memory-failure.c 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789
  1. /*
  2. * Copyright (C) 2008, 2009 Intel Corporation
  3. * Authors: Andi Kleen, Fengguang Wu
  4. *
  5. * This software may be redistributed and/or modified under the terms of
  6. * the GNU General Public License ("GPL") version 2 only as published by the
  7. * Free Software Foundation.
  8. *
  9. * High level machine check handler. Handles pages reported by the
  10. * hardware as being corrupted usually due to a multi-bit ECC memory or cache
  11. * failure.
  12. *
  13. * In addition there is a "soft offline" entry point that allows stop using
  14. * not-yet-corrupted-by-suspicious pages without killing anything.
  15. *
  16. * Handles page cache pages in various states. The tricky part
  17. * here is that we can access any page asynchronously in respect to
  18. * other VM users, because memory failures could happen anytime and
  19. * anywhere. This could violate some of their assumptions. This is why
  20. * this code has to be extremely careful. Generally it tries to use
  21. * normal locking rules, as in get the standard locks, even if that means
  22. * the error handling takes potentially a long time.
  23. *
  24. * It can be very tempting to add handling for obscure cases here.
  25. * In general any code for handling new cases should only be added iff:
  26. * - You know how to test it.
  27. * - You have a test that can be added to mce-test
  28. * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
  29. * - The case actually shows up as a frequent (top 10) page state in
  30. * tools/vm/page-types when running a real workload.
  31. *
  32. * There are several operations here with exponential complexity because
  33. * of unsuitable VM data structures. For example the operation to map back
  34. * from RMAP chains to processes has to walk the complete process list and
  35. * has non linear complexity with the number. But since memory corruptions
  36. * are rare we hope to get away with this. This avoids impacting the core
  37. * VM.
  38. */
  39. #include <linux/kernel.h>
  40. #include <linux/mm.h>
  41. #include <linux/page-flags.h>
  42. #include <linux/kernel-page-flags.h>
  43. #include <linux/sched.h>
  44. #include <linux/ksm.h>
  45. #include <linux/rmap.h>
  46. #include <linux/export.h>
  47. #include <linux/pagemap.h>
  48. #include <linux/swap.h>
  49. #include <linux/backing-dev.h>
  50. #include <linux/migrate.h>
  51. #include <linux/page-isolation.h>
  52. #include <linux/suspend.h>
  53. #include <linux/slab.h>
  54. #include <linux/swapops.h>
  55. #include <linux/hugetlb.h>
  56. #include <linux/memory_hotplug.h>
  57. #include <linux/mm_inline.h>
  58. #include <linux/kfifo.h>
  59. #include <linux/ratelimit.h>
  60. #include "internal.h"
  61. #include "ras/ras_event.h"
  62. int sysctl_memory_failure_early_kill __read_mostly = 0;
  63. int sysctl_memory_failure_recovery __read_mostly = 1;
  64. atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
  65. #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
  66. u32 hwpoison_filter_enable = 0;
  67. u32 hwpoison_filter_dev_major = ~0U;
  68. u32 hwpoison_filter_dev_minor = ~0U;
  69. u64 hwpoison_filter_flags_mask;
  70. u64 hwpoison_filter_flags_value;
  71. EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
  72. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
  73. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
  74. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
  75. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
  76. static int hwpoison_filter_dev(struct page *p)
  77. {
  78. struct address_space *mapping;
  79. dev_t dev;
  80. if (hwpoison_filter_dev_major == ~0U &&
  81. hwpoison_filter_dev_minor == ~0U)
  82. return 0;
  83. /*
  84. * page_mapping() does not accept slab pages.
  85. */
  86. if (PageSlab(p))
  87. return -EINVAL;
  88. mapping = page_mapping(p);
  89. if (mapping == NULL || mapping->host == NULL)
  90. return -EINVAL;
  91. dev = mapping->host->i_sb->s_dev;
  92. if (hwpoison_filter_dev_major != ~0U &&
  93. hwpoison_filter_dev_major != MAJOR(dev))
  94. return -EINVAL;
  95. if (hwpoison_filter_dev_minor != ~0U &&
  96. hwpoison_filter_dev_minor != MINOR(dev))
  97. return -EINVAL;
  98. return 0;
  99. }
  100. static int hwpoison_filter_flags(struct page *p)
  101. {
  102. if (!hwpoison_filter_flags_mask)
  103. return 0;
  104. if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
  105. hwpoison_filter_flags_value)
  106. return 0;
  107. else
  108. return -EINVAL;
  109. }
  110. /*
  111. * This allows stress tests to limit test scope to a collection of tasks
  112. * by putting them under some memcg. This prevents killing unrelated/important
  113. * processes such as /sbin/init. Note that the target task may share clean
  114. * pages with init (eg. libc text), which is harmless. If the target task
  115. * share _dirty_ pages with another task B, the test scheme must make sure B
  116. * is also included in the memcg. At last, due to race conditions this filter
  117. * can only guarantee that the page either belongs to the memcg tasks, or is
  118. * a freed page.
  119. */
  120. #ifdef CONFIG_MEMCG
  121. u64 hwpoison_filter_memcg;
  122. EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
  123. static int hwpoison_filter_task(struct page *p)
  124. {
  125. if (!hwpoison_filter_memcg)
  126. return 0;
  127. if (page_cgroup_ino(p) != hwpoison_filter_memcg)
  128. return -EINVAL;
  129. return 0;
  130. }
  131. #else
  132. static int hwpoison_filter_task(struct page *p) { return 0; }
  133. #endif
  134. int hwpoison_filter(struct page *p)
  135. {
  136. if (!hwpoison_filter_enable)
  137. return 0;
  138. if (hwpoison_filter_dev(p))
  139. return -EINVAL;
  140. if (hwpoison_filter_flags(p))
  141. return -EINVAL;
  142. if (hwpoison_filter_task(p))
  143. return -EINVAL;
  144. return 0;
  145. }
  146. #else
  147. int hwpoison_filter(struct page *p)
  148. {
  149. return 0;
  150. }
  151. #endif
  152. EXPORT_SYMBOL_GPL(hwpoison_filter);
  153. /*
  154. * Send all the processes who have the page mapped a signal.
  155. * ``action optional'' if they are not immediately affected by the error
  156. * ``action required'' if error happened in current execution context
  157. */
  158. static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
  159. unsigned long pfn, struct page *page, int flags)
  160. {
  161. struct siginfo si;
  162. int ret;
  163. printk(KERN_ERR
  164. "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
  165. pfn, t->comm, t->pid);
  166. si.si_signo = SIGBUS;
  167. si.si_errno = 0;
  168. si.si_addr = (void *)addr;
  169. #ifdef __ARCH_SI_TRAPNO
  170. si.si_trapno = trapno;
  171. #endif
  172. si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
  173. if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
  174. si.si_code = BUS_MCEERR_AR;
  175. ret = force_sig_info(SIGBUS, &si, current);
  176. } else {
  177. /*
  178. * Don't use force here, it's convenient if the signal
  179. * can be temporarily blocked.
  180. * This could cause a loop when the user sets SIGBUS
  181. * to SIG_IGN, but hopefully no one will do that?
  182. */
  183. si.si_code = BUS_MCEERR_AO;
  184. ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
  185. }
  186. if (ret < 0)
  187. printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
  188. t->comm, t->pid, ret);
  189. return ret;
  190. }
  191. /*
  192. * When a unknown page type is encountered drain as many buffers as possible
  193. * in the hope to turn the page into a LRU or free page, which we can handle.
