time.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766
  1. /*
  2. * linux/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. *
  6. * This file contains the interface functions for the various
  7. * time related system calls: time, stime, gettimeofday, settimeofday,
  8. * adjtime
  9. */
  10. /*
  11. * Modification history kernel/time.c
  12. *
  13. * 1993-09-02 Philip Gladstone
  14. * Created file with time related functions from sched/core.c and adjtimex()
  15. * 1993-10-08 Torsten Duwe
  16. * adjtime interface update and CMOS clock write code
  17. * 1995-08-13 Torsten Duwe
  18. * kernel PLL updated to 1994-12-13 specs (rfc-1589)
  19. * 1999-01-16 Ulrich Windl
  20. * Introduced error checking for many cases in adjtimex().
  21. * Updated NTP code according to technical memorandum Jan '96
  22. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  23. * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
  24. * (Even though the technical memorandum forbids it)
  25. * 2004-07-14 Christoph Lameter
  26. * Added getnstimeofday to allow the posix timer functions to return
  27. * with nanosecond accuracy
  28. */
  29. #include <linux/export.h>
  30. #include <linux/kernel.h>
  31. #include <linux/timex.h>
  32. #include <linux/capability.h>
  33. #include <linux/timekeeper_internal.h>
  34. #include <linux/errno.h>
  35. #include <linux/syscalls.h>
  36. #include <linux/security.h>
  37. #include <linux/fs.h>
  38. #include <linux/math64.h>
  39. #include <linux/ptrace.h>
  40. #include <asm/uaccess.h>
  41. #include <asm/unistd.h>
  42. #include <generated/timeconst.h>
  43. #include "timekeeping.h"
  44. /*
  45. * The timezone where the local system is located. Used as a default by some
  46. * programs who obtain this value by using gettimeofday.
  47. */
  48. struct timezone sys_tz;
  49. EXPORT_SYMBOL(sys_tz);
  50. #ifdef __ARCH_WANT_SYS_TIME
  51. /*
  52. * sys_time() can be implemented in user-level using
  53. * sys_gettimeofday(). Is this for backwards compatibility? If so,
  54. * why not move it into the appropriate arch directory (for those
  55. * architectures that need it).
  56. */
  57. SYSCALL_DEFINE1(time, time_t __user *, tloc)
  58. {
  59. time_t i = get_seconds();
  60. if (tloc) {
  61. if (put_user(i,tloc))
  62. return -EFAULT;
  63. }
  64. force_successful_syscall_return();
  65. return i;
  66. }
  67. /*
  68. * sys_stime() can be implemented in user-level using
  69. * sys_settimeofday(). Is this for backwards compatibility? If so,
  70. * why not move it into the appropriate arch directory (for those
  71. * architectures that need it).
  72. */
  73. SYSCALL_DEFINE1(stime, time_t __user *, tptr)
  74. {
  75. struct timespec tv;
  76. int err;
  77. if (get_user(tv.tv_sec, tptr))
  78. return -EFAULT;
  79. tv.tv_nsec = 0;
  80. err = security_settime(&tv, NULL);
  81. if (err)
  82. return err;
  83. do_settimeofday(&tv);
  84. return 0;
  85. }
  86. #endif /* __ARCH_WANT_SYS_TIME */
  87. SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
  88. struct timezone __user *, tz)
  89. {
  90. if (likely(tv != NULL)) {
  91. struct timeval ktv;
  92. do_gettimeofday(&ktv);
  93. if (copy_to_user(tv, &ktv, sizeof(ktv)))
  94. return -EFAULT;
  95. }
  96. if (unlikely(tz != NULL)) {
  97. if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
  98. return -EFAULT;
  99. }
  100. return 0;
  101. }
  102. /*
  103. * Indicates if there is an offset between the system clock and the hardware
  104. * clock/persistent clock/rtc.
  105. */
  106. int persistent_clock_is_local;
  107. /*
  108. * Adjust the time obtained from the CMOS to be UTC time instead of
  109. * local time.
