_clock_task = rq_clock_task(rq);
  3014. cfs_rq->throttle_count++;
  3015. return 0;
  3016. }
  3017. static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
  3018. {
  3019. struct rq *rq = rq_of(cfs_rq);
  3020. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  3021. struct sched_entity *se;
  3022. long task_delta, dequeue = 1;
  3023. bool empty;
  3024. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  3025. /* freeze hierarchy runnable averages while throttled */
  3026. rcu_read_lock();
  3027. walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
  3028. rcu_read_unlock();
  3029. task_delta = cfs_rq->h_nr_running;
  3030. for_each_sched_entity(se) {
  3031. struct cfs_rq *qcfs_rq = cfs_rq_of(se);
  3032. /* throttled entity or throttle-on-deactivate */
  3033. if (!se->on_rq)
  3034. break;
  3035. if (dequeue)
  3036. dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
  3037. qcfs_rq->h_nr_running -= task_delta;
  3038. if (qcfs_rq->load.weight)
  3039. dequeue = 0;
  3040. }
  3041. if (!se)
  3042. sub_nr_running(rq, task_delta);
  3043. cfs_rq->throttled = 1;
  3044. cfs_rq->throttled_clock = rq_clock(rq);
  3045. raw_spin_lock(&cfs_b->lock);
  3046. empty = list_empty(&cfs_b->throttled_cfs_rq);
  3047. /*
  3048. * Add to the _head_ of the list, so that an already-started
  3049. * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
  3050. * not running add to the tail so that later runqueues don't get starved.
  3051. */
  3052. if (cfs_b->distribute_running)
  3053. list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
  3054. else
  3055. list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
  3056. /*
  3057. * If we're the first throttled task, make sure the bandwidth
  3058. * timer is running.
  3059. */
  3060. if (empty)
  3061. start_cfs_bandwidth(cfs_b);
  3062. raw_spin_unlock(&cfs_b->lock);
  3063. }
  3064. void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
  3065. {
  3066. struct rq *rq = rq_of(cfs_rq);
  3067. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  3068. struct sched_entity *se;
  3069. int enqueue = 1;
  3070. long task_delta;
  3071. se = cfs_rq->tg->se[cpu_of(rq)];
  3072. cfs_rq->throttled = 0;
  3073. update_rq_clock(rq);
  3074. raw_spin_lock(&cfs_b->lock);
  3075. cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
  3076. list_del_rcu(&cfs_rq->throttled_list);
  3077. raw_spin_unlock(&cfs_b->lock);
  3078. /* update hierarchical throttle state */
  3079. walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
  3080. if (!cfs_rq->load.weight)
  3081. return;
  3082. task_delta = cfs_rq->h_nr_running;
  3083. for_each_sched_entity(se) {
  3084. if (se->on_rq)
  3085. enqueue = 0;
  3086. cfs_rq = cfs_rq_of(se);
  3087. if (enqueue)
  3088. enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
  3089. cfs_rq->h_nr_running += task_delta;
  3090. if (cfs_rq_throttled(cfs_rq))
  3091. break;
  3092. }
  3093. if (!se)
  3094. add_nr_running(rq, task_delta);
  3095. /* determine whether we need to wake up potentially idle cpu */
  3096. if (rq->curr == rq->idle && rq->cfs.nr_running)
  3097. resched_curr(rq);
  3098. }
  3099. static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
  3100. u64 remaining, u64 expires)
  3101. {
  3102. struct cfs_rq *cfs_rq;
  3103. u64 runtime;
  3104. u64 starting_runtime = remaining;
  3105. rcu_read_lock();
  3106. list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
  3107. throttled_list) {
  3108. struct rq *rq = rq_of(cfs_rq);
  3109. raw_spin_lock(&rq->lock);
  3110. if (!cfs_rq_throttled(cfs_rq))
  3111. goto next;
  3112. runtime = -cfs_rq->runtime_remaining + 1;
  3113. if (runtime > remaining)
  3114. runtime = remaining;
  3115. remaining -= runtime;
  3116. cfs_rq->runtime_remaining += runtime;
  3117. cfs_rq->runtime_expires = expires;
  3118. /* we check whether we're throttled above */
  3119. if (cfs_rq->runtime_remaining > 0)
  3120. unthrottle_cfs_rq(cfs_rq);
  3121. next:
  3122. raw_spin_unlock(&rq->lock);
  3123. if (!remaining)
  3124. break;
  3125. }
  3126. rcu_read_unlock();
  3127. return starting_runtime - remaining;
  3128. }
  3129. /*
  3130. * Responsible for refilling a task_group's bandwidth and unthrottling its
  3131. * cfs_rqs as appropriate. If there has been no activity within the last
  3132. * period the timer is deactivated until scheduling resumes; cfs_b->idle is
  3133. * used to track this state.
  3134. */
  3135. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
  3136. {
  3137. u64 runtime, runtime_expires;
  3138. int throttled;
  3139. /* no need to continue the timer with no bandwidth constraint */
  3140. if (cfs_b->quota == RUNTIME_INF)
  3141. goto out_deactivate;
  3142. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  3143. cfs_b->nr_periods += overrun;
  3144. /*
  3145. * idle depends on !throttled (for the case of a large deficit), and if
  3146. * we're going inactive then everything else can be deferred
  3147. */
  3148. if (cfs_b->idle && !throttled)
  3149. goto out_deactivate;
  3150. __refill_cfs_bandwidth_runtime(cfs_b);
  3151. if (!throttled) {
  3152. /* mark as potentially idle for the upcoming period */
  3153. cfs_b->idle = 1;
  3154. return 0;
  3155. }
  3156. /* account preceding periods in which throttling occurred */
  3157. cfs_b->nr_throttled += overrun;
  3158. runtime_expires = cfs_b->runtime_expires;
  3159. /*
  3160. * This check is repeated as we are holding onto the new bandwidth while
  3161. * we unthrottle. This can potentially race with an unthrottled group
  3162. * trying to acquire new bandwidth from the global pool. This can result
  3163. * in us over-using our runtime if it is all used during this loop, but
  3164. * only by limited amounts in that extreme case.
  3165. */
  3166. while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
  3167. runtime = cfs_b->runtime;
  3168. cfs_b->distribute_running = 1;
  3169. raw_spin_unlock(&cfs_b->lock);
  3170. /* we can't nest cfs_b->lock while distributing bandwidth */
  3171. runtime = distribute_cfs_runtime(cfs_b, runtime,
  3172. runtime_expires);
  3173. raw_spin_lock(&cfs_b->lock);
  3174. cfs_b->distribute_running = 0;
  3175. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  3176. cfs_b->runtime -= min(runtime, cfs_b->runtime);
  3177. }
  3178. /*
  3179. * While we are ensured activity in the period following an
  3180. * unthrottle, this also covers the case in which the new bandwidth is
  3181. * insufficient to cover the existing bandwidth deficit. (Forcing the
  3182. * timer to remain active while there are any throttled entities.)
  3183. */
  3184. cfs_b->idle = 0;
  3185. return 0;
  3186. out_deactivate:
  3187. return 1;
  3188. }
  3189. /* a cfs_rq won't donate quota below this amount */
  3190. static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
  3191. /* minimum remaining period time to redistribute slack quota */
  3192. static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
  3193. /* how long we wait to gather additional slack before distributing */
  3194. static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
  3195. /*
  3196. * Are we near the end of the current quota period?
  3197. *
  3198. * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
  3199. * hrtimer base being cleared by hrtimer_start. In the case of
  3200. * migrate_hrtimers, base is never cleared, so we are fine.
  3201. */
  3202. static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
  3203. {
  3204. struct hrtimer *refresh_timer = &cfs_b->period_timer;
  3205. u64 remaining;
  3206. /* if the call-back is running a quota refresh is already occurring */
  3207. if (hrtimer_callback_running(refresh_timer))
  3208. return 1;
  3209. /* is a quota refresh about to occur? */
  3210. remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
  3211. if (remaining < min_expire)
  3212. return 1;
  3213. return 0;
  3214. }
  3215. static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
  3216. {
  3217. u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
  3218. /* if there's a quota refresh soon don't bother with slack */
  3219. if (runtime_refresh_within(cfs_b, min_left))
  3220. return;
  3221. hrtimer_start(&cfs_b->slack_timer,
  3222. ns_to_ktime(cfs_bandwidth_slack_period),
  3223. HRTIMER_MODE_REL);
  3224. }
  3225. /* we know any runtime found here is valid as update_curr() precedes return */
  3226. static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  3227. {
  3228. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  3229. s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
  3230. if (slack_runtime <= 0)
  3231. return;
  3232. raw_spin_lock(&cfs_b->lock);
  3233. if (cfs_b->quota != RUNTIME_INF &&
  3234. cfs_rq->runtime_expires == cfs_b->runtime_expires) {
  3235. cfs_b->runtime += slack_runtime;
  3236. /* we are under rq->lock, defer unthrottling using a timer */
  3237. if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
  3238. !list_empty(&cfs_b->throttled_cfs_rq))
  3239. start_cfs_slack_bandwidth(cfs_b);
  3240. }
  3241. raw_spin_unlock(&cfs_b->lock);
  3242. /* even if it's not valid for return we don't want to try again */
  3243. cfs_rq->runtime_remaining -= slack_runtime;
  3244. }
  3245. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  3246. {
  3247. if (!cfs_bandwidth_used())
  3248. return;
  3249. if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
  3250. return;
  3251. __return_cfs_rq_runtime(cfs_rq);
  3252. }
  3253. /*
  3254. * This is done with a timer (instead of inline with bandwidth return) since
  3255. * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
  3256. */
  3257. static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
  3258. {
  3259. u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
  3260. u64 expires;
  3261. /* confirm we're still not at a refresh boundary */
  3262. raw_spin_lock(&cfs_b->lock);
  3263. if (cfs_b->distribute_running) {
  3264. raw_spin_unlock(&cfs_b->lock);
  3265. return;
  3266. }
  3267. if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
  3268. raw_spin_unlock(&cfs_b->lock);
  3269. return;
  3270. }
  3271. if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
  3272. runtime = cfs_b->runtime;
  3273. expires = cfs_b->runtime_expires;
  3274. if (runtime)
  3275. cfs_b->distribute_running = 1;
  3276. raw_spin_unlock(&cfs_b->lock);
  3277. if (!runtime)
  3278. return;
  3279. runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
  3280. raw_spin_lock(&cfs_b->lock);
  3281. if (expires == cfs_b->runtime_expires)
  3282. cfs_b->runtime -= min(runtime, cfs_b->runtime);
  3283. cfs_b->distribute_running = 0;
  3284. raw_spin_unlock(&cfs_b->lock);
  3285. }
  3286. /*
  3287. * When a group wakes up we want to make sure that its quota is not already
  3288. * expired/exceeded, otherwise it may be allowed to steal additional ticks of
  3289. * runtime as update_curr() throttling can not not trigger until it's on-rq.
  3290. */
  3291. static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
  3292. {
  3293. if (!cfs_bandwidth_used())
  3294. return;
  3295. /* Synchronize hierarchical throttle counter: */
  3296. if (unlikely(!cfs_rq->throttle_uptodate)) {
  3297. struct rq *rq = rq_of(cfs_rq);
  3298. struct cfs_rq *pcfs_rq;
  3299. struct task_group *tg;
  3300. cfs_rq->throttle_uptodate = 1;
  3301. /* Get closest up-to-date node, because leaves go first: */
  3302. for (tg = cfs_rq->tg->parent; tg; tg = tg->parent) {
  3303. pcfs_rq = tg->cfs_rq[cpu_of(rq)];
  3304. if (pcfs_rq->throttle_uptodate)
  3305. break;
  3306. }
  3307. if (tg) {
  3308. cfs_rq->throttle_count = pcfs_rq->throttle_count;
  3309. cfs_rq->throttled_clock_task = rq_clock_task(rq);
  3310. }
  3311. }
  3312. /* an active group must be handled by the update_curr()->put() path */
  3313. if (!cfs_rq->runtime_enabled || cfs_rq->curr)
  3314. return;
  3315. /* ensure the group is not already throttled */
  3316. if (cfs_rq_throttled(cfs_rq))
  3317. return;
  3318. /* update runtime allocation */
  3319. account_cfs_rq_runtime(cfs_rq, 0);
  3320. if (cfs_rq->runtime_remaining <= 0)
  3321. throttle_cfs_rq(cfs_rq);
  3322. }
  3323. /* conditionally throttle active cfs_rq's from put_prev_entity() */
  3324. static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  3325. {
  3326. if (!cfs_bandwidth_used())
  3327. return false;
  3328. if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
  3329. return false;
  3330. /*
  3331. * it's possible for a throttled entity to be forced into a running
  3332. * state (e.g. set_curr_task), in this case we're finished.
  3333. */
  3334. if (cfs_rq_throttled(cfs_rq))
  3335. return true;
  3336. throttle_cfs_rq(cfs_rq);
  3337. return true;
  3338. }
  3339. static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
  3340. {
  3341. struct cfs_bandwidth *cfs_b =
  3342. container_of(timer, struct cfs_bandwidth, slack_timer);
  3343. do_sched_cfs_slack_timer(cfs_b);
  3344. return HRTIMER_NORESTART;
  3345. }
  3346. extern const u64 max_cfs_quota_period;
  3347. static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
  3348. {
  3349. struct cfs_bandwidth *cfs_b =
  3350. container_of(timer, struct cfs_bandwidth, period_timer);
  3351. int overrun;
  3352. int idle = 0;
  3353. int count = 0;
  3354. raw_spin_lock(&cfs_b->lock);
  3355. for (;;) {
  3356. overrun = hrtimer_forward_now(timer, cfs_b->period);
  3357. if (!overrun)
  3358. break;
  3359. if (++count > 3) {
  3360. u64 new, old = ktime_to_ns(cfs_b->period);
  3361. new = (old * 147) / 128; /* ~115% */
  3362. new = min(new, max_cfs_quota_period);
  3363. cfs_b->period = ns_to_ktime(new);
  3364. /* since max is 1s, this is limited to 1e9^2, which fits in u64 */
  3365. cfs_b->quota *= new;
  3366. cfs_b->quota = div64_u64(cfs_b->quota, old);
  3367. pr_warn_ratelimited(
  3368. "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us %lld, cfs_quota_us = %lld)\n",
  3369. smp_processor_id(),
  3370. div_u64(new, NSEC_PER_USEC),
  3371. div_u64(cfs_b->quota, NSEC_PER_USEC));
  3372. /* reset count so we don't come right back in here */
  3373. count = 0;
  3374. }
  3375. idle = do_sched_cfs_period_timer(cfs_b, overrun);
  3376. }
  3377. if (idle)
  3378. cfs_b->period_active = 0;
  3379. raw_spin_unlock(&cfs_b->lock);
  3380. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  3381. }
  3382. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  3383. {
  3384. raw_spin_lock_init(&cfs_b->lock);
  3385. cfs_b->runtime = 0;
  3386. cfs_b->quota = RUNTIME_INF;
  3387. cfs_b->period = ns_to_ktime(default_cfs_period());
  3388. INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
  3389. hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
  3390. cfs_b->period_timer.function = sched_cfs_period_timer;
  3391. hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  3392. cfs_b->slack_timer.function = sched_cfs_slack_timer;
  3393. cfs_b->distribute_running = 0;
  3394. }
  3395. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  3396. {
  3397. cfs_rq->runtime_enabled = 0;
  3398. INIT_LIST_HEAD(&cfs_rq->throttled_list);
  3399. }
  3400. void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  3401. {
  3402. lockdep_assert_held(&cfs_b->lock);
  3403. if (!cfs_b->period_active) {
  3404. cfs_b->period_active = 1;
  3405. hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
  3406. hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
  3407. }
  3408. }
  3409. static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  3410. {
  3411. /* init_cfs_bandwidth() was not called */
  3412. if (!cfs_b->throttled_cfs_rq.next)
  3413. return;
  3414. hrtimer_cancel(&cfs_b->period_timer);
  3415. hrtimer_cancel(&cfs_b->slack_timer);
  3416. }
  3417. static void __maybe_unused update_runtime_enabled(struct rq *rq)
  3418. {
  3419. struct cfs_rq *cfs_rq;
  3420. for_each_leaf_cfs_rq(rq, cfs_rq) {
  3421. struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
  3422. raw_spin_lock(&cfs_b->lock);
  3423. cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
  3424. raw_spin_unlock(&cfs_b->lock);
  3425. }
  3426. }
  3427. static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
  3428. {
  3429. struct cfs_rq *cfs_rq;
  3430. for_each_leaf_cfs_rq(rq, cfs_rq) {
  3431. if (!cfs_rq->runtime_enabled)
  3432. continue;
  3433. /*
  3434. * clock_task is not advancing so we just need to make sure
  3435. * there's some valid quota amount
  3436. */
  3437. cfs_rq->runtime_remaining = 1;
  3438. /*
  3439. * Offline rq is schedulable till cpu is completely disabled
  3440. * in take_cpu_down(), so we prevent new cfs throttling here.
  3441. */
  3442. cfs_rq->runtime_enabled = 0;
  3443. if (cfs_rq_throttled(cfs_rq))
  3444. unthrottle_cfs_rq(cfs_rq);
  3445. }
  3446. }
  3447. #else /* CONFIG_CFS_BANDWIDTH */
  3448. static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
  3449. {
  3450. return rq_clock_task(rq_of(cfs_rq));
  3451. }
  3452. static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
  3453. static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
  3454. static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
  3455. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  3456. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  3457. {
  3458. return 0;
  3459. }
  3460. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  3461. {
  3462. return 0;
  3463. }
  3464. static inline int throttled_lb_pair(struct task_group *tg,
  3465. int src_cpu, int dest_cpu)
  3466. {
  3467. return 0;
  3468. }
  3469. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  3470. #ifdef CONFIG_FAIR_GROUP_SCHED
  3471. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  3472. #endif
  3473. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  3474. {
  3475. return NULL;
  3476. }
  3477. static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  3478. static inline void update_runtime_enabled(struct rq *rq) {}
  3479. static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
  3480. #endif /* CONFIG_CFS_BANDWIDTH */
  3481. /**************************************************
  3482. * CFS operations on tasks:
  3483. */
  3484. #ifdef CONFIG_SCHED_HRTICK
  3485. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  3486. {
  3487. struct sched_entity *se = &p->se;
  3488. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  3489. WARN_ON(task_rq(p) != rq);
  3490. if (cfs_rq->nr_running > 1) {
  3491. u64 slice = sched_slice(cfs_rq, se);
  3492. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  3493. s64 delta = slice - ran;
  3494. if (delta < 0) {
  3495. if (rq->curr == p)
  3496. resched_curr(rq);
  3497. return;
  3498. }
  3499. hrtick_start(rq, delta);
  3500. }
  3501. }
  3502. /*
  3503. * called from enqueue/dequeue and updates the hrtick when the
  3504. * current task is from our class and nr_running is low enough
  3505. * to matter.
  3506. */
  3507. static void hrtick_update(struct rq *rq)
  3508. {
  3509. struct task_struct *curr = rq->curr;
  3510. if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
  3511. return;
  3512. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  3513. hrtick_start_fair(rq, curr);
  3514. }
  3515. #else /* !CONFIG_SCHED_HRTICK */
  3516. static inline void
  3517. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  3518. {
  3519. }
  3520. static inline void hrtick_update(struct rq *rq)
  3521. {
  3522. }
  3523. #endif
  3524. /*
  3525. * The enqueue_task method is called before nr_running is
  3526. * increased. Here we update the fair scheduling stats and
  3527. * then put the task into the rbtree:
  3528. */
  3529. static void
  3530. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  3531. {
  3532. struct cfs_rq *cfs_rq;
  3533. struct sched_entity *se = &p->se;
  3534. for_each_sched_entity(se) {
  3535. if (se->on_rq)
  3536. break;
  3537. cfs_rq = cfs_rq_of(se);
  3538. enqueue_entity(cfs_rq, se, flags);
  3539. /*
  3540. * end evaluation on encountering a throttled cfs_rq
  3541. *
  3542. * note: in the case of encountering a throttled cfs_rq we will
  3543. * post the final h_nr_running increment below.