  194. */
  195. void shake_page(struct page *p, int access)
  196. {
  197. if (!PageSlab(p)) {
  198. lru_add_drain_all();
  199. if (PageLRU(p))
  200. return;
  201. drain_all_pages(page_zone(p));
  202. if (PageLRU(p) || is_free_buddy_page(p))
  203. return;
  204. }
  205. /*
  206. * Only call shrink_node_slabs here (which would also shrink
  207. * other caches) if access is not potentially fatal.
  208. */
  209. if (access)
  210. drop_slab_node(page_to_nid(p));
  211. }
  212. EXPORT_SYMBOL_GPL(shake_page);
  213. /*
  214. * Kill all processes that have a poisoned page mapped and then isolate
  215. * the page.
  216. *
  217. * General strategy:
  218. * Find all processes having the page mapped and kill them.
  219. * But we keep a page reference around so that the page is not
  220. * actually freed yet.
  221. * Then stash the page away
  222. *
  223. * There's no convenient way to get back to mapped processes
  224. * from the VMAs. So do a brute-force search over all
  225. * running processes.
  226. *
  227. * Remember that machine checks are not common (or rather
  228. * if they are common you have other problems), so this shouldn't
  229. * be a performance issue.
  230. *
  231. * Also there are some races possible while we get from the
  232. * error detection to actually handle it.
  233. */
  234. struct to_kill {
  235. struct list_head nd;
  236. struct task_struct *tsk;
  237. unsigned long addr;
  238. char addr_valid;
  239. };
  240. /*
  241. * Failure handling: if we can't find or can't kill a process there's
  242. * not much we can do. We just print a message and ignore otherwise.
  243. */
  244. /*
  245. * Schedule a process for later kill.
  246. * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
  247. * TBD would GFP_NOIO be enough?
  248. */
  249. static void add_to_kill(struct task_struct *tsk, struct page *p,
  250. struct vm_area_struct *vma,
  251. struct list_head *to_kill,
  252. struct to_kill **tkc)
  253. {
  254. struct to_kill *tk;
  255. if (*tkc) {
  256. tk = *tkc;
  257. *tkc = NULL;
  258. } else {
  259. tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
  260. if (!tk) {
  261. printk(KERN_ERR
  262. "MCE: Out of memory while machine check handling\n");
  263. return;
  264. }
  265. }
  266. tk->addr = page_address_in_vma(p, vma);
  267. tk->addr_valid = 1;
  268. /*
  269. * In theory we don't have to kill when the page was
  270. * munmaped. But it could be also a mremap. Since that's
  271. * likely very rare kill anyways just out of paranoia, but use
  272. * a SIGKILL because the error is not contained anymore.
  273. */
  274. if (tk->addr == -EFAULT) {
  275. pr_info("MCE: Unable to find user space address %lx in %s\n",
  276. page_to_pfn(p), tsk->comm);
  277. tk->addr_valid = 0;
  278. }
  279. get_task_struct(tsk);
  280. tk->tsk = tsk;
  281. list_add_tail(&tk->nd, to_kill);
  282. }
  283. /*
  284. * Kill the processes that have been collected earlier.
  285. *
  286. * Only do anything when DOIT is set, otherwise just free the list
  287. * (this is used for clean pages which do not need killing)
  288. * Also when FAIL is set do a force kill because something went
  289. * wrong earlier.
  290. */
  291. static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
  292. int fail, struct page *page, unsigned long pfn,
  293. int flags)
  294. {
  295. struct to_kill *tk, *next;
  296. list_for_each_entry_safe (tk, next, to_kill, nd) {
  297. if (forcekill) {
  298. /*
  299. * In case something went wrong with munmapping
  300. * make sure the process doesn't catch the
  301. * signal and then access the memory. Just kill it.
  302. */
  303. if (fail || tk->addr_valid == 0) {
  304. printk(KERN_ERR
  305. "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
  306. pfn, tk->tsk->comm, tk->tsk->pid);
  307. force_sig(SIGKILL, tk->tsk);
  308. }
  309. /*
  310. * In theory the process could have mapped
  311. * something else on the address in-between. We could
  312. * check for that, but we need to tell the
  313. * process anyways.
  314. */
  315. else if (kill_proc(tk->tsk, tk->addr, trapno,
  316. pfn, page, flags) < 0)
  317. printk(KERN_ERR
  318. "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
  319. pfn, tk->tsk->comm, tk->tsk->pid);
  320. }
  321. put_task_struct(tk->tsk);
  322. kfree(tk);
  323. }
  324. }
  325. /*
  326. * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
  327. * on behalf of the thread group. Return task_struct of the (first found)
  328. * dedicated thread if found, and return NULL otherwise.
  329. *
  330. * We already hold read_lock(&tasklist_lock) in the caller, so we don't
  331. * have to call rcu_read_lock/unlock() in this function.
  332. */
  333. static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
  334. {
  335. struct task_struct *t;
  336. for_each_thread(tsk, t)
  337. if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
  338. return t;
  339. return NULL;
  340. }
  341. /*
  342. * Determine whether a given process is "early kill" process which expects
  343. * to be signaled when some page under the process is hwpoisoned.
  344. * Return task_struct of the dedicated thread (main thread unless explicitly
  345. * specified) if the process is "early kill," and otherwise returns NULL.
  346. */
  347. static struct task_struct *task_early_kill(struct task_struct *tsk,
  348. int force_early)
  349. {
  350. struct task_struct *t;
  351. if (!tsk->mm)
  352. return NULL;
  353. if (force_early)
  354. return tsk;
  355. t = find_early_kill_thread(tsk);
  356. if (t)
  357. return t;
  358. if (sysctl_memory_failure_early_kill)
  359. return tsk;
  360. return NULL;
  361. }
  362. /*
  363. * Collect processes when the error hit an anonymous page.
  364. */
  365. static void collect_procs_anon(struct page *page, struct list_head *to_kill,
  366. struct to_kill **tkc, int force_early)
  367. {
  368. struct vm_area_struct *vma;
  369. struct task_struct *tsk;
  370. struct anon_vma *av;
  371. pgoff_t pgoff;
  372. av = page_lock_anon_vma_read(page);
  373. if (av == NULL) /* Not actually mapped anymore */
  374. return;
  375. pgoff = page_to_pgoff(page);
  376. read_lock(&tasklist_lock);
  377. for_each_process (tsk) {
  378. struct anon_vma_chain *vmac;
  379. struct task_struct *t = task_early_kill(tsk, force_early);
  380. if (!t)
  381. continue;
  382. anon_vma_interval_tree_foreach(vmac, &av->rb_root,
  383. pgoff, pgoff) {
  384. vma = vmac->vma;
  385. if (!page_mapped_in_vma(page, vma))
  386. continue;
  387. if (vma->vm_mm == t->mm)
  388. add_to_kill(t, page, vma, to_kill, tkc);
  389. }
  390. }
  391. read_unlock(&tasklist_lock);
  392. page_unlock_anon_vma_read(av);
  393. }
  394. /*
  395. * Collect processes when the error hit a file mapped page.
  396. */
  397. static void collect_procs_file(struct page *page, struct list_head *to_kill,
  398. struct to_kill **tkc, int force_early)
  399. {
  400. struct vm_area_struct *vma;
  401. struct task_struct *tsk;
  402. struct address_space *mapping = page->mapping;
  403. i_mmap_lock_read(mapping);
  404. read_lock(&tasklist_lock);
  405. for_each_process(tsk) {
  406. pgoff_t pgoff = page_to_pgoff(page);
  407. struct task_struct *t = task_early_kill(tsk, force_early);
  408. if (!t)
  409. continue;
  410. vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
  411. pgoff) {
  412. /*
  413. * Send early kill signal to tasks where a vma covers
  414. * the page but the corrupted page is not necessarily
  415. * mapped it in its pte.
