123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368 |
- /*
- * Generic binary BCH encoding/decoding library
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Copyright © 2011 Parrot S.A.
- *
- * Author: Ivan Djelic <ivan.djelic@parrot.com>
- *
- * Description:
- *
- * This library provides runtime configurable encoding/decoding of binary
- * Bose-Chaudhuri-Hocquenghem (BCH) codes.
- *
- * Call init_bch to get a pointer to a newly allocated bch_control structure for
- * the given m (Galois field order), t (error correction capability) and
- * (optional) primitive polynomial parameters.
- *
- * Call encode_bch to compute and store ecc parity bytes to a given buffer.
- * Call decode_bch to detect and locate errors in received data.
- *
- * On systems supporting hw BCH features, intermediate results may be provided
- * to decode_bch in order to skip certain steps. See decode_bch() documentation
- * for details.
- *
- * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of
- * parameters m and t; thus allowing extra compiler optimizations and providing
- * better (up to 2x) encoding performance. Using this option makes sense when
- * (m,t) are fixed and known in advance, e.g. when using BCH error correction
- * on a particular NAND flash device.
- *
- * Algorithmic details:
- *
- * Encoding is performed by processing 32 input bits in parallel, using 4
- * remainder lookup tables.
- *
- * The final stage of decoding involves the following internal steps:
- * a. Syndrome computation
- * b. Error locator polynomial computation using Berlekamp-Massey algorithm
- * c. Error locator root finding (by far the most expensive step)
- *
- * In this implementation, step c is not performed using the usual Chien search.
- * Instead, an alternative approach described in [1] is used. It consists in
- * factoring the error locator polynomial using the Berlekamp Trace algorithm
- * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial
- * solving techniques [2] are used. The resulting algorithm, called BTZ, yields
- * much better performance than Chien search for usual (m,t) values (typically
- * m >= 13, t < 32, see [1]).
- *
- * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields
- * of characteristic 2, in: Western European Workshop on Research in Cryptology
- * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear.
- * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over
- * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996.
- */
- #include <linux/kernel.h>
- #include <linux/errno.h>
- #include <linux/init.h>
- #include <linux/module.h>
- #include <linux/slab.h>
- #include <linux/bitops.h>
- #include <asm/byteorder.h>
- #include <linux/bch.h>
- #if defined(CONFIG_BCH_CONST_PARAMS)
- #define GF_M(_p) (CONFIG_BCH_CONST_M)
- #define GF_T(_p) (CONFIG_BCH_CONST_T)
- #define GF_N(_p) ((1 << (CONFIG_BCH_CONST_M))-1)
- #else
- #define GF_M(_p) ((_p)->m)
- #define GF_T(_p) ((_p)->t)
- #define GF_N(_p) ((_p)->n)
- #endif
- #define BCH_ECC_WORDS(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32)
- #define BCH_ECC_BYTES(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
- #ifndef dbg
- #define dbg(_fmt, args...) do {} while (0)
- #endif
- /*
- * represent a polynomial over GF(2^m)
- */
- struct gf_poly {
- unsigned int deg; /* polynomial degree */
- unsigned int c[0]; /* polynomial terms */
- };
- /* given its degree, compute a polynomial size in bytes */
- #define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
- /* polynomial of degree 1 */
- struct gf_poly_deg1 {
- struct gf_poly poly;
- unsigned int c[2];
- };
- /*
- * same as encode_bch(), but process input data one byte at a time
- */
- static void encode_bch_unaligned(struct bch_control *bch,
- const unsigned char *data, unsigned int len,
- uint32_t *ecc)
- {
- int i;
- const uint32_t *p;
- const int l = BCH_ECC_WORDS(bch)-1;
- while (len--) {
- p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff);
- for (i = 0; i < l; i++)
- ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++);
- ecc[l] = (ecc[l] << 8)^(*p);
- }
- }
- /*
- * convert ecc bytes to aligned, zero-padded 32-bit ecc words
- */
- static void load_ecc8(struct bch_control *bch, uint32_t *dst,
- const uint8_t *src)
- {
- uint8_t pad[4] = {0, 0, 0, 0};
- unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
- for (i = 0; i < nwords; i++, src += 4)
- dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3];
- memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords);
- dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3];
- }
- /*
- * convert 32-bit ecc words to ecc bytes
- */
- static void store_ecc8(struct bch_control *bch, uint8_t *dst,
- const uint32_t *src)
- {
- uint8_t pad[4];
- unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
- for (i = 0; i < nwords; i++) {
- *dst++ = (src[i] >> 24);
- *dst++ = (src[i] >> 16) & 0xff;
- *dst++ = (src[i] >> 8) & 0xff;
- *dst++ = (src[i] >> 0) & 0xff;
- }
- pad[0] = (src[nwords] >> 24);
- pad[1] = (src[nwords] >> 16) & 0xff;
- pad[2] = (src[nwords] >> 8) & 0xff;
- pad[3] = (src[nwords] >> 0) & 0xff;
- memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords);
- }
- /**
- * encode_bch - calculate BCH ecc parity of data
- * @bch: BCH control structure
- * @data: data to encode
- * @len: data length in bytes
- * @ecc: ecc parity data, must be initialized by caller
- *
- * The @ecc parity array is used both as input and output parameter, in order to
- * allow incremental computations. It should be of the size indicated by member
- * @ecc_bytes of @bch, and should be initialized to 0 before the first call.