  3544. */
  3545. if (cfs_rq_throttled(cfs_rq))
  3546. break;
  3547. cfs_rq->h_nr_running++;
  3548. flags = ENQUEUE_WAKEUP;
  3549. }
  3550. for_each_sched_entity(se) {
  3551. cfs_rq = cfs_rq_of(se);
  3552. cfs_rq->h_nr_running++;
  3553. if (cfs_rq_throttled(cfs_rq))
  3554. break;
  3555. update_load_avg(se, 1);
  3556. update_cfs_shares(cfs_rq);
  3557. }
  3558. if (!se)
  3559. add_nr_running(rq, 1);
  3560. hrtick_update(rq);
  3561. }
  3562. static void set_next_buddy(struct sched_entity *se);
  3563. /*
  3564. * The dequeue_task method is called before nr_running is
  3565. * decreased. We remove the task from the rbtree and
  3566. * update the fair scheduling stats:
  3567. */
  3568. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  3569. {
  3570. struct cfs_rq *cfs_rq;
  3571. struct sched_entity *se = &p->se;
  3572. int task_sleep = flags & DEQUEUE_SLEEP;
  3573. for_each_sched_entity(se) {
  3574. cfs_rq = cfs_rq_of(se);
  3575. dequeue_entity(cfs_rq, se, flags);
  3576. /*
  3577. * end evaluation on encountering a throttled cfs_rq
  3578. *
  3579. * note: in the case of encountering a throttled cfs_rq we will
  3580. * post the final h_nr_running decrement below.
  3581. */
  3582. if (cfs_rq_throttled(cfs_rq))
  3583. break;
  3584. cfs_rq->h_nr_running--;
  3585. /* Don't dequeue parent if it has other entities besides us */
  3586. if (cfs_rq->load.weight) {
  3587. /* Avoid re-evaluating load for this entity: */
  3588. se = parent_entity(se);
  3589. /*
  3590. * Bias pick_next to pick a task from this cfs_rq, as
  3591. * p is sleeping when it is within its sched_slice.
  3592. */
  3593. if (task_sleep && se && !throttled_hierarchy(cfs_rq))
  3594. set_next_buddy(se);
  3595. break;
  3596. }
  3597. flags |= DEQUEUE_SLEEP;
  3598. }
  3599. for_each_sched_entity(se) {
  3600. cfs_rq = cfs_rq_of(se);
  3601. cfs_rq->h_nr_running--;
  3602. if (cfs_rq_throttled(cfs_rq))
  3603. break;
  3604. update_load_avg(se, 1);
  3605. update_cfs_shares(cfs_rq);
  3606. }
  3607. if (!se)
  3608. sub_nr_running(rq, 1);
  3609. hrtick_update(rq);
  3610. }
  3611. #ifdef CONFIG_SMP
  3612. /*
  3613. * per rq 'load' arrray crap; XXX kill this.
  3614. */
  3615. /*
  3616. * The exact cpuload at various idx values, calculated at every tick would be
  3617. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  3618. *
  3619. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  3620. * on nth tick when cpu may be busy, then we have:
  3621. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  3622. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  3623. *
  3624. * decay_load_missed() below does efficient calculation of
  3625. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  3626. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  3627. *
  3628. * The calculation is approximated on a 128 point scale.
  3629. * degrade_zero_ticks is the number of ticks after which load at any
  3630. * particular idx is approximated to be zero.
  3631. * degrade_factor is a precomputed table, a row for each load idx.
  3632. * Each column corresponds to degradation factor for a power of two ticks,
  3633. * based on 128 point scale.
  3634. * Example:
  3635. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  3636. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  3637. *
  3638. * With this power of 2 load factors, we can degrade the load n times
  3639. * by looking at 1 bits in n and doing as many mult/shift instead of
  3640. * n mult/shifts needed by the exact degradation.
  3641. */
  3642. #define DEGRADE_SHIFT 7
  3643. static const unsigned char
  3644. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  3645. static const unsigned char
  3646. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  3647. {0, 0, 0, 0, 0, 0, 0, 0},
  3648. {64, 32, 8, 0, 0, 0, 0, 0},
  3649. {96, 72, 40, 12, 1, 0, 0},
  3650. {112, 98, 75, 43, 15, 1, 0},
  3651. {120, 112, 98, 76, 45, 16, 2} };
  3652. /*
  3653. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  3654. * would be when CPU is idle and so we just decay the old load without
  3655. * adding any new load.
  3656. */
  3657. static unsigned long
  3658. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  3659. {
  3660. int j = 0;
  3661. if (!missed_updates)
  3662. return load;
  3663. if (missed_updates >= degrade_zero_ticks[idx])
  3664. return 0;
  3665. if (idx == 1)
  3666. return load >> missed_updates;
  3667. while (missed_updates) {
  3668. if (missed_updates % 2)
  3669. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  3670. missed_updates >>= 1;
  3671. j++;
  3672. }
  3673. return load;
  3674. }
  3675. /*
  3676. * Update rq->cpu_load[] statistics. This function is usually called every
  3677. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  3678. * every tick. We fix it up based on jiffies.
  3679. */
  3680. static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
  3681. unsigned long pending_updates)
  3682. {
  3683. int i, scale;
  3684. this_rq->nr_load_updates++;
  3685. /* Update our load: */
  3686. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  3687. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  3688. unsigned long old_load, new_load;
  3689. /* scale is effectively 1 << i now, and >> i divides by scale */
  3690. old_load = this_rq->cpu_load[i];
  3691. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  3692. new_load = this_load;
  3693. /*
  3694. * Round up the averaging division if load is increasing. This
  3695. * prevents us from getting stuck on 9 if the load is 10, for
  3696. * example.
  3697. */
  3698. if (new_load > old_load)
  3699. new_load += scale - 1;
  3700. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  3701. }
  3702. sched_avg_update(this_rq);
  3703. }
  3704. /* Used instead of source_load when we know the type == 0 */
  3705. static unsigned long weighted_cpuload(const int cpu)
  3706. {
  3707. return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
  3708. }
  3709. #ifdef CONFIG_NO_HZ_COMMON
  3710. /*
  3711. * There is no sane way to deal with nohz on smp when using jiffies because the
  3712. * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
  3713. * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
  3714. *
  3715. * Therefore we cannot use the delta approach from the regular tick since that
  3716. * would seriously skew the load calculation. However we'll make do for those
  3717. * updates happening while idle (nohz_idle_balance) or coming out of idle
  3718. * (tick_nohz_idle_exit).
  3719. *
  3720. * This means we might still be one tick off for nohz periods.
  3721. */
  3722. /*
  3723. * Called from nohz_idle_balance() to update the load ratings before doing the
  3724. * idle balance.
  3725. */
  3726. static void update_idle_cpu_load(struct rq *this_rq)
  3727. {
  3728. unsigned long curr_jiffies = READ_ONCE(jiffies);
  3729. unsigned long load = weighted_cpuload(cpu_of(this_rq));
  3730. unsigned long pending_updates;
  3731. /*
  3732. * bail if there's load or we're actually up-to-date.
  3733. */
  3734. if (load || curr_jiffies == this_rq->last_load_update_tick)
  3735. return;
  3736. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  3737. this_rq->last_load_update_tick = curr_jiffies;
  3738. __update_cpu_load(this_rq, load, pending_updates);
  3739. }
  3740. /*
  3741. * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
  3742. */
  3743. void update_cpu_load_nohz(void)
  3744. {
  3745. struct rq *this_rq = this_rq();
  3746. unsigned long curr_jiffies = READ_ONCE(jiffies);
  3747. unsigned long pending_updates;
  3748. if (curr_jiffies == this_rq->last_load_update_tick)
  3749. return;
  3750. raw_spin_lock(&this_rq->lock);
  3751. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  3752. if (pending_updates) {
  3753. this_rq->last_load_update_tick = curr_jiffies;
  3754. /*
  3755. * We were idle, this means load 0, the current load might be
  3756. * !0 due to remote wakeups and the sort.
  3757. */
  3758. __update_cpu_load(this_rq, 0, pending_updates);
  3759. }
  3760. raw_spin_unlock(&this_rq->lock);
  3761. }
  3762. #endif /* CONFIG_NO_HZ */
  3763. /*
  3764. * Called from scheduler_tick()
  3765. */
  3766. void update_cpu_load_active(struct rq *this_rq)
  3767. {
  3768. unsigned long load = weighted_cpuload(cpu_of(this_rq));
  3769. /*
  3770. * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
  3771. */
  3772. this_rq->last_load_update_tick = jiffies;
  3773. __update_cpu_load(this_rq, load, 1);
  3774. }
  3775. /*
  3776. * Return a low guess at the load of a migration-source cpu weighted
  3777. * according to the scheduling class and "nice" value.
  3778. *
  3779. * We want to under-estimate the load of migration sources, to
  3780. * balance conservatively.
  3781. */
  3782. static unsigned long source_load(int cpu, int type)
  3783. {
  3784. struct rq *rq = cpu_rq(cpu);
  3785. unsigned long total = weighted_cpuload(cpu);
  3786. if (type == 0 || !sched_feat(LB_BIAS))
  3787. return total;
  3788. return min(rq->cpu_load[type-1], total);
  3789. }
  3790. /*
  3791. * Return a high guess at the load of a migration-target cpu weighted
  3792. * according to the scheduling class and "nice" value.
  3793. */
  3794. static unsigned long target_load(int cpu, int type)
  3795. {
  3796. struct rq *rq = cpu_rq(cpu);
  3797. unsigned long total = weighted_cpuload(cpu);
  3798. if (type == 0 || !sched_feat(LB_BIAS))
  3799. return total;
  3800. return max(rq->cpu_load[type-1], total);
  3801. }
  3802. static unsigned long capacity_of(int cpu)
  3803. {
  3804. return cpu_rq(cpu)->cpu_capacity;
  3805. }
  3806. static unsigned long capacity_orig_of(int cpu)
  3807. {
  3808. return cpu_rq(cpu)->cpu_capacity_orig;
  3809. }
  3810. static unsigned long cpu_avg_load_per_task(int cpu)
  3811. {
  3812. struct rq *rq = cpu_rq(cpu);
  3813. unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
  3814. unsigned long load_avg = weighted_cpuload(cpu);
  3815. if (nr_running)
  3816. return load_avg / nr_running;
  3817. return 0;
  3818. }
  3819. static void record_wakee(struct task_struct *p)
  3820. {
  3821. /*
  3822. * Rough decay (wiping) for cost saving, don't worry
  3823. * about the boundary, really active task won't care
  3824. * about the loss.
  3825. */
  3826. if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
  3827. current->wakee_flips >>= 1;
  3828. current->wakee_flip_decay_ts = jiffies;
  3829. }
  3830. if (current->last_wakee != p) {
  3831. current->last_wakee = p;
  3832. current->wakee_flips++;
  3833. }
  3834. }
  3835. static void task_waking_fair(struct task_struct *p)
  3836. {
  3837. struct sched_entity *se = &p->se;
  3838. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  3839. u64 min_vruntime;
  3840. #ifndef CONFIG_64BIT
  3841. u64 min_vruntime_copy;
  3842. do {
  3843. min_vruntime_copy = cfs_rq->min_vruntime_copy;
  3844. smp_rmb();
  3845. min_vruntime = cfs_rq->min_vruntime;
  3846. } while (min_vruntime != min_vruntime_copy);
  3847. #else
  3848. min_vruntime = cfs_rq->min_vruntime;
  3849. #endif
  3850. se->vruntime -= min_vruntime;
  3851. record_wakee(p);
  3852. }
  3853. #ifdef CONFIG_FAIR_GROUP_SCHED
  3854. /*
  3855. * effective_load() calculates the load change as seen from the root_task_group
  3856. *
  3857. * Adding load to a group doesn't make a group heavier, but can cause movement
  3858. * of group shares between cpus. Assuming the shares were perfectly aligned one
  3859. * can calculate the shift in shares.
  3860. *
  3861. * Calculate the effective load difference if @wl is added (subtracted) to @tg
  3862. * on this @cpu and results in a total addition (subtraction) of @wg to the
  3863. * total group weight.
  3864. *
  3865. * Given a runqueue weight distribution (rw_i) we can compute a shares
  3866. * distribution (s_i) using:
  3867. *
  3868. * s_i = rw_i / \Sum rw_j (1)
  3869. *
  3870. * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
  3871. * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
  3872. * shares distribution (s_i):
  3873. *
  3874. * rw_i = { 2, 4, 1, 0 }
  3875. * s_i = { 2/7, 4/7, 1/7, 0 }
  3876. *
  3877. * As per wake_affine() we're interested in the load of two CPUs (the CPU the
  3878. * task used to run on and the CPU the waker is running on), we need to
  3879. * compute the effect of waking a task on either CPU and, in case of a sync
  3880. * wakeup, compute the effect of the current task going to sleep.
  3881. *
  3882. * So for a change of @wl to the local @cpu with an overall group weight change
  3883. * of @wl we can compute the new shares distribution (s'_i) using:
  3884. *
  3885. * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
  3886. *
  3887. * Suppose we're interested in CPUs 0 and 1, and want to compute the load
  3888. * differences in waking a task to CPU 0. The additional task changes the
  3889. * weight and shares distributions like:
  3890. *
  3891. * rw'_i = { 3, 4, 1, 0 }
  3892. * s'_i = { 3/8, 4/8, 1/8, 0 }
  3893. *
  3894. * We can then compute the difference in effective weight by using:
  3895. *
  3896. * dw_i = S * (s'_i - s_i) (3)
  3897. *
  3898. * Where 'S' is the group weight as seen by its parent.
  3899. *
  3900. * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
  3901. * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
  3902. * 4/7) times the weight of the group.
  3903. */
  3904. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  3905. {
  3906. struct sched_entity *se = tg->se[cpu];
  3907. if (!tg->parent) /* the trivial, non-cgroup case */
  3908. return wl;
  3909. for_each_sched_entity(se) {
  3910. struct cfs_rq *cfs_rq = se->my_q;
  3911. long W, w = cfs_rq_load_avg(cfs_rq);
  3912. tg = cfs_rq->tg;
  3913. /*
  3914. * W = @wg + \Sum rw_j
  3915. */
  3916. W = wg + atomic_long_read(&tg->load_avg);
  3917. /* Ensure \Sum rw_j >= rw_i */
  3918. W -= cfs_rq->tg_load_avg_contrib;
  3919. W += w;
  3920. /*
  3921. * w = rw_i + @wl
  3922. */
  3923. w += wl;
  3924. /*
  3925. * wl = S * s'_i; see (2)
  3926. */
  3927. if (W > 0 && w < W)
  3928. wl = (w * (long)tg->shares) / W;
  3929. else
  3930. wl = tg->shares;
  3931. /*
  3932. * Per the above, wl is the new se->load.weight value; since
  3933. * those are clipped to [MIN_SHARES, ...) do so now. See
  3934. * calc_cfs_shares().
  3935. */
  3936. if (wl < MIN_SHARES)
  3937. wl = MIN_SHARES;
  3938. /*
  3939. * wl = dw_i = S * (s'_i - s_i); see (3)
  3940. */
  3941. wl -= se->avg.load_avg;
  3942. /*
  3943. * Recursively apply this logic to all parent groups to compute
  3944. * the final effective load change on the root group. Since
  3945. * only the @tg group gets extra weight, all parent groups can
  3946. * only redistribute existing shares. @wl is the shift in shares
  3947. * resulting from this level per the above.
  3948. */
  3949. wg = 0;
  3950. }
  3951. return wl;
  3952. }
  3953. #else
  3954. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  3955. {
  3956. return wl;
  3957. }
  3958. #endif
  3959. /*
  3960. * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
  3961. * A waker of many should wake a different task than the one last awakened
  3962. * at a frequency roughly N times higher than one of its wakees. In order
  3963. * to determine whether we should let the load spread vs consolodating to
  3964. * shared cache, we look for a minimum 'flip' frequency of llc_size in one
  3965. * partner, and a factor of lls_size higher frequency in the other. With
  3966. * both conditions met, we can be relatively sure that the relationship is
  3967. * non-monogamous, with partner count exceeding socket size. Waker/wakee
  3968. * being client/server, worker/dispatcher, interrupt source or whatever is
  3969. * irrelevant, spread criteria is apparent partner count exceeds socket size.
  3970. */
  3971. static int wake_wide(struct task_struct *p)
  3972. {
  3973. unsigned int master = current->wakee_flips;
  3974. unsigned int slave = p->wakee_flips;
  3975. int factor = this_cpu_read(sd_llc_size);
  3976. if (master < slave)
  3977. swap(master, slave);
  3978. if (slave < factor || master < slave * factor)
  3979. return 0;
  3980. return 1;
  3981. }
  3982. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  3983. {
  3984. s64 this_load, load;
  3985. s64 this_eff_load, prev_eff_load;
  3986. int idx, this_cpu, prev_cpu;
  3987. struct task_group *tg;
  3988. unsigned long weight;
  3989. int balanced;
  3990. idx = sd->wake_idx;
  3991. this_cpu = smp_processor_id();
  3992. prev_cpu = task_cpu(p);
  3993. load = source_load(prev_cpu, idx);
  3994. this_load = target_load(this_cpu, idx);
  3995. /*
  3996. * If sync wakeup then subtract the (maximum possible)
  3997. * effect of the currently running task from the load
  3998. * of the current CPU:
  3999. */
  4000. if (sync) {
  4001. tg = task_group(current);
  4002. weight = current->se.avg.load_avg;
  4003. this_load += effective_load(tg, this_cpu, -weight, -weight);
  4004. load += effective_load(tg, prev_cpu, 0, -weight);
  4005. }
  4006. tg = task_group(p);
  4007. weight = p->se.avg.load_avg;
  4008. /*
  4009. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  4010. * due to the sync cause above having dropped this_load to 0, we'll
  4011. * always have an imbalance, but there's really nothing you can do
  4012. * about that, so that's good too.
  4013. *
  4014. * Otherwise check if either cpus are near enough in load to allow this
  4015. * task to be woken on this_cpu.
  4016. */
  4017. this_eff_load = 100;
  4018. this_eff_load *= capacity_of(prev_cpu);
  4019. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  4020. prev_eff_load *= capacity_of(this_cpu);
  4021. if (this_load > 0) {
  4022. this_eff_load *= this_load +
  4023. effective_load(tg, this_cpu, weight, weight);
  4024. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  4025. }
  4026. balanced = this_eff_load <= prev_eff_load;
  4027. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  4028. if (!balanced)
  4029. return 0;
  4030. schedstat_inc(sd, ttwu_move_affine);
  4031. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  4032. return 1;
  4033. }
  4034. /*
  4035. * find_idlest_group finds and returns the least busy CPU group within the
  4036. * domain.
