12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283 |
- /*
- * Slab allocator functions that are independent of the allocator strategy
- *
- * (C) 2012 Christoph Lameter <cl@linux.com>
- */
- #include <linux/slab.h>
- #include <linux/mm.h>
- #include <linux/poison.h>
- #include <linux/interrupt.h>
- #include <linux/memory.h>
- #include <linux/compiler.h>
- #include <linux/module.h>
- #include <linux/cpu.h>
- #include <linux/uaccess.h>
- #include <linux/seq_file.h>
- #include <linux/proc_fs.h>
- #include <asm/cacheflush.h>
- #include <asm/tlbflush.h>
- #include <asm/page.h>
- #include <linux/memcontrol.h>
- #define CREATE_TRACE_POINTS
- #include <trace/events/kmem.h>
- #include "slab.h"
- enum slab_state slab_state;
- LIST_HEAD(slab_caches);
- DEFINE_MUTEX(slab_mutex);
- struct kmem_cache *kmem_cache;
- /*
- * Set of flags that will prevent slab merging
- */
- #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
- SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
- SLAB_FAILSLAB)
- #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | SLAB_NOTRACK)
- /*
- * Merge control. If this is set then no merging of slab caches will occur.
- * (Could be removed. This was introduced to pacify the merge skeptics.)
- */
- static int slab_nomerge;
- static int __init setup_slab_nomerge(char *str)
- {
- slab_nomerge = 1;
- return 1;
- }
- #ifdef CONFIG_SLUB
- __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
- #endif
- __setup("slab_nomerge", setup_slab_nomerge);
- /*
- * Determine the size of a slab object
- */
- unsigned int kmem_cache_size(struct kmem_cache *s)
- {
- return s->object_size;
- }
- EXPORT_SYMBOL(kmem_cache_size);
- #ifdef CONFIG_DEBUG_VM
- static int kmem_cache_sanity_check(const char *name, size_t size)
- {
- struct kmem_cache *s = NULL;
- if (!name || in_interrupt() || size < sizeof(void *) ||
- size > KMALLOC_MAX_SIZE) {
- pr_err("kmem_cache_create(%s) integrity check failed\n", name);
- return -EINVAL;
- }
- list_for_each_entry(s, &slab_caches, list) {
- char tmp;
- int res;
- /*
- * This happens when the module gets unloaded and doesn't
- * destroy its slab cache and no-one else reuses the vmalloc
- * area of the module. Print a warning.
- */
- res = probe_kernel_address(s->name, tmp);
- if (res) {
- pr_err("Slab cache with size %d has lost its name\n",
- s->object_size);
- continue;
- }
- }
- WARN_ON(strchr(name, ' ')); /* It confuses parsers */
- return 0;
- }
- #else
- static inline int kmem_cache_sanity_check(const char *name, size_t size)
- {
- return 0;
- }
- #endif
- void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
- {
- size_t i;
- for (i = 0; i < nr; i++)
- kmem_cache_free(s, p[i]);
- }
- int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
- void **p)
- {
- size_t i;
- for (i = 0; i < nr; i++) {
- void *x = p[i] = kmem_cache_alloc(s, flags);
- if (!x) {
- __kmem_cache_free_bulk(s, i, p);
- return 0;
- }
- }
- return i;
- }
- #ifdef CONFIG_MEMCG_KMEM
- void slab_init_memcg_params(struct kmem_cache *s)
- {
- s->memcg_params.is_root_cache = true;
- INIT_LIST_HEAD(&s->memcg_params.list);
- RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
- }
- static int init_memcg_params(struct kmem_cache *s,
- struct mem_cgroup *memcg, struct kmem_cache *root_cache)
- {
- struct memcg_cache_array *arr;
- if (memcg) {
- s->memcg_params.is_root_cache = false;
- s->memcg_params.memcg = memcg;
- s->memcg_params.root_cache = root_cache;
- return 0;
- }
- slab_init_memcg_params(s);
- if (!memcg_nr_cache_ids)
- return 0;
- arr = kzalloc(sizeof(struct memcg_cache_array) +
- memcg_nr_cache_ids * sizeof(void *),
- GFP_KERNEL);
- if (!arr)
- return -ENOMEM;
- RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
- return 0;
- }
- static void destroy_memcg_params(struct kmem_cache *s)
- {
- if (is_root_cache(s))
- kfree(rcu_access_pointer(s->memcg_params.memcg_caches));
- }
- static int update_memcg_params(struct kmem_cache *s, int new_array_size)
- {
- struct memcg_cache_array *old, *new;
- if (!is_root_cache(s))
- return 0;
- new = kzalloc(sizeof(struct memcg_cache_array) +
- new_array_size * sizeof(void *), GFP_KERNEL);
- if (!new)
- return -ENOMEM;
- old = rcu_dereference_protected(s->memcg_params.memcg_caches,
- lockdep_is_held(&slab_mutex));
- if (old)
- memcpy(new->entries, old->entries,
- memcg_nr_cache_ids * sizeof(void *));
- rcu_assign_pointer(s->memcg_params.memcg_caches, new);
- if (old)
- kfree_rcu(old, rcu);
- return 0;
- }
- int memcg_update_all_caches(int num_memcgs)
- {
- struct kmem_cache *s;
- int ret = 0;
- mutex_lock(&slab_mutex);
- list_for_each_entry(s, &slab_caches, list) {
- ret = update_memcg_params(s, num_memcgs);
- /*
- * Instead of freeing the memory, we'll just leave the caches
- * up to this point in an updated state.