- *
- * The exact number of computed ecc parity bits is given by member @ecc_bits of
- * @bch; it may be less than m*t for large values of t.
- */
- void encode_bch(struct bch_control *bch, const uint8_t *data,
- unsigned int len, uint8_t *ecc)
- {
- const unsigned int l = BCH_ECC_WORDS(bch)-1;
- unsigned int i, mlen;
- unsigned long m;
- uint32_t w, r[l+1];
- const uint32_t * const tab0 = bch->mod8_tab;
- const uint32_t * const tab1 = tab0 + 256*(l+1);
- const uint32_t * const tab2 = tab1 + 256*(l+1);
- const uint32_t * const tab3 = tab2 + 256*(l+1);
- const uint32_t *pdata, *p0, *p1, *p2, *p3;
- if (ecc) {
- /* load ecc parity bytes into internal 32-bit buffer */
- load_ecc8(bch, bch->ecc_buf, ecc);
- } else {
- memset(bch->ecc_buf, 0, sizeof(r));
- }
- /* process first unaligned data bytes */
- m = ((unsigned long)data) & 3;
- if (m) {
- mlen = (len < (4-m)) ? len : 4-m;
- encode_bch_unaligned(bch, data, mlen, bch->ecc_buf);
- data += mlen;
- len -= mlen;
- }
- /* process 32-bit aligned data words */
- pdata = (uint32_t *)data;
- mlen = len/4;
- data += 4*mlen;
- len -= 4*mlen;
- memcpy(r, bch->ecc_buf, sizeof(r));
- /*
- * split each 32-bit word into 4 polynomials of weight 8 as follows:
- *
- * 31 ...24 23 ...16 15 ... 8 7 ... 0
- * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt
- * tttttttt mod g = r0 (precomputed)
- * zzzzzzzz 00000000 mod g = r1 (precomputed)
- * yyyyyyyy 00000000 00000000 mod g = r2 (precomputed)
- * xxxxxxxx 00000000 00000000 00000000 mod g = r3 (precomputed)
- * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt mod g = r0^r1^r2^r3
- */
- while (mlen--) {
- /* input data is read in big-endian format */
- w = r[0]^cpu_to_be32(*pdata++);
- p0 = tab0 + (l+1)*((w >> 0) & 0xff);
- p1 = tab1 + (l+1)*((w >> 8) & 0xff);
- p2 = tab2 + (l+1)*((w >> 16) & 0xff);
- p3 = tab3 + (l+1)*((w >> 24) & 0xff);
- for (i = 0; i < l; i++)
- r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i];
- r[l] = p0[l]^p1[l]^p2[l]^p3[l];
- }
- memcpy(bch->ecc_buf, r, sizeof(r));
- /* process last unaligned bytes */
- if (len)
- encode_bch_unaligned(bch, data, len, bch->ecc_buf);
- /* store ecc parity bytes into original parity buffer */
- if (ecc)
- store_ecc8(bch, ecc, bch->ecc_buf);
- }
- EXPORT_SYMBOL_GPL(encode_bch);
- static inline int modulo(struct bch_control *bch, unsigned int v)
- {
- const unsigned int n = GF_N(bch);
- while (v >= n) {
- v -= n;
- v = (v & n) + (v >> GF_M(bch));
- }
- return v;
- }
- /*
- * shorter and faster modulo function, only works when v < 2N.