  4037. */
  4038. static struct sched_group *
  4039. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  4040. int this_cpu, int sd_flag)
  4041. {
  4042. struct sched_group *idlest = NULL, *group = sd->groups;
  4043. unsigned long min_load = ULONG_MAX, this_load = 0;
  4044. int load_idx = sd->forkexec_idx;
  4045. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  4046. if (sd_flag & SD_BALANCE_WAKE)
  4047. load_idx = sd->wake_idx;
  4048. do {
  4049. unsigned long load, avg_load;
  4050. int local_group;
  4051. int i;
  4052. /* Skip over this group if it has no CPUs allowed */
  4053. if (!cpumask_intersects(sched_group_cpus(group),
  4054. tsk_cpus_allowed(p)))
  4055. continue;
  4056. local_group = cpumask_test_cpu(this_cpu,
  4057. sched_group_cpus(group));
  4058. /* Tally up the load of all CPUs in the group */
  4059. avg_load = 0;
  4060. for_each_cpu(i, sched_group_cpus(group)) {
  4061. /* Bias balancing toward cpus of our domain */
  4062. if (local_group)
  4063. load = source_load(i, load_idx);
  4064. else
  4065. load = target_load(i, load_idx);
  4066. avg_load += load;
  4067. }
  4068. /* Adjust by relative CPU capacity of the group */
  4069. avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
  4070. if (local_group) {
  4071. this_load = avg_load;
  4072. } else if (avg_load < min_load) {
  4073. min_load = avg_load;
  4074. idlest = group;
  4075. }
  4076. } while (group = group->next, group != sd->groups);
  4077. if (!idlest || 100*this_load < imbalance*min_load)
  4078. return NULL;
  4079. return idlest;
  4080. }
  4081. /*
  4082. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  4083. */
  4084. static int
  4085. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  4086. {
  4087. unsigned long load, min_load = ULONG_MAX;
  4088. unsigned int min_exit_latency = UINT_MAX;
  4089. u64 latest_idle_timestamp = 0;
  4090. int least_loaded_cpu = this_cpu;
  4091. int shallowest_idle_cpu = -1;
  4092. int i;
  4093. /* Traverse only the allowed CPUs */
  4094. for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
  4095. if (idle_cpu(i)) {
  4096. struct rq *rq = cpu_rq(i);
  4097. struct cpuidle_state *idle = idle_get_state(rq);
  4098. if (idle && idle->exit_latency < min_exit_latency) {
  4099. /*
  4100. * We give priority to a CPU whose idle state
  4101. * has the smallest exit latency irrespective
  4102. * of any idle timestamp.
  4103. */
  4104. min_exit_latency = idle->exit_latency;
  4105. latest_idle_timestamp = rq->idle_stamp;
  4106. shallowest_idle_cpu = i;
  4107. } else if ((!idle || idle->exit_latency == min_exit_latency) &&
  4108. rq->idle_stamp > latest_idle_timestamp) {
  4109. /*
  4110. * If equal or no active idle state, then
  4111. * the most recently idled CPU might have
  4112. * a warmer cache.
  4113. */
  4114. latest_idle_timestamp = rq->idle_stamp;
  4115. shallowest_idle_cpu = i;
  4116. }
  4117. } else if (shallowest_idle_cpu == -1) {
  4118. load = weighted_cpuload(i);
  4119. if (load < min_load || (load == min_load && i == this_cpu)) {
  4120. min_load = load;
  4121. least_loaded_cpu = i;
  4122. }
  4123. }
  4124. }
  4125. return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
  4126. }
  4127. /*
  4128. * Try and locate an idle CPU in the sched_domain.
  4129. */
  4130. static int select_idle_sibling(struct task_struct *p, int target)
  4131. {
  4132. struct sched_domain *sd;
  4133. struct sched_group *sg;
  4134. int i = task_cpu(p);
  4135. if (idle_cpu(target))
  4136. return target;
  4137. /*
  4138. * If the prevous cpu is cache affine and idle, don't be stupid.
  4139. */
  4140. if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
  4141. return i;
  4142. /*
  4143. * Otherwise, iterate the domains and find an elegible idle cpu.
  4144. */
  4145. sd = rcu_dereference(per_cpu(sd_llc, target));
  4146. for_each_lower_domain(sd) {
  4147. sg = sd->groups;
  4148. do {
  4149. if (!cpumask_intersects(sched_group_cpus(sg),
  4150. tsk_cpus_allowed(p)))
  4151. goto next;
  4152. for_each_cpu(i, sched_group_cpus(sg)) {
  4153. if (i == target || !idle_cpu(i))
  4154. goto next;
  4155. }
  4156. target = cpumask_first_and(sched_group_cpus(sg),
  4157. tsk_cpus_allowed(p));
  4158. goto done;
  4159. next:
  4160. sg = sg->next;
  4161. } while (sg != sd->groups);
  4162. }
  4163. done:
  4164. return target;
  4165. }
  4166. /*
  4167. * cpu_util returns the amount of capacity of a CPU that is used by CFS
  4168. * tasks. The unit of the return value must be the one of capacity so we can
  4169. * compare the utilization with the capacity of the CPU that is available for
  4170. * CFS task (ie cpu_capacity).
  4171. *
  4172. * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
  4173. * recent utilization of currently non-runnable tasks on a CPU. It represents
  4174. * the amount of utilization of a CPU in the range [0..capacity_orig] where
  4175. * capacity_orig is the cpu_capacity available at the highest frequency
  4176. * (arch_scale_freq_capacity()).
  4177. * The utilization of a CPU converges towards a sum equal to or less than the
  4178. * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
  4179. * the running time on this CPU scaled by capacity_curr.
  4180. *
  4181. * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
  4182. * higher than capacity_orig because of unfortunate rounding in
  4183. * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
  4184. * the average stabilizes with the new running time. We need to check that the
  4185. * utilization stays within the range of [0..capacity_orig] and cap it if
  4186. * necessary. Without utilization capping, a group could be seen as overloaded
  4187. * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
  4188. * available capacity. We allow utilization to overshoot capacity_curr (but not
  4189. * capacity_orig) as it useful for predicting the capacity required after task
  4190. * migrations (scheduler-driven DVFS).
  4191. */
  4192. static int cpu_util(int cpu)
  4193. {
  4194. unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
  4195. unsigned long capacity = capacity_orig_of(cpu);
  4196. return (util >= capacity) ? capacity : util;
  4197. }
  4198. /*
  4199. * select_task_rq_fair: Select target runqueue for the waking task in domains
  4200. * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
  4201. * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
  4202. *
  4203. * Balances load by selecting the idlest cpu in the idlest group, or under
  4204. * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
  4205. *
  4206. * Returns the target cpu number.
  4207. *
  4208. * preempt must be disabled.
  4209. */
  4210. static int
  4211. select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
  4212. {
  4213. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  4214. int cpu = smp_processor_id();
  4215. int new_cpu = prev_cpu;
  4216. int want_affine = 0;
  4217. int sync = wake_flags & WF_SYNC;
  4218. if (sd_flag & SD_BALANCE_WAKE)
  4219. want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
  4220. rcu_read_lock();
  4221. for_each_domain(cpu, tmp) {
  4222. if (!(tmp->flags & SD_LOAD_BALANCE))
  4223. break;
  4224. /*
  4225. * If both cpu and prev_cpu are part of this domain,
  4226. * cpu is a valid SD_WAKE_AFFINE target.
  4227. */
  4228. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  4229. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  4230. affine_sd = tmp;
  4231. break;
  4232. }
  4233. if (tmp->flags & sd_flag)
  4234. sd = tmp;
  4235. else if (!want_affine)
  4236. break;
  4237. }
  4238. if (affine_sd) {
  4239. sd = NULL; /* Prefer wake_affine over balance flags */
  4240. if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
  4241. new_cpu = cpu;
  4242. }
  4243. if (!sd) {
  4244. if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
  4245. new_cpu = select_idle_sibling(p, new_cpu);
  4246. } else while (sd) {
  4247. struct sched_group *group;
  4248. int weight;
  4249. if (!(sd->flags & sd_flag)) {
  4250. sd = sd->child;
  4251. continue;
  4252. }
  4253. group = find_idlest_group(sd, p, cpu, sd_flag);
  4254. if (!group) {
  4255. sd = sd->child;
  4256. continue;
  4257. }
  4258. new_cpu = find_idlest_cpu(group, p, cpu);
  4259. if (new_cpu == -1 || new_cpu == cpu) {
  4260. /* Now try balancing at a lower domain level of cpu */
  4261. sd = sd->child;
  4262. continue;
  4263. }
  4264. /* Now try balancing at a lower domain level of new_cpu */
  4265. cpu = new_cpu;
  4266. weight = sd->span_weight;
  4267. sd = NULL;
  4268. for_each_domain(cpu, tmp) {
  4269. if (weight <= tmp->span_weight)
  4270. break;
  4271. if (tmp->flags & sd_flag)
  4272. sd = tmp;
  4273. }
  4274. /* while loop will break here if sd == NULL */
  4275. }
  4276. rcu_read_unlock();
  4277. return new_cpu;
  4278. }
  4279. /*
  4280. * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
  4281. * cfs_rq_of(p) references at time of call are still valid and identify the
  4282. * previous cpu. However, the caller only guarantees p->pi_lock is held; no
  4283. * other assumptions, including the state of rq->lock, should be made.
  4284. */
  4285. static void migrate_task_rq_fair(struct task_struct *p)
  4286. {
  4287. /*
  4288. * We are supposed to update the task to "current" time, then its up to date
  4289. * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
  4290. * what current time is, so simply throw away the out-of-date time. This
  4291. * will result in the wakee task is less decayed, but giving the wakee more
  4292. * load sounds not bad.
  4293. */
  4294. remove_entity_load_avg(&p->se);
  4295. /* Tell new CPU we are migrated */
  4296. p->se.avg.last_update_time = 0;
  4297. /* We have migrated, no longer consider this task hot */
  4298. p->se.exec_start = 0;
  4299. }
  4300. static void task_dead_fair(struct task_struct *p)
  4301. {
  4302. remove_entity_load_avg(&p->se);
  4303. }
  4304. #endif /* CONFIG_SMP */
  4305. static unsigned long
  4306. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  4307. {
  4308. unsigned long gran = sysctl_sched_wakeup_granularity;
  4309. /*
  4310. * Since its curr running now, convert the gran from real-time
  4311. * to virtual-time in his units.
  4312. *
  4313. * By using 'se' instead of 'curr' we penalize light tasks, so
  4314. * they get preempted easier. That is, if 'se' < 'curr' then
  4315. * the resulting gran will be larger, therefore penalizing the
  4316. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  4317. * be smaller, again penalizing the lighter task.
  4318. *
  4319. * This is especially important for buddies when the leftmost
  4320. * task is higher priority than the buddy.
  4321. */
  4322. return calc_delta_fair(gran, se);
  4323. }
  4324. /*
  4325. * Should 'se' preempt 'curr'.
  4326. *
  4327. * |s1
  4328. * |s2
  4329. * |s3
  4330. * g
  4331. * |<--->|c
  4332. *
  4333. * w(c, s1) = -1
  4334. * w(c, s2) = 0
  4335. * w(c, s3) = 1
  4336. *
  4337. */
  4338. static int
  4339. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  4340. {
  4341. s64 gran, vdiff = curr->vruntime - se->vruntime;
  4342. if (vdiff <= 0)
  4343. return -1;
  4344. gran = wakeup_gran(curr, se);
  4345. if (vdiff > gran)
  4346. return 1;
  4347. return 0;
  4348. }
  4349. static void set_last_buddy(struct sched_entity *se)
  4350. {
  4351. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  4352. return;
  4353. for_each_sched_entity(se)
  4354. cfs_rq_of(se)->last = se;
  4355. }
  4356. static void set_next_buddy(struct sched_entity *se)
  4357. {
  4358. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  4359. return;
  4360. for_each_sched_entity(se)
  4361. cfs_rq_of(se)->next = se;
  4362. }
  4363. static void set_skip_buddy(struct sched_entity *se)
  4364. {
  4365. for_each_sched_entity(se)
  4366. cfs_rq_of(se)->skip = se;
  4367. }
  4368. /*
  4369. * Preempt the current task with a newly woken task if needed:
  4370. */
  4371. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  4372. {
  4373. struct task_struct *curr = rq->curr;
  4374. struct sched_entity *se = &curr->se, *pse = &p->se;
  4375. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  4376. int scale = cfs_rq->nr_running >= sched_nr_latency;
  4377. int next_buddy_marked = 0;
  4378. if (unlikely(se == pse))
  4379. return;
  4380. /*
  4381. * This is possible from callers such as attach_tasks(), in which we
  4382. * unconditionally check_prempt_curr() after an enqueue (which may have
  4383. * lead to a throttle). This both saves work and prevents false
  4384. * next-buddy nomination below.
  4385. */
  4386. if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
  4387. return;
  4388. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
  4389. set_next_buddy(pse);
  4390. next_buddy_marked = 1;
  4391. }
  4392. /*
  4393. * We can come here with TIF_NEED_RESCHED already set from new task
  4394. * wake up path.
  4395. *
  4396. * Note: this also catches the edge-case of curr being in a throttled
  4397. * group (e.g. via set_curr_task), since update_curr() (in the
  4398. * enqueue of curr) will have resulted in resched being set. This
  4399. * prevents us from potentially nominating it as a false LAST_BUDDY
  4400. * below.
  4401. */
  4402. if (test_tsk_need_resched(curr))
  4403. return;
  4404. /* Idle tasks are by definition preempted by non-idle tasks. */
  4405. if (unlikely(curr->policy == SCHED_IDLE) &&
  4406. likely(p->policy != SCHED_IDLE))
  4407. goto preempt;
  4408. /*
  4409. * Batch and idle tasks do not preempt non-idle tasks (their preemption
  4410. * is driven by the tick):
  4411. */
  4412. if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
  4413. return;
  4414. find_matching_se(&se, &pse);
  4415. update_curr(cfs_rq_of(se));
  4416. BUG_ON(!pse);
  4417. if (wakeup_preempt_entity(se, pse) == 1) {
  4418. /*
  4419. * Bias pick_next to pick the sched entity that is
  4420. * triggering this preemption.
  4421. */
  4422. if (!next_buddy_marked)
  4423. set_next_buddy(pse);
  4424. goto preempt;
  4425. }
  4426. return;
  4427. preempt:
  4428. resched_curr(rq);
  4429. /*
  4430. * Only set the backward buddy when the current task is still
  4431. * on the rq. This can happen when a wakeup gets interleaved
  4432. * with schedule on the ->pre_schedule() or idle_balance()
  4433. * point, either of which can * drop the rq lock.
  4434. *
  4435. * Also, during early boot the idle thread is in the fair class,
  4436. * for obvious reasons its a bad idea to schedule back to it.
  4437. */
  4438. if (unlikely(!se->on_rq || curr == rq->idle))
  4439. return;
  4440. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  4441. set_last_buddy(se);
  4442. }
  4443. static struct task_struct *
  4444. pick_next_task_fair(struct rq *rq, struct task_struct *prev)
  4445. {
  4446. struct cfs_rq *cfs_rq = &rq->cfs;
  4447. struct sched_entity *se;
  4448. struct task_struct *p;
  4449. int new_tasks;
  4450. again:
  4451. #ifdef CONFIG_FAIR_GROUP_SCHED
  4452. if (!cfs_rq->nr_running)
  4453. goto idle;
  4454. if (prev->sched_class != &fair_sched_class)
  4455. goto simple;
  4456. /*
  4457. * Because of the set_next_buddy() in dequeue_task_fair() it is rather
  4458. * likely that a next task is from the same cgroup as the current.
  4459. *
  4460. * Therefore attempt to avoid putting and setting the entire cgroup
  4461. * hierarchy, only change the part that actually changes.
  4462. */
  4463. do {
  4464. struct sched_entity *curr = cfs_rq->curr;
  4465. /*
  4466. * Since we got here without doing put_prev_entity() we also
  4467. * have to consider cfs_rq->curr. If it is still a runnable
  4468. * entity, update_curr() will update its vruntime, otherwise
  4469. * forget we've ever seen it.
  4470. */
  4471. if (curr) {
  4472. if (curr->on_rq)
  4473. update_curr(cfs_rq);
  4474. else
  4475. curr = NULL;
  4476. /*
  4477. * This call to check_cfs_rq_runtime() will do the
  4478. * throttle and dequeue its entity in the parent(s).
  4479. * Therefore the 'simple' nr_running test will indeed
  4480. * be correct.
  4481. */
  4482. if (unlikely(check_cfs_rq_runtime(cfs_rq)))
  4483. goto simple;
  4484. }
  4485. se = pick_next_entity(cfs_rq, curr);
  4486. cfs_rq = group_cfs_rq(se);
  4487. } while (cfs_rq);
  4488. p = task_of(se);
  4489. /*
  4490. * Since we haven't yet done put_prev_entity and if the selected task
  4491. * is a different task than we started out with, try and touch the
  4492. * least amount of cfs_rqs.
  4493. */
  4494. if (prev != p) {
  4495. struct sched_entity *pse = &prev->se;
  4496. while (!(cfs_rq = is_same_group(se, pse))) {
  4497. int se_depth = se->depth;
  4498. int pse_depth = pse->depth;
  4499. if (se_depth <= pse_depth) {
  4500. put_prev_entity(cfs_rq_of(pse), pse);
  4501. pse = parent_entity(pse);
  4502. }
  4503. if (se_depth >= pse_depth) {
  4504. set_next_entity(cfs_rq_of(se), se);
  4505. se = parent_entity(se);
  4506. }
  4507. }
  4508. put_prev_entity(cfs_rq, pse);
  4509. set_next_entity(cfs_rq, se);
  4510. }
  4511. if (hrtick_enabled(rq))
  4512. hrtick_start_fair(rq, p);
  4513. return p;
  4514. simple:
  4515. cfs_rq = &rq->cfs;
  4516. #endif
  4517. if (!cfs_rq->nr_running)
  4518. goto idle;
  4519. put_prev_task(rq, prev);
  4520. do {
  4521. se = pick_next_entity(cfs_rq, NULL);
  4522. set_next_entity(cfs_rq, se);
  4523. cfs_rq = group_cfs_rq(se);
  4524. } while (cfs_rq);
  4525. p = task_of(se);
  4526. if (hrtick_enabled(rq))
  4527. hrtick_start_fair(rq, p);
  4528. return p;
  4529. idle:
  4530. /*
  4531. * This is OK, because current is on_cpu, which avoids it being picked
  4532. * for load-balance and preemption/IRQs are still disabled avoiding
  4533. * further scheduler activity on it and we're being very careful to
  4534. * re-start the picking loop.
  4535. */
  4536. lockdep_unpin_lock(&rq->lock);
  4537. new_tasks = idle_balance(rq);
  4538. lockdep_pin_lock(&rq->lock);
  4539. /*
  4540. * Because idle_balance() releases (and re-acquires) rq->lock, it is
  4541. * possible for any higher priority task to appear. In that case we
  4542. * must re-start the pick_next_entity() loop.
  4543. */
  4544. if (new_tasks < 0)
  4545. return RETRY_TASK;
  4546. if (new_tasks > 0)
  4547. goto again;
  4548. return NULL;
  4549. }
  4550. /*
  4551. * Account for a descheduled task:
  4552. */
  4553. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  4554. {
  4555. struct sched_entity *se = &prev->se;
  4556. struct cfs_rq *cfs_rq;
  4557. for_each_sched_entity(se) {
  4558. cfs_rq = cfs_rq_of(se);
  4559. put_prev_entity(cfs_rq, se);
  4560. }
  4561. }
  4562. /*
  4563. * sched_yield() is very simple
  4564. *
  4565. * The magic of dealing with the ->skip buddy is in pick_next_entity.
  4566. */
  4567. static void yield_task_fair(struct rq *rq)
  4568. {
  4569. struct task_struct *curr = rq->curr;
  4570. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  4571. struct sched_entity *se = &curr->se;
  4572. /*
  4573. * Are we the only task in the tree?