- */
- if (ret)
- break;
- }
- mutex_unlock(&slab_mutex);
- return ret;
- }
- #else
- static inline int init_memcg_params(struct kmem_cache *s,
- struct mem_cgroup *memcg, struct kmem_cache *root_cache)
- {
- return 0;
- }
- static inline void destroy_memcg_params(struct kmem_cache *s)
- {
- }
- #endif /* CONFIG_MEMCG_KMEM */
- /*
- * Find a mergeable slab cache
- */
- int slab_unmergeable(struct kmem_cache *s)
- {
- if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
- return 1;
- if (!is_root_cache(s))
- return 1;
- if (s->ctor)
- return 1;
- /*
- * We may have set a slab to be unmergeable during bootstrap.
- */
- if (s->refcount < 0)
- return 1;
- return 0;
- }
- struct kmem_cache *find_mergeable(size_t size, size_t align,
- unsigned long flags, const char *name, void (*ctor)(void *))
- {
- struct kmem_cache *s;
- if (slab_nomerge)
- return NULL;
- if (ctor)
- return NULL;
- size = ALIGN(size, sizeof(void *));
- align = calculate_alignment(flags, align, size);
- size = ALIGN(size, align);
- flags = kmem_cache_flags(size, flags, name, NULL);
- if (flags & SLAB_NEVER_MERGE)
- return NULL;
- list_for_each_entry_reverse(s, &slab_caches, list) {
- if (slab_unmergeable(s))
- continue;
- if (size > s->size)
- continue;
- if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
- continue;
- /*
- * Check if alignment is compatible.
- * Courtesy of Adrian Drzewiecki
- */
- if ((s->size & ~(align - 1)) != s->size)
- continue;
- if (s->size - size >= sizeof(void *))
- continue;
- if (IS_ENABLED(CONFIG_SLAB) && align &&
- (align > s->align || s->align % align))
- continue;
- return s;
- }
- return NULL;
- }
- /*
- * Figure out what the alignment of the objects will be given a set of
- * flags, a user specified alignment and the size of the objects.
- */
- unsigned long calculate_alignment(unsigned long flags,
- unsigned long align, unsigned long size)
- {
- /*
- * If the user wants hardware cache aligned objects then follow that
- * suggestion if the object is sufficiently large.
- *
- * The hardware cache alignment cannot override the specified
- * alignment though. If that is greater then use it.
- */
- if (flags & SLAB_HWCACHE_ALIGN) {
- unsigned long ralign = cache_line_size();
- while (size <= ralign / 2)
- ralign /= 2;
- align = max(align, ralign);
- }
- if (align < ARCH_SLAB_MINALIGN)
- align = ARCH_SLAB_MINALIGN;
- return ALIGN(align, sizeof(void *));
- }
- static struct kmem_cache *create_cache(const char *name,
- size_t object_size, size_t size, size_t align,
- unsigned long flags, void (*ctor)(void *),
- struct mem_cgroup *memcg, struct kmem_cache *root_cache)
- {
- struct kmem_cache *s;
- int err;
- err = -ENOMEM;
- s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
- if (!s)
- goto out;
- s->name = name;
- s->object_size = object_size;
- s->size = size;
- s->align = align;
- s->ctor = ctor;
- err = init_memcg_params(s, memcg, root_cache);
- if (err)
- goto out_free_cache;
- err = __kmem_cache_create(s, flags);
- if (err)
- goto out_free_cache;
- s->refcount = 1;
- list_add(&s->list, &slab_caches);
- out:
- if (err)
- return ERR_PTR(err);
- return s;
- out_free_cache:
- destroy_memcg_params(s);
- kmem_cache_free(kmem_cache, s);
- goto out;
- }
- /*
- * kmem_cache_create - Create a cache.