  416. * Assume applications who requested early kill want
  417. * to be informed of all such data corruptions.
  418. */
  419. if (vma->vm_mm == t->mm)
  420. add_to_kill(t, page, vma, to_kill, tkc);
  421. }
  422. }
  423. read_unlock(&tasklist_lock);
  424. i_mmap_unlock_read(mapping);
  425. }
  426. /*
  427. * Collect the processes who have the corrupted page mapped to kill.
  428. * This is done in two steps for locking reasons.
  429. * First preallocate one tokill structure outside the spin locks,
  430. * so that we can kill at least one process reasonably reliable.
  431. */
  432. static void collect_procs(struct page *page, struct list_head *tokill,
  433. int force_early)
  434. {
  435. struct to_kill *tk;
  436. if (!page->mapping)
  437. return;
  438. tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
  439. if (!tk)
  440. return;
  441. if (PageAnon(page))
  442. collect_procs_anon(page, tokill, &tk, force_early);
  443. else
  444. collect_procs_file(page, tokill, &tk, force_early);
  445. kfree(tk);
  446. }
  447. static const char *action_name[] = {
  448. [MF_IGNORED] = "Ignored",
  449. [MF_FAILED] = "Failed",
  450. [MF_DELAYED] = "Delayed",
  451. [MF_RECOVERED] = "Recovered",
  452. };
  453. static const char * const action_page_types[] = {
  454. [MF_MSG_KERNEL] = "reserved kernel page",
  455. [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
  456. [MF_MSG_SLAB] = "kernel slab page",
  457. [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
  458. [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
  459. [MF_MSG_HUGE] = "huge page",
  460. [MF_MSG_FREE_HUGE] = "free huge page",
  461. [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
  462. [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
  463. [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
  464. [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
  465. [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
  466. [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
  467. [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
  468. [MF_MSG_DIRTY_LRU] = "dirty LRU page",
  469. [MF_MSG_CLEAN_LRU] = "clean LRU page",
  470. [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
  471. [MF_MSG_BUDDY] = "free buddy page",
  472. [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
  473. [MF_MSG_UNKNOWN] = "unknown page",
  474. };
  475. /*
  476. * XXX: It is possible that a page is isolated from LRU cache,
  477. * and then kept in swap cache or failed to remove from page cache.
  478. * The page count will stop it from being freed by unpoison.
  479. * Stress tests should be aware of this memory leak problem.
  480. */
  481. static int delete_from_lru_cache(struct page *p)
  482. {
  483. if (!isolate_lru_page(p)) {
  484. /*
  485. * Clear sensible page flags, so that the buddy system won't
  486. * complain when the page is unpoison-and-freed.
  487. */
  488. ClearPageActive(p);
  489. ClearPageUnevictable(p);
  490. /*
  491. * Poisoned page might never drop its ref count to 0 so we have
  492. * to uncharge it manually from its memcg.
  493. */
  494. mem_cgroup_uncharge(p);
  495. /*
  496. * drop the page count elevated by isolate_lru_page()
  497. */
  498. page_cache_release(p);
  499. return 0;
  500. }
  501. return -EIO;
  502. }
  503. /*
  504. * Error hit kernel page.
  505. * Do nothing, try to be lucky and not touch this instead. For a few cases we
  506. * could be more sophisticated.
  507. */
  508. static int me_kernel(struct page *p, unsigned long pfn)
  509. {
  510. return MF_IGNORED;
  511. }
  512. /*
  513. * Page in unknown state. Do nothing.
  514. */
  515. static int me_unknown(struct page *p, unsigned long pfn)
  516. {
  517. printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
  518. return MF_FAILED;
  519. }
  520. /*
  521. * Clean (or cleaned) page cache page.
  522. */
  523. static int me_pagecache_clean(struct page *p, unsigned long pfn)
  524. {
  525. int err;
  526. int ret = MF_FAILED;
  527. struct address_space *mapping;
  528. delete_from_lru_cache(p);
  529. /*
  530. * For anonymous pages we're done the only reference left
  531. * should be the one m_f() holds.
  532. */
  533. if (PageAnon(p))
  534. return MF_RECOVERED;
  535. /*
  536. * Now truncate the page in the page cache. This is really
  537. * more like a "temporary hole punch"
  538. * Don't do this for block devices when someone else
  539. * has a reference, because it could be file system metadata
  540. * and that's not safe to truncate.
  541. */
  542. mapping = page_mapping(p);
  543. if (!mapping) {
  544. /*
  545. * Page has been teared down in the meanwhile
  546. */
  547. return MF_FAILED;
  548. }
  549. /*
  550. * Truncation is a bit tricky. Enable it per file system for now.
  551. *
  552. * Open: to take i_mutex or not for this? Right now we don't.
  553. */
  554. if (mapping->a_ops->error_remove_page) {
  555. err = mapping->a_ops->error_remove_page(mapping, p);
  556. if (err != 0) {
  557. printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
  558. pfn, err);
  559. } else if (page_has_private(p) &&
  560. !try_to_release_page(p, GFP_NOIO)) {
  561. pr_info("MCE %#lx: failed to release buffers\n", pfn);
  562. } else {
  563. ret = MF_RECOVERED;
  564. }
  565. } else {
  566. /*
  567. * If the file system doesn't support it just invalidate
  568. * This fails on dirty or anything with private pages
  569. */
  570. if (invalidate_inode_page(p))
  571. ret = MF_RECOVERED;
  572. else
  573. printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
  574. pfn);
  575. }
  576. return ret;
  577. }
  578. /*
  579. * Dirty pagecache page
  580. * Issues: when the error hit a hole page the error is not properly
  581. * propagated.
  582. */
  583. static int me_pagecache_dirty(struct page *p, unsigned long pfn)
  584. {
  585. struct address_space *mapping = page_mapping(p);
  586. SetPageError(p);
  587. /* TBD: print more information about the file. */
  588. if (mapping) {
  589. /*
  590. * IO error will be reported by write(), fsync(), etc.
  591. * who check the mapping.
  592. * This way the application knows that something went
  593. * wrong with its dirty file data.
  594. *
  595. * There's one open issue:
  596. *
  597. * The EIO will be only reported on the next IO
  598. * operation and then cleared through the IO map.
  599. * Normally Linux has two mechanisms to pass IO error
  600. * first through the AS_EIO flag in the address space
  601. * and then through the PageError flag in the page.
  602. * Since we drop pages on memory failure handling the
  603. * only mechanism open to use is through AS_AIO.
  604. *
  605. * This has the disadvantage that it gets cleared on
  606. * the first operation that returns an error, while
  607. * the PageError bit is more sticky and only cleared
  608. * when the page is reread or dropped. If an
  609. * application assumes it will always get error on
  610. * fsync, but does other operations on the fd before
  611. * and the page is dropped between then the error
  612. * will not be properly reported.
  613. *
  614. * This can already happen even without hwpoisoned
  615. * pages: first on metadata IO errors (which only
  616. * report through AS_EIO) or when the page is dropped
  617. * at the wrong time.
  618. *
  619. * So right now we assume that the application DTRT on
  620. * the first EIO, but we're not worse than other parts
  621. * of the kernel.
  622. */
  623. mapping_set_error(mapping, EIO);
  624. }
  625. return me_pagecache_clean(p, pfn);
  626. }
  627. /*
  628. * Clean and dirty swap cache.
