123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397 |
- /*
- * kernel/sched/loadavg.c
- *
- * This file contains the magic bits required to compute the global loadavg
- * figure. Its a silly number but people think its important. We go through
- * great pains to make it work on big machines and tickless kernels.
- */
- #include <linux/export.h>
- #include "sched.h"
- /*
- * Global load-average calculations
- *
- * We take a distributed and async approach to calculating the global load-avg
- * in order to minimize overhead.
- *
- * The global load average is an exponentially decaying average of nr_running +
- * nr_uninterruptible.
- *
- * Once every LOAD_FREQ:
- *
- * nr_active = 0;
- * for_each_possible_cpu(cpu)
- * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
- *
- * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
- *
- * Due to a number of reasons the above turns in the mess below:
- *
- * - for_each_possible_cpu() is prohibitively expensive on machines with
- * serious number of cpus, therefore we need to take a distributed approach
- * to calculating nr_active.
- *
- * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
- * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
- *
- * So assuming nr_active := 0 when we start out -- true per definition, we
- * can simply take per-cpu deltas and fold those into a global accumulate
- * to obtain the same result. See calc_load_fold_active().
- *
- * Furthermore, in order to avoid synchronizing all per-cpu delta folding
- * across the machine, we assume 10 ticks is sufficient time for every
- * cpu to have completed this task.
- *
- * This places an upper-bound on the IRQ-off latency of the machine. Then
- * again, being late doesn't loose the delta, just wrecks the sample.
- *
- * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
- * this would add another cross-cpu cacheline miss and atomic operation
- * to the wakeup path. Instead we increment on whatever cpu the task ran
- * when it went into uninterruptible state and decrement on whatever cpu
- * did the wakeup. This means that only the sum of nr_uninterruptible over
- * all cpus yields the correct result.
- *
- * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
- */
- /* Variables and functions for calc_load */
- atomic_long_t calc_load_tasks;
- unsigned long calc_load_update;
- unsigned long avenrun[3];
- EXPORT_SYMBOL(avenrun); /* should be removed */
- /**
- * get_avenrun - get the load average array
- * @loads: pointer to dest load array
- * @offset: offset to add
- * @shift: shift count to shift the result left
- *
- * These values are estimates at best, so no need for locking.
- */
- void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
- {
- loads[0] = (avenrun[0] + offset) << shift;
- loads[1] = (avenrun[1] + offset) << shift;
- loads[2] = (avenrun[2] + offset) << shift;
- }
- long calc_load_fold_active(struct rq *this_rq)
- {
- long nr_active, delta = 0;
- nr_active = this_rq->nr_running;
- nr_active += (long)this_rq->nr_uninterruptible;
- if (nr_active != this_rq->calc_load_active) {
- delta = nr_active - this_rq->calc_load_active;
- this_rq->calc_load_active = nr_active;
- }
- return delta;
- }
- /*
- * a1 = a0 * e + a * (1 - e)
- */
- static unsigned long
- calc_load(unsigned long load, unsigned long exp, unsigned long active)
- {
- unsigned long newload;
- newload = load * exp + active * (FIXED_1 - exp);
- if (active >= load)
- newload += FIXED_1-1;
- return newload / FIXED_1;
- }
- #ifdef CONFIG_NO_HZ_COMMON
- /*
- * Handle NO_HZ for the global load-average.
- *
- * Since the above described distributed algorithm to compute the global
- * load-average relies on per-cpu sampling from the tick, it is affected by
- * NO_HZ.
- *
- * The basic idea is to fold the nr_active delta into a global idle-delta upon
- * entering NO_HZ state such that we can include this as an 'extra' cpu delta
- * when we read the global state.
- *
- * Obviously reality has to ruin such a delightfully simple scheme:
- *
- * - When we go NO_HZ idle during the window, we can negate our sample
- * contribution, causing under-accounting.
- *
- * We avoid this by keeping two idle-delta counters and flipping them
- * when the window starts, thus separating old and new NO_HZ load.
- *
- * The only trick is the slight shift in index flip for read vs write.
- *
- * 0s 5s 10s 15s
- * +10 +10 +10 +10
- * |-|-----------|-|-----------|-|-----------|-|
- * r:0 0 1 1 0 0 1 1 0
- * w:0 1 1 0 0 1 1 0 0
- *
- * This ensures we'll fold the old idle contribution in this window while
- * accumlating the new one.
- *
- * - When we wake up from NO_HZ idle during the window, we push up our
- * contribution, since we effectively move our sample point to a known
- * busy state.
- *
- * This is solved by pushing the window forward, and thus skipping the
- * sample, for this cpu (effectively using the idle-delta for this cpu which
- * was in effect at the time the window opened). This also solves the issue
- * of having to deal with a cpu having been in NOHZ idle for multiple
- * LOAD_FREQ intervals.
- *
- * When making the ILB scale, we should try to pull this in as well.
- */
- static atomic_long_t calc_load_idle[2];
- static int calc_load_idx;
- static inline int calc_load_write_idx(void)
- {
- int idx = calc_load_idx;
- /*
- * See calc_global_nohz(), if we observe the new index, we also
- * need to observe the new update time.
- */
- smp_rmb();
- /*
- * If the folding window started, make sure we start writing in the
- * next idle-delta.
- */
- if (!time_before(jiffies, calc_load_update))
- idx++;
- return idx & 1;
- }
- static inline int calc_load_read_idx(void)
- {
- return calc_load_idx & 1;
- }
- void calc_load_enter_idle(void)
- {
- struct rq *this_rq = this_rq();
- long delta;
- /*
- * We're going into NOHZ mode, if there's any pending delta, fold it
- * into the pending idle delta.