  110. *
  111. * This is ugly, but preferable to the alternatives. Otherwise we
  112. * would either need to write a program to do it in /etc/rc (and risk
  113. * confusion if the program gets run more than once; it would also be
  114. * hard to make the program warp the clock precisely n hours) or
  115. * compile in the timezone information into the kernel. Bad, bad....
  116. *
  117. * - TYT, 1992-01-01
  118. *
  119. * The best thing to do is to keep the CMOS clock in universal time (UTC)
  120. * as real UNIX machines always do it. This avoids all headaches about
  121. * daylight saving times and warping kernel clocks.
  122. */
  123. static inline void warp_clock(void)
  124. {
  125. if (sys_tz.tz_minuteswest != 0) {
  126. struct timespec adjust;
  127. persistent_clock_is_local = 1;
  128. adjust.tv_sec = sys_tz.tz_minuteswest * 60;
  129. adjust.tv_nsec = 0;
  130. timekeeping_inject_offset(&adjust);
  131. }
  132. }
  133. /*
  134. * In case for some reason the CMOS clock has not already been running
  135. * in UTC, but in some local time: The first time we set the timezone,
  136. * we will warp the clock so that it is ticking UTC time instead of
  137. * local time. Presumably, if someone is setting the timezone then we
  138. * are running in an environment where the programs understand about
  139. * timezones. This should be done at boot time in the /etc/rc script,
  140. * as soon as possible, so that the clock can be set right. Otherwise,
  141. * various programs will get confused when the clock gets warped.
  142. */
  143. int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
  144. {
  145. static int firsttime = 1;
  146. int error = 0;
  147. if (tv && !timespec_valid(tv))
  148. return -EINVAL;
  149. error = security_settime(tv, tz);
  150. if (error)
  151. return error;
  152. if (tz) {
  153. /* Verify we're witin the +-15 hrs range */
  154. if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
  155. return -EINVAL;
  156. sys_tz = *tz;
  157. update_vsyscall_tz();
  158. if (firsttime) {
  159. firsttime = 0;
  160. if (!tv)
  161. warp_clock();
  162. }
  163. }
  164. if (tv)
  165. return do_settimeofday(tv);
  166. return 0;
  167. }
  168. SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
  169. struct timezone __user *, tz)
  170. {
  171. struct timeval user_tv;
  172. struct timespec new_ts;
  173. struct timezone new_tz;
  174. if (tv) {
  175. if (copy_from_user(&user_tv, tv, sizeof(*tv)))
  176. return -EFAULT;
  177. if (!timeval_valid(&user_tv))
  178. return -EINVAL;
  179. new_ts.tv_sec = user_tv.tv_sec;
  180. new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
  181. }
  182. if (tz) {
  183. if (copy_from_user(&new_tz, tz, sizeof(*tz)))
  184. return -EFAULT;
  185. }
  186. return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
  187. }
  188. SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
  189. {
  190. struct timex txc; /* Local copy of parameter */
  191. int ret;
  192. /* Copy the user data space into the kernel copy
  193. * structure. But bear in mind that the structures
  194. * may change
  195. */
  196. if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
  197. return -EFAULT;
  198. ret = do_adjtimex(&txc);
  199. return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
  200. }
  201. /**
  202. * current_fs_time - Return FS time
  203. * @sb: Superblock.
  204. *
  205. * Return the current time truncated to the time granularity supported by
  206. * the fs.
  207. */
  208. struct timespec current_fs_time(struct super_block *sb)
  209. {
  210. struct timespec now = current_kernel_time();
  211. return timespec_trunc(now, sb->s_time_gran);
  212. }
  213. EXPORT_SYMBOL(current_fs_time);
  214. /*
  215. * Convert jiffies to milliseconds and back.
  216. *
  217. * Avoid unnecessary multiplications/divisions in the
  218. * two most common HZ cases:
  219. */
  220. unsigned int jiffies_to_msecs(const unsigned long j)
  221. {
  222. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  223. return (MSEC_PER_SEC / HZ) * j;
  224. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  225. return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
  226. #else
  227. # if BITS_PER_LONG == 32
  228. return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
  229. HZ_TO_MSEC_SHR32;
  230. # else
  231. return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
  232. # endif
  233. #endif
  234. }
  235. EXPORT_SYMBOL(jiffies_to_msecs);
  236. unsigned int jiffies_to_usecs(const unsigned long j)
  237. {
  238. /*
  239. * Hz usually doesn't go much further MSEC_PER_SEC.