  629. *
  630. * Dirty swap cache page is tricky to handle. The page could live both in page
  631. * cache and swap cache(ie. page is freshly swapped in). So it could be
  632. * referenced concurrently by 2 types of PTEs:
  633. * normal PTEs and swap PTEs. We try to handle them consistently by calling
  634. * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
  635. * and then
  636. * - clear dirty bit to prevent IO
  637. * - remove from LRU
  638. * - but keep in the swap cache, so that when we return to it on
  639. * a later page fault, we know the application is accessing
  640. * corrupted data and shall be killed (we installed simple
  641. * interception code in do_swap_page to catch it).
  642. *
  643. * Clean swap cache pages can be directly isolated. A later page fault will
  644. * bring in the known good data from disk.
  645. */
  646. static int me_swapcache_dirty(struct page *p, unsigned long pfn)
  647. {
  648. ClearPageDirty(p);
  649. /* Trigger EIO in shmem: */
  650. ClearPageUptodate(p);
  651. if (!delete_from_lru_cache(p))
  652. return MF_DELAYED;
  653. else
  654. return MF_FAILED;
  655. }
  656. static int me_swapcache_clean(struct page *p, unsigned long pfn)
  657. {
  658. delete_from_swap_cache(p);
  659. if (!delete_from_lru_cache(p))
  660. return MF_RECOVERED;
  661. else
  662. return MF_FAILED;
  663. }
  664. /*
  665. * Huge pages. Needs work.
  666. * Issues:
  667. * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
  668. * To narrow down kill region to one page, we need to break up pmd.
  669. */
  670. static int me_huge_page(struct page *p, unsigned long pfn)
  671. {
  672. int res = 0;
  673. struct page *hpage = compound_head(p);
  674. if (!PageHuge(hpage))
  675. return MF_DELAYED;
  676. /*
  677. * We can safely recover from error on free or reserved (i.e.
  678. * not in-use) hugepage by dequeuing it from freelist.
  679. * To check whether a hugepage is in-use or not, we can't use
  680. * page->lru because it can be used in other hugepage operations,
  681. * such as __unmap_hugepage_range() and gather_surplus_pages().
  682. * So instead we use page_mapping() and PageAnon().
  683. * We assume that this function is called with page lock held,
  684. * so there is no race between isolation and mapping/unmapping.
  685. */
  686. if (!(page_mapping(hpage) || PageAnon(hpage))) {
  687. res = dequeue_hwpoisoned_huge_page(hpage);
  688. if (!res)
  689. return MF_RECOVERED;
  690. }
  691. return MF_DELAYED;
  692. }
  693. /*
  694. * Various page states we can handle.
  695. *
  696. * A page state is defined by its current page->flags bits.
  697. * The table matches them in order and calls the right handler.
  698. *
  699. * This is quite tricky because we can access page at any time
  700. * in its live cycle, so all accesses have to be extremely careful.
  701. *
  702. * This is not complete. More states could be added.
  703. * For any missing state don't attempt recovery.
  704. */
  705. #define dirty (1UL << PG_dirty)
  706. #define sc (1UL << PG_swapcache)
  707. #define unevict (1UL << PG_unevictable)
  708. #define mlock (1UL << PG_mlocked)
  709. #define writeback (1UL << PG_writeback)
  710. #define lru (1UL << PG_lru)
  711. #define swapbacked (1UL << PG_swapbacked)
  712. #define head (1UL << PG_head)
  713. #define slab (1UL << PG_slab)
  714. #define reserved (1UL << PG_reserved)
  715. static struct page_state {
  716. unsigned long mask;
  717. unsigned long res;
  718. enum mf_action_page_type type;
  719. int (*action)(struct page *p, unsigned long pfn);
  720. } error_states[] = {
  721. { reserved, reserved, MF_MSG_KERNEL, me_kernel },
  722. /*
  723. * free pages are specially detected outside this table:
  724. * PG_buddy pages only make a small fraction of all free pages.
  725. */
  726. /*
  727. * Could in theory check if slab page is free or if we can drop
  728. * currently unused objects without touching them. But just
  729. * treat it as standard kernel for now.
  730. */
  731. { slab, slab, MF_MSG_SLAB, me_kernel },
  732. { head, head, MF_MSG_HUGE, me_huge_page },
  733. { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
  734. { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
  735. { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
  736. { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
  737. { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
  738. { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
  739. { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
  740. { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
  741. /*
  742. * Catchall entry: must be at end.
  743. */
  744. { 0, 0, MF_MSG_UNKNOWN, me_unknown },
  745. };
  746. #undef dirty
  747. #undef sc
  748. #undef unevict
  749. #undef mlock
  750. #undef writeback
  751. #undef lru
  752. #undef swapbacked
  753. #undef head
  754. #undef tail
  755. #undef compound
  756. #undef slab
  757. #undef reserved
  758. /*
  759. * "Dirty/Clean" indication is not 100% accurate due to the possibility of
  760. * setting PG_dirty outside page lock. See also comment above set_page_dirty().
  761. */
  762. static void action_result(unsigned long pfn, enum mf_action_page_type type,
  763. enum mf_result result)
  764. {
  765. trace_memory_failure_event(pfn, type, result);
  766. pr_err("MCE %#lx: recovery action for %s: %s\n",
  767. pfn, action_page_types[type], action_name[result]);
  768. }
  769. static int page_action(struct page_state *ps, struct page *p,
  770. unsigned long pfn)
  771. {
  772. int result;
  773. int count;
  774. result = ps->action(p, pfn);
  775. count = page_count(p) - 1;
  776. if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
  777. count--;
  778. if (count != 0) {
  779. printk(KERN_ERR
  780. "MCE %#lx: %s still referenced by %d users\n",
  781. pfn, action_page_types[ps->type], count);
  782. result = MF_FAILED;
  783. }
  784. action_result(pfn, ps->type, result);
  785. /* Could do more checks here if page looks ok */
  786. /*
  787. * Could adjust zone counters here to correct for the missing page.
  788. */
  789. return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
  790. }
  791. /**
  792. * get_hwpoison_page() - Get refcount for memory error handling:
  793. * @page: raw error page (hit by memory error)
  794. *
  795. * Return: return 0 if failed to grab the refcount, otherwise true (some
  796. * non-zero value.)
  797. */
  798. int get_hwpoison_page(struct page *page)
  799. {
  800. struct page *head = compound_head(page);
  801. if (PageHuge(head))
  802. return get_page_unless_zero(head);
  803. /*
  804. * Thp tail page has special refcounting rule (refcount of tail pages
  805. * is stored in ->_mapcount,) so we can't call get_page_unless_zero()
  806. * directly for tail pages.
  807. */
  808. if (PageTransHuge(head)) {
  809. /*
  810. * Non anonymous thp exists only in allocation/free time. We
  811. * can't handle such a case correctly, so let's give it up.
  812. * This should be better than triggering BUG_ON when kernel
  813. * tries to touch the "partially handled" page.
  814. */
  815. if (!PageAnon(head)) {
  816. pr_err("MCE: %#lx: non anonymous thp\n",
  817. page_to_pfn(page));
  818. return 0;
  819. }
  820. if (get_page_unless_zero(head)) {
  821. if (PageTail(page))
  822. get_page(page);
  823. return 1;
  824. } else {
  825. return 0;
  826. }
  827. }
  828. return get_page_unless_zero(page);
  829. }
  830. EXPORT_SYMBOL_GPL(get_hwpoison_page);
  831. /**
  832. * put_hwpoison_page() - Put refcount for memory error handling:
  833. * @page: raw error page (hit by memory error)
  834. */
  835. void put_hwpoison_page(struct page *page)
  836. {
  837. struct page *head = compound_head(page);
  838. if (PageHuge(head)) {
  839. put_page(head);
  840. return;
  841. }
  842. if (PageTransHuge(head))
  843. if (page != head)
  844. put_page(head);
  845. put_page(page);
  846. }
  847. EXPORT_SYMBOL_GPL(put_hwpoison_page);
  848. /*
  849. * Do all that is necessary to remove user space mappings. Unmap
  850. * the pages and send SIGBUS to the processes if the data was dirty.