- * @name: A string which is used in /proc/slabinfo to identify this cache.
- * @size: The size of objects to be created in this cache.
- * @align: The required alignment for the objects.
- * @flags: SLAB flags
- * @ctor: A constructor for the objects.
- *
- * Returns a ptr to the cache on success, NULL on failure.
- * Cannot be called within a interrupt, but can be interrupted.
- * The @ctor is run when new pages are allocated by the cache.
- *
- * The flags are
- *
- * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
- * to catch references to uninitialised memory.
- *
- * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
- * for buffer overruns.
- *
- * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
- * cacheline. This can be beneficial if you're counting cycles as closely
- * as davem.
- */
- struct kmem_cache *
- kmem_cache_create(const char *name, size_t size, size_t align,
- unsigned long flags, void (*ctor)(void *))
- {
- struct kmem_cache *s = NULL;
- const char *cache_name;
- int err;
- get_online_cpus();
- get_online_mems();
- memcg_get_cache_ids();
- mutex_lock(&slab_mutex);
- err = kmem_cache_sanity_check(name, size);
- if (err) {
- goto out_unlock;
- }
- /*
- * Some allocators will constraint the set of valid flags to a subset
- * of all flags. We expect them to define CACHE_CREATE_MASK in this
- * case, and we'll just provide them with a sanitized version of the
- * passed flags.
- */
- flags &= CACHE_CREATE_MASK;
- s = __kmem_cache_alias(name, size, align, flags, ctor);
- if (s)
- goto out_unlock;
- cache_name = kstrdup_const(name, GFP_KERNEL);
- if (!cache_name) {
- err = -ENOMEM;
- goto out_unlock;
- }
- s = create_cache(cache_name, size, size,
- calculate_alignment(flags, align, size),
- flags, ctor, NULL, NULL);
- if (IS_ERR(s)) {
- err = PTR_ERR(s);
- kfree_const(cache_name);
- }
- out_unlock:
- mutex_unlock(&slab_mutex);
- memcg_put_cache_ids();
- put_online_mems();
- put_online_cpus();
- if (err) {
- if (flags & SLAB_PANIC)
- panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
- name, err);
- else {
- printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
- name, err);
- dump_stack();
- }
- return NULL;
- }
- return s;
- }
- EXPORT_SYMBOL(kmem_cache_create);
- static int shutdown_cache(struct kmem_cache *s,
- struct list_head *release, bool *need_rcu_barrier)
- {
- if (__kmem_cache_shutdown(s) != 0)
- return -EBUSY;
- if (s->flags & SLAB_DESTROY_BY_RCU)
- *need_rcu_barrier = true;
- list_move(&s->list, release);
- return 0;
- }
- static void release_caches(struct list_head *release, bool need_rcu_barrier)
- {
- struct kmem_cache *s, *s2;
- if (need_rcu_barrier)
- rcu_barrier();
- list_for_each_entry_safe(s, s2, release, list) {
- #ifdef SLAB_SUPPORTS_SYSFS
- sysfs_slab_remove(s);
- #else
- slab_kmem_cache_release(s);
- #endif
- }
- }
- #ifdef CONFIG_MEMCG_KMEM
- /*
- * memcg_create_kmem_cache - Create a cache for a memory cgroup.
- * @memcg: The memory cgroup the new cache is for.
- * @root_cache: The parent of the new cache.
- *
- * This function attempts to create a kmem cache that will serve allocation
- * requests going from @memcg to @root_cache. The new cache inherits properties
- * from its parent.