- */
- static inline int mod_s(struct bch_control *bch, unsigned int v)
- {
- const unsigned int n = GF_N(bch);
- return (v < n) ? v : v-n;
- }
- static inline int deg(unsigned int poly)
- {
- /* polynomial degree is the most-significant bit index */
- return fls(poly)-1;
- }
- static inline int parity(unsigned int x)
- {
- /*
- * public domain code snippet, lifted from
- * http://www-graphics.stanford.edu/~seander/bithacks.html
- */
- x ^= x >> 1;
- x ^= x >> 2;
- x = (x & 0x11111111U) * 0x11111111U;
- return (x >> 28) & 1;
- }
- /* Galois field basic operations: multiply, divide, inverse, etc. */
- static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a,
- unsigned int b)
- {
- return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
- bch->a_log_tab[b])] : 0;
- }
- static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a)
- {
- return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0;
- }
- static inline unsigned int gf_div(struct bch_control *bch, unsigned int a,
- unsigned int b)
- {
- return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
- GF_N(bch)-bch->a_log_tab[b])] : 0;
- }
- static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a)
- {
- return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]];
- }
- static inline unsigned int a_pow(struct bch_control *bch, int i)
- {
- return bch->a_pow_tab[modulo(bch, i)];
- }
- static inline int a_log(struct bch_control *bch, unsigned int x)
- {
- return bch->a_log_tab[x];
- }
- static inline int a_ilog(struct bch_control *bch, unsigned int x)
- {
- return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]);
- }
- /*
- * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t
- */
- static void compute_syndromes(struct bch_control *bch, uint32_t *ecc,
- unsigned int *syn)
- {
- int i, j, s;
- unsigned int m;
- uint32_t poly;
- const int t = GF_T(bch);
- s = bch->ecc_bits;
- /* make sure extra bits in last ecc word are cleared */
- m = ((unsigned int)s) & 31;
- if (m)
- ecc[s/32] &= ~((1u << (32-m))-1);
- memset(syn, 0, 2*t*sizeof(*syn));
- /* compute v(a^j) for j=1 .. 2t-1 */
- do {
- poly = *ecc++;
- s -= 32;
- while (poly) {
- i = deg(poly);
- for (j = 0; j < 2*t; j += 2)
- syn[j] ^= a_pow(bch, (j+1)*(i+s));
- poly ^= (1 << i);
- }
- } while (s > 0);
- /* v(a^(2j)) = v(a^j)^2 */
- for (j = 0; j < t; j++)
- syn[2*j+1] = gf_sqr(bch, syn[j]);
- }
- static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src)
- {
- memcpy(dst, src, GF_POLY_SZ(src->deg));
- }
- static int compute_error_locator_polynomial(struct bch_control *bch,
- const unsigned int *syn)
- {
- const unsigned int t = GF_T(bch);
- const unsigned int n = GF_N(bch);
- unsigned int i, j, tmp, l, pd = 1, d = syn[0];
- struct gf_poly *elp = bch->elp;
- struct gf_poly *pelp = bch->poly_2t[0];
- struct gf_poly *elp_copy = bch->poly_2t[1];
- int k, pp = -1;
- memset(pelp, 0, GF_POLY_SZ(2*t));
- memset(elp, 0, GF_POLY_SZ(2*t));
- pelp->deg = 0;
- pelp->c[0] = 1;
- elp->deg = 0;
- elp->c[0] = 1;
- /* use simplified binary Berlekamp-Massey algorithm */
- for (i = 0; (i < t) && (elp->deg <= t); i++) {
- if (d) {
- k = 2*i-pp;
- gf_poly_copy(elp_copy, elp);
- /* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */
- tmp = a_log(bch, d)+n-a_log(bch, pd);
- for (j = 0; j <= pelp->deg; j++) {
- if (pelp->c[j]) {
- l = a_log(bch, pelp->c[j]);
- elp->c[j+k] ^= a_pow(bch, tmp+l);
- }
- }
- /* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */
- tmp = pelp->deg+k;
- if (tmp > elp->deg) {
- elp->deg = tmp;
- gf_poly_copy(pelp, elp_copy);
- pd = d;
- pp = 2*i;
- }
- }
- /* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */
- if (i < t-1) {
- d = syn[2*i+2];
- for (j = 1; j <= elp->deg; j++)
- d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]);
- }
- }
- dbg("elp=%s\n", gf_poly_str(elp));
- return (elp->deg > t) ? -1 : (int)elp->deg;
- }
- /*
- * solve a m x m linear system in GF(2) with an expected number of solutions,
- * and return the number of found solutions
- */
- static int solve_linear_system(struct bch_control *bch, unsigned int *rows,
- unsigned int *sol, int nsol)
- {
- const int m = GF_M(bch);
- unsigned int tmp, mask;
- int rem, c, r, p, k, param[m];
- k = 0;
- mask = 1 << m;
- /* Gaussian elimination */
- for (c = 0; c < m; c++) {
- rem = 0;
- p = c-k;
- /* find suitable row for elimination */
- for (r = p; r < m; r++) {
- if (rows[r] & mask) {
- if (r != p) {
- tmp = rows[r];
- rows[r] = rows[p];
- rows[p] = tmp;
- }
- rem = r+1;
- break;
- }
- }
- if (rem) {
- /* perform elimination on remaining rows */
- tmp = rows[p];
- for (r = rem; r < m; r++) {
- if (rows[r] & mask)
- rows[r] ^= tmp;
- }
- } else {
- /* elimination not needed, store defective row index */
- param[k++] = c;
- }
- mask >>= 1;
- }
- /* rewrite system, inserting fake parameter rows */
- if (k > 0) {
- p = k;
- for (r = m-1; r >= 0; r--) {
- if ((r > m-1-k) && rows[r])
- /* system has no solution */
- return 0;
- rows[r] = (p && (r == param[p-1])) ?
- p--, 1u << (m-r) : rows[r-p];
- }
- }
- if (nsol != (1 << k))
- /* unexpected number of solutions */
- return 0;
- for (p = 0; p < nsol; p++) {
- /* set parameters for p-th solution */
- for (c = 0; c < k; c++)
- rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1);
- /* compute unique solution */
- tmp = 0;
- for (r = m-1; r >= 0; r--) {
- mask = rows[r] & (tmp|1);
- tmp |= parity(mask) << (m-r);
- }
- sol[p] = tmp >> 1;
- }
- return nsol;
- }
- /*
- * this function builds and solves a linear system for finding roots of a degree
- * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m).