  4574. */
  4575. if (unlikely(rq->nr_running == 1))
  4576. return;
  4577. clear_buddies(cfs_rq, se);
  4578. if (curr->policy != SCHED_BATCH) {
  4579. update_rq_clock(rq);
  4580. /*
  4581. * Update run-time statistics of the 'current'.
  4582. */
  4583. update_curr(cfs_rq);
  4584. /*
  4585. * Tell update_rq_clock() that we've just updated,
  4586. * so we don't do microscopic update in schedule()
  4587. * and double the fastpath cost.
  4588. */
  4589. rq_clock_skip_update(rq, true);
  4590. }
  4591. set_skip_buddy(se);
  4592. }
  4593. static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
  4594. {
  4595. struct sched_entity *se = &p->se;
  4596. /* throttled hierarchies are not runnable */
  4597. if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
  4598. return false;
  4599. /* Tell the scheduler that we'd really like pse to run next. */
  4600. set_next_buddy(se);
  4601. yield_task_fair(rq);
  4602. return true;
  4603. }
  4604. #ifdef CONFIG_SMP
  4605. /**************************************************
  4606. * Fair scheduling class load-balancing methods.
  4607. *
  4608. * BASICS
  4609. *
  4610. * The purpose of load-balancing is to achieve the same basic fairness the
  4611. * per-cpu scheduler provides, namely provide a proportional amount of compute
  4612. * time to each task. This is expressed in the following equation:
  4613. *
  4614. * W_i,n/P_i == W_j,n/P_j for all i,j (1)
  4615. *
  4616. * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
  4617. * W_i,0 is defined as:
  4618. *
  4619. * W_i,0 = \Sum_j w_i,j (2)
  4620. *
  4621. * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
  4622. * is derived from the nice value as per prio_to_weight[].
  4623. *
  4624. * The weight average is an exponential decay average of the instantaneous
  4625. * weight:
  4626. *
  4627. * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
  4628. *
  4629. * C_i is the compute capacity of cpu i, typically it is the
  4630. * fraction of 'recent' time available for SCHED_OTHER task execution. But it
  4631. * can also include other factors [XXX].
  4632. *
  4633. * To achieve this balance we define a measure of imbalance which follows
  4634. * directly from (1):
  4635. *
  4636. * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
  4637. *
  4638. * We them move tasks around to minimize the imbalance. In the continuous
  4639. * function space it is obvious this converges, in the discrete case we get
  4640. * a few fun cases generally called infeasible weight scenarios.
  4641. *
  4642. * [XXX expand on:
  4643. * - infeasible weights;
  4644. * - local vs global optima in the discrete case. ]
  4645. *
  4646. *
  4647. * SCHED DOMAINS
  4648. *
  4649. * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
  4650. * for all i,j solution, we create a tree of cpus that follows the hardware
  4651. * topology where each level pairs two lower groups (or better). This results
  4652. * in O(log n) layers. Furthermore we reduce the number of cpus going up the
  4653. * tree to only the first of the previous level and we decrease the frequency
  4654. * of load-balance at each level inv. proportional to the number of cpus in
  4655. * the groups.
  4656. *
  4657. * This yields:
  4658. *
  4659. * log_2 n 1 n
  4660. * \Sum { --- * --- * 2^i } = O(n) (5)
  4661. * i = 0 2^i 2^i
  4662. * `- size of each group
  4663. * | | `- number of cpus doing load-balance
  4664. * | `- freq
  4665. * `- sum over all levels
  4666. *
  4667. * Coupled with a limit on how many tasks we can migrate every balance pass,
  4668. * this makes (5) the runtime complexity of the balancer.
  4669. *
  4670. * An important property here is that each CPU is still (indirectly) connected
  4671. * to every other cpu in at most O(log n) steps:
  4672. *
  4673. * The adjacency matrix of the resulting graph is given by:
  4674. *
  4675. * log_2 n
  4676. * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
  4677. * k = 0
  4678. *
  4679. * And you'll find that:
  4680. *
  4681. * A^(log_2 n)_i,j != 0 for all i,j (7)
  4682. *
  4683. * Showing there's indeed a path between every cpu in at most O(log n) steps.
  4684. * The task movement gives a factor of O(m), giving a convergence complexity
  4685. * of:
  4686. *
  4687. * O(nm log n), n := nr_cpus, m := nr_tasks (8)
  4688. *
  4689. *
  4690. * WORK CONSERVING
  4691. *
  4692. * In order to avoid CPUs going idle while there's still work to do, new idle
  4693. * balancing is more aggressive and has the newly idle cpu iterate up the domain
  4694. * tree itself instead of relying on other CPUs to bring it work.
  4695. *
  4696. * This adds some complexity to both (5) and (8) but it reduces the total idle
  4697. * time.
  4698. *
  4699. * [XXX more?]
  4700. *
  4701. *
  4702. * CGROUPS
  4703. *
  4704. * Cgroups make a horror show out of (2), instead of a simple sum we get:
  4705. *
  4706. * s_k,i
  4707. * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
  4708. * S_k
  4709. *
  4710. * Where
  4711. *
  4712. * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
  4713. *
  4714. * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
  4715. *
  4716. * The big problem is S_k, its a global sum needed to compute a local (W_i)
  4717. * property.
  4718. *
  4719. * [XXX write more on how we solve this.. _after_ merging pjt's patches that
  4720. * rewrite all of this once again.]
  4721. */
  4722. static unsigned long __read_mostly max_load_balance_interval = HZ/10;
  4723. enum fbq_type { regular, remote, all };
  4724. #define LBF_ALL_PINNED 0x01
  4725. #define LBF_NEED_BREAK 0x02
  4726. #define LBF_DST_PINNED 0x04
  4727. #define LBF_SOME_PINNED 0x08
  4728. struct lb_env {
  4729. struct sched_domain *sd;
  4730. struct rq *src_rq;
  4731. int src_cpu;
  4732. int dst_cpu;
  4733. struct rq *dst_rq;
  4734. struct cpumask *dst_grpmask;
  4735. int new_dst_cpu;
  4736. enum cpu_idle_type idle;
  4737. long imbalance;
  4738. /* The set of CPUs under consideration for load-balancing */
  4739. struct cpumask *cpus;
  4740. unsigned int flags;
  4741. unsigned int loop;
  4742. unsigned int loop_break;
  4743. unsigned int loop_max;
  4744. enum fbq_type fbq_type;
  4745. struct list_head tasks;
  4746. };
  4747. /*
  4748. * Is this task likely cache-hot:
  4749. */
  4750. static int task_hot(struct task_struct *p, struct lb_env *env)
  4751. {
  4752. s64 delta;
  4753. lockdep_assert_held(&env->src_rq->lock);
  4754. if (p->sched_class != &fair_sched_class)
  4755. return 0;
  4756. if (unlikely(p->policy == SCHED_IDLE))
  4757. return 0;
  4758. /*
  4759. * Buddy candidates are cache hot:
  4760. */
  4761. if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
  4762. (&p->se == cfs_rq_of(&p->se)->next ||
  4763. &p->se == cfs_rq_of(&p->se)->last))
  4764. return 1;
  4765. if (sysctl_sched_migration_cost == -1)
  4766. return 1;
  4767. if (sysctl_sched_migration_cost == 0)
  4768. return 0;
  4769. delta = rq_clock_task(env->src_rq) - p->se.exec_start;
  4770. return delta < (s64)sysctl_sched_migration_cost;
  4771. }
  4772. #ifdef CONFIG_NUMA_BALANCING
  4773. /*
  4774. * Returns 1, if task migration degrades locality
  4775. * Returns 0, if task migration improves locality i.e migration preferred.
  4776. * Returns -1, if task migration is not affected by locality.
  4777. */
  4778. static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
  4779. {
  4780. struct numa_group *numa_group = rcu_dereference(p->numa_group);
  4781. unsigned long src_faults, dst_faults;
  4782. int src_nid, dst_nid;
  4783. if (!static_branch_likely(&sched_numa_balancing))
  4784. return -1;
  4785. if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
  4786. return -1;
  4787. src_nid = cpu_to_node(env->src_cpu);
  4788. dst_nid = cpu_to_node(env->dst_cpu);
  4789. if (src_nid == dst_nid)
  4790. return -1;
  4791. /* Migrating away from the preferred node is always bad. */
  4792. if (src_nid == p->numa_preferred_nid) {
  4793. if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
  4794. return 1;
  4795. else
  4796. return -1;
  4797. }
  4798. /* Encourage migration to the preferred node. */
  4799. if (dst_nid == p->numa_preferred_nid)
  4800. return 0;
  4801. if (numa_group) {
  4802. src_faults = group_faults(p, src_nid);
  4803. dst_faults = group_faults(p, dst_nid);
  4804. } else {
  4805. src_faults = task_faults(p, src_nid);
  4806. dst_faults = task_faults(p, dst_nid);
  4807. }
  4808. return dst_faults < src_faults;
  4809. }
  4810. #else
  4811. static inline int migrate_degrades_locality(struct task_struct *p,
  4812. struct lb_env *env)
  4813. {
  4814. return -1;
  4815. }
  4816. #endif
  4817. /*
  4818. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  4819. */
  4820. static
  4821. int can_migrate_task(struct task_struct *p, struct lb_env *env)
  4822. {
  4823. int tsk_cache_hot;
  4824. lockdep_assert_held(&env->src_rq->lock);
  4825. /*
  4826. * We do not migrate tasks that are:
  4827. * 1) throttled_lb_pair, or
  4828. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  4829. * 3) running (obviously), or
  4830. * 4) are cache-hot on their current CPU.
  4831. */
  4832. if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
  4833. return 0;
  4834. if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
  4835. int cpu;
  4836. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  4837. env->flags |= LBF_SOME_PINNED;
  4838. /*
  4839. * Remember if this task can be migrated to any other cpu in
  4840. * our sched_group. We may want to revisit it if we couldn't
  4841. * meet load balance goals by pulling other tasks on src_cpu.
  4842. *
  4843. * Also avoid computing new_dst_cpu if we have already computed
  4844. * one in current iteration.
  4845. */
  4846. if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
  4847. return 0;
  4848. /* Prevent to re-select dst_cpu via env's cpus */
  4849. for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
  4850. if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
  4851. env->flags |= LBF_DST_PINNED;
  4852. env->new_dst_cpu = cpu;
  4853. break;
  4854. }
  4855. }
  4856. return 0;
  4857. }
  4858. /* Record that we found atleast one task that could run on dst_cpu */
  4859. env->flags &= ~LBF_ALL_PINNED;
  4860. if (task_running(env->src_rq, p)) {
  4861. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  4862. return 0;
  4863. }
  4864. /*
  4865. * Aggressive migration if:
  4866. * 1) destination numa is preferred
  4867. * 2) task is cache cold, or
  4868. * 3) too many balance attempts have failed.
  4869. */
  4870. tsk_cache_hot = migrate_degrades_locality(p, env);
  4871. if (tsk_cache_hot == -1)
  4872. tsk_cache_hot = task_hot(p, env);
  4873. if (tsk_cache_hot <= 0 ||
  4874. env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
  4875. if (tsk_cache_hot == 1) {
  4876. schedstat_inc(env->sd, lb_hot_gained[env->idle]);
  4877. schedstat_inc(p, se.statistics.nr_forced_migrations);
  4878. }
  4879. return 1;
  4880. }
  4881. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  4882. return 0;
  4883. }
  4884. /*
  4885. * detach_task() -- detach the task for the migration specified in env
  4886. */
  4887. static void detach_task(struct task_struct *p, struct lb_env *env)
  4888. {
  4889. lockdep_assert_held(&env->src_rq->lock);
  4890. deactivate_task(env->src_rq, p, 0);
  4891. p->on_rq = TASK_ON_RQ_MIGRATING;
  4892. set_task_cpu(p, env->dst_cpu);
  4893. }
  4894. /*
  4895. * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
  4896. * part of active balancing operations within "domain".
  4897. *
  4898. * Returns a task if successful and NULL otherwise.
  4899. */
  4900. static struct task_struct *detach_one_task(struct lb_env *env)
  4901. {
  4902. struct task_struct *p, *n;
  4903. lockdep_assert_held(&env->src_rq->lock);
  4904. list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
  4905. if (!can_migrate_task(p, env))
  4906. continue;
  4907. detach_task(p, env);
  4908. /*
  4909. * Right now, this is only the second place where
  4910. * lb_gained[env->idle] is updated (other is detach_tasks)
  4911. * so we can safely collect stats here rather than
  4912. * inside detach_tasks().
  4913. */
  4914. schedstat_inc(env->sd, lb_gained[env->idle]);
  4915. return p;
  4916. }
  4917. return NULL;
  4918. }
  4919. static const unsigned int sched_nr_migrate_break = 32;
  4920. /*
  4921. * detach_tasks() -- tries to detach up to imbalance weighted load from
  4922. * busiest_rq, as part of a balancing operation within domain "sd".
  4923. *
  4924. * Returns number of detached tasks if successful and 0 otherwise.
  4925. */
  4926. static int detach_tasks(struct lb_env *env)
  4927. {
  4928. struct list_head *tasks = &env->src_rq->cfs_tasks;
  4929. struct task_struct *p;
  4930. unsigned long load;
  4931. int detached = 0;
  4932. lockdep_assert_held(&env->src_rq->lock);
  4933. if (env->imbalance <= 0)
  4934. return 0;
  4935. while (!list_empty(tasks)) {
  4936. /*
  4937. * We don't want to steal all, otherwise we may be treated likewise,
  4938. * which could at worst lead to a livelock crash.
  4939. */
  4940. if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
  4941. break;
  4942. p = list_first_entry(tasks, struct task_struct, se.group_node);
  4943. env->loop++;
  4944. /* We've more or less seen every task there is, call it quits */
  4945. if (env->loop > env->loop_max)
  4946. break;
  4947. /* take a breather every nr_migrate tasks */
  4948. if (env->loop > env->loop_break) {
  4949. env->loop_break += sched_nr_migrate_break;
  4950. env->flags |= LBF_NEED_BREAK;
  4951. break;
  4952. }
  4953. if (!can_migrate_task(p, env))
  4954. goto next;
  4955. load = task_h_load(p);
  4956. if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
  4957. goto next;
  4958. if ((load / 2) > env->imbalance)
  4959. goto next;
  4960. detach_task(p, env);
  4961. list_add(&p->se.group_node, &env->tasks);
  4962. detached++;
  4963. env->imbalance -= load;
  4964. #ifdef CONFIG_PREEMPT
  4965. /*
  4966. * NEWIDLE balancing is a source of latency, so preemptible
  4967. * kernels will stop after the first task is detached to minimize
  4968. * the critical section.
  4969. */
  4970. if (env->idle == CPU_NEWLY_IDLE)
  4971. break;
  4972. #endif
  4973. /*
  4974. * We only want to steal up to the prescribed amount of
  4975. * weighted load.
  4976. */
  4977. if (env->imbalance <= 0)
  4978. break;
  4979. continue;
  4980. next:
  4981. list_move_tail(&p->se.group_node, tasks);
  4982. }
  4983. /*
  4984. * Right now, this is one of only two places we collect this stat
  4985. * so we can safely collect detach_one_task() stats here rather
  4986. * than inside detach_one_task().
  4987. */
  4988. schedstat_add(env->sd, lb_gained[env->idle], detached);
  4989. return detached;
  4990. }
  4991. /*
  4992. * attach_task() -- attach the task detached by detach_task() to its new rq.
  4993. */
  4994. static void attach_task(struct rq *rq, struct task_struct *p)
  4995. {
  4996. lockdep_assert_held(&rq->lock);
  4997. BUG_ON(task_rq(p) != rq);
  4998. p->on_rq = TASK_ON_RQ_QUEUED;
  4999. activate_task(rq, p, 0);
  5000. check_preempt_curr(rq, p, 0);
  5001. }
  5002. /*
  5003. * attach_one_task() -- attaches the task returned from detach_one_task() to
  5004. * its new rq.
  5005. */
  5006. static void attach_one_task(struct rq *rq, struct task_struct *p)
  5007. {
  5008. raw_spin_lock(&rq->lock);
  5009. attach_task(rq, p);
  5010. raw_spin_unlock(&rq->lock);
  5011. }
  5012. /*
  5013. * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
  5014. * new rq.
  5015. */
  5016. static void attach_tasks(struct lb_env *env)
  5017. {
  5018. struct list_head *tasks = &env->tasks;
  5019. struct task_struct *p;
  5020. raw_spin_lock(&env->dst_rq->lock);
  5021. while (!list_empty(tasks)) {
  5022. p = list_first_entry(tasks, struct task_struct, se.group_node);
  5023. list_del_init(&p->se.group_node);
  5024. attach_task(env->dst_rq, p);
  5025. }
  5026. raw_spin_unlock(&env->dst_rq->lock);
  5027. }
  5028. #ifdef CONFIG_FAIR_GROUP_SCHED
  5029. static void update_blocked_averages(int cpu)
  5030. {
  5031. struct rq *rq = cpu_rq(cpu);
  5032. struct cfs_rq *cfs_rq;
  5033. unsigned long flags;
  5034. raw_spin_lock_irqsave(&rq->lock, flags);
  5035. update_rq_clock(rq);
  5036. /*
  5037. * Iterates the task_group tree in a bottom up fashion, see
  5038. * list_add_leaf_cfs_rq() for details.
  5039. */
  5040. for_each_leaf_cfs_rq(rq, cfs_rq) {
  5041. /* throttled entities do not contribute to load */
  5042. if (throttled_hierarchy(cfs_rq))
  5043. continue;
  5044. if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
  5045. update_tg_load_avg(cfs_rq, 0);
  5046. }
  5047. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5048. }
  5049. /*
  5050. * Compute the hierarchical load factor for cfs_rq and all its ascendants.
  5051. * This needs to be done in a top-down fashion because the load of a child
  5052. * group is a fraction of its parents load.
  5053. */
  5054. static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
  5055. {
  5056. struct rq *rq = rq_of(cfs_rq);
  5057. struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
  5058. unsigned long now = jiffies;
  5059. unsigned long load;
  5060. if (cfs_rq->last_h_load_update == now)
  5061. return;
  5062. WRITE_ONCE(cfs_rq->h_load_next, NULL);
  5063. for_each_sched_entity(se) {
  5064. cfs_rq = cfs_rq_of(se);
  5065. WRITE_ONCE(cfs_rq->h_load_next, se);
  5066. if (cfs_rq->last_h_load_update == now)
  5067. break;
  5068. }
  5069. if (!se) {
  5070. cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
  5071. cfs_rq->last_h_load_update = now;
  5072. }
  5073. while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
  5074. load = cfs_rq->h_load;
  5075. load = div64_ul(load * se->avg.load_avg,
  5076. cfs_rq_load_avg(cfs_rq) + 1);
  5077. cfs_rq = group_cfs_rq(se);
  5078. cfs_rq->h_load = load;
  5079. cfs_rq->last_h_load_update = now;
  5080. }
  5081. }
  5082. static unsigned long task_h_load(struct task_struct *p)
  5083. {
  5084. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  5085. update_cfs_rq_h_load(cfs_rq);
  5086. return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
  5087. cfs_rq_load_avg(cfs_rq) + 1);
  5088. }
  5089. #else
  5090. static inline void update_blocked_averages(int cpu)
  5091. {
  5092. struct rq *rq = cpu_rq(cpu);
  5093. struct cfs_rq *cfs_rq = &rq->cfs;
  5094. unsigned long flags;
  5095. raw_spin_lock_irqsave(&rq->lock, flags);
  5096. update_rq_clock(rq);
  5097. update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
  5098. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5099. }
  5100. static unsigned long task_h_load(struct task_struct *p)
  5101. {
  5102. return p->se.avg.load_avg;
  5103. }
  5104. #endif
  5105. /********** Helpers for find_busiest_group ************************/
  5106. enum group_type {
  5107. group_other = 0,
  5108. group_imbalanced,
  5109. group_overloaded,
  5110. };
  5111. /*
  5112. * sg_lb_stats - stats of a sched_group required for load_balancing
  5113. */
  5114. struct sg_lb_stats {
  5115. unsigned long avg_load; /*Avg load across the CPUs of the group */
  5116. unsigned long group_load; /* Total load over the CPUs of the group */
  5117. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  5118. unsigned long load_per_task;
  5119. unsigned long group_capacity;
  5120. unsigned long group_util; /* Total utilization of the group */
  5121. unsigned int sum_nr_running; /* Nr tasks running in the group */
  5122. unsigned int idle_cpus;
  5123. unsigned int group_weight;
  5124. enum group_type group_type;
  5125. int group_no_capacity;
  5126. #ifdef CONFIG_NUMA_BALANCING
  5127. unsigned int nr_numa_running;
  5128. unsigned int nr_preferred_running;
  5129. #endif
  5130. };
  5131. /*
  5132. * sd_lb_stats - Structure to store the statistics of a sched_domain
  5133. * during load balancing.