- */
- void memcg_create_kmem_cache(struct mem_cgroup *memcg,
- struct kmem_cache *root_cache)
- {
- static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
- struct cgroup_subsys_state *css = &memcg->css;
- struct memcg_cache_array *arr;
- struct kmem_cache *s = NULL;
- char *cache_name;
- int idx;
- get_online_cpus();
- get_online_mems();
- mutex_lock(&slab_mutex);
- /*
- * The memory cgroup could have been deactivated while the cache
- * creation work was pending.
- */
- if (!memcg_kmem_is_active(memcg))
- goto out_unlock;
- idx = memcg_cache_id(memcg);
- arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
- lockdep_is_held(&slab_mutex));
- /*
- * Since per-memcg caches are created asynchronously on first
- * allocation (see memcg_kmem_get_cache()), several threads can try to
- * create the same cache, but only one of them may succeed.
- */
- if (arr->entries[idx])
- goto out_unlock;
- cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
- cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
- css->serial_nr, memcg_name_buf);
- if (!cache_name)
- goto out_unlock;
- s = create_cache(cache_name, root_cache->object_size,
- root_cache->size, root_cache->align,
- root_cache->flags, root_cache->ctor,
- memcg, root_cache);
- /*
- * If we could not create a memcg cache, do not complain, because
- * that's not critical at all as we can always proceed with the root
- * cache.
- */
- if (IS_ERR(s)) {
- kfree(cache_name);
- goto out_unlock;
- }
- list_add(&s->memcg_params.list, &root_cache->memcg_params.list);
- /*
- * Since readers won't lock (see cache_from_memcg_idx()), we need a
- * barrier here to ensure nobody will see the kmem_cache partially
- * initialized.
- */
- smp_wmb();
- arr->entries[idx] = s;
- out_unlock:
- mutex_unlock(&slab_mutex);
- put_online_mems();
- put_online_cpus();
- }
- void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
- {
- int idx;
- struct memcg_cache_array *arr;
- struct kmem_cache *s, *c;
- idx = memcg_cache_id(memcg);
- get_online_cpus();
- get_online_mems();
- mutex_lock(&slab_mutex);
- list_for_each_entry(s, &slab_caches, list) {
- if (!is_root_cache(s))
- continue;
- arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
- lockdep_is_held(&slab_mutex));
- c = arr->entries[idx];
- if (!c)
- continue;
- __kmem_cache_shrink(c, true);
- arr->entries[idx] = NULL;
- }
- mutex_unlock(&slab_mutex);
- put_online_mems();
- put_online_cpus();
- }
- static int __shutdown_memcg_cache(struct kmem_cache *s,
- struct list_head *release, bool *need_rcu_barrier)
- {
- BUG_ON(is_root_cache(s));
- if (shutdown_cache(s, release, need_rcu_barrier))
- return -EBUSY;
- list_del(&s->memcg_params.list);
- return 0;
- }
- void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
- {
- LIST_HEAD(release);
- bool need_rcu_barrier = false;
- struct kmem_cache *s, *s2;
- get_online_cpus();
- get_online_mems();
- mutex_lock(&slab_mutex);
- list_for_each_entry_safe(s, s2, &slab_caches, list) {
- if (is_root_cache(s) || s->memcg_params.memcg != memcg)
- continue;
- /*
- * The cgroup is about to be freed and therefore has no charges
- * left. Hence, all its caches must be empty by now.
- */
- BUG_ON(__shutdown_memcg_cache(s, &release, &need_rcu_barrier));
- }
- mutex_unlock(&slab_mutex);
- put_online_mems();
- put_online_cpus();
- release_caches(&release, need_rcu_barrier);
- }
- static int shutdown_memcg_caches(struct kmem_cache *s,
- struct list_head *release, bool *need_rcu_barrier)
- {
- struct memcg_cache_array *arr;
- struct kmem_cache *c, *c2;
- LIST_HEAD(busy);
- int i;
- BUG_ON(!is_root_cache(s));
- /*
- * First, shutdown active caches, i.e. caches that belong to online
- * memory cgroups.
- */
- arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
- lockdep_is_held(&slab_mutex));
- for_each_memcg_cache_index(i) {
- c = arr->entries[i];
- if (!c)
- continue;
- if (__shutdown_memcg_cache(c, release, need_rcu_barrier))
- /*
- * The cache still has objects. Move it to a temporary
- * list so as not to try to destroy it for a second
- * time while iterating over inactive caches below.