  851. */
  852. static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
  853. int trapno, int flags, struct page **hpagep)
  854. {
  855. enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
  856. struct address_space *mapping;
  857. LIST_HEAD(tokill);
  858. int ret;
  859. int kill = 1, forcekill;
  860. struct page *hpage = *hpagep;
  861. /*
  862. * Here we are interested only in user-mapped pages, so skip any
  863. * other types of pages.
  864. */
  865. if (PageReserved(p) || PageSlab(p))
  866. return SWAP_SUCCESS;
  867. if (!(PageLRU(hpage) || PageHuge(p)))
  868. return SWAP_SUCCESS;
  869. /*
  870. * This check implies we don't kill processes if their pages
  871. * are in the swap cache early. Those are always late kills.
  872. */
  873. if (!page_mapped(hpage))
  874. return SWAP_SUCCESS;
  875. if (PageKsm(p)) {
  876. pr_err("MCE %#lx: can't handle KSM pages.\n", pfn);
  877. return SWAP_FAIL;
  878. }
  879. if (PageSwapCache(p)) {
  880. printk(KERN_ERR
  881. "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
  882. ttu |= TTU_IGNORE_HWPOISON;
  883. }
  884. /*
  885. * Propagate the dirty bit from PTEs to struct page first, because we
  886. * need this to decide if we should kill or just drop the page.
  887. * XXX: the dirty test could be racy: set_page_dirty() may not always
  888. * be called inside page lock (it's recommended but not enforced).
  889. */
  890. mapping = page_mapping(hpage);
  891. if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
  892. mapping_cap_writeback_dirty(mapping)) {
  893. if (page_mkclean(hpage)) {
  894. SetPageDirty(hpage);
  895. } else {
  896. kill = 0;
  897. ttu |= TTU_IGNORE_HWPOISON;
  898. printk(KERN_INFO
  899. "MCE %#lx: corrupted page was clean: dropped without side effects\n",
  900. pfn);
  901. }
  902. }
  903. /*
  904. * First collect all the processes that have the page
  905. * mapped in dirty form. This has to be done before try_to_unmap,
  906. * because ttu takes the rmap data structures down.
  907. *
  908. * Error handling: We ignore errors here because
  909. * there's nothing that can be done.
  910. */
  911. if (kill)
  912. collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
  913. ret = try_to_unmap(hpage, ttu);
  914. if (ret != SWAP_SUCCESS)
  915. printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
  916. pfn, page_mapcount(hpage));
  917. /*
  918. * Now that the dirty bit has been propagated to the
  919. * struct page and all unmaps done we can decide if
  920. * killing is needed or not. Only kill when the page
  921. * was dirty or the process is not restartable,
  922. * otherwise the tokill list is merely
  923. * freed. When there was a problem unmapping earlier
  924. * use a more force-full uncatchable kill to prevent
  925. * any accesses to the poisoned memory.
  926. */
  927. forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
  928. kill_procs(&tokill, forcekill, trapno,
  929. ret != SWAP_SUCCESS, p, pfn, flags);
  930. return ret;
  931. }
  932. static void set_page_hwpoison_huge_page(struct page *hpage)
  933. {
  934. int i;
  935. int nr_pages = 1 << compound_order(hpage);
  936. for (i = 0; i < nr_pages; i++)
  937. SetPageHWPoison(hpage + i);
  938. }
  939. static void clear_page_hwpoison_huge_page(struct page *hpage)
  940. {
  941. int i;
  942. int nr_pages = 1 << compound_order(hpage);
  943. for (i = 0; i < nr_pages; i++)
  944. ClearPageHWPoison(hpage + i);
  945. }
  946. /**
  947. * memory_failure - Handle memory failure of a page.
  948. * @pfn: Page Number of the corrupted page
  949. * @trapno: Trap number reported in the signal to user space.
  950. * @flags: fine tune action taken
  951. *
  952. * This function is called by the low level machine check code
  953. * of an architecture when it detects hardware memory corruption
  954. * of a page. It tries its best to recover, which includes
  955. * dropping pages, killing processes etc.
  956. *
  957. * The function is primarily of use for corruptions that
  958. * happen outside the current execution context (e.g. when
  959. * detected by a background scrubber)
  960. *
  961. * Must run in process context (e.g. a work queue) with interrupts
  962. * enabled and no spinlocks hold.
  963. */
  964. int memory_failure(unsigned long pfn, int trapno, int flags)
  965. {
  966. struct page_state *ps;
  967. struct page *p;
  968. struct page *hpage;
  969. struct page *orig_head;
  970. int res;
  971. unsigned int nr_pages;
  972. unsigned long page_flags;
  973. if (!sysctl_memory_failure_recovery)
  974. panic("Memory failure from trap %d on page %lx", trapno, pfn);
  975. if (!pfn_valid(pfn)) {
  976. printk(KERN_ERR
  977. "MCE %#lx: memory outside kernel control\n",
  978. pfn);
  979. return -ENXIO;
  980. }
  981. p = pfn_to_page(pfn);
  982. orig_head = hpage = compound_head(p);
  983. if (TestSetPageHWPoison(p)) {
  984. printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
  985. return 0;
  986. }
  987. /*
  988. * Currently errors on hugetlbfs pages are measured in hugepage units,
  989. * so nr_pages should be 1 << compound_order. OTOH when errors are on
  990. * transparent hugepages, they are supposed to be split and error
  991. * measurement is done in normal page units. So nr_pages should be one
  992. * in this case.
  993. */
  994. if (PageHuge(p))
  995. nr_pages = 1 << compound_order(hpage);
  996. else /* normal page or thp */
  997. nr_pages = 1;
  998. num_poisoned_pages_add(nr_pages);
  999. /*
  1000. * We need/can do nothing about count=0 pages.
  1001. * 1) it's a free page, and therefore in safe hand:
  1002. * prep_new_page() will be the gate keeper.
  1003. * 2) it's a free hugepage, which is also safe:
  1004. * an affected hugepage will be dequeued from hugepage freelist,
  1005. * so there's no concern about reusing it ever after.
  1006. * 3) it's part of a non-compound high order page.
  1007. * Implies some kernel user: cannot stop them from
  1008. * R/W the page; let's pray that the page has been
  1009. * used and will be freed some time later.
  1010. * In fact it's dangerous to directly bump up page count from 0,
  1011. * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
  1012. */
  1013. if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
  1014. if (is_free_buddy_page(p)) {
  1015. action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
  1016. return 0;
  1017. } else if (PageHuge(hpage)) {
  1018. /*
  1019. * Check "filter hit" and "race with other subpage."