  240. * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
  241. */
  242. BUILD_BUG_ON(HZ > USEC_PER_SEC);
  243. #if !(USEC_PER_SEC % HZ)
  244. return (USEC_PER_SEC / HZ) * j;
  245. #else
  246. # if BITS_PER_LONG == 32
  247. return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
  248. # else
  249. return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
  250. # endif
  251. #endif
  252. }
  253. EXPORT_SYMBOL(jiffies_to_usecs);
  254. /**
  255. * timespec_trunc - Truncate timespec to a granularity
  256. * @t: Timespec
  257. * @gran: Granularity in ns.
  258. *
  259. * Truncate a timespec to a granularity. Always rounds down. gran must
  260. * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
  261. */
  262. struct timespec timespec_trunc(struct timespec t, unsigned gran)
  263. {
  264. /* Avoid division in the common cases 1 ns and 1 s. */
  265. if (gran == 1) {
  266. /* nothing */
  267. } else if (gran == NSEC_PER_SEC) {
  268. t.tv_nsec = 0;
  269. } else if (gran > 1 && gran < NSEC_PER_SEC) {
  270. t.tv_nsec -= t.tv_nsec % gran;
  271. } else {
  272. WARN(1, "illegal file time granularity: %u", gran);
  273. }
  274. return t;
  275. }
  276. EXPORT_SYMBOL(timespec_trunc);
  277. /*
  278. * mktime64 - Converts date to seconds.
  279. * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
  280. * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
  281. * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
  282. *
  283. * [For the Julian calendar (which was used in Russia before 1917,
  284. * Britain & colonies before 1752, anywhere else before 1582,
  285. * and is still in use by some communities) leave out the
  286. * -year/100+year/400 terms, and add 10.]
  287. *
  288. * This algorithm was first published by Gauss (I think).
  289. */
  290. time64_t mktime64(const unsigned int year0, const unsigned int mon0,
  291. const unsigned int day, const unsigned int hour,
  292. const unsigned int min, const unsigned int sec)
  293. {
  294. unsigned int mon = mon0, year = year0;
  295. /* 1..12 -> 11,12,1..10 */
  296. if (0 >= (int) (mon -= 2)) {
  297. mon += 12; /* Puts Feb last since it has leap day */
  298. year -= 1;
  299. }
  300. return ((((time64_t)
  301. (year/4 - year/100 + year/400 + 367*mon/12 + day) +
  302. year*365 - 719499
  303. )*24 + hour /* now have hours */
  304. )*60 + min /* now have minutes */
  305. )*60 + sec; /* finally seconds */
  306. }
  307. EXPORT_SYMBOL(mktime64);
  308. /**
  309. * set_normalized_timespec - set timespec sec and nsec parts and normalize
  310. *
  311. * @ts: pointer to timespec variable to be set
  312. * @sec: seconds to set
  313. * @nsec: nanoseconds to set
  314. *
  315. * Set seconds and nanoseconds field of a timespec variable and
  316. * normalize to the timespec storage format
  317. *
  318. * Note: The tv_nsec part is always in the range of
  319. * 0 <= tv_nsec < NSEC_PER_SEC
  320. * For negative values only the tv_sec field is negative !
  321. */
  322. void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
  323. {
  324. while (nsec >= NSEC_PER_SEC) {
  325. /*
  326. * The following asm() prevents the compiler from
  327. * optimising this loop into a modulo operation. See
  328. * also __iter_div_u64_rem() in include/linux/time.h
  329. */
  330. asm("" : "+rm"(nsec));
  331. nsec -= NSEC_PER_SEC;
  332. ++sec;
  333. }
  334. while (nsec < 0) {
  335. asm("" : "+rm"(nsec));
  336. nsec += NSEC_PER_SEC;
  337. --sec;
  338. }
  339. ts->tv_sec = sec;
  340. ts->tv_nsec = nsec;
  341. }
  342. EXPORT_SYMBOL(set_normalized_timespec);
  343. /**
  344. * ns_to_timespec - Convert nanoseconds to timespec
  345. * @nsec: the nanoseconds value to be converted
  346. *
  347. * Returns the timespec representation of the nsec parameter.