- */
- list_move(&c->memcg_params.list, &busy);
- else
- /*
- * The cache is empty and will be destroyed soon. Clear
- * the pointer to it in the memcg_caches array so that
- * it will never be accessed even if the root cache
- * stays alive.
- */
- arr->entries[i] = NULL;
- }
- /*
- * Second, shutdown all caches left from memory cgroups that are now
- * offline.
- */
- list_for_each_entry_safe(c, c2, &s->memcg_params.list,
- memcg_params.list)
- __shutdown_memcg_cache(c, release, need_rcu_barrier);
- list_splice(&busy, &s->memcg_params.list);
- /*
- * A cache being destroyed must be empty. In particular, this means
- * that all per memcg caches attached to it must be empty too.
- */
- if (!list_empty(&s->memcg_params.list))
- return -EBUSY;
- return 0;
- }
- #else
- static inline int shutdown_memcg_caches(struct kmem_cache *s,
- struct list_head *release, bool *need_rcu_barrier)
- {
- return 0;
- }
- #endif /* CONFIG_MEMCG_KMEM */
- void slab_kmem_cache_release(struct kmem_cache *s)
- {
- destroy_memcg_params(s);
- kfree_const(s->name);
- kmem_cache_free(kmem_cache, s);
- }
- void kmem_cache_destroy(struct kmem_cache *s)
- {
- LIST_HEAD(release);
- bool need_rcu_barrier = false;
- int err;
- if (unlikely(!s))
- return;
- get_online_cpus();
- get_online_mems();
- mutex_lock(&slab_mutex);
- s->refcount--;
- if (s->refcount)
- goto out_unlock;
- err = shutdown_memcg_caches(s, &release, &need_rcu_barrier);
- if (!err)
- err = shutdown_cache(s, &release, &need_rcu_barrier);
- if (err) {
- pr_err("kmem_cache_destroy %s: "
- "Slab cache still has objects\n", s->name);
- dump_stack();
- }
- out_unlock:
- mutex_unlock(&slab_mutex);
- put_online_mems();
- put_online_cpus();
- release_caches(&release, need_rcu_barrier);
- }
- EXPORT_SYMBOL(kmem_cache_destroy);
- /**
- * kmem_cache_shrink - Shrink a cache.
- * @cachep: The cache to shrink.
- *
- * Releases as many slabs as possible for a cache.
- * To help debugging, a zero exit status indicates all slabs were released.
- */
- int kmem_cache_shrink(struct kmem_cache *cachep)
- {
- int ret;
- get_online_cpus();
- get_online_mems();
- ret = __kmem_cache_shrink(cachep, false);
- put_online_mems();
- put_online_cpus();
- return ret;
- }
- EXPORT_SYMBOL(kmem_cache_shrink);
- bool slab_is_available(void)
- {
- return slab_state >= UP;
- }
- #ifndef CONFIG_SLOB
- /* Create a cache during boot when no slab services are available yet */
- void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
- unsigned long flags)
- {
- int err;
- s->name = name;
- s->size = s->object_size = size;
- s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
- slab_init_memcg_params(s);
- err = __kmem_cache_create(s, flags);
- if (err)
- panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
- name, size, err);
- s->refcount = -1; /* Exempt from merging for now */
- }
- struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
- unsigned long flags)
- {
- struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
- if (!s)
- panic("Out of memory when creating slab %s\n", name);
- create_boot_cache(s, name, size, flags);
- list_add(&s->list, &slab_caches);
- s->refcount = 1;
- return s;
- }
- struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
- EXPORT_SYMBOL(kmalloc_caches);
- #ifdef CONFIG_ZONE_DMA
- struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
- EXPORT_SYMBOL(kmalloc_dma_caches);
- #endif
- /*
- * Conversion table for small slabs sizes / 8 to the index in the
- * kmalloc array. This is necessary for slabs < 192 since we have non power
- * of two cache sizes there. The size of larger slabs can be determined using
- * fls.