  1020. */
  1021. lock_page(hpage);
  1022. if (PageHWPoison(hpage)) {
  1023. if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
  1024. || (p != hpage && TestSetPageHWPoison(hpage))) {
  1025. num_poisoned_pages_sub(nr_pages);
  1026. unlock_page(hpage);
  1027. return 0;
  1028. }
  1029. }
  1030. set_page_hwpoison_huge_page(hpage);
  1031. res = dequeue_hwpoisoned_huge_page(hpage);
  1032. action_result(pfn, MF_MSG_FREE_HUGE,
  1033. res ? MF_IGNORED : MF_DELAYED);
  1034. unlock_page(hpage);
  1035. return res;
  1036. } else {
  1037. action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
  1038. return -EBUSY;
  1039. }
  1040. }
  1041. if (!PageHuge(p) && PageTransHuge(hpage)) {
  1042. if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
  1043. if (!PageAnon(hpage))
  1044. pr_err("MCE: %#lx: non anonymous thp\n", pfn);
  1045. else
  1046. pr_err("MCE: %#lx: thp split failed\n", pfn);
  1047. if (TestClearPageHWPoison(p))
  1048. num_poisoned_pages_sub(nr_pages);
  1049. put_hwpoison_page(p);
  1050. return -EBUSY;
  1051. }
  1052. VM_BUG_ON_PAGE(!page_count(p), p);
  1053. hpage = compound_head(p);
  1054. }
  1055. /*
  1056. * We ignore non-LRU pages for good reasons.
  1057. * - PG_locked is only well defined for LRU pages and a few others
  1058. * - to avoid races with __set_page_locked()
  1059. * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
  1060. * The check (unnecessarily) ignores LRU pages being isolated and
  1061. * walked by the page reclaim code, however that's not a big loss.
  1062. */
  1063. if (!PageHuge(p)) {
  1064. if (!PageLRU(p))
  1065. shake_page(p, 0);
  1066. if (!PageLRU(p)) {
  1067. /*
  1068. * shake_page could have turned it free.
  1069. */
  1070. if (is_free_buddy_page(p)) {
  1071. if (flags & MF_COUNT_INCREASED)
  1072. action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
  1073. else
  1074. action_result(pfn, MF_MSG_BUDDY_2ND,
  1075. MF_DELAYED);
  1076. return 0;
  1077. }
  1078. }
  1079. }
  1080. lock_page(hpage);
  1081. /*
  1082. * The page could have changed compound pages during the locking.
  1083. * If this happens just bail out.
  1084. */
  1085. if (PageCompound(p) && compound_head(p) != orig_head) {
  1086. action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
  1087. res = -EBUSY;
  1088. goto out;
  1089. }
  1090. /*
  1091. * We use page flags to determine what action should be taken, but
  1092. * the flags can be modified by the error containment action. One
  1093. * example is an mlocked page, where PG_mlocked is cleared by
  1094. * page_remove_rmap() in try_to_unmap_one(). So to determine page status
  1095. * correctly, we save a copy of the page flags at this time.
  1096. */
  1097. if (PageHuge(p))
  1098. page_flags = hpage->flags;
  1099. else
  1100. page_flags = p->flags;
  1101. /*
  1102. * unpoison always clear PG_hwpoison inside page lock
  1103. */
  1104. if (!PageHWPoison(p)) {
  1105. printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
  1106. num_poisoned_pages_sub(nr_pages);
  1107. unlock_page(hpage);
  1108. put_hwpoison_page(hpage);
  1109. return 0;
  1110. }
  1111. if (hwpoison_filter(p)) {
  1112. if (TestClearPageHWPoison(p))
  1113. num_poisoned_pages_sub(nr_pages);
  1114. unlock_page(hpage);
  1115. put_hwpoison_page(hpage);
  1116. return 0;
  1117. }
  1118. if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
  1119. goto identify_page_state;
  1120. /*
  1121. * For error on the tail page, we should set PG_hwpoison
  1122. * on the head page to show that the hugepage is hwpoisoned
  1123. */
  1124. if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
  1125. action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
  1126. unlock_page(hpage);
  1127. put_hwpoison_page(hpage);
  1128. return 0;
  1129. }
  1130. /*
  1131. * Set PG_hwpoison on all pages in an error hugepage,
  1132. * because containment is done in hugepage unit for now.
  1133. * Since we have done TestSetPageHWPoison() for the head page with
  1134. * page lock held, we can safely set PG_hwpoison bits on tail pages.
  1135. */
  1136. if (PageHuge(p))
  1137. set_page_hwpoison_huge_page(hpage);
  1138. /*
  1139. * It's very difficult to mess with pages currently under IO
  1140. * and in many cases impossible, so we just avoid it here.
  1141. */
  1142. wait_on_page_writeback(p);
  1143. /*
  1144. * Now take care of user space mappings.
  1145. * Abort on fail: __delete_from_page_cache() assumes unmapped page.
  1146. *
  1147. * When the raw error page is thp tail page, hpage points to the raw
  1148. * page after thp split.
  1149. */
  1150. if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
  1151. != SWAP_SUCCESS) {
  1152. action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
  1153. res = -EBUSY;
  1154. goto out;
  1155. }
  1156. /*
  1157. * Torn down by someone else?
  1158. */
  1159. if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
  1160. action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
  1161. res = -EBUSY;
  1162. goto out;
  1163. }
  1164. identify_page_state:
  1165. res = -EBUSY;
  1166. /*
  1167. * The first check uses the current page flags which may not have any
  1168. * relevant information. The second check with the saved page flagss is
  1169. * carried out only if the first check can't determine the page status.
  1170. */
  1171. for (ps = error_states;; ps++)
  1172. if ((p->flags & ps->mask) == ps->res)
  1173. break;
  1174. page_flags |= (p->flags & (1UL << PG_dirty));
  1175. if (!ps->mask)
  1176. for (ps = error_states;; ps++)
  1177. if ((page_flags & ps->mask) == ps->res)
  1178. break;
  1179. res = page_action(ps, p, pfn);
  1180. out:
  1181. unlock_page(hpage);
  1182. return res;
  1183. }
  1184. EXPORT_SYMBOL_GPL(memory_failure);
  1185. #define MEMORY_FAILURE_FIFO_ORDER 4
  1186. #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
  1187. struct memory_failure_entry {
  1188. unsigned long pfn;
  1189. int trapno;
  1190. int flags;
  1191. };
  1192. struct memory_failure_cpu {
  1193. DECLARE_KFIFO(fifo, struct memory_failure_entry,
  1194. MEMORY_FAILURE_FIFO_SIZE);
  1195. spinlock_t lock;
  1196. struct work_struct work;
  1197. };
  1198. static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
  1199. /**
  1200. * memory_failure_queue - Schedule handling memory failure of a page.
  1201. * @pfn: Page Number of the corrupted page
  1202. * @trapno: Trap number reported in the signal to user space.
  1203. * @flags: Flags for memory failure handling
  1204. *
  1205. * This function is called by the low level hardware error handler
  1206. * when it detects hardware memory corruption of a page. It schedules
  1207. * the recovering of error page, including dropping pages, killing
  1208. * processes etc.
  1209. *
  1210. * The function is primarily of use for corruptions that
  1211. * happen outside the current execution context (e.g. when
  1212. * detected by a background scrubber)
  1213. *
  1214. * Can run in IRQ context.