  5134. */
  5135. struct sd_lb_stats {
  5136. struct sched_group *busiest; /* Busiest group in this sd */
  5137. struct sched_group *local; /* Local group in this sd */
  5138. unsigned long total_load; /* Total load of all groups in sd */
  5139. unsigned long total_capacity; /* Total capacity of all groups in sd */
  5140. unsigned long avg_load; /* Average load across all groups in sd */
  5141. struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
  5142. struct sg_lb_stats local_stat; /* Statistics of the local group */
  5143. };
  5144. static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
  5145. {
  5146. /*
  5147. * Skimp on the clearing to avoid duplicate work. We can avoid clearing
  5148. * local_stat because update_sg_lb_stats() does a full clear/assignment.
  5149. * We must however clear busiest_stat::avg_load because
  5150. * update_sd_pick_busiest() reads this before assignment.
  5151. */
  5152. *sds = (struct sd_lb_stats){
  5153. .busiest = NULL,
  5154. .local = NULL,
  5155. .total_load = 0UL,
  5156. .total_capacity = 0UL,
  5157. .busiest_stat = {
  5158. .avg_load = 0UL,
  5159. .sum_nr_running = 0,
  5160. .group_type = group_other,
  5161. },
  5162. };
  5163. }
  5164. /**
  5165. * get_sd_load_idx - Obtain the load index for a given sched domain.
  5166. * @sd: The sched_domain whose load_idx is to be obtained.
  5167. * @idle: The idle status of the CPU for whose sd load_idx is obtained.
  5168. *
  5169. * Return: The load index.
  5170. */
  5171. static inline int get_sd_load_idx(struct sched_domain *sd,
  5172. enum cpu_idle_type idle)
  5173. {
  5174. int load_idx;
  5175. switch (idle) {
  5176. case CPU_NOT_IDLE:
  5177. load_idx = sd->busy_idx;
  5178. break;
  5179. case CPU_NEWLY_IDLE:
  5180. load_idx = sd->newidle_idx;
  5181. break;
  5182. default:
  5183. load_idx = sd->idle_idx;
  5184. break;
  5185. }
  5186. return load_idx;
  5187. }
  5188. static unsigned long scale_rt_capacity(int cpu)
  5189. {
  5190. struct rq *rq = cpu_rq(cpu);
  5191. u64 total, used, age_stamp, avg;
  5192. s64 delta;
  5193. /*
  5194. * Since we're reading these variables without serialization make sure
  5195. * we read them once before doing sanity checks on them.
  5196. */
  5197. age_stamp = READ_ONCE(rq->age_stamp);
  5198. avg = READ_ONCE(rq->rt_avg);
  5199. delta = __rq_clock_broken(rq) - age_stamp;
  5200. if (unlikely(delta < 0))
  5201. delta = 0;
  5202. total = sched_avg_period() + delta;
  5203. used = div_u64(avg, total);
  5204. if (likely(used < SCHED_CAPACITY_SCALE))
  5205. return SCHED_CAPACITY_SCALE - used;
  5206. return 1;
  5207. }
  5208. static void update_cpu_capacity(struct sched_domain *sd, int cpu)
  5209. {
  5210. unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
  5211. struct sched_group *sdg = sd->groups;
  5212. cpu_rq(cpu)->cpu_capacity_orig = capacity;
  5213. capacity *= scale_rt_capacity(cpu);
  5214. capacity >>= SCHED_CAPACITY_SHIFT;
  5215. if (!capacity)
  5216. capacity = 1;
  5217. cpu_rq(cpu)->cpu_capacity = capacity;
  5218. sdg->sgc->capacity = capacity;
  5219. }
  5220. void update_group_capacity(struct sched_domain *sd, int cpu)
  5221. {
  5222. struct sched_domain *child = sd->child;
  5223. struct sched_group *group, *sdg = sd->groups;
  5224. unsigned long capacity;
  5225. unsigned long interval;
  5226. interval = msecs_to_jiffies(sd->balance_interval);
  5227. interval = clamp(interval, 1UL, max_load_balance_interval);
  5228. sdg->sgc->next_update = jiffies + interval;
  5229. if (!child) {
  5230. update_cpu_capacity(sd, cpu);
  5231. return;
  5232. }
  5233. capacity = 0;
  5234. if (child->flags & SD_OVERLAP) {
  5235. /*
  5236. * SD_OVERLAP domains cannot assume that child groups
  5237. * span the current group.
  5238. */
  5239. for_each_cpu(cpu, sched_group_cpus(sdg)) {
  5240. struct sched_group_capacity *sgc;
  5241. struct rq *rq = cpu_rq(cpu);
  5242. /*
  5243. * build_sched_domains() -> init_sched_groups_capacity()
  5244. * gets here before we've attached the domains to the
  5245. * runqueues.
  5246. *
  5247. * Use capacity_of(), which is set irrespective of domains
  5248. * in update_cpu_capacity().
  5249. *
  5250. * This avoids capacity from being 0 and
  5251. * causing divide-by-zero issues on boot.
  5252. */
  5253. if (unlikely(!rq->sd)) {
  5254. capacity += capacity_of(cpu);
  5255. continue;
  5256. }
  5257. sgc = rq->sd->groups->sgc;
  5258. capacity += sgc->capacity;
  5259. }
  5260. } else {
  5261. /*
  5262. * !SD_OVERLAP domains can assume that child groups
  5263. * span the current group.
  5264. */
  5265. group = child->groups;
  5266. do {
  5267. capacity += group->sgc->capacity;
  5268. group = group->next;
  5269. } while (group != child->groups);
  5270. }
  5271. sdg->sgc->capacity = capacity;
  5272. }
  5273. /*
  5274. * Check whether the capacity of the rq has been noticeably reduced by side
  5275. * activity. The imbalance_pct is used for the threshold.
  5276. * Return true is the capacity is reduced
  5277. */
  5278. static inline int
  5279. check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
  5280. {
  5281. return ((rq->cpu_capacity * sd->imbalance_pct) <
  5282. (rq->cpu_capacity_orig * 100));
  5283. }
  5284. /*
  5285. * Group imbalance indicates (and tries to solve) the problem where balancing
  5286. * groups is inadequate due to tsk_cpus_allowed() constraints.
  5287. *
  5288. * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
  5289. * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
  5290. * Something like:
  5291. *
  5292. * { 0 1 2 3 } { 4 5 6 7 }
  5293. * * * * *
  5294. *
  5295. * If we were to balance group-wise we'd place two tasks in the first group and
  5296. * two tasks in the second group. Clearly this is undesired as it will overload
  5297. * cpu 3 and leave one of the cpus in the second group unused.
  5298. *
  5299. * The current solution to this issue is detecting the skew in the first group
  5300. * by noticing the lower domain failed to reach balance and had difficulty
  5301. * moving tasks due to affinity constraints.
  5302. *
  5303. * When this is so detected; this group becomes a candidate for busiest; see
  5304. * update_sd_pick_busiest(). And calculate_imbalance() and
  5305. * find_busiest_group() avoid some of the usual balance conditions to allow it
  5306. * to create an effective group imbalance.
  5307. *
  5308. * This is a somewhat tricky proposition since the next run might not find the
  5309. * group imbalance and decide the groups need to be balanced again. A most
  5310. * subtle and fragile situation.
  5311. */
  5312. static inline int sg_imbalanced(struct sched_group *group)
  5313. {
  5314. return group->sgc->imbalance;
  5315. }
  5316. /*
  5317. * group_has_capacity returns true if the group has spare capacity that could
  5318. * be used by some tasks.
  5319. * We consider that a group has spare capacity if the * number of task is
  5320. * smaller than the number of CPUs or if the utilization is lower than the
  5321. * available capacity for CFS tasks.
  5322. * For the latter, we use a threshold to stabilize the state, to take into
  5323. * account the variance of the tasks' load and to return true if the available
  5324. * capacity in meaningful for the load balancer.
  5325. * As an example, an available capacity of 1% can appear but it doesn't make
  5326. * any benefit for the load balance.
  5327. */
  5328. static inline bool
  5329. group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
  5330. {
  5331. if (sgs->sum_nr_running < sgs->group_weight)
  5332. return true;
  5333. if ((sgs->group_capacity * 100) >
  5334. (sgs->group_util * env->sd->imbalance_pct))
  5335. return true;
  5336. return false;
  5337. }
  5338. /*
  5339. * group_is_overloaded returns true if the group has more tasks than it can
  5340. * handle.
  5341. * group_is_overloaded is not equals to !group_has_capacity because a group
  5342. * with the exact right number of tasks, has no more spare capacity but is not
  5343. * overloaded so both group_has_capacity and group_is_overloaded return
  5344. * false.
  5345. */
  5346. static inline bool
  5347. group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
  5348. {
  5349. if (sgs->sum_nr_running <= sgs->group_weight)
  5350. return false;
  5351. if ((sgs->group_capacity * 100) <
  5352. (sgs->group_util * env->sd->imbalance_pct))
  5353. return true;
  5354. return false;
  5355. }
  5356. static inline enum
  5357. group_type group_classify(struct sched_group *group,
  5358. struct sg_lb_stats *sgs)
  5359. {
  5360. if (sgs->group_no_capacity)
  5361. return group_overloaded;
  5362. if (sg_imbalanced(group))
  5363. return group_imbalanced;
  5364. return group_other;
  5365. }
  5366. /**
  5367. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  5368. * @env: The load balancing environment.
  5369. * @group: sched_group whose statistics are to be updated.
  5370. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  5371. * @local_group: Does group contain this_cpu.
  5372. * @sgs: variable to hold the statistics for this group.
  5373. * @overload: Indicate more than one runnable task for any CPU.
  5374. */
  5375. static inline void update_sg_lb_stats(struct lb_env *env,
  5376. struct sched_group *group, int load_idx,
  5377. int local_group, struct sg_lb_stats *sgs,
  5378. bool *overload)
  5379. {
  5380. unsigned long load;
  5381. int i;
  5382. memset(sgs, 0, sizeof(*sgs));
  5383. for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
  5384. struct rq *rq = cpu_rq(i);
  5385. /* Bias balancing toward cpus of our domain */
  5386. if (local_group)
  5387. load = target_load(i, load_idx);
  5388. else
  5389. load = source_load(i, load_idx);
  5390. sgs->group_load += load;
  5391. sgs->group_util += cpu_util(i);
  5392. sgs->sum_nr_running += rq->cfs.h_nr_running;
  5393. if (rq->nr_running > 1)
  5394. *overload = true;
  5395. #ifdef CONFIG_NUMA_BALANCING
  5396. sgs->nr_numa_running += rq->nr_numa_running;
  5397. sgs->nr_preferred_running += rq->nr_preferred_running;
  5398. #endif
  5399. sgs->sum_weighted_load += weighted_cpuload(i);
  5400. if (idle_cpu(i))
  5401. sgs->idle_cpus++;
  5402. }
  5403. /* Adjust by relative CPU capacity of the group */
  5404. sgs->group_capacity = group->sgc->capacity;
  5405. sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
  5406. if (sgs->sum_nr_running)
  5407. sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  5408. sgs->group_weight = group->group_weight;
  5409. sgs->group_no_capacity = group_is_overloaded(env, sgs);
  5410. sgs->group_type = group_classify(group, sgs);
  5411. }
  5412. /**
  5413. * update_sd_pick_busiest - return 1 on busiest group
  5414. * @env: The load balancing environment.
  5415. * @sds: sched_domain statistics
  5416. * @sg: sched_group candidate to be checked for being the busiest
  5417. * @sgs: sched_group statistics
  5418. *
  5419. * Determine if @sg is a busier group than the previously selected
  5420. * busiest group.
  5421. *
  5422. * Return: %true if @sg is a busier group than the previously selected
  5423. * busiest group. %false otherwise.
  5424. */
  5425. static bool update_sd_pick_busiest(struct lb_env *env,
  5426. struct sd_lb_stats *sds,
  5427. struct sched_group *sg,
  5428. struct sg_lb_stats *sgs)
  5429. {
  5430. struct sg_lb_stats *busiest = &sds->busiest_stat;
  5431. if (sgs->group_type > busiest->group_type)
  5432. return true;
  5433. if (sgs->group_type < busiest->group_type)
  5434. return false;
  5435. if (sgs->avg_load <= busiest->avg_load)
  5436. return false;
  5437. /* This is the busiest node in its class. */
  5438. if (!(env->sd->flags & SD_ASYM_PACKING))
  5439. return true;
  5440. /*
  5441. * ASYM_PACKING needs to move all the work to the lowest
  5442. * numbered CPUs in the group, therefore mark all groups
  5443. * higher than ourself as busy.
  5444. */
  5445. if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
  5446. if (!sds->busiest)
  5447. return true;
  5448. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  5449. return true;
  5450. }
  5451. return false;
  5452. }
  5453. #ifdef CONFIG_NUMA_BALANCING
  5454. static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
  5455. {
  5456. if (sgs->sum_nr_running > sgs->nr_numa_running)
  5457. return regular;
  5458. if (sgs->sum_nr_running > sgs->nr_preferred_running)
  5459. return remote;
  5460. return all;
  5461. }
  5462. static inline enum fbq_type fbq_classify_rq(struct rq *rq)
  5463. {
  5464. if (rq->nr_running > rq->nr_numa_running)
  5465. return regular;
  5466. if (rq->nr_running > rq->nr_preferred_running)
  5467. return remote;
  5468. return all;
  5469. }
  5470. #else
  5471. static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
  5472. {
  5473. return all;
  5474. }
  5475. static inline enum fbq_type fbq_classify_rq(struct rq *rq)
  5476. {
  5477. return regular;
  5478. }
  5479. #endif /* CONFIG_NUMA_BALANCING */
  5480. /**
  5481. * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
  5482. * @env: The load balancing environment.
  5483. * @sds: variable to hold the statistics for this sched_domain.
  5484. */
  5485. static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
  5486. {
  5487. struct sched_domain *child = env->sd->child;
  5488. struct sched_group *sg = env->sd->groups;
  5489. struct sg_lb_stats tmp_sgs;
  5490. int load_idx, prefer_sibling = 0;
  5491. bool overload = false;
  5492. if (child && child->flags & SD_PREFER_SIBLING)
  5493. prefer_sibling = 1;
  5494. load_idx = get_sd_load_idx(env->sd, env->idle);
  5495. do {
  5496. struct sg_lb_stats *sgs = &tmp_sgs;
  5497. int local_group;
  5498. local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
  5499. if (local_group) {
  5500. sds->local = sg;
  5501. sgs = &sds->local_stat;
  5502. if (env->idle != CPU_NEWLY_IDLE ||
  5503. time_after_eq(jiffies, sg->sgc->next_update))
  5504. update_group_capacity(env->sd, env->dst_cpu);
  5505. }
  5506. update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
  5507. &overload);
  5508. if (local_group)
  5509. goto next_group;
  5510. /*
  5511. * In case the child domain prefers tasks go to siblings
  5512. * first, lower the sg capacity so that we'll try
  5513. * and move all the excess tasks away. We lower the capacity
  5514. * of a group only if the local group has the capacity to fit
  5515. * these excess tasks. The extra check prevents the case where
  5516. * you always pull from the heaviest group when it is already
  5517. * under-utilized (possible with a large weight task outweighs
  5518. * the tasks on the system).
  5519. */
  5520. if (prefer_sibling && sds->local &&
  5521. group_has_capacity(env, &sds->local_stat) &&
  5522. (sgs->sum_nr_running > 1)) {
  5523. sgs->group_no_capacity = 1;
  5524. sgs->group_type = group_classify(sg, sgs);
  5525. }
  5526. if (update_sd_pick_busiest(env, sds, sg, sgs)) {
  5527. sds->busiest = sg;
  5528. sds->busiest_stat = *sgs;
  5529. }
  5530. next_group:
  5531. /* Now, start updating sd_lb_stats */
  5532. sds->total_load += sgs->group_load;
  5533. sds->total_capacity += sgs->group_capacity;
  5534. sg = sg->next;
  5535. } while (sg != env->sd->groups);
  5536. if (env->sd->flags & SD_NUMA)
  5537. env->fbq_type = fbq_classify_group(&sds->busiest_stat);
  5538. if (!env->sd->parent) {
  5539. /* update overload indicator if we are at root domain */
  5540. if (env->dst_rq->rd->overload != overload)
  5541. env->dst_rq->rd->overload = overload;
  5542. }
  5543. }
  5544. /**
  5545. * check_asym_packing - Check to see if the group is packed into the
  5546. * sched doman.
  5547. *
  5548. * This is primarily intended to used at the sibling level. Some
  5549. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  5550. * case of POWER7, it can move to lower SMT modes only when higher
  5551. * threads are idle. When in lower SMT modes, the threads will
  5552. * perform better since they share less core resources. Hence when we
  5553. * have idle threads, we want them to be the higher ones.
  5554. *
  5555. * This packing function is run on idle threads. It checks to see if
  5556. * the busiest CPU in this domain (core in the P7 case) has a higher
  5557. * CPU number than the packing function is being run on. Here we are
  5558. * assuming lower CPU number will be equivalent to lower a SMT thread
  5559. * number.
  5560. *
  5561. * Return: 1 when packing is required and a task should be moved to
  5562. * this CPU. The amount of the imbalance is returned in *imbalance.
  5563. *
  5564. * @env: The load balancing environment.
  5565. * @sds: Statistics of the sched_domain which is to be packed
  5566. */
  5567. static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
  5568. {
  5569. int busiest_cpu;
  5570. if (!(env->sd->flags & SD_ASYM_PACKING))
  5571. return 0;
  5572. if (!sds->busiest)
  5573. return 0;
  5574. busiest_cpu = group_first_cpu(sds->busiest);
  5575. if (env->dst_cpu > busiest_cpu)
  5576. return 0;
  5577. env->imbalance = DIV_ROUND_CLOSEST(
  5578. sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
  5579. SCHED_CAPACITY_SCALE);
  5580. return 1;
  5581. }
  5582. /**
  5583. * fix_small_imbalance - Calculate the minor imbalance that exists
  5584. * amongst the groups of a sched_domain, during
  5585. * load balancing.
  5586. * @env: The load balancing environment.