- */
- static s8 size_index[24] = {
- 3, /* 8 */
- 4, /* 16 */
- 5, /* 24 */
- 5, /* 32 */
- 6, /* 40 */
- 6, /* 48 */
- 6, /* 56 */
- 6, /* 64 */
- 1, /* 72 */
- 1, /* 80 */
- 1, /* 88 */
- 1, /* 96 */
- 7, /* 104 */
- 7, /* 112 */
- 7, /* 120 */
- 7, /* 128 */
- 2, /* 136 */
- 2, /* 144 */
- 2, /* 152 */
- 2, /* 160 */
- 2, /* 168 */
- 2, /* 176 */
- 2, /* 184 */
- 2 /* 192 */
- };
- static inline int size_index_elem(size_t bytes)
- {
- return (bytes - 1) / 8;
- }
- /*
- * Find the kmem_cache structure that serves a given size of
- * allocation
- */
- struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
- {
- int index;
- if (unlikely(size > KMALLOC_MAX_SIZE)) {
- WARN_ON_ONCE(!(flags & __GFP_NOWARN));
- return NULL;
- }
- if (size <= 192) {
- if (!size)
- return ZERO_SIZE_PTR;
- index = size_index[size_index_elem(size)];
- } else
- index = fls(size - 1);
- #ifdef CONFIG_ZONE_DMA
- if (unlikely((flags & GFP_DMA)))
- return kmalloc_dma_caches[index];
- #endif
- return kmalloc_caches[index];
- }
- /*
- * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
- * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
- * kmalloc-67108864.
- */
- static struct {
- const char *name;
- unsigned long size;
- } const kmalloc_info[] __initconst = {
- {NULL, 0}, {"kmalloc-96", 96},
- {"kmalloc-192", 192}, {"kmalloc-8", 8},
- {"kmalloc-16", 16}, {"kmalloc-32", 32},
- {"kmalloc-64", 64}, {"kmalloc-128", 128},
- {"kmalloc-256", 256}, {"kmalloc-512", 512},
- {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048},
- {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192},
- {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768},
- {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072},
- {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288},
- {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152},
- {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608},
- {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432},
- {"kmalloc-67108864", 67108864}
- };
- /*
- * Patch up the size_index table if we have strange large alignment
- * requirements for the kmalloc array. This is only the case for
- * MIPS it seems. The standard arches will not generate any code here.
- *
- * Largest permitted alignment is 256 bytes due to the way we
- * handle the index determination for the smaller caches.
- *
- * Make sure that nothing crazy happens if someone starts tinkering
- * around with ARCH_KMALLOC_MINALIGN
- */
- void __init setup_kmalloc_cache_index_table(void)
- {
- int i;
- BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
- (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
- for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
- int elem = size_index_elem(i);
- if (elem >= ARRAY_SIZE(size_index))
- break;
- size_index[elem] = KMALLOC_SHIFT_LOW;
- }
- if (KMALLOC_MIN_SIZE >= 64) {
- /*
- * The 96 byte size cache is not used if the alignment
- * is 64 byte.
- */
- for (i = 64 + 8; i <= 96; i += 8)
- size_index[size_index_elem(i)] = 7;
- }
- if (KMALLOC_MIN_SIZE >= 128) {
- /*
- * The 192 byte sized cache is not used if the alignment
- * is 128 byte. Redirect kmalloc to use the 256 byte cache
- * instead.
- */
- for (i = 128 + 8; i <= 192; i += 8)
- size_index[size_index_elem(i)] = 8;
- }
- }
- static void __init new_kmalloc_cache(int idx, unsigned long flags)
- {
- kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
- kmalloc_info[idx].size, flags);
- }
- /*
- * Create the kmalloc array. Some of the regular kmalloc arrays
- * may already have been created because they were needed to
- * enable allocations for slab creation.
- */
- void __init create_kmalloc_caches(unsigned long flags)
- {
- int i;
- for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
- if (!kmalloc_caches[i])
- new_kmalloc_cache(i, flags);
- /*
- * Caches that are not of the two-to-the-power-of size.
- * These have to be created immediately after the
- * earlier power of two caches
- */
- if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
- new_kmalloc_cache(1, flags);
- if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
- new_kmalloc_cache(2, flags);
- }
- /* Kmalloc array is now usable */
- slab_state = UP;
- #ifdef CONFIG_ZONE_DMA
- for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
- struct kmem_cache *s = kmalloc_caches[i];
- if (s) {
- int size = kmalloc_size(i);
- char *n = kasprintf(GFP_NOWAIT,
- "dma-kmalloc-%d", size);
- BUG_ON(!n);
- kmalloc_dma_caches[i] = create_kmalloc_cache(n,
- size, SLAB_CACHE_DMA | flags);
- }
- }
- #endif
- }
- #endif /* !CONFIG_SLOB */
- /*
- * To avoid unnecessary overhead, we pass through large allocation requests
- * directly to the page allocator. We use __GFP_COMP, because we will need to
- * know the allocation order to free the pages properly in kfree.