  348. */
  349. struct timespec ns_to_timespec(const s64 nsec)
  350. {
  351. struct timespec ts;
  352. s32 rem;
  353. if (!nsec)
  354. return (struct timespec) {0, 0};
  355. ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
  356. if (unlikely(rem < 0)) {
  357. ts.tv_sec--;
  358. rem += NSEC_PER_SEC;
  359. }
  360. ts.tv_nsec = rem;
  361. return ts;
  362. }
  363. EXPORT_SYMBOL(ns_to_timespec);
  364. /**
  365. * ns_to_timeval - Convert nanoseconds to timeval
  366. * @nsec: the nanoseconds value to be converted
  367. *
  368. * Returns the timeval representation of the nsec parameter.
  369. */
  370. struct timeval ns_to_timeval(const s64 nsec)
  371. {
  372. struct timespec ts = ns_to_timespec(nsec);
  373. struct timeval tv;
  374. tv.tv_sec = ts.tv_sec;
  375. tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
  376. return tv;
  377. }
  378. EXPORT_SYMBOL(ns_to_timeval);
  379. #if BITS_PER_LONG == 32
  380. /**
  381. * set_normalized_timespec - set timespec sec and nsec parts and normalize
  382. *
  383. * @ts: pointer to timespec variable to be set
  384. * @sec: seconds to set
  385. * @nsec: nanoseconds to set
  386. *
  387. * Set seconds and nanoseconds field of a timespec variable and
  388. * normalize to the timespec storage format
  389. *
  390. * Note: The tv_nsec part is always in the range of
  391. * 0 <= tv_nsec < NSEC_PER_SEC
  392. * For negative values only the tv_sec field is negative !
  393. */
  394. void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
  395. {
  396. while (nsec >= NSEC_PER_SEC) {
  397. /*
  398. * The following asm() prevents the compiler from
  399. * optimising this loop into a modulo operation. See
  400. * also __iter_div_u64_rem() in include/linux/time.h
  401. */
  402. asm("" : "+rm"(nsec));
  403. nsec -= NSEC_PER_SEC;
  404. ++sec;
  405. }
  406. while (nsec < 0) {
  407. asm("" : "+rm"(nsec));
  408. nsec += NSEC_PER_SEC;
  409. --sec;
  410. }
  411. ts->tv_sec = sec;
  412. ts->tv_nsec = nsec;
  413. }
  414. EXPORT_SYMBOL(set_normalized_timespec64);
  415. /**
  416. * ns_to_timespec64 - Convert nanoseconds to timespec64
  417. * @nsec: the nanoseconds value to be converted
  418. *
  419. * Returns the timespec64 representation of the nsec parameter.
  420. */
  421. struct timespec64 ns_to_timespec64(const s64 nsec)
  422. {
  423. struct timespec64 ts;
  424. s32 rem;
  425. if (!nsec)
  426. return (struct timespec64) {0, 0};
  427. ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
  428. if (unlikely(rem < 0)) {
  429. ts.tv_sec--;
  430. rem += NSEC_PER_SEC;
  431. }
  432. ts.tv_nsec = rem;
  433. return ts;
  434. }
  435. EXPORT_SYMBOL(ns_to_timespec64);
  436. #endif
  437. /**
  438. * msecs_to_jiffies: - convert milliseconds to jiffies
  439. * @m: time in milliseconds
  440. *
  441. * conversion is done as follows:
  442. *
  443. * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
  444. *
  445. * - 'too large' values [that would result in larger than
  446. * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
  447. *
  448. * - all other values are converted to jiffies by either multiplying
  449. * the input value by a factor or dividing it with a factor and
  450. * handling any 32-bit overflows.