- */
- static int find_affine4_roots(struct bch_control *bch, unsigned int a,
- unsigned int b, unsigned int c,
- unsigned int *roots)
- {
- int i, j, k;
- const int m = GF_M(bch);
- unsigned int mask = 0xff, t, rows[16] = {0,};
- j = a_log(bch, b);
- k = a_log(bch, a);
- rows[0] = c;
- /* buid linear system to solve X^4+aX^2+bX+c = 0 */
- for (i = 0; i < m; i++) {
- rows[i+1] = bch->a_pow_tab[4*i]^
- (a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^
- (b ? bch->a_pow_tab[mod_s(bch, j)] : 0);
- j++;
- k += 2;
- }
- /*
- * transpose 16x16 matrix before passing it to linear solver
- * warning: this code assumes m < 16
- */
- for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) {
- for (k = 0; k < 16; k = (k+j+1) & ~j) {
- t = ((rows[k] >> j)^rows[k+j]) & mask;
- rows[k] ^= (t << j);
- rows[k+j] ^= t;
- }
- }
- return solve_linear_system(bch, rows, roots, 4);
- }
- /*
- * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r))
- */
- static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly,
- unsigned int *roots)
- {
- int n = 0;
- if (poly->c[0])
- /* poly[X] = bX+c with c!=0, root=c/b */
- roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+
- bch->a_log_tab[poly->c[1]]);
- return n;
- }
- /*
- * compute roots of a degree 2 polynomial over GF(2^m)
- */
- static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly,
- unsigned int *roots)
- {
- int n = 0, i, l0, l1, l2;
- unsigned int u, v, r;
- if (poly->c[0] && poly->c[1]) {
- l0 = bch->a_log_tab[poly->c[0]];
- l1 = bch->a_log_tab[poly->c[1]];
- l2 = bch->a_log_tab[poly->c[2]];
- /* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */
- u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1));
- /*
- * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi):
- * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) =
- * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u)
- * i.e. r and r+1 are roots iff Tr(u)=0
- */
- r = 0;
- v = u;
- while (v) {
- i = deg(v);
- r ^= bch->xi_tab[i];
- v ^= (1 << i);
- }
- /* verify root */
- if ((gf_sqr(bch, r)^r) == u) {
- /* reverse z=a/bX transformation and compute log(1/r) */
- roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
- bch->a_log_tab[r]+l2);
- roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
- bch->a_log_tab[r^1]+l2);
- }
- }
- return n;
- }
- /*
- * compute roots of a degree 3 polynomial over GF(2^m)
- */
- static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly,
- unsigned int *roots)
- {
- int i, n = 0;
- unsigned int a, b, c, a2, b2, c2, e3, tmp[4];
- if (poly->c[0]) {
- /* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */
- e3 = poly->c[3];
- c2 = gf_div(bch, poly->c[0], e3);
- b2 = gf_div(bch, poly->c[1], e3);
- a2 = gf_div(bch, poly->c[2], e3);
- /* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */
- c = gf_mul(bch, a2, c2); /* c = a2c2 */
- b = gf_mul(bch, a2, b2)^c2; /* b = a2b2 + c2 */
- a = gf_sqr(bch, a2)^b2; /* a = a2^2 + b2 */
- /* find the 4 roots of this affine polynomial */
- if (find_affine4_roots(bch, a, b, c, tmp) == 4) {
- /* remove a2 from final list of roots */
- for (i = 0; i < 4; i++) {
- if (tmp[i] != a2)
- roots[n++] = a_ilog(bch, tmp[i]);
- }
- }
- }
- return n;
- }
- /*
- * compute roots of a degree 4 polynomial over GF(2^m)
- */
- static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly,
- unsigned int *roots)
- {
- int i, l, n = 0;
- unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4;
- if (poly->c[0] == 0)
- return 0;
- /* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */
- e4 = poly->c[4];
- d = gf_div(bch, poly->c[0], e4);
- c = gf_div(bch, poly->c[1], e4);
- b = gf_div(bch, poly->c[2], e4);
- a = gf_div(bch, poly->c[3], e4);
- /* use Y=1/X transformation to get an affine polynomial */
- if (a) {
- /* first, eliminate cX by using z=X+e with ae^2+c=0 */
- if (c) {
- /* compute e such that e^2 = c/a */
- f = gf_div(bch, c, a);
- l = a_log(bch, f);
- l += (l & 1) ? GF_N(bch) : 0;
- e = a_pow(bch, l/2);
- /*
- * use transformation z=X+e:
- * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d
- * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d
- * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d