- */
- void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
- {
- void *ret;
- struct page *page;
- flags |= __GFP_COMP;
- page = alloc_kmem_pages(flags, order);
- ret = page ? page_address(page) : NULL;
- kmemleak_alloc(ret, size, 1, flags);
- kasan_kmalloc_large(ret, size);
- return ret;
- }
- EXPORT_SYMBOL(kmalloc_order);
- #ifdef CONFIG_TRACING
- void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
- {
- void *ret = kmalloc_order(size, flags, order);
- trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
- return ret;
- }
- EXPORT_SYMBOL(kmalloc_order_trace);
- #endif
- #ifdef CONFIG_SLABINFO
- #ifdef CONFIG_SLAB
- #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
- #else
- #define SLABINFO_RIGHTS S_IRUSR
- #endif
- static void print_slabinfo_header(struct seq_file *m)
- {
- /*
- * Output format version, so at least we can change it
- * without _too_ many complaints.
- */
- #ifdef CONFIG_DEBUG_SLAB
- seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
- #else
- seq_puts(m, "slabinfo - version: 2.1\n");
- #endif
- seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
- "<objperslab> <pagesperslab>");
- seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
- seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
- #ifdef CONFIG_DEBUG_SLAB
- seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
- "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
- seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
- #endif
- seq_putc(m, '\n');
- }
- void *slab_start(struct seq_file *m, loff_t *pos)
- {
- mutex_lock(&slab_mutex);
- return seq_list_start(&slab_caches, *pos);
- }
- void *slab_next(struct seq_file *m, void *p, loff_t *pos)
- {
- return seq_list_next(p, &slab_caches, pos);
- }
- void slab_stop(struct seq_file *m, void *p)
- {
- mutex_unlock(&slab_mutex);
- }
- static void
- memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
- {
- struct kmem_cache *c;
- struct slabinfo sinfo;
- if (!is_root_cache(s))
- return;
- for_each_memcg_cache(c, s) {
- memset(&sinfo, 0, sizeof(sinfo));
- get_slabinfo(c, &sinfo);
- info->active_slabs += sinfo.active_slabs;
- info->num_slabs += sinfo.num_slabs;
- info->shared_avail += sinfo.shared_avail;
- info->active_objs += sinfo.active_objs;
- info->num_objs += sinfo.num_objs;
- }
- }
- static void cache_show(struct kmem_cache *s, struct seq_file *m)
- {
- struct slabinfo sinfo;
- memset(&sinfo, 0, sizeof(sinfo));
- get_slabinfo(s, &sinfo);
- memcg_accumulate_slabinfo(s, &sinfo);
- seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
- cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
- sinfo.objects_per_slab, (1 << sinfo.cache_order));
- seq_printf(m, " : tunables %4u %4u %4u",
- sinfo.limit, sinfo.batchcount, sinfo.shared);
- seq_printf(m, " : slabdata %6lu %6lu %6lu",
- sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
- slabinfo_show_stats(m, s);
- seq_putc(m, '\n');
- }
- static int slab_show(struct seq_file *m, void *p)
- {
- struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
- if (p == slab_caches.next)
- print_slabinfo_header(m);
- if (is_root_cache(s))
- cache_show(s, m);
- return 0;
- }
- #ifdef CONFIG_MEMCG_KMEM
- int memcg_slab_show(struct seq_file *m, void *p)
- {
- struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
- struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
- if (p == slab_caches.next)
- print_slabinfo_header(m);
- if (!is_root_cache(s) && s->memcg_params.memcg == memcg)
- cache_show(s, m);
- return 0;
- }
- #endif
- /*
- * slabinfo_op - iterator that generates /proc/slabinfo
- *
- * Output layout:
- * cache-name
- * num-active-objs
- * total-objs
- * object size
- * num-active-slabs
- * total-slabs
- * num-pages-per-slab
- * + further values on SMP and with statistics enabled