  451. * for the details see __msecs_to_jiffies()
  452. *
  453. * msecs_to_jiffies() checks for the passed in value being a constant
  454. * via __builtin_constant_p() allowing gcc to eliminate most of the
  455. * code, __msecs_to_jiffies() is called if the value passed does not
  456. * allow constant folding and the actual conversion must be done at
  457. * runtime.
  458. * the _msecs_to_jiffies helpers are the HZ dependent conversion
  459. * routines found in include/linux/jiffies.h
  460. */
  461. unsigned long __msecs_to_jiffies(const unsigned int m)
  462. {
  463. /*
  464. * Negative value, means infinite timeout:
  465. */
  466. if ((int)m < 0)
  467. return MAX_JIFFY_OFFSET;
  468. return _msecs_to_jiffies(m);
  469. }
  470. EXPORT_SYMBOL(__msecs_to_jiffies);
  471. unsigned long __usecs_to_jiffies(const unsigned int u)
  472. {
  473. if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
  474. return MAX_JIFFY_OFFSET;
  475. return _usecs_to_jiffies(u);
  476. }
  477. EXPORT_SYMBOL(__usecs_to_jiffies);
  478. /*
  479. * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
  480. * that a remainder subtract here would not do the right thing as the
  481. * resolution values don't fall on second boundries. I.e. the line:
  482. * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
  483. * Note that due to the small error in the multiplier here, this
  484. * rounding is incorrect for sufficiently large values of tv_nsec, but
  485. * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
  486. * OK.
  487. *
  488. * Rather, we just shift the bits off the right.
  489. *
  490. * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
  491. * value to a scaled second value.
  492. */
  493. static unsigned long
  494. __timespec64_to_jiffies(u64 sec, long nsec)
  495. {
  496. nsec = nsec + TICK_NSEC - 1;
  497. if (sec >= MAX_SEC_IN_JIFFIES){
  498. sec = MAX_SEC_IN_JIFFIES;
  499. nsec = 0;
  500. }
  501. return ((sec * SEC_CONVERSION) +
  502. (((u64)nsec * NSEC_CONVERSION) >>
  503. (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
  504. }
  505. static unsigned long
  506. __timespec_to_jiffies(unsigned long sec, long nsec)
  507. {
  508. return __timespec64_to_jiffies((u64)sec, nsec);
  509. }
  510. unsigned long
  511. timespec64_to_jiffies(const struct timespec64 *value)
  512. {
  513. return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
  514. }
  515. EXPORT_SYMBOL(timespec64_to_jiffies);
  516. void
  517. jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
  518. {
  519. /*
  520. * Convert jiffies to nanoseconds and separate with
  521. * one divide.
  522. */
  523. u32 rem;
  524. value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
  525. NSEC_PER_SEC, &rem);
  526. value->tv_nsec = rem;
  527. }
  528. EXPORT_SYMBOL(jiffies_to_timespec64);
  529. /*
  530. * We could use a similar algorithm to timespec_to_jiffies (with a
  531. * different multiplier for usec instead of nsec). But this has a
  532. * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
  533. * usec value, since it's not necessarily integral.
  534. *
  535. * We could instead round in the intermediate scaled representation
  536. * (i.e. in units of 1/2^(large scale) jiffies) but that's also
  537. * perilous: the scaling introduces a small positive error, which
  538. * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
  539. * units to the intermediate before shifting) leads to accidental
  540. * overflow and overestimates.
  541. *
  542. * At the cost of one additional multiplication by a constant, just
  543. * use the timespec implementation.
  544. */
  545. unsigned long
  546. timeval_to_jiffies(const struct timeval *value)
  547. {
  548. return __timespec_to_jiffies(value->tv_sec,
  549. value->tv_usec * NSEC_PER_USEC);
  550. }
  551. EXPORT_SYMBOL(timeval_to_jiffies);
  552. void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
  553. {
  554. /*
  555. * Convert jiffies to nanoseconds and separate with
  556. * one divide.
  557. */
  558. u32 rem;
  559. value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
  560. NSEC_PER_SEC, &rem);
  561. value->tv_usec = rem / NSEC_PER_USEC;
  562. }
  563. EXPORT_SYMBOL(jiffies_to_timeval);
  564. /*
  565. * Convert jiffies/jiffies_64 to clock_t and back.