- * z^4 + az^3 + b'z^2 + d'
- */
- d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d;
- b = gf_mul(bch, a, e)^b;
- }
- /* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */
- if (d == 0)
- /* assume all roots have multiplicity 1 */
- return 0;
- c2 = gf_inv(bch, d);
- b2 = gf_div(bch, a, d);
- a2 = gf_div(bch, b, d);
- } else {
- /* polynomial is already affine */
- c2 = d;
- b2 = c;
- a2 = b;
- }
- /* find the 4 roots of this affine polynomial */
- if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) {
- for (i = 0; i < 4; i++) {
- /* post-process roots (reverse transformations) */
- f = a ? gf_inv(bch, roots[i]) : roots[i];
- roots[i] = a_ilog(bch, f^e);
- }
- n = 4;
- }
- return n;
- }
- /*
- * build monic, log-based representation of a polynomial
- */
- static void gf_poly_logrep(struct bch_control *bch,
- const struct gf_poly *a, int *rep)
- {
- int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]);
- /* represent 0 values with -1; warning, rep[d] is not set to 1 */
- for (i = 0; i < d; i++)
- rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1;
- }
- /*
- * compute polynomial Euclidean division remainder in GF(2^m)[X]
- */
- static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a,
- const struct gf_poly *b, int *rep)
- {
- int la, p, m;
- unsigned int i, j, *c = a->c;
- const unsigned int d = b->deg;
- if (a->deg < d)
- return;
- /* reuse or compute log representation of denominator */
- if (!rep) {
- rep = bch->cache;
- gf_poly_logrep(bch, b, rep);
- }
- for (j = a->deg; j >= d; j--) {
- if (c[j]) {
- la = a_log(bch, c[j]);
- p = j-d;
- for (i = 0; i < d; i++, p++) {
- m = rep[i];
- if (m >= 0)
- c[p] ^= bch->a_pow_tab[mod_s(bch,
- m+la)];
- }
- }
- }
- a->deg = d-1;
- while (!c[a->deg] && a->deg)
- a->deg--;
- }
- /*
- * compute polynomial Euclidean division quotient in GF(2^m)[X]
- */
- static void gf_poly_div(struct bch_control *bch, struct gf_poly *a,
- const struct gf_poly *b, struct gf_poly *q)
- {
- if (a->deg >= b->deg) {
- q->deg = a->deg-b->deg;
- /* compute a mod b (modifies a) */
- gf_poly_mod(bch, a, b, NULL);
- /* quotient is stored in upper part of polynomial a */
- memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int));
- } else {
- q->deg = 0;
- q->c[0] = 0;
- }
- }
- /*
- * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X]
- */
- static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a,
- struct gf_poly *b)
- {
- struct gf_poly *tmp;
- dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b));
- if (a->deg < b->deg) {
- tmp = b;
- b = a;
- a = tmp;
- }
- while (b->deg > 0) {
- gf_poly_mod(bch, a, b, NULL);
- tmp = b;
- b = a;
- a = tmp;
- }
- dbg("%s\n", gf_poly_str(a));
- return a;
- }
- /*
- * Given a polynomial f and an integer k, compute Tr(a^kX) mod f
- * This is used in Berlekamp Trace algorithm for splitting polynomials
- */
- static void compute_trace_bk_mod(struct bch_control *bch, int k,
- const struct gf_poly *f, struct gf_poly *z,
- struct gf_poly *out)
- {
- const int m = GF_M(bch);
- int i, j;
- /* z contains z^2j mod f */
- z->deg = 1;
- z->c[0] = 0;
- z->c[1] = bch->a_pow_tab[k];
- out->deg = 0;
- memset(out, 0, GF_POLY_SZ(f->deg));
- /* compute f log representation only once */
- gf_poly_logrep(bch, f, bch->cache);
- for (i = 0; i < m; i++) {
- /* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */
- for (j = z->deg; j >= 0; j--) {
- out->c[j] ^= z->c[j];
- z->c[2*j] = gf_sqr(bch, z->c[j]);
- z->c[2*j+1] = 0;
- }
- if (z->deg > out->deg)
- out->deg = z->deg;
- if (i < m-1) {
- z->deg *= 2;
- /* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */
- gf_poly_mod(bch, z, f, bch->cache);
- }
- }
- while (!out->c[out->deg] && out->deg)
- out->deg--;
- dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out));
- }
- /*
- * factor a polynomial using Berlekamp Trace algorithm (BTA)
- */
- static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f,
- struct gf_poly **g, struct gf_poly **h)
- {
- struct gf_poly *f2 = bch->poly_2t[0];
- struct gf_poly *q = bch->poly_2t[1];
- struct gf_poly *tk = bch->poly_2t[2];
- struct gf_poly *z = bch->poly_2t[3];
- struct gf_poly *gcd;