  1215. */
  1216. void memory_failure_queue(unsigned long pfn, int trapno, int flags)
  1217. {
  1218. struct memory_failure_cpu *mf_cpu;
  1219. unsigned long proc_flags;
  1220. struct memory_failure_entry entry = {
  1221. .pfn = pfn,
  1222. .trapno = trapno,
  1223. .flags = flags,
  1224. };
  1225. mf_cpu = &get_cpu_var(memory_failure_cpu);
  1226. spin_lock_irqsave(&mf_cpu->lock, proc_flags);
  1227. if (kfifo_put(&mf_cpu->fifo, entry))
  1228. schedule_work_on(smp_processor_id(), &mf_cpu->work);
  1229. else
  1230. pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
  1231. pfn);
  1232. spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
  1233. put_cpu_var(memory_failure_cpu);
  1234. }
  1235. EXPORT_SYMBOL_GPL(memory_failure_queue);
  1236. static void memory_failure_work_func(struct work_struct *work)
  1237. {
  1238. struct memory_failure_cpu *mf_cpu;
  1239. struct memory_failure_entry entry = { 0, };
  1240. unsigned long proc_flags;
  1241. int gotten;
  1242. mf_cpu = this_cpu_ptr(&memory_failure_cpu);
  1243. for (;;) {
  1244. spin_lock_irqsave(&mf_cpu->lock, proc_flags);
  1245. gotten = kfifo_get(&mf_cpu->fifo, &entry);
  1246. spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
  1247. if (!gotten)
  1248. break;
  1249. if (entry.flags & MF_SOFT_OFFLINE)
  1250. soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
  1251. else
  1252. memory_failure(entry.pfn, entry.trapno, entry.flags);
  1253. }
  1254. }
  1255. static int __init memory_failure_init(void)
  1256. {
  1257. struct memory_failure_cpu *mf_cpu;
  1258. int cpu;
  1259. for_each_possible_cpu(cpu) {
  1260. mf_cpu = &per_cpu(memory_failure_cpu, cpu);
  1261. spin_lock_init(&mf_cpu->lock);
  1262. INIT_KFIFO(mf_cpu->fifo);
  1263. INIT_WORK(&mf_cpu->work, memory_failure_work_func);
  1264. }
  1265. return 0;
  1266. }
  1267. core_initcall(memory_failure_init);
  1268. #define unpoison_pr_info(fmt, pfn, rs) \
  1269. ({ \
  1270. if (__ratelimit(rs)) \
  1271. pr_info(fmt, pfn); \
  1272. })
  1273. /**
  1274. * unpoison_memory - Unpoison a previously poisoned page
  1275. * @pfn: Page number of the to be unpoisoned page
  1276. *
  1277. * Software-unpoison a page that has been poisoned by
  1278. * memory_failure() earlier.
  1279. *
  1280. * This is only done on the software-level, so it only works
  1281. * for linux injected failures, not real hardware failures
  1282. *
  1283. * Returns 0 for success, otherwise -errno.
  1284. */
  1285. int unpoison_memory(unsigned long pfn)
  1286. {
  1287. struct page *page;
  1288. struct page *p;
  1289. int freeit = 0;
  1290. unsigned int nr_pages;
  1291. static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
  1292. DEFAULT_RATELIMIT_BURST);
  1293. if (!pfn_valid(pfn))
  1294. return -ENXIO;
  1295. p = pfn_to_page(pfn);
  1296. page = compound_head(p);
  1297. if (!PageHWPoison(p)) {
  1298. unpoison_pr_info("MCE: Page was already unpoisoned %#lx\n",
  1299. pfn, &unpoison_rs);
  1300. return 0;
  1301. }
  1302. if (page_count(page) > 1) {
  1303. unpoison_pr_info("MCE: Someone grabs the hwpoison page %#lx\n",
  1304. pfn, &unpoison_rs);
  1305. return 0;
  1306. }
  1307. if (page_mapped(page)) {
  1308. unpoison_pr_info("MCE: Someone maps the hwpoison page %#lx\n",
  1309. pfn, &unpoison_rs);
  1310. return 0;
  1311. }
  1312. if (page_mapping(page)) {
  1313. unpoison_pr_info("MCE: the hwpoison page has non-NULL mapping %#lx\n",
  1314. pfn, &unpoison_rs);
  1315. return 0;
  1316. }
  1317. /*
  1318. * unpoison_memory() can encounter thp only when the thp is being
  1319. * worked by memory_failure() and the page lock is not held yet.
  1320. * In such case, we yield to memory_failure() and make unpoison fail.
  1321. */
  1322. if (!PageHuge(page) && PageTransHuge(page)) {
  1323. unpoison_pr_info("MCE: Memory failure is now running on %#lx\n",
  1324. pfn, &unpoison_rs);
  1325. return 0;
  1326. }
  1327. nr_pages = 1 << compound_order(page);
  1328. if (!get_hwpoison_page(p)) {
  1329. /*
  1330. * Since HWPoisoned hugepage should have non-zero refcount,
  1331. * race between memory failure and unpoison seems to happen.
  1332. * In such case unpoison fails and memory failure runs
  1333. * to the end.
  1334. */
  1335. if (PageHuge(page)) {
  1336. unpoison_pr_info("MCE: Memory failure is now running on free hugepage %#lx\n",
  1337. pfn, &unpoison_rs);
  1338. return 0;
  1339. }
  1340. if (TestClearPageHWPoison(p))
  1341. num_poisoned_pages_dec();
  1342. unpoison_pr_info("MCE: Software-unpoisoned free page %#lx\n",
  1343. pfn, &unpoison_rs);
  1344. return 0;
  1345. }
  1346. lock_page(page);
  1347. /*
  1348. * This test is racy because PG_hwpoison is set outside of page lock.
  1349. * That's acceptable because that won't trigger kernel panic. Instead,
  1350. * the PG_hwpoison page will be caught and isolated on the entrance to
  1351. * the free buddy page pool.
  1352. */
  1353. if (TestClearPageHWPoison(page)) {
  1354. unpoison_pr_info("MCE: Software-unpoisoned page %#lx\n",
  1355. pfn, &unpoison_rs);
  1356. num_poisoned_pages_sub(nr_pages);
  1357. freeit = 1;
  1358. if (PageHuge(page))
  1359. clear_page_hwpoison_huge_page(page);
  1360. }
  1361. unlock_page(page);
  1362. put_hwpoison_page(page);
  1363. if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
  1364. put_hwpoison_page(page);
  1365. return 0;
  1366. }
  1367. EXPORT_SYMBOL(unpoison_memory);
  1368. static struct page *new_page(struct page *p, unsigned long private, int **x)
  1369. {
  1370. int nid = page_to_nid(p);
  1371. if (PageHuge(p))
  1372. return alloc_huge_page_node(page_hstate(compound_head(p)),
  1373. nid);
  1374. else
  1375. return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
  1376. }
  1377. /*
  1378. * Safely get reference count of an arbitrary page.
  1379. * Returns 0 for a free page, -EIO for a zero refcount page
  1380. * that is not free, and 1 for any other page type.
  1381. * For 1 the page is returned with increased page count, otherwise not.
  1382. */
  1383. static int __get_any_page(struct page *p, unsigned long pfn, int flags)
  1384. {
  1385. int ret;
  1386. if (flags & MF_COUNT_INCREASED)
  1387. return 1;
  1388. /*
  1389. * When the target page is a free hugepage, just remove it
  1390. * from free hugepage list.
  1391. */
  1392. if (!get_hwpoison_page(p)) {
  1393. if (PageHuge(p)) {
  1394. pr_info("%s: %#lx free huge page\n", __func__, pfn);
  1395. ret = 0;
  1396. } else if (is_free_buddy_page(p)) {
  1397. pr_info("%s: %#lx free buddy page\n", __func__, pfn);
  1398. ret = 0;
  1399. } else {
  1400. pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
  1401. __func__, pfn, p->flags);
  1402. ret = -EIO;
  1403. }
  1404. } else {
  1405. /* Not a free page */
  1406. ret = 1;
  1407. }
  1408. return ret;
  1409. }
  1410. static int get_any_page(struct page *page, unsigned long pfn, int flags)
  1411. {
  1412. int ret = __get_any_page(page, pfn, flags);
  1413. if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
  1414. /*
  1415. * Try to free it.