  5587. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  5588. */
  5589. static inline
  5590. void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
  5591. {
  5592. unsigned long tmp, capa_now = 0, capa_move = 0;
  5593. unsigned int imbn = 2;
  5594. unsigned long scaled_busy_load_per_task;
  5595. struct sg_lb_stats *local, *busiest;
  5596. local = &sds->local_stat;
  5597. busiest = &sds->busiest_stat;
  5598. if (!local->sum_nr_running)
  5599. local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
  5600. else if (busiest->load_per_task > local->load_per_task)
  5601. imbn = 1;
  5602. scaled_busy_load_per_task =
  5603. (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
  5604. busiest->group_capacity;
  5605. if (busiest->avg_load + scaled_busy_load_per_task >=
  5606. local->avg_load + (scaled_busy_load_per_task * imbn)) {
  5607. env->imbalance = busiest->load_per_task;
  5608. return;
  5609. }
  5610. /*
  5611. * OK, we don't have enough imbalance to justify moving tasks,
  5612. * however we may be able to increase total CPU capacity used by
  5613. * moving them.
  5614. */
  5615. capa_now += busiest->group_capacity *
  5616. min(busiest->load_per_task, busiest->avg_load);
  5617. capa_now += local->group_capacity *
  5618. min(local->load_per_task, local->avg_load);
  5619. capa_now /= SCHED_CAPACITY_SCALE;
  5620. /* Amount of load we'd subtract */
  5621. if (busiest->avg_load > scaled_busy_load_per_task) {
  5622. capa_move += busiest->group_capacity *
  5623. min(busiest->load_per_task,
  5624. busiest->avg_load - scaled_busy_load_per_task);
  5625. }
  5626. /* Amount of load we'd add */
  5627. if (busiest->avg_load * busiest->group_capacity <
  5628. busiest->load_per_task * SCHED_CAPACITY_SCALE) {
  5629. tmp = (busiest->avg_load * busiest->group_capacity) /
  5630. local->group_capacity;
  5631. } else {
  5632. tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
  5633. local->group_capacity;
  5634. }
  5635. capa_move += local->group_capacity *
  5636. min(local->load_per_task, local->avg_load + tmp);
  5637. capa_move /= SCHED_CAPACITY_SCALE;
  5638. /* Move if we gain throughput */
  5639. if (capa_move > capa_now)
  5640. env->imbalance = busiest->load_per_task;
  5641. }
  5642. /**
  5643. * calculate_imbalance - Calculate the amount of imbalance present within the
  5644. * groups of a given sched_domain during load balance.
  5645. * @env: load balance environment
  5646. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  5647. */
  5648. static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
  5649. {
  5650. unsigned long max_pull, load_above_capacity = ~0UL;
  5651. struct sg_lb_stats *local, *busiest;
  5652. local = &sds->local_stat;
  5653. busiest = &sds->busiest_stat;
  5654. if (busiest->group_type == group_imbalanced) {
  5655. /*
  5656. * In the group_imb case we cannot rely on group-wide averages
  5657. * to ensure cpu-load equilibrium, look at wider averages. XXX
  5658. */
  5659. busiest->load_per_task =
  5660. min(busiest->load_per_task, sds->avg_load);
  5661. }
  5662. /*
  5663. * In the presence of smp nice balancing, certain scenarios can have
  5664. * max load less than avg load(as we skip the groups at or below
  5665. * its cpu_capacity, while calculating max_load..)
  5666. */
  5667. if (busiest->avg_load <= sds->avg_load ||
  5668. local->avg_load >= sds->avg_load) {
  5669. env->imbalance = 0;
  5670. return fix_small_imbalance(env, sds);
  5671. }
  5672. /*
  5673. * If there aren't any idle cpus, avoid creating some.
  5674. */
  5675. if (busiest->group_type == group_overloaded &&
  5676. local->group_type == group_overloaded) {
  5677. load_above_capacity = busiest->sum_nr_running *
  5678. SCHED_LOAD_SCALE;
  5679. if (load_above_capacity > busiest->group_capacity)
  5680. load_above_capacity -= busiest->group_capacity;
  5681. else
  5682. load_above_capacity = ~0UL;
  5683. }
  5684. /*
  5685. * We're trying to get all the cpus to the average_load, so we don't
  5686. * want to push ourselves above the average load, nor do we wish to
  5687. * reduce the max loaded cpu below the average load. At the same time,
  5688. * we also don't want to reduce the group load below the group capacity
  5689. * (so that we can implement power-savings policies etc). Thus we look
  5690. * for the minimum possible imbalance.
  5691. */
  5692. max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
  5693. /* How much load to actually move to equalise the imbalance */
  5694. env->imbalance = min(
  5695. max_pull * busiest->group_capacity,
  5696. (sds->avg_load - local->avg_load) * local->group_capacity
  5697. ) / SCHED_CAPACITY_SCALE;
  5698. /*
  5699. * if *imbalance is less than the average load per runnable task
  5700. * there is no guarantee that any tasks will be moved so we'll have
  5701. * a think about bumping its value to force at least one task to be
  5702. * moved
  5703. */
  5704. if (env->imbalance < busiest->load_per_task)
  5705. return fix_small_imbalance(env, sds);
  5706. }
  5707. /******* find_busiest_group() helpers end here *********************/
  5708. /**
  5709. * find_busiest_group - Returns the busiest group within the sched_domain
  5710. * if there is an imbalance. If there isn't an imbalance, and
  5711. * the user has opted for power-savings, it returns a group whose
  5712. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  5713. * such a group exists.
  5714. *
  5715. * Also calculates the amount of weighted load which should be moved
  5716. * to restore balance.
  5717. *
  5718. * @env: The load balancing environment.
  5719. *
  5720. * Return: - The busiest group if imbalance exists.
  5721. * - If no imbalance and user has opted for power-savings balance,
  5722. * return the least loaded group whose CPUs can be
  5723. * put to idle by rebalancing its tasks onto our group.
  5724. */
  5725. static struct sched_group *find_busiest_group(struct lb_env *env)
  5726. {
  5727. struct sg_lb_stats *local, *busiest;
  5728. struct sd_lb_stats sds;
  5729. init_sd_lb_stats(&sds);
  5730. /*
  5731. * Compute the various statistics relavent for load balancing at
  5732. * this level.
  5733. */
  5734. update_sd_lb_stats(env, &sds);
  5735. local = &sds.local_stat;
  5736. busiest = &sds.busiest_stat;
  5737. /* ASYM feature bypasses nice load balance check */
  5738. if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
  5739. check_asym_packing(env, &sds))
  5740. return sds.busiest;
  5741. /* There is no busy sibling group to pull tasks from */
  5742. if (!sds.busiest || busiest->sum_nr_running == 0)
  5743. goto out_balanced;
  5744. sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
  5745. / sds.total_capacity;
  5746. /*
  5747. * If the busiest group is imbalanced the below checks don't
  5748. * work because they assume all things are equal, which typically
  5749. * isn't true due to cpus_allowed constraints and the like.
  5750. */
  5751. if (busiest->group_type == group_imbalanced)
  5752. goto force_balance;
  5753. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  5754. if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
  5755. busiest->group_no_capacity)
  5756. goto force_balance;
  5757. /*
  5758. * If the local group is busier than the selected busiest group
  5759. * don't try and pull any tasks.
  5760. */
  5761. if (local->avg_load >= busiest->avg_load)
  5762. goto out_balanced;
  5763. /*
  5764. * Don't pull any tasks if this group is already above the domain
  5765. * average load.
  5766. */
  5767. if (local->avg_load >= sds.avg_load)
  5768. goto out_balanced;
  5769. if (env->idle == CPU_IDLE) {
  5770. /*
  5771. * This cpu is idle. If the busiest group is not overloaded
  5772. * and there is no imbalance between this and busiest group
  5773. * wrt idle cpus, it is balanced. The imbalance becomes
  5774. * significant if the diff is greater than 1 otherwise we
  5775. * might end up to just move the imbalance on another group
  5776. */
  5777. if ((busiest->group_type != group_overloaded) &&
  5778. (local->idle_cpus <= (busiest->idle_cpus + 1)))
  5779. goto out_balanced;
  5780. } else {
  5781. /*
  5782. * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
  5783. * imbalance_pct to be conservative.
  5784. */
  5785. if (100 * busiest->avg_load <=
  5786. env->sd->imbalance_pct * local->avg_load)
  5787. goto out_balanced;
  5788. }
  5789. force_balance:
  5790. /* Looks like there is an imbalance. Compute it */
  5791. calculate_imbalance(env, &sds);
  5792. return sds.busiest;
  5793. out_balanced:
  5794. env->imbalance = 0;
  5795. return NULL;
  5796. }
  5797. /*
  5798. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  5799. */
  5800. static struct rq *find_busiest_queue(struct lb_env *env,
  5801. struct sched_group *group)
  5802. {
  5803. struct rq *busiest = NULL, *rq;
  5804. unsigned long busiest_load = 0, busiest_capacity = 1;
  5805. int i;
  5806. for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
  5807. unsigned long capacity, wl;
  5808. enum fbq_type rt;
  5809. rq = cpu_rq(i);
  5810. rt = fbq_classify_rq(rq);
  5811. /*
  5812. * We classify groups/runqueues into three groups:
  5813. * - regular: there are !numa tasks
  5814. * - remote: there are numa tasks that run on the 'wrong' node
  5815. * - all: there is no distinction
  5816. *
  5817. * In order to avoid migrating ideally placed numa tasks,
  5818. * ignore those when there's better options.
  5819. *
  5820. * If we ignore the actual busiest queue to migrate another
  5821. * task, the next balance pass can still reduce the busiest
  5822. * queue by moving tasks around inside the node.
  5823. *
  5824. * If we cannot move enough load due to this classification
  5825. * the next pass will adjust the group classification and
  5826. * allow migration of more tasks.
  5827. *
  5828. * Both cases only affect the total convergence complexity.
  5829. */
  5830. if (rt > env->fbq_type)
  5831. continue;
  5832. capacity = capacity_of(i);
  5833. wl = weighted_cpuload(i);
  5834. /*
  5835. * When comparing with imbalance, use weighted_cpuload()
  5836. * which is not scaled with the cpu capacity.
  5837. */
  5838. if (rq->nr_running == 1 && wl > env->imbalance &&
  5839. !check_cpu_capacity(rq, env->sd))
  5840. continue;
  5841. /*
  5842. * For the load comparisons with the other cpu's, consider
  5843. * the weighted_cpuload() scaled with the cpu capacity, so
  5844. * that the load can be moved away from the cpu that is
  5845. * potentially running at a lower capacity.
  5846. *
  5847. * Thus we're looking for max(wl_i / capacity_i), crosswise
  5848. * multiplication to rid ourselves of the division works out
  5849. * to: wl_i * capacity_j > wl_j * capacity_i; where j is
  5850. * our previous maximum.
  5851. */
  5852. if (wl * busiest_capacity > busiest_load * capacity) {
  5853. busiest_load = wl;
  5854. busiest_capacity = capacity;
  5855. busiest = rq;
  5856. }
  5857. }
  5858. return busiest;
  5859. }
  5860. /*
  5861. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  5862. * so long as it is large enough.
  5863. */
  5864. #define MAX_PINNED_INTERVAL 512
  5865. /* Working cpumask for load_balance and load_balance_newidle. */
  5866. DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
  5867. static int need_active_balance(struct lb_env *env)
  5868. {
  5869. struct sched_domain *sd = env->sd;
  5870. if (env->idle == CPU_NEWLY_IDLE) {
  5871. /*
  5872. * ASYM_PACKING needs to force migrate tasks from busy but
  5873. * higher numbered CPUs in order to pack all tasks in the
  5874. * lowest numbered CPUs.
  5875. */
  5876. if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
  5877. return 1;
  5878. }
  5879. /*
  5880. * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
  5881. * It's worth migrating the task if the src_cpu's capacity is reduced
  5882. * because of other sched_class or IRQs if more capacity stays
  5883. * available on dst_cpu.
  5884. */
  5885. if ((env->idle != CPU_NOT_IDLE) &&
  5886. (env->src_rq->cfs.h_nr_running == 1)) {
  5887. if ((check_cpu_capacity(env->src_rq, sd)) &&
  5888. (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
  5889. return 1;
  5890. }
  5891. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  5892. }
  5893. static int active_load_balance_cpu_stop(void *data);
  5894. static int should_we_balance(struct lb_env *env)
  5895. {
  5896. struct sched_group *sg = env->sd->groups;
  5897. struct cpumask *sg_cpus, *sg_mask;
  5898. int cpu, balance_cpu = -1;
  5899. /*
  5900. * In the newly idle case, we will allow all the cpu's
  5901. * to do the newly idle load balance.
  5902. */
  5903. if (env->idle == CPU_NEWLY_IDLE)
  5904. return 1;
  5905. sg_cpus = sched_group_cpus(sg);
  5906. sg_mask = sched_group_mask(sg);
  5907. /* Try to find first idle cpu */
  5908. for_each_cpu_and(cpu, sg_cpus, env->cpus) {
  5909. if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
  5910. continue;
  5911. balance_cpu = cpu;
  5912. break;
  5913. }
  5914. if (balance_cpu == -1)
  5915. balance_cpu = group_balance_cpu(sg);
  5916. /*
  5917. * First idle cpu or the first cpu(busiest) in this sched group
  5918. * is eligible for doing load balancing at this and above domains.
  5919. */
  5920. return balance_cpu == env->dst_cpu;
  5921. }
  5922. /*
  5923. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  5924. * tasks if there is an imbalance.
  5925. */
  5926. static int load_balance(int this_cpu, struct rq *this_rq,
  5927. struct sched_domain *sd, enum cpu_idle_type idle,
  5928. int *continue_balancing)
  5929. {
  5930. int ld_moved, cur_ld_moved, active_balance = 0;
  5931. struct sched_domain *sd_parent = sd->parent;
  5932. struct sched_group *group;
  5933. struct rq *busiest;
  5934. unsigned long flags;
  5935. struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
  5936. struct lb_env env = {
  5937. .sd = sd,
  5938. .dst_cpu = this_cpu,
  5939. .dst_rq = this_rq,
  5940. .dst_grpmask = sched_group_cpus(sd->groups),
  5941. .idle = idle,
  5942. .loop_break = sched_nr_migrate_break,
  5943. .cpus = cpus,
  5944. .fbq_type = all,
  5945. .tasks = LIST_HEAD_INIT(env.tasks),
  5946. };
  5947. /*
  5948. * For NEWLY_IDLE load_balancing, we don't need to consider
  5949. * other cpus in our group
  5950. */
  5951. if (idle == CPU_NEWLY_IDLE)
  5952. env.dst_grpmask = NULL;
  5953. cpumask_copy(cpus, cpu_active_mask);
  5954. schedstat_inc(sd, lb_count[idle]);
  5955. redo:
  5956. if (!should_we_balance(&env)) {
  5957. *continue_balancing = 0;
  5958. goto out_balanced;
  5959. }
  5960. group = find_busiest_group(&env);
  5961. if (!group) {
  5962. schedstat_inc(sd, lb_nobusyg[idle]);
  5963. goto out_balanced;
  5964. }
  5965. busiest = find_busiest_queue(&env, group);
  5966. if (!busiest) {
  5967. schedstat_inc(sd, lb_nobusyq[idle]);
  5968. goto out_balanced;
  5969. }
  5970. BUG_ON(busiest == env.dst_rq);
  5971. schedstat_add(sd, lb_imbalance[idle], env.imbalance);
  5972. env.src_cpu = busiest->cpu;
  5973. env.src_rq = busiest;
  5974. ld_moved = 0;
  5975. if (busiest->nr_running > 1) {
  5976. /*
  5977. * Attempt to move tasks. If find_busiest_group has found
  5978. * an imbalance but busiest->nr_running <= 1, the group is
  5979. * still unbalanced. ld_moved simply stays zero, so it is
  5980. * correctly treated as an imbalance.
  5981. */
  5982. env.flags |= LBF_ALL_PINNED;
  5983. env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
  5984. more_balance:
  5985. raw_spin_lock_irqsave(&busiest->lock, flags);
  5986. /*
  5987. * cur_ld_moved - load moved in current iteration
  5988. * ld_moved - cumulative load moved across iterations
  5989. */
  5990. cur_ld_moved = detach_tasks(&env);
  5991. /*
  5992. * We've detached some tasks from busiest_rq. Every
  5993. * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
  5994. * unlock busiest->lock, and we are able to be sure
  5995. * that nobody can manipulate the tasks in parallel.
  5996. * See task_rq_lock() family for the details.
  5997. */
  5998. raw_spin_unlock(&busiest->lock);
  5999. if (cur_ld_moved) {
  6000. attach_tasks(&env);
  6001. ld_moved += cur_ld_moved;
  6002. }
  6003. local_irq_restore(flags);
  6004. if (env.flags & LBF_NEED_BREAK) {
  6005. env.flags &= ~LBF_NEED_BREAK;
  6006. goto more_balance;
  6007. }
  6008. /*
  6009. * Revisit (affine) tasks on src_cpu that couldn't be moved to
  6010. * us and move them to an alternate dst_cpu in our sched_group
  6011. * where they can run. The upper limit on how many times we
  6012. * iterate on same src_cpu is dependent on number of cpus in our
  6013. * sched_group.
  6014. *
  6015. * This changes load balance semantics a bit on who can move
  6016. * load to a given_cpu. In addition to the given_cpu itself
  6017. * (or a ilb_cpu acting on its behalf where given_cpu is
  6018. * nohz-idle), we now have balance_cpu in a position to move
  6019. * load to given_cpu. In rare situations, this may cause
  6020. * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
  6021. * _independently_ and at _same_ time to move some load to
  6022. * given_cpu) causing exceess load to be moved to given_cpu.
  6023. * This however should not happen so much in practice and
  6024. * moreover subsequent load balance cycles should correct the
  6025. * excess load moved.
  6026. */
  6027. if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
  6028. /* Prevent to re-select dst_cpu via env's cpus */
  6029. cpumask_clear_cpu(env.dst_cpu, env.cpus);
  6030. env.dst_rq = cpu_rq(env.new_dst_cpu);
  6031. env.dst_cpu = env.new_dst_cpu;
  6032. env.flags &= ~LBF_DST_PINNED;
  6033. env.loop = 0;
  6034. env.loop_break = sched_nr_migrate_break;
  6035. /*
  6036. * Go back to "more_balance" rather than "redo" since we
  6037. * need to continue with same src_cpu.
  6038. */
  6039. goto more_balance;
  6040. }
  6041. /*
  6042. * We failed to reach balance because of affinity.
  6043. */
  6044. if (sd_parent) {
  6045. int *group_imbalance = &sd_parent->groups->sgc->imbalance;
  6046. if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
  6047. *group_imbalance = 1;
  6048. }
  6049. /* All tasks on this runqueue were pinned by CPU affinity */
  6050. if (unlikely(env.flags & LBF_ALL_PINNED)) {
  6051. cpumask_clear_cpu(cpu_of(busiest), cpus);
  6052. if (!cpumask_empty(cpus)) {
  6053. env.loop = 0;
  6054. env.loop_break = sched_nr_migrate_break;
  6055. goto redo;
  6056. }
  6057. goto out_all_pinned;
  6058. }
  6059. }
  6060. if (!ld_moved) {
  6061. schedstat_inc(sd, lb_failed[idle]);
  6062. /*
  6063. * Increment the failure counter only on periodic balance.
  6064. * We do not want newidle balance, which can be very
  6065. * frequent, pollute the failure counter causing
  6066. * excessive cache_hot migrations and active balances.