- dbg("factoring %s...\n", gf_poly_str(f));
- *g = f;
- *h = NULL;
- /* tk = Tr(a^k.X) mod f */
- compute_trace_bk_mod(bch, k, f, z, tk);
- if (tk->deg > 0) {
- /* compute g = gcd(f, tk) (destructive operation) */
- gf_poly_copy(f2, f);
- gcd = gf_poly_gcd(bch, f2, tk);
- if (gcd->deg < f->deg) {
- /* compute h=f/gcd(f,tk); this will modify f and q */
- gf_poly_div(bch, f, gcd, q);
- /* store g and h in-place (clobbering f) */
- *h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly;
- gf_poly_copy(*g, gcd);
- gf_poly_copy(*h, q);
- }
- }
- }
- /*
- * find roots of a polynomial, using BTZ algorithm; see the beginning of this
- * file for details
- */
- static int find_poly_roots(struct bch_control *bch, unsigned int k,
- struct gf_poly *poly, unsigned int *roots)
- {
- int cnt;
- struct gf_poly *f1, *f2;
- switch (poly->deg) {
- /* handle low degree polynomials with ad hoc techniques */
- case 1:
- cnt = find_poly_deg1_roots(bch, poly, roots);
- break;
- case 2:
- cnt = find_poly_deg2_roots(bch, poly, roots);
- break;
- case 3:
- cnt = find_poly_deg3_roots(bch, poly, roots);
- break;
- case 4:
- cnt = find_poly_deg4_roots(bch, poly, roots);
- break;
- default:
- /* factor polynomial using Berlekamp Trace Algorithm (BTA) */
- cnt = 0;
- if (poly->deg && (k <= GF_M(bch))) {
- factor_polynomial(bch, k, poly, &f1, &f2);
- if (f1)
- cnt += find_poly_roots(bch, k+1, f1, roots);
- if (f2)
- cnt += find_poly_roots(bch, k+1, f2, roots+cnt);
- }
- break;
- }
- return cnt;
- }
- #if defined(USE_CHIEN_SEARCH)
- /*
- * exhaustive root search (Chien) implementation - not used, included only for
- * reference/comparison tests
- */
- static int chien_search(struct bch_control *bch, unsigned int len,
- struct gf_poly *p, unsigned int *roots)
- {
- int m;
- unsigned int i, j, syn, syn0, count = 0;
- const unsigned int k = 8*len+bch->ecc_bits;
- /* use a log-based representation of polynomial */
- gf_poly_logrep(bch, p, bch->cache);
- bch->cache[p->deg] = 0;
- syn0 = gf_div(bch, p->c[0], p->c[p->deg]);
- for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) {
- /* compute elp(a^i) */
- for (j = 1, syn = syn0; j <= p->deg; j++) {
- m = bch->cache[j];
- if (m >= 0)
- syn ^= a_pow(bch, m+j*i);
- }
- if (syn == 0) {
- roots[count++] = GF_N(bch)-i;
- if (count == p->deg)
- break;
- }
- }
- return (count == p->deg) ? count : 0;
- }
- #define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc)
- #endif /* USE_CHIEN_SEARCH */
- /**
- * decode_bch - decode received codeword and find bit error locations
- * @bch: BCH control structure
- * @data: received data, ignored if @calc_ecc is provided
- * @len: data length in bytes, must always be provided
- * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc
- * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data
- * @syn: hw computed syndrome data (if NULL, syndrome is calculated)
- * @errloc: output array of error locations
- *
- * Returns:
- * The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if
- * invalid parameters were provided
- *
- * Depending on the available hw BCH support and the need to compute @calc_ecc
- * separately (using encode_bch()), this function should be called with one of
- * the following parameter configurations -
- *
- * by providing @data and @recv_ecc only:
- * decode_bch(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc)
- *
- * by providing @recv_ecc and @calc_ecc:
- * decode_bch(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc)
- *
- * by providing ecc = recv_ecc XOR calc_ecc:
- * decode_bch(@bch, NULL, @len, NULL, ecc, NULL, @errloc)
- *
- * by providing syndrome results @syn:
- * decode_bch(@bch, NULL, @len, NULL, NULL, @syn, @errloc)
- *
- * Once decode_bch() has successfully returned with a positive value, error
- * locations returned in array @errloc should be interpreted as follows -
- *
- * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for
- * data correction)
- *
- * if (errloc[n] < 8*len), then n-th error is located in data and can be
- * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8);
- *
- * Note that this function does not perform any data correction by itself, it
- * merely indicates error locations.