  1416. */
  1417. put_hwpoison_page(page);
  1418. shake_page(page, 1);
  1419. /*
  1420. * Did it turn free?
  1421. */
  1422. ret = __get_any_page(page, pfn, 0);
  1423. if (ret == 1 && !PageLRU(page)) {
  1424. /* Drop page reference which is from __get_any_page() */
  1425. put_hwpoison_page(page);
  1426. pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
  1427. pfn, page->flags);
  1428. return -EIO;
  1429. }
  1430. }
  1431. return ret;
  1432. }
  1433. static int soft_offline_huge_page(struct page *page, int flags)
  1434. {
  1435. int ret;
  1436. unsigned long pfn = page_to_pfn(page);
  1437. struct page *hpage = compound_head(page);
  1438. LIST_HEAD(pagelist);
  1439. /*
  1440. * This double-check of PageHWPoison is to avoid the race with
  1441. * memory_failure(). See also comment in __soft_offline_page().
  1442. */
  1443. lock_page(hpage);
  1444. if (PageHWPoison(hpage)) {
  1445. unlock_page(hpage);
  1446. put_hwpoison_page(hpage);
  1447. pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
  1448. return -EBUSY;
  1449. }
  1450. unlock_page(hpage);
  1451. ret = isolate_huge_page(hpage, &pagelist);
  1452. /*
  1453. * get_any_page() and isolate_huge_page() takes a refcount each,
  1454. * so need to drop one here.
  1455. */
  1456. put_hwpoison_page(hpage);
  1457. if (!ret) {
  1458. pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
  1459. return -EBUSY;
  1460. }
  1461. ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
  1462. MIGRATE_SYNC, MR_MEMORY_FAILURE);
  1463. if (ret) {
  1464. pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
  1465. pfn, ret, page->flags);
  1466. if (!list_empty(&pagelist))
  1467. putback_movable_pages(&pagelist);
  1468. if (ret > 0)
  1469. ret = -EIO;
  1470. } else {
  1471. /* overcommit hugetlb page will be freed to buddy */
  1472. if (PageHuge(page)) {
  1473. set_page_hwpoison_huge_page(hpage);
  1474. dequeue_hwpoisoned_huge_page(hpage);
  1475. num_poisoned_pages_add(1 << compound_order(hpage));
  1476. } else {
  1477. SetPageHWPoison(page);
  1478. num_poisoned_pages_inc();
  1479. }
  1480. }
  1481. return ret;
  1482. }
  1483. static int __soft_offline_page(struct page *page, int flags)
  1484. {
  1485. int ret;
  1486. unsigned long pfn = page_to_pfn(page);
  1487. /*
  1488. * Check PageHWPoison again inside page lock because PageHWPoison
  1489. * is set by memory_failure() outside page lock. Note that
  1490. * memory_failure() also double-checks PageHWPoison inside page lock,
  1491. * so there's no race between soft_offline_page() and memory_failure().
  1492. */
  1493. lock_page(page);
  1494. wait_on_page_writeback(page);
  1495. if (PageHWPoison(page)) {
  1496. unlock_page(page);
  1497. put_hwpoison_page(page);
  1498. pr_info("soft offline: %#lx page already poisoned\n", pfn);
  1499. return -EBUSY;
  1500. }
  1501. /*
  1502. * Try to invalidate first. This should work for
  1503. * non dirty unmapped page cache pages.
  1504. */
  1505. ret = invalidate_inode_page(page);
  1506. unlock_page(page);
  1507. /*
  1508. * RED-PEN would be better to keep it isolated here, but we
  1509. * would need to fix isolation locking first.
  1510. */
  1511. if (ret == 1) {
  1512. put_hwpoison_page(page);
  1513. pr_info("soft_offline: %#lx: invalidated\n", pfn);
  1514. SetPageHWPoison(page);
  1515. num_poisoned_pages_inc();
  1516. return 0;
  1517. }
  1518. /*
  1519. * Simple invalidation didn't work.
  1520. * Try to migrate to a new page instead. migrate.c
  1521. * handles a large number of cases for us.
  1522. */
  1523. ret = isolate_lru_page(page);
  1524. /*
  1525. * Drop page reference which is came from get_any_page()
  1526. * successful isolate_lru_page() already took another one.
  1527. */
  1528. put_hwpoison_page(page);
  1529. if (!ret) {
  1530. LIST_HEAD(pagelist);
  1531. inc_zone_page_state(page, NR_ISOLATED_ANON +
  1532. page_is_file_cache(page));
  1533. list_add(&page->lru, &pagelist);
  1534. ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
  1535. MIGRATE_SYNC, MR_MEMORY_FAILURE);
  1536. if (ret) {
  1537. if (!list_empty(&pagelist)) {
  1538. list_del(&page->lru);
  1539. dec_zone_page_state(page, NR_ISOLATED_ANON +
  1540. page_is_file_cache(page));
  1541. putback_lru_page(page);
  1542. }
  1543. pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
  1544. pfn, ret, page->flags);
  1545. if (ret > 0)
  1546. ret = -EIO;
  1547. }
  1548. } else {
  1549. pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
  1550. pfn, ret, page_count(page), page->flags);
  1551. }
  1552. return ret;
  1553. }
  1554. /**
  1555. * soft_offline_page - Soft offline a page.
  1556. * @page: page to offline
  1557. * @flags: flags. Same as memory_failure().
  1558. *
  1559. * Returns 0 on success, otherwise negated errno.
  1560. *
  1561. * Soft offline a page, by migration or invalidation,
  1562. * without killing anything. This is for the case when
  1563. * a page is not corrupted yet (so it's still valid to access),
  1564. * but has had a number of corrected errors and is better taken
  1565. * out.
  1566. *
  1567. * The actual policy on when to do that is maintained by
  1568. * user space.
  1569. *
  1570. * This should never impact any application or cause data loss,
  1571. * however it might take some time.
  1572. *
  1573. * This is not a 100% solution for all memory, but tries to be
  1574. * ``good enough'' for the majority of memory.
  1575. */
  1576. int soft_offline_page(struct page *page, int flags)
  1577. {
  1578. int ret;
  1579. unsigned long pfn = page_to_pfn(page);
  1580. struct page *hpage = compound_head(page);
  1581. if (PageHWPoison(page)) {
  1582. pr_info("soft offline: %#lx page already poisoned\n", pfn);
  1583. if (flags & MF_COUNT_INCREASED)
  1584. put_hwpoison_page(page);
  1585. return -EBUSY;
  1586. }
  1587. if (!PageHuge(page) && PageTransHuge(hpage)) {
  1588. if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
  1589. pr_info("soft offline: %#lx: failed to split THP\n",
  1590. pfn);
  1591. if (flags & MF_COUNT_INCREASED)
  1592. put_hwpoison_page(page);
  1593. return -EBUSY;
  1594. }
  1595. }
  1596. get_online_mems();
  1597. ret = get_any_page(page, pfn, flags);
  1598. put_online_mems();
  1599. if (ret > 0) { /* for in-use pages */
  1600. if (PageHuge(page))
  1601. ret = soft_offline_huge_page(page, flags);
  1602. else
  1603. ret = __soft_offline_page(page, flags);
  1604. } else if (ret == 0) { /* for free pages */
  1605. if (PageHuge(page)) {
  1606. set_page_hwpoison_huge_page(hpage);
  1607. if (!dequeue_hwpoisoned_huge_page(hpage))
  1608. num_poisoned_pages_add(1 << compound_order(hpage));
  1609. } else {
  1610. if (!TestSetPageHWPoison(page))
  1611. num_poisoned_pages_inc();
  1612. }
  1613. }
  1614. return ret;
  1615. }