  6067. */
  6068. if (idle != CPU_NEWLY_IDLE)
  6069. sd->nr_balance_failed++;
  6070. if (need_active_balance(&env)) {
  6071. raw_spin_lock_irqsave(&busiest->lock, flags);
  6072. /* don't kick the active_load_balance_cpu_stop,
  6073. * if the curr task on busiest cpu can't be
  6074. * moved to this_cpu
  6075. */
  6076. if (!cpumask_test_cpu(this_cpu,
  6077. tsk_cpus_allowed(busiest->curr))) {
  6078. raw_spin_unlock_irqrestore(&busiest->lock,
  6079. flags);
  6080. env.flags |= LBF_ALL_PINNED;
  6081. goto out_one_pinned;
  6082. }
  6083. /*
  6084. * ->active_balance synchronizes accesses to
  6085. * ->active_balance_work. Once set, it's cleared
  6086. * only after active load balance is finished.
  6087. */
  6088. if (!busiest->active_balance) {
  6089. busiest->active_balance = 1;
  6090. busiest->push_cpu = this_cpu;
  6091. active_balance = 1;
  6092. }
  6093. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  6094. if (active_balance) {
  6095. stop_one_cpu_nowait(cpu_of(busiest),
  6096. active_load_balance_cpu_stop, busiest,
  6097. &busiest->active_balance_work);
  6098. }
  6099. /*
  6100. * We've kicked active balancing, reset the failure
  6101. * counter.
  6102. */
  6103. sd->nr_balance_failed = sd->cache_nice_tries+1;
  6104. }
  6105. } else
  6106. sd->nr_balance_failed = 0;
  6107. if (likely(!active_balance)) {
  6108. /* We were unbalanced, so reset the balancing interval */
  6109. sd->balance_interval = sd->min_interval;
  6110. } else {
  6111. /*
  6112. * If we've begun active balancing, start to back off. This
  6113. * case may not be covered by the all_pinned logic if there
  6114. * is only 1 task on the busy runqueue (because we don't call
  6115. * detach_tasks).
  6116. */
  6117. if (sd->balance_interval < sd->max_interval)
  6118. sd->balance_interval *= 2;
  6119. }
  6120. goto out;
  6121. out_balanced:
  6122. /*
  6123. * We reach balance although we may have faced some affinity
  6124. * constraints. Clear the imbalance flag if it was set.
  6125. */
  6126. if (sd_parent) {
  6127. int *group_imbalance = &sd_parent->groups->sgc->imbalance;
  6128. if (*group_imbalance)
  6129. *group_imbalance = 0;
  6130. }
  6131. out_all_pinned:
  6132. /*
  6133. * We reach balance because all tasks are pinned at this level so
  6134. * we can't migrate them. Let the imbalance flag set so parent level
  6135. * can try to migrate them.
  6136. */
  6137. schedstat_inc(sd, lb_balanced[idle]);
  6138. sd->nr_balance_failed = 0;
  6139. out_one_pinned:
  6140. /* tune up the balancing interval */
  6141. if (((env.flags & LBF_ALL_PINNED) &&
  6142. sd->balance_interval < MAX_PINNED_INTERVAL) ||
  6143. (sd->balance_interval < sd->max_interval))
  6144. sd->balance_interval *= 2;
  6145. ld_moved = 0;
  6146. out:
  6147. return ld_moved;
  6148. }
  6149. static inline unsigned long
  6150. get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
  6151. {
  6152. unsigned long interval = sd->balance_interval;
  6153. if (cpu_busy)
  6154. interval *= sd->busy_factor;
  6155. /* scale ms to jiffies */
  6156. interval = msecs_to_jiffies(interval);
  6157. interval = clamp(interval, 1UL, max_load_balance_interval);
  6158. return interval;
  6159. }
  6160. static inline void
  6161. update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
  6162. {
  6163. unsigned long interval, next;
  6164. interval = get_sd_balance_interval(sd, cpu_busy);
  6165. next = sd->last_balance + interval;
  6166. if (time_after(*next_balance, next))
  6167. *next_balance = next;
  6168. }
  6169. /*
  6170. * idle_balance is called by schedule() if this_cpu is about to become
  6171. * idle. Attempts to pull tasks from other CPUs.
  6172. */
  6173. static int idle_balance(struct rq *this_rq)
  6174. {
  6175. unsigned long next_balance = jiffies + HZ;
  6176. int this_cpu = this_rq->cpu;
  6177. struct sched_domain *sd;
  6178. int pulled_task = 0;
  6179. u64 curr_cost = 0;
  6180. idle_enter_fair(this_rq);
  6181. /*
  6182. * We must set idle_stamp _before_ calling idle_balance(), such that we
  6183. * measure the duration of idle_balance() as idle time.
  6184. */
  6185. this_rq->idle_stamp = rq_clock(this_rq);
  6186. if (this_rq->avg_idle < sysctl_sched_migration_cost ||
  6187. !this_rq->rd->overload) {
  6188. rcu_read_lock();
  6189. sd = rcu_dereference_check_sched_domain(this_rq->sd);
  6190. if (sd)
  6191. update_next_balance(sd, 0, &next_balance);
  6192. rcu_read_unlock();
  6193. goto out;
  6194. }
  6195. raw_spin_unlock(&this_rq->lock);
  6196. update_blocked_averages(this_cpu);
  6197. rcu_read_lock();
  6198. for_each_domain(this_cpu, sd) {
  6199. int continue_balancing = 1;
  6200. u64 t0, domain_cost;
  6201. if (!(sd->flags & SD_LOAD_BALANCE))
  6202. continue;
  6203. if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
  6204. update_next_balance(sd, 0, &next_balance);
  6205. break;
  6206. }
  6207. if (sd->flags & SD_BALANCE_NEWIDLE) {
  6208. t0 = sched_clock_cpu(this_cpu);
  6209. pulled_task = load_balance(this_cpu, this_rq,
  6210. sd, CPU_NEWLY_IDLE,
  6211. &continue_balancing);
  6212. domain_cost = sched_clock_cpu(this_cpu) - t0;
  6213. if (domain_cost > sd->max_newidle_lb_cost)
  6214. sd->max_newidle_lb_cost = domain_cost;
  6215. curr_cost += domain_cost;
  6216. }
  6217. update_next_balance(sd, 0, &next_balance);
  6218. /*
  6219. * Stop searching for tasks to pull if there are
  6220. * now runnable tasks on this rq.
  6221. */
  6222. if (pulled_task || this_rq->nr_running > 0)
  6223. break;
  6224. }
  6225. rcu_read_unlock();
  6226. raw_spin_lock(&this_rq->lock);
  6227. if (curr_cost > this_rq->max_idle_balance_cost)
  6228. this_rq->max_idle_balance_cost = curr_cost;
  6229. /*
  6230. * While browsing the domains, we released the rq lock, a task could
  6231. * have been enqueued in the meantime. Since we're not going idle,
  6232. * pretend we pulled a task.
  6233. */
  6234. if (this_rq->cfs.h_nr_running && !pulled_task)
  6235. pulled_task = 1;
  6236. out:
  6237. /* Move the next balance forward */
  6238. if (time_after(this_rq->next_balance, next_balance))
  6239. this_rq->next_balance = next_balance;
  6240. /* Is there a task of a high priority class? */
  6241. if (this_rq->nr_running != this_rq->cfs.h_nr_running)
  6242. pulled_task = -1;
  6243. if (pulled_task) {
  6244. idle_exit_fair(this_rq);
  6245. this_rq->idle_stamp = 0;
  6246. }
  6247. return pulled_task;
  6248. }
  6249. /*
  6250. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  6251. * running tasks off the busiest CPU onto idle CPUs. It requires at
  6252. * least 1 task to be running on each physical CPU where possible, and
  6253. * avoids physical / logical imbalances.
  6254. */
  6255. static int active_load_balance_cpu_stop(void *data)
  6256. {
  6257. struct rq *busiest_rq = data;
  6258. int busiest_cpu = cpu_of(busiest_rq);
  6259. int target_cpu = busiest_rq->push_cpu;
  6260. struct rq *target_rq = cpu_rq(target_cpu);
  6261. struct sched_domain *sd;
  6262. struct task_struct *p = NULL;
  6263. raw_spin_lock_irq(&busiest_rq->lock);
  6264. /* make sure the requested cpu hasn't gone down in the meantime */
  6265. if (unlikely(busiest_cpu != smp_processor_id() ||
  6266. !busiest_rq->active_balance))
  6267. goto out_unlock;
  6268. /* Is there any task to move? */
  6269. if (busiest_rq->nr_running <= 1)
  6270. goto out_unlock;
  6271. /*
  6272. * This condition is "impossible", if it occurs
  6273. * we need to fix it. Originally reported by
  6274. * Bjorn Helgaas on a 128-cpu setup.
  6275. */
  6276. BUG_ON(busiest_rq == target_rq);
  6277. /* Search for an sd spanning us and the target CPU. */
  6278. rcu_read_lock();
  6279. for_each_domain(target_cpu, sd) {
  6280. if ((sd->flags & SD_LOAD_BALANCE) &&
  6281. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  6282. break;
  6283. }
  6284. if (likely(sd)) {
  6285. struct lb_env env = {
  6286. .sd = sd,
  6287. .dst_cpu = target_cpu,
  6288. .dst_rq = target_rq,
  6289. .src_cpu = busiest_rq->cpu,
  6290. .src_rq = busiest_rq,
  6291. .idle = CPU_IDLE,
  6292. };
  6293. schedstat_inc(sd, alb_count);
  6294. p = detach_one_task(&env);
  6295. if (p)
  6296. schedstat_inc(sd, alb_pushed);
  6297. else
  6298. schedstat_inc(sd, alb_failed);
  6299. }
  6300. rcu_read_unlock();
  6301. out_unlock:
  6302. busiest_rq->active_balance = 0;
  6303. raw_spin_unlock(&busiest_rq->lock);
  6304. if (p)
  6305. attach_one_task(target_rq, p);
  6306. local_irq_enable();
  6307. return 0;
  6308. }
  6309. static inline int on_null_domain(struct rq *rq)
  6310. {
  6311. return unlikely(!rcu_dereference_sched(rq->sd));
  6312. }
  6313. #ifdef CONFIG_NO_HZ_COMMON
  6314. /*
  6315. * idle load balancing details
  6316. * - When one of the busy CPUs notice that there may be an idle rebalancing
  6317. * needed, they will kick the idle load balancer, which then does idle
  6318. * load balancing for all the idle CPUs.
  6319. */
  6320. static struct {
  6321. cpumask_var_t idle_cpus_mask;
  6322. atomic_t nr_cpus;
  6323. unsigned long next_balance; /* in jiffy units */
  6324. } nohz ____cacheline_aligned;
  6325. static inline int find_new_ilb(void)
  6326. {
  6327. int ilb = cpumask_first(nohz.idle_cpus_mask);
  6328. if (ilb < nr_cpu_ids && idle_cpu(ilb))
  6329. return ilb;
  6330. return nr_cpu_ids;
  6331. }
  6332. /*
  6333. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  6334. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  6335. * CPU (if there is one).
  6336. */
  6337. static void nohz_balancer_kick(void)
  6338. {
  6339. int ilb_cpu;
  6340. nohz.next_balance++;
  6341. ilb_cpu = find_new_ilb();
  6342. if (ilb_cpu >= nr_cpu_ids)
  6343. return;
  6344. if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
  6345. return;
  6346. /*
  6347. * Use smp_send_reschedule() instead of resched_cpu().
  6348. * This way we generate a sched IPI on the target cpu which
  6349. * is idle. And the softirq performing nohz idle load balance
  6350. * will be run before returning from the IPI.
  6351. */
  6352. smp_send_reschedule(ilb_cpu);
  6353. return;
  6354. }
  6355. static inline void nohz_balance_exit_idle(int cpu)
  6356. {
  6357. if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
  6358. /*
  6359. * Completely isolated CPUs don't ever set, so we must test.
  6360. */
  6361. if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
  6362. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  6363. atomic_dec(&nohz.nr_cpus);
  6364. }
  6365. clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  6366. }
  6367. }
  6368. static inline void set_cpu_sd_state_busy(void)
  6369. {
  6370. struct sched_domain *sd;
  6371. int cpu = smp_processor_id();
  6372. rcu_read_lock();
  6373. sd = rcu_dereference(per_cpu(sd_busy, cpu));
  6374. if (!sd || !sd->nohz_idle)
  6375. goto unlock;
  6376. sd->nohz_idle = 0;
  6377. atomic_inc(&sd->groups->sgc->nr_busy_cpus);
  6378. unlock:
  6379. rcu_read_unlock();
  6380. }
  6381. void set_cpu_sd_state_idle(void)
  6382. {
  6383. struct sched_domain *sd;
  6384. int cpu = smp_processor_id();
  6385. rcu_read_lock();
  6386. sd = rcu_dereference(per_cpu(sd_busy, cpu));
  6387. if (!sd || sd->nohz_idle)
  6388. goto unlock;
  6389. sd->nohz_idle = 1;
  6390. atomic_dec(&sd->groups->sgc->nr_busy_cpus);
  6391. unlock:
  6392. rcu_read_unlock();
  6393. }
  6394. /*
  6395. * This routine will record that the cpu is going idle with tick stopped.
  6396. * This info will be used in performing idle load balancing in the future.
  6397. */
  6398. void nohz_balance_enter_idle(int cpu)
  6399. {
  6400. /*
  6401. * If this cpu is going down, then nothing needs to be done.
  6402. */
  6403. if (!cpu_active(cpu))
  6404. return;
  6405. if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
  6406. return;
  6407. /*
  6408. * If we're a completely isolated CPU, we don't play.
  6409. */
  6410. if (on_null_domain(cpu_rq(cpu)))
  6411. return;
  6412. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  6413. atomic_inc(&nohz.nr_cpus);
  6414. set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  6415. }
  6416. static int sched_ilb_notifier(struct notifier_block *nfb,
  6417. unsigned long action, void *hcpu)
  6418. {
  6419. switch (action & ~CPU_TASKS_FROZEN) {
  6420. case CPU_DYING:
  6421. nohz_balance_exit_idle(smp_processor_id());
  6422. return NOTIFY_OK;
  6423. default:
  6424. return NOTIFY_DONE;
  6425. }
  6426. }
  6427. #endif
  6428. static DEFINE_SPINLOCK(balancing);
  6429. /*
  6430. * Scale the max load_balance interval with the number of CPUs in the system.
  6431. * This trades load-balance latency on larger machines for less cross talk.
  6432. */
  6433. void update_max_interval(void)
  6434. {
  6435. max_load_balance_interval = HZ*num_online_cpus()/10;
  6436. }
  6437. /*
  6438. * It checks each scheduling domain to see if it is due to be balanced,
  6439. * and initiates a balancing operation if so.
  6440. *
  6441. * Balancing parameters are set up in init_sched_domains.
  6442. */
  6443. static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
  6444. {
  6445. int continue_balancing = 1;
  6446. int cpu = rq->cpu;
  6447. unsigned long interval;
  6448. struct sched_domain *sd;
  6449. /* Earliest time when we have to do rebalance again */
  6450. unsigned long next_balance = jiffies + 60*HZ;
  6451. int update_next_balance = 0;
  6452. int need_serialize, need_decay = 0;
  6453. u64 max_cost = 0;
  6454. update_blocked_averages(cpu);
  6455. rcu_read_lock();
  6456. for_each_domain(cpu, sd) {
  6457. /*
  6458. * Decay the newidle max times here because this is a regular
  6459. * visit to all the domains. Decay ~1% per second.
  6460. */
  6461. if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
  6462. sd->max_newidle_lb_cost =
  6463. (sd->max_newidle_lb_cost * 253) / 256;
  6464. sd->next_decay_max_lb_cost = jiffies + HZ;
  6465. need_decay = 1;
  6466. }
  6467. max_cost += sd->max_newidle_lb_cost;
  6468. if (!(sd->flags & SD_LOAD_BALANCE))
  6469. continue;
  6470. /*
  6471. * Stop the load balance at this level. There is another
  6472. * CPU in our sched group which is doing load balancing more
  6473. * actively.
  6474. */
  6475. if (!continue_balancing) {
  6476. if (need_decay)
  6477. continue;
  6478. break;
  6479. }
  6480. interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
  6481. need_serialize = sd->flags & SD_SERIALIZE;
  6482. if (need_serialize) {
  6483. if (!spin_trylock(&balancing))
  6484. goto out;
  6485. }
  6486. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  6487. if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
  6488. /*
  6489. * The LBF_DST_PINNED logic could have changed
  6490. * env->dst_cpu, so we can't know our idle
  6491. * state even if we migrated tasks. Update it.
  6492. */
  6493. idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
  6494. }
  6495. sd->last_balance = jiffies;
  6496. interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
  6497. }
  6498. if (need_serialize)
  6499. spin_unlock(&balancing);
  6500. out:
  6501. if (time_after(next_balance, sd->last_balance + interval)) {
  6502. next_balance = sd->last_balance + interval;
  6503. update_next_balance = 1;
  6504. }
  6505. }
  6506. if (need_decay) {
  6507. /*
  6508. * Ensure the rq-wide value also decays but keep it at a
  6509. * reasonable floor to avoid funnies with rq->avg_idle.
  6510. */
  6511. rq->max_idle_balance_cost =
  6512. max((u64)sysctl_sched_migration_cost, max_cost);
  6513. }
  6514. rcu_read_unlock();
  6515. /*
  6516. * next_balance will be updated only when there is a need.
  6517. * When the cpu is attached to null domain for ex, it will not be
  6518. * updated.
  6519. */
  6520. if (likely(update_next_balance)) {
  6521. rq->next_balance = next_balance;
  6522. #ifdef CONFIG_NO_HZ_COMMON
  6523. /*
  6524. * If this CPU has been elected to perform the nohz idle
  6525. * balance. Other idle CPUs have already rebalanced with
  6526. * nohz_idle_balance() and nohz.next_balance has been
  6527. * updated accordingly. This CPU is now running the idle load
  6528. * balance for itself and we need to update the
  6529. * nohz.next_balance accordingly.
  6530. */
  6531. if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
  6532. nohz.next_balance = rq->next_balance;
  6533. #endif
  6534. }
  6535. }
  6536. #ifdef CONFIG_NO_HZ_COMMON
  6537. /*
  6538. * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
  6539. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  6540. */
  6541. static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
  6542. {
  6543. int this_cpu = this_rq->cpu;
  6544. struct rq *rq;
  6545. int balance_cpu;
  6546. /* Earliest time when we have to do rebalance again */
  6547. unsigned long next_balance = jiffies + 60*HZ;
  6548. int update_next_balance = 0;
  6549. if (idle != CPU_IDLE ||
  6550. !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
  6551. goto end;
  6552. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  6553. if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
  6554. continue;
  6555. /*
  6556. * If this cpu gets work to do, stop the load balancing
  6557. * work being done for other cpus. Next load
  6558. * balancing owner will pick it up.
  6559. */
  6560. if (need_resched())
  6561. break;
  6562. rq = cpu_rq(balance_cpu);
  6563. /*
  6564. * If time for next balance is due,
  6565. * do the balance.
  6566. */
  6567. if (time_after_eq(jiffies, rq->next_balance)) {
  6568. raw_spin_lock_irq(&rq->lock);
  6569. update_rq_clock(rq);
  6570. update_idle_cpu_load(rq);
  6571. raw_spin_unlock_irq(&rq->lock);
  6572. rebalance_domains(rq, CPU_IDLE);
  6573. }
  6574. if (time_after(next_balance, rq->next_balance)) {
  6575. next_balance = rq->next_balance;
  6576. update_next_balance = 1;
  6577. }
  6578. }
  6579. /*
  6580. * next_balance will be updated only when there is a need.