- */
- int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len,
- const uint8_t *recv_ecc, const uint8_t *calc_ecc,
- const unsigned int *syn, unsigned int *errloc)
- {
- const unsigned int ecc_words = BCH_ECC_WORDS(bch);
- unsigned int nbits;
- int i, err, nroots;
- uint32_t sum;
- /* sanity check: make sure data length can be handled */
- if (8*len > (bch->n-bch->ecc_bits))
- return -EINVAL;
- /* if caller does not provide syndromes, compute them */
- if (!syn) {
- if (!calc_ecc) {
- /* compute received data ecc into an internal buffer */
- if (!data || !recv_ecc)
- return -EINVAL;
- encode_bch(bch, data, len, NULL);
- } else {
- /* load provided calculated ecc */
- load_ecc8(bch, bch->ecc_buf, calc_ecc);
- }
- /* load received ecc or assume it was XORed in calc_ecc */
- if (recv_ecc) {
- load_ecc8(bch, bch->ecc_buf2, recv_ecc);
- /* XOR received and calculated ecc */
- for (i = 0, sum = 0; i < (int)ecc_words; i++) {
- bch->ecc_buf[i] ^= bch->ecc_buf2[i];
- sum |= bch->ecc_buf[i];
- }
- if (!sum)
- /* no error found */
- return 0;
- }
- compute_syndromes(bch, bch->ecc_buf, bch->syn);
- syn = bch->syn;
- }
- err = compute_error_locator_polynomial(bch, syn);
- if (err > 0) {
- nroots = find_poly_roots(bch, 1, bch->elp, errloc);
- if (err != nroots)
- err = -1;
- }
- if (err > 0) {
- /* post-process raw error locations for easier correction */
- nbits = (len*8)+bch->ecc_bits;
- for (i = 0; i < err; i++) {
- if (errloc[i] >= nbits) {
- err = -1;
- break;
- }
- errloc[i] = nbits-1-errloc[i];
- errloc[i] = (errloc[i] & ~7)|(7-(errloc[i] & 7));
- }
- }
- return (err >= 0) ? err : -EBADMSG;
- }
- EXPORT_SYMBOL_GPL(decode_bch);
- /*
- * generate Galois field lookup tables
- */
- static int build_gf_tables(struct bch_control *bch, unsigned int poly)
- {
- unsigned int i, x = 1;
- const unsigned int k = 1 << deg(poly);
- /* primitive polynomial must be of degree m */
- if (k != (1u << GF_M(bch)))
- return -1;
- for (i = 0; i < GF_N(bch); i++) {
- bch->a_pow_tab[i] = x;
- bch->a_log_tab[x] = i;
- if (i && (x == 1))
- /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
- return -1;
- x <<= 1;
- if (x & k)
- x ^= poly;
- }
- bch->a_pow_tab[GF_N(bch)] = 1;
- bch->a_log_tab[0] = 0;
- return 0;
- }
- /*
- * compute generator polynomial remainder tables for fast encoding
- */
- static void build_mod8_tables(struct bch_control *bch, const uint32_t *g)
- {
- int i, j, b, d;
- uint32_t data, hi, lo, *tab;
- const int l = BCH_ECC_WORDS(bch);
- const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32);
- const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32);
- memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab));
- for (i = 0; i < 256; i++) {
- /* p(X)=i is a small polynomial of weight <= 8 */
- for (b = 0; b < 4; b++) {
- /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */
- tab = bch->mod8_tab + (b*256+i)*l;
- data = i << (8*b);
- while (data) {
- d = deg(data);
- /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */
- data ^= g[0] >> (31-d);
- for (j = 0; j < ecclen; j++) {
- hi = (d < 31) ? g[j] << (d+1) : 0;
- lo = (j+1 < plen) ?
- g[j+1] >> (31-d) : 0;
- tab[j] ^= hi|lo;
- }
- }
- }
- }
- }
- /*
- * build a base for factoring degree 2 polynomials
- */
- static int build_deg2_base(struct bch_control *bch)
- {
- const int m = GF_M(bch);
- int i, j, r;
- unsigned int sum, x, y, remaining, ak = 0, xi[m];
- /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
- for (i = 0; i < m; i++) {
- for (j = 0, sum = 0; j < m; j++)
- sum ^= a_pow(bch, i*(1 << j));
- if (sum) {
- ak = bch->a_pow_tab[i];
- break;
- }
- }
- /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */
- remaining = m;
- memset(xi, 0, sizeof(xi));
- for (x = 0; (x <= GF_N(bch)) && remaining; x++) {
- y = gf_sqr(bch, x)^x;
- for (i = 0; i < 2; i++) {
- r = a_log(bch, y);
- if (y && (r < m) && !xi[r]) {
- bch->xi_tab[r] = x;
- xi[r] = 1;
- remaining--;
- dbg("x%d = %x\n", r, x);
- break;
- }
- y ^= ak;
- }
- }
- /* should not happen but check anyway */
- return remaining ? -1 : 0;
- }
- static void *bch_alloc(size_t size, int *err)
- {
- void *ptr;
- ptr = kmalloc(size, GFP_KERNEL);
- if (ptr == NULL)
- *err = 1;
- return ptr;
- }
- /*
- * compute generator polynomial for given (m,t) parameters.