- */
- delta = calc_load_fold_active(this_rq);
- if (delta) {
- int idx = calc_load_write_idx();
- atomic_long_add(delta, &calc_load_idle[idx]);
- }
- }
- void calc_load_exit_idle(void)
- {
- struct rq *this_rq = this_rq();
- /*
- * If we're still before the pending sample window, we're done.
- */
- this_rq->calc_load_update = calc_load_update;
- if (time_before(jiffies, this_rq->calc_load_update))
- return;
- /*
- * We woke inside or after the sample window, this means we're already
- * accounted through the nohz accounting, so skip the entire deal and
- * sync up for the next window.
- */
- if (time_before(jiffies, this_rq->calc_load_update + 10))
- this_rq->calc_load_update += LOAD_FREQ;
- }
- static long calc_load_fold_idle(void)
- {
- int idx = calc_load_read_idx();
- long delta = 0;
- if (atomic_long_read(&calc_load_idle[idx]))
- delta = atomic_long_xchg(&calc_load_idle[idx], 0);
- return delta;
- }
- /**
- * fixed_power_int - compute: x^n, in O(log n) time
- *
- * @x: base of the power
- * @frac_bits: fractional bits of @x
- * @n: power to raise @x to.
- *
- * By exploiting the relation between the definition of the natural power
- * function: x^n := x*x*...*x (x multiplied by itself for n times), and
- * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
- * (where: n_i \elem {0, 1}, the binary vector representing n),
- * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
- * of course trivially computable in O(log_2 n), the length of our binary
- * vector.
- */
- static unsigned long
- fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
- {
- unsigned long result = 1UL << frac_bits;
- if (n) {
- for (;;) {
- if (n & 1) {
- result *= x;
- result += 1UL << (frac_bits - 1);
- result >>= frac_bits;
- }
- n >>= 1;
- if (!n)
- break;
- x *= x;
- x += 1UL << (frac_bits - 1);
- x >>= frac_bits;
- }
- }
- return result;
- }
- /*
- * a1 = a0 * e + a * (1 - e)
- *
- * a2 = a1 * e + a * (1 - e)
- * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
- * = a0 * e^2 + a * (1 - e) * (1 + e)
- *
- * a3 = a2 * e + a * (1 - e)
- * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
- * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
- *
- * ...
- *
- * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
- * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
- * = a0 * e^n + a * (1 - e^n)
- *
- * [1] application of the geometric series:
- *
- * n 1 - x^(n+1)
- * S_n := \Sum x^i = -------------
- * i=0 1 - x
- */
- static unsigned long
- calc_load_n(unsigned long load, unsigned long exp,
- unsigned long active, unsigned int n)
- {
- return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
- }
- /*
- * NO_HZ can leave us missing all per-cpu ticks calling
- * calc_load_account_active(), but since an idle CPU folds its delta into
- * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
- * in the pending idle delta if our idle period crossed a load cycle boundary.
- *
- * Once we've updated the global active value, we need to apply the exponential
- * weights adjusted to the number of cycles missed.
- */
- static void calc_global_nohz(void)
- {
- long delta, active, n;
- if (!time_before(jiffies, calc_load_update + 10)) {
- /*
- * Catch-up, fold however many we are behind still
- */
- delta = jiffies - calc_load_update - 10;
- n = 1 + (delta / LOAD_FREQ);
- active = atomic_long_read(&calc_load_tasks);
- active = active > 0 ? active * FIXED_1 : 0;
- avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
- avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
- avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
- calc_load_update += n * LOAD_FREQ;
- }
- /*
- * Flip the idle index...
- *
- * Make sure we first write the new time then flip the index, so that
- * calc_load_write_idx() will see the new time when it reads the new
- * index, this avoids a double flip messing things up.
- */
- smp_wmb();
- calc_load_idx++;
- }
- #else /* !CONFIG_NO_HZ_COMMON */
- static inline long calc_load_fold_idle(void) { return 0; }
- static inline void calc_global_nohz(void) { }
- #endif /* CONFIG_NO_HZ_COMMON */
- /*
- * calc_load - update the avenrun load estimates 10 ticks after the
- * CPUs have updated calc_load_tasks.
- *
- * Called from the global timer code.
- */
- void calc_global_load(unsigned long ticks)
- {
- long active, delta;
- if (time_before(jiffies, calc_load_update + 10))
- return;
- /*
- * Fold the 'old' idle-delta to include all NO_HZ cpus.
- */
- delta = calc_load_fold_idle();
- if (delta)
- atomic_long_add(delta, &calc_load_tasks);
- active = atomic_long_read(&calc_load_tasks);
- active = active > 0 ? active * FIXED_1 : 0;
- avenrun[0] = calc_load(avenrun[0], EXP_1, active);
- avenrun[1] = calc_load(avenrun[1], EXP_5, active);
- avenrun[2] = calc_load(avenrun[2], EXP_15, active);
- calc_load_update += LOAD_FREQ;
- /*
- * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
- */
- calc_global_nohz();
- }
- /*
- * Called from scheduler_tick() to periodically update this CPU's
- * active count.
- */
- void calc_global_load_tick(struct rq *this_rq)
- {
- long delta;
- if (time_before(jiffies, this_rq->calc_load_update))
- return;
- delta = calc_load_fold_active(this_rq);
- if (delta)
- atomic_long_add(delta, &calc_load_tasks);
- this_rq->calc_load_update += LOAD_FREQ;
- }
|