  566. */
  567. clock_t jiffies_to_clock_t(unsigned long x)
  568. {
  569. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  570. # if HZ < USER_HZ
  571. return x * (USER_HZ / HZ);
  572. # else
  573. return x / (HZ / USER_HZ);
  574. # endif
  575. #else
  576. return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
  577. #endif
  578. }
  579. EXPORT_SYMBOL(jiffies_to_clock_t);
  580. unsigned long clock_t_to_jiffies(unsigned long x)
  581. {
  582. #if (HZ % USER_HZ)==0
  583. if (x >= ~0UL / (HZ / USER_HZ))
  584. return ~0UL;
  585. return x * (HZ / USER_HZ);
  586. #else
  587. /* Don't worry about loss of precision here .. */
  588. if (x >= ~0UL / HZ * USER_HZ)
  589. return ~0UL;
  590. /* .. but do try to contain it here */
  591. return div_u64((u64)x * HZ, USER_HZ);
  592. #endif
  593. }
  594. EXPORT_SYMBOL(clock_t_to_jiffies);
  595. u64 jiffies_64_to_clock_t(u64 x)
  596. {
  597. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  598. # if HZ < USER_HZ
  599. x = div_u64(x * USER_HZ, HZ);
  600. # elif HZ > USER_HZ
  601. x = div_u64(x, HZ / USER_HZ);
  602. # else
  603. /* Nothing to do */
  604. # endif
  605. #else
  606. /*
  607. * There are better ways that don't overflow early,
  608. * but even this doesn't overflow in hundreds of years
  609. * in 64 bits, so..
  610. */
  611. x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
  612. #endif
  613. return x;
  614. }
  615. EXPORT_SYMBOL(jiffies_64_to_clock_t);
  616. u64 nsec_to_clock_t(u64 x)
  617. {
  618. #if (NSEC_PER_SEC % USER_HZ) == 0
  619. return div_u64(x, NSEC_PER_SEC / USER_HZ);
  620. #elif (USER_HZ % 512) == 0
  621. return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
  622. #else
  623. /*
  624. * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
  625. * overflow after 64.99 years.
  626. * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
  627. */
  628. return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
  629. #endif
  630. }
  631. /**
  632. * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
  633. *
  634. * @n: nsecs in u64
  635. *
  636. * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
  637. * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
  638. * for scheduler, not for use in device drivers to calculate timeout value.
  639. *
  640. * note:
  641. * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
  642. * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
  643. */
  644. u64 nsecs_to_jiffies64(u64 n)
  645. {
  646. #if (NSEC_PER_SEC % HZ) == 0
  647. /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
  648. return div_u64(n, NSEC_PER_SEC / HZ);
  649. #elif (HZ % 512) == 0
  650. /* overflow after 292 years if HZ = 1024 */
  651. return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
  652. #else
  653. /*
  654. * Generic case - optimized for cases where HZ is a multiple of 3.
  655. * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
  656. */
  657. return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
  658. #endif
  659. }
  660. EXPORT_SYMBOL(nsecs_to_jiffies64);
  661. /**
  662. * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
  663. *
  664. * @n: nsecs in u64
  665. *
  666. * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
  667. * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
  668. * for scheduler, not for use in device drivers to calculate timeout value.
  669. *
  670. * note:
  671. * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
  672. * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
  673. */
  674. unsigned long nsecs_to_jiffies(u64 n)
  675. {
  676. return (unsigned long)nsecs_to_jiffies64(n);
  677. }
  678. EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
  679. /*
  680. * Add two timespec values and do a safety check for overflow.
  681. * It's assumed that both values are valid (>= 0)
  682. */
  683. struct timespec timespec_add_safe(const struct timespec lhs,
  684. const struct timespec rhs)
  685. {
  686. struct timespec res;
  687. set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
  688. lhs.tv_nsec + rhs.tv_nsec);
  689. if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
  690. res.tv_sec = TIME_T_MAX;
  691. return res;
  692. }