- */
- static uint32_t *compute_generator_polynomial(struct bch_control *bch)
- {
- const unsigned int m = GF_M(bch);
- const unsigned int t = GF_T(bch);
- int n, err = 0;
- unsigned int i, j, nbits, r, word, *roots;
- struct gf_poly *g;
- uint32_t *genpoly;
- g = bch_alloc(GF_POLY_SZ(m*t), &err);
- roots = bch_alloc((bch->n+1)*sizeof(*roots), &err);
- genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err);
- if (err) {
- kfree(genpoly);
- genpoly = NULL;
- goto finish;
- }
- /* enumerate all roots of g(X) */
- memset(roots , 0, (bch->n+1)*sizeof(*roots));
- for (i = 0; i < t; i++) {
- for (j = 0, r = 2*i+1; j < m; j++) {
- roots[r] = 1;
- r = mod_s(bch, 2*r);
- }
- }
- /* build generator polynomial g(X) */
- g->deg = 0;
- g->c[0] = 1;
- for (i = 0; i < GF_N(bch); i++) {
- if (roots[i]) {
- /* multiply g(X) by (X+root) */
- r = bch->a_pow_tab[i];
- g->c[g->deg+1] = 1;
- for (j = g->deg; j > 0; j--)
- g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1];
- g->c[0] = gf_mul(bch, g->c[0], r);
- g->deg++;
- }
- }
- /* store left-justified binary representation of g(X) */
- n = g->deg+1;
- i = 0;
- while (n > 0) {
- nbits = (n > 32) ? 32 : n;
- for (j = 0, word = 0; j < nbits; j++) {
- if (g->c[n-1-j])
- word |= 1u << (31-j);
- }
- genpoly[i++] = word;
- n -= nbits;
- }
- bch->ecc_bits = g->deg;
- finish:
- kfree(g);
- kfree(roots);
- return genpoly;
- }
- /**
- * init_bch - initialize a BCH encoder/decoder
- * @m: Galois field order, should be in the range 5-15
- * @t: maximum error correction capability, in bits
- * @prim_poly: user-provided primitive polynomial (or 0 to use default)
- *
- * Returns:
- * a newly allocated BCH control structure if successful, NULL otherwise
- *
- * This initialization can take some time, as lookup tables are built for fast
- * encoding/decoding; make sure not to call this function from a time critical
- * path. Usually, init_bch() should be called on module/driver init and
- * free_bch() should be called to release memory on exit.
- *
- * You may provide your own primitive polynomial of degree @m in argument
- * @prim_poly, or let init_bch() use its default polynomial.
- *
- * Once init_bch() has successfully returned a pointer to a newly allocated
- * BCH control structure, ecc length in bytes is given by member @ecc_bytes of
- * the structure.
- */
- struct bch_control *init_bch(int m, int t, unsigned int prim_poly)
- {
- int err = 0;
- unsigned int i, words;
- uint32_t *genpoly;
- struct bch_control *bch = NULL;
- const int min_m = 5;
- const int max_m = 15;
- /* default primitive polynomials */
- static const unsigned int prim_poly_tab[] = {
- 0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b,
- 0x402b, 0x8003,
- };
- #if defined(CONFIG_BCH_CONST_PARAMS)
- if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) {
- printk(KERN_ERR "bch encoder/decoder was configured to support "
- "parameters m=%d, t=%d only!\n",
- CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T);
- goto fail;
- }
- #endif
- if ((m < min_m) || (m > max_m))
- /*
- * values of m greater than 15 are not currently supported;
- * supporting m > 15 would require changing table base type
- * (uint16_t) and a small patch in matrix transposition
- */
- goto fail;
- /* sanity checks */
- if ((t < 1) || (m*t >= ((1 << m)-1)))
- /* invalid t value */
- goto fail;
- /* select a primitive polynomial for generating GF(2^m) */
- if (prim_poly == 0)
- prim_poly = prim_poly_tab[m-min_m];
- bch = kzalloc(sizeof(*bch), GFP_KERNEL);
- if (bch == NULL)
- goto fail;
- bch->m = m;
- bch->t = t;
- bch->n = (1 << m)-1;
- words = DIV_ROUND_UP(m*t, 32);
- bch->ecc_bytes = DIV_ROUND_UP(m*t, 8);
- bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err);
- bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err);
- bch->mod8_tab = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err);
- bch->ecc_buf = bch_alloc(words*sizeof(*bch->ecc_buf), &err);
- bch->ecc_buf2 = bch_alloc(words*sizeof(*bch->ecc_buf2), &err);
- bch->xi_tab = bch_alloc(m*sizeof(*bch->xi_tab), &err);
- bch->syn = bch_alloc(2*t*sizeof(*bch->syn), &err);
- bch->cache = bch_alloc(2*t*sizeof(*bch->cache), &err);
- bch->elp = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err);
- for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
- bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err);
- if (err)
- goto fail;
- err = build_gf_tables(bch, prim_poly);
- if (err)
- goto fail;
- /* use generator polynomial for computing encoding tables */
- genpoly = compute_generator_polynomial(bch);
- if (genpoly == NULL)
- goto fail;
- build_mod8_tables(bch, genpoly);
- kfree(genpoly);
- err = build_deg2_base(bch);
- if (err)
- goto fail;
- return bch;
- fail:
- free_bch(bch);
- return NULL;
- }
- EXPORT_SYMBOL_GPL(init_bch);
- /**
- * free_bch - free the BCH control structure
- * @bch: BCH control structure to release
- */
- void free_bch(struct bch_control *bch)
- {
- unsigned int i;
- if (bch) {
- kfree(bch->a_pow_tab);
- kfree(bch->a_log_tab);
- kfree(bch->mod8_tab);
- kfree(bch->ecc_buf);
- kfree(bch->ecc_buf2);
- kfree(bch->xi_tab);
- kfree(bch->syn);
- kfree(bch->cache);
- kfree(bch->elp);
- for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
- kfree(bch->poly_2t[i]);
- kfree(bch);
- }
- }
- EXPORT_SYMBOL_GPL(free_bch);
- MODULE_LICENSE("GPL");
- MODULE_AUTHOR("Ivan Djelic <ivan.djelic@parrot.com>");
- MODULE_DESCRIPTION("Binary BCH encoder/decoder");
|