  6581. * When the CPU is attached to null domain for ex, it will not be
  6582. * updated.
  6583. */
  6584. if (likely(update_next_balance))
  6585. nohz.next_balance = next_balance;
  6586. end:
  6587. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
  6588. }
  6589. /*
  6590. * Current heuristic for kicking the idle load balancer in the presence
  6591. * of an idle cpu in the system.
  6592. * - This rq has more than one task.
  6593. * - This rq has at least one CFS task and the capacity of the CPU is
  6594. * significantly reduced because of RT tasks or IRQs.
  6595. * - At parent of LLC scheduler domain level, this cpu's scheduler group has
  6596. * multiple busy cpu.
  6597. * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
  6598. * domain span are idle.
  6599. */
  6600. static inline bool nohz_kick_needed(struct rq *rq)
  6601. {
  6602. unsigned long now = jiffies;
  6603. struct sched_domain *sd;
  6604. struct sched_group_capacity *sgc;
  6605. int nr_busy, cpu = rq->cpu;
  6606. bool kick = false;
  6607. if (unlikely(rq->idle_balance))
  6608. return false;
  6609. /*
  6610. * We may be recently in ticked or tickless idle mode. At the first
  6611. * busy tick after returning from idle, we will update the busy stats.
  6612. */
  6613. set_cpu_sd_state_busy();
  6614. nohz_balance_exit_idle(cpu);
  6615. /*
  6616. * None are in tickless mode and hence no need for NOHZ idle load
  6617. * balancing.
  6618. */
  6619. if (likely(!atomic_read(&nohz.nr_cpus)))
  6620. return false;
  6621. if (time_before(now, nohz.next_balance))
  6622. return false;
  6623. if (rq->nr_running >= 2)
  6624. return true;
  6625. rcu_read_lock();
  6626. sd = rcu_dereference(per_cpu(sd_busy, cpu));
  6627. if (sd) {
  6628. sgc = sd->groups->sgc;
  6629. nr_busy = atomic_read(&sgc->nr_busy_cpus);
  6630. if (nr_busy > 1) {
  6631. kick = true;
  6632. goto unlock;
  6633. }
  6634. }
  6635. sd = rcu_dereference(rq->sd);
  6636. if (sd) {
  6637. if ((rq->cfs.h_nr_running >= 1) &&
  6638. check_cpu_capacity(rq, sd)) {
  6639. kick = true;
  6640. goto unlock;
  6641. }
  6642. }
  6643. sd = rcu_dereference(per_cpu(sd_asym, cpu));
  6644. if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
  6645. sched_domain_span(sd)) < cpu)) {
  6646. kick = true;
  6647. goto unlock;
  6648. }
  6649. unlock:
  6650. rcu_read_unlock();
  6651. return kick;
  6652. }
  6653. #else
  6654. static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
  6655. #endif
  6656. /*
  6657. * run_rebalance_domains is triggered when needed from the scheduler tick.
  6658. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  6659. */
  6660. static void run_rebalance_domains(struct softirq_action *h)
  6661. {
  6662. struct rq *this_rq = this_rq();
  6663. enum cpu_idle_type idle = this_rq->idle_balance ?
  6664. CPU_IDLE : CPU_NOT_IDLE;
  6665. /*
  6666. * If this cpu has a pending nohz_balance_kick, then do the
  6667. * balancing on behalf of the other idle cpus whose ticks are
  6668. * stopped. Do nohz_idle_balance *before* rebalance_domains to
  6669. * give the idle cpus a chance to load balance. Else we may
  6670. * load balance only within the local sched_domain hierarchy
  6671. * and abort nohz_idle_balance altogether if we pull some load.
  6672. */
  6673. nohz_idle_balance(this_rq, idle);
  6674. rebalance_domains(this_rq, idle);
  6675. }
  6676. /*
  6677. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  6678. */
  6679. void trigger_load_balance(struct rq *rq)
  6680. {
  6681. /* Don't need to rebalance while attached to NULL domain */
  6682. if (unlikely(on_null_domain(rq)))
  6683. return;
  6684. if (time_after_eq(jiffies, rq->next_balance))
  6685. raise_softirq(SCHED_SOFTIRQ);
  6686. #ifdef CONFIG_NO_HZ_COMMON
  6687. if (nohz_kick_needed(rq))
  6688. nohz_balancer_kick();
  6689. #endif
  6690. }
  6691. static void rq_online_fair(struct rq *rq)
  6692. {
  6693. update_sysctl();
  6694. update_runtime_enabled(rq);
  6695. }
  6696. static void rq_offline_fair(struct rq *rq)
  6697. {
  6698. update_sysctl();
  6699. /* Ensure any throttled groups are reachable by pick_next_task */
  6700. unthrottle_offline_cfs_rqs(rq);
  6701. }
  6702. #endif /* CONFIG_SMP */
  6703. /*
  6704. * scheduler tick hitting a task of our scheduling class:
  6705. */
  6706. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  6707. {
  6708. struct cfs_rq *cfs_rq;
  6709. struct sched_entity *se = &curr->se;
  6710. for_each_sched_entity(se) {
  6711. cfs_rq = cfs_rq_of(se);
  6712. entity_tick(cfs_rq, se, queued);
  6713. }
  6714. if (static_branch_unlikely(&sched_numa_balancing))
  6715. task_tick_numa(rq, curr);
  6716. }
  6717. /*
  6718. * called on fork with the child task as argument from the parent's context
  6719. * - child not yet on the tasklist
  6720. * - preemption disabled
  6721. */
  6722. static void task_fork_fair(struct task_struct *p)
  6723. {
  6724. struct cfs_rq *cfs_rq;
  6725. struct sched_entity *se = &p->se, *curr;
  6726. int this_cpu = smp_processor_id();
  6727. struct rq *rq = this_rq();
  6728. unsigned long flags;
  6729. raw_spin_lock_irqsave(&rq->lock, flags);
  6730. update_rq_clock(rq);
  6731. cfs_rq = task_cfs_rq(current);
  6732. curr = cfs_rq->curr;
  6733. /*
  6734. * Not only the cpu but also the task_group of the parent might have
  6735. * been changed after parent->se.parent,cfs_rq were copied to
  6736. * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
  6737. * of child point to valid ones.
  6738. */
  6739. rcu_read_lock();
  6740. __set_task_cpu(p, this_cpu);
  6741. rcu_read_unlock();
  6742. update_curr(cfs_rq);
  6743. if (curr)
  6744. se->vruntime = curr->vruntime;
  6745. place_entity(cfs_rq, se, 1);
  6746. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  6747. /*
  6748. * Upon rescheduling, sched_class::put_prev_task() will place
  6749. * 'current' within the tree based on its new key value.
  6750. */
  6751. swap(curr->vruntime, se->vruntime);
  6752. resched_curr(rq);
  6753. }
  6754. se->vruntime -= cfs_rq->min_vruntime;
  6755. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6756. }
  6757. /*
  6758. * Priority of the task has changed. Check to see if we preempt
  6759. * the current task.
  6760. */
  6761. static void
  6762. prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
  6763. {
  6764. if (!task_on_rq_queued(p))
  6765. return;
  6766. /*
  6767. * Reschedule if we are currently running on this runqueue and
  6768. * our priority decreased, or if we are not currently running on
  6769. * this runqueue and our priority is higher than the current's
  6770. */
  6771. if (rq->curr == p) {
  6772. if (p->prio > oldprio)
  6773. resched_curr(rq);
  6774. } else
  6775. check_preempt_curr(rq, p, 0);
  6776. }
  6777. static inline bool vruntime_normalized(struct task_struct *p)
  6778. {
  6779. struct sched_entity *se = &p->se;
  6780. /*
  6781. * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
  6782. * the dequeue_entity(.flags=0) will already have normalized the
  6783. * vruntime.
  6784. */
  6785. if (p->on_rq)
  6786. return true;
  6787. /*
  6788. * When !on_rq, vruntime of the task has usually NOT been normalized.
  6789. * But there are some cases where it has already been normalized:
  6790. *
  6791. * - A forked child which is waiting for being woken up by
  6792. * wake_up_new_task().
  6793. * - A task which has been woken up by try_to_wake_up() and
  6794. * waiting for actually being woken up by sched_ttwu_pending().
  6795. */
  6796. if (!se->sum_exec_runtime || p->state == TASK_WAKING)
  6797. return true;
  6798. return false;
  6799. }
  6800. static void detach_task_cfs_rq(struct task_struct *p)
  6801. {
  6802. struct sched_entity *se = &p->se;
  6803. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  6804. if (!vruntime_normalized(p)) {
  6805. /*
  6806. * Fix up our vruntime so that the current sleep doesn't
  6807. * cause 'unlimited' sleep bonus.
  6808. */
  6809. place_entity(cfs_rq, se, 0);
  6810. se->vruntime -= cfs_rq->min_vruntime;
  6811. }
  6812. /* Catch up with the cfs_rq and remove our load when we leave */
  6813. detach_entity_load_avg(cfs_rq, se);
  6814. }
  6815. static void attach_task_cfs_rq(struct task_struct *p)
  6816. {
  6817. struct sched_entity *se = &p->se;
  6818. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  6819. #ifdef CONFIG_FAIR_GROUP_SCHED
  6820. /*
  6821. * Since the real-depth could have been changed (only FAIR
  6822. * class maintain depth value), reset depth properly.
  6823. */
  6824. se->depth = se->parent ? se->parent->depth + 1 : 0;
  6825. #endif
  6826. /* Synchronize task with its cfs_rq */
  6827. attach_entity_load_avg(cfs_rq, se);
  6828. if (!vruntime_normalized(p))
  6829. se->vruntime += cfs_rq->min_vruntime;
  6830. }
  6831. static void switched_from_fair(struct rq *rq, struct task_struct *p)
  6832. {
  6833. detach_task_cfs_rq(p);
  6834. }
  6835. static void switched_to_fair(struct rq *rq, struct task_struct *p)
  6836. {
  6837. attach_task_cfs_rq(p);
  6838. if (task_on_rq_queued(p)) {
  6839. /*
  6840. * We were most likely switched from sched_rt, so
  6841. * kick off the schedule if running, otherwise just see
  6842. * if we can still preempt the current task.
  6843. */
  6844. if (rq->curr == p)
  6845. resched_curr(rq);
  6846. else
  6847. check_preempt_curr(rq, p, 0);
  6848. }
  6849. }
  6850. /* Account for a task changing its policy or group.
  6851. *
  6852. * This routine is mostly called to set cfs_rq->curr field when a task
  6853. * migrates between groups/classes.
  6854. */
  6855. static void set_curr_task_fair(struct rq *rq)
  6856. {
  6857. struct sched_entity *se = &rq->curr->se;
  6858. for_each_sched_entity(se) {
  6859. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  6860. set_next_entity(cfs_rq, se);
  6861. /* ensure bandwidth has been allocated on our new cfs_rq */
  6862. account_cfs_rq_runtime(cfs_rq, 0);
  6863. }
  6864. }
  6865. void init_cfs_rq(struct cfs_rq *cfs_rq)
  6866. {
  6867. cfs_rq->tasks_timeline = RB_ROOT;
  6868. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6869. #ifndef CONFIG_64BIT
  6870. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  6871. #endif
  6872. #ifdef CONFIG_SMP
  6873. atomic_long_set(&cfs_rq->removed_load_avg, 0);
  6874. atomic_long_set(&cfs_rq->removed_util_avg, 0);
  6875. #endif
  6876. }
  6877. #ifdef CONFIG_FAIR_GROUP_SCHED
  6878. static void task_move_group_fair(struct task_struct *p)
  6879. {
  6880. detach_task_cfs_rq(p);
  6881. set_task_rq(p, task_cpu(p));
  6882. #ifdef CONFIG_SMP
  6883. /* Tell se's cfs_rq has been changed -- migrated */
  6884. p->se.avg.last_update_time = 0;
  6885. #endif
  6886. attach_task_cfs_rq(p);
  6887. }
  6888. void free_fair_sched_group(struct task_group *tg)
  6889. {
  6890. int i;
  6891. destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
  6892. for_each_possible_cpu(i) {
  6893. if (tg->cfs_rq)
  6894. kfree(tg->cfs_rq[i]);
  6895. if (tg->se)
  6896. kfree(tg->se[i]);
  6897. }
  6898. kfree(tg->cfs_rq);
  6899. kfree(tg->se);
  6900. }
  6901. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6902. {
  6903. struct cfs_rq *cfs_rq;
  6904. struct sched_entity *se;
  6905. int i;
  6906. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6907. if (!tg->cfs_rq)
  6908. goto err;
  6909. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6910. if (!tg->se)
  6911. goto err;
  6912. tg->shares = NICE_0_LOAD;
  6913. init_cfs_bandwidth(tg_cfs_bandwidth(tg));
  6914. for_each_possible_cpu(i) {
  6915. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  6916. GFP_KERNEL, cpu_to_node(i));
  6917. if (!cfs_rq)
  6918. goto err;
  6919. se = kzalloc_node(sizeof(struct sched_entity),
  6920. GFP_KERNEL, cpu_to_node(i));
  6921. if (!se)
  6922. goto err_free_rq;
  6923. init_cfs_rq(cfs_rq);
  6924. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  6925. init_entity_runnable_average(se);
  6926. }
  6927. return 1;
  6928. err_free_rq:
  6929. kfree(cfs_rq);
  6930. err:
  6931. return 0;
  6932. }
  6933. void unregister_fair_sched_group(struct task_group *tg)
  6934. {
  6935. unsigned long flags;
  6936. struct rq *rq;
  6937. int cpu;
  6938. for_each_possible_cpu(cpu) {
  6939. if (tg->se[cpu])
  6940. remove_entity_load_avg(tg->se[cpu]);
  6941. /*
  6942. * Only empty task groups can be destroyed; so we can speculatively
  6943. * check on_list without danger of it being re-added.
  6944. */
  6945. if (!tg->cfs_rq[cpu]->on_list)
  6946. continue;
  6947. rq = cpu_rq(cpu);
  6948. raw_spin_lock_irqsave(&rq->lock, flags);
  6949. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  6950. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6951. }
  6952. }
  6953. void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6954. struct sched_entity *se, int cpu,
  6955. struct sched_entity *parent)
  6956. {
  6957. struct rq *rq = cpu_rq(cpu);
  6958. cfs_rq->tg = tg;
  6959. cfs_rq->rq = rq;
  6960. init_cfs_rq_runtime(cfs_rq);
  6961. tg->cfs_rq[cpu] = cfs_rq;
  6962. tg->se[cpu] = se;
  6963. /* se could be NULL for root_task_group */
  6964. if (!se)
  6965. return;
  6966. if (!parent) {
  6967. se->cfs_rq = &rq->cfs;
  6968. se->depth = 0;
  6969. } else {
  6970. se->cfs_rq = parent->my_q;
  6971. se->depth = parent->depth + 1;
  6972. }
  6973. se->my_q = cfs_rq;
  6974. /* guarantee group entities always have weight */
  6975. update_load_set(&se->load, NICE_0_LOAD);
  6976. se->parent = parent;
  6977. }
  6978. static DEFINE_MUTEX(shares_mutex);
  6979. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6980. {
  6981. int i;
  6982. unsigned long flags;
  6983. /*
  6984. * We can't change the weight of the root cgroup.
  6985. */
  6986. if (!tg->se[0])
  6987. return -EINVAL;
  6988. shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
  6989. mutex_lock(&shares_mutex);
  6990. if (tg->shares == shares)
  6991. goto done;
  6992. tg->shares = shares;
  6993. for_each_possible_cpu(i) {
  6994. struct rq *rq = cpu_rq(i);
  6995. struct sched_entity *se;
  6996. se = tg->se[i];
  6997. /* Propagate contribution to hierarchy */
  6998. raw_spin_lock_irqsave(&rq->lock, flags);
  6999. /* Possible calls to update_curr() need rq clock */
  7000. update_rq_clock(rq);
  7001. for_each_sched_entity(se)
  7002. update_cfs_shares(group_cfs_rq(se));
  7003. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7004. }
  7005. done:
  7006. mutex_unlock(&shares_mutex);
  7007. return 0;
  7008. }
  7009. #else /* CONFIG_FAIR_GROUP_SCHED */
  7010. void free_fair_sched_group(struct task_group *tg) { }
  7011. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7012. {
  7013. return 1;
  7014. }
  7015. void unregister_fair_sched_group(struct task_group *tg) { }
  7016. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7017. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  7018. {
  7019. struct sched_entity *se = &task->se;
  7020. unsigned int rr_interval = 0;
  7021. /*
  7022. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  7023. * idle runqueue:
  7024. */
  7025. if (rq->cfs.load.weight)
  7026. rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
  7027. return rr_interval;
  7028. }
  7029. /*
  7030. * All the scheduling class methods:
  7031. */
  7032. const struct sched_class fair_sched_class = {
  7033. .next = &idle_sched_class,
  7034. .enqueue_task = enqueue_task_fair,
  7035. .dequeue_task = dequeue_task_fair,
  7036. .yield_task = yield_task_fair,
  7037. .yield_to_task = yield_to_task_fair,
  7038. .check_preempt_curr = check_preempt_wakeup,
  7039. .pick_next_task = pick_next_task_fair,
  7040. .put_prev_task = put_prev_task_fair,
  7041. #ifdef CONFIG_SMP
  7042. .select_task_rq = select_task_rq_fair,
  7043. .migrate_task_rq = migrate_task_rq_fair,
  7044. .rq_online = rq_online_fair,
  7045. .rq_offline = rq_offline_fair,
  7046. .task_waking = task_waking_fair,
  7047. .task_dead = task_dead_fair,
  7048. .set_cpus_allowed = set_cpus_allowed_common,
  7049. #endif
  7050. .set_curr_task = set_curr_task_fair,
  7051. .task_tick = task_tick_fair,
  7052. .task_fork = task_fork_fair,
  7053. .prio_changed = prio_changed_fair,
  7054. .switched_from = switched_from_fair,
  7055. .switched_to = switched_to_fair,
  7056. .get_rr_interval = get_rr_interval_fair,
  7057. .update_curr = update_curr_fair,
  7058. #ifdef CONFIG_FAIR_GROUP_SCHED
  7059. .task_move_group = task_move_group_fair,
  7060. #endif
  7061. };
  7062. #ifdef CONFIG_SCHED_DEBUG
  7063. void print_cfs_stats(struct seq_file *m, int cpu)
  7064. {
  7065. struct cfs_rq *cfs_rq;
  7066. rcu_read_lock();
  7067. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  7068. print_cfs_rq(m, cpu, cfs_rq);
  7069. rcu_read_unlock();
  7070. }
  7071. #ifdef CONFIG_NUMA_BALANCING
  7072. void show_numa_stats(struct task_struct *p, struct seq_file *m)
  7073. {
  7074. int node;
  7075. unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
  7076. for_each_online_node(node) {
  7077. if (p->numa_faults) {
  7078. tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
  7079. tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
  7080. }
  7081. if (p->numa_group) {
  7082. gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
  7083. gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
  7084. }
  7085. print_numa_stats(m, node, tsf, tpf, gsf, gpf);
  7086. }
  7087. }
  7088. #endif /* CONFIG_NUMA_BALANCING */
  7089. #endif /* CONFIG_SCHED_DEBUG */
  7090. __init void init_sched_fair_class(void)
  7091. {
  7092. #ifdef CONFIG_SMP
  7093. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7094. #ifdef CONFIG_NO_HZ_COMMON
  7095. nohz.next_balance = jiffies;
  7096. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  7097. cpu_notifier(sched_ilb_notifier, 0);
  7098. #endif
  7099. #endif /* SMP */
  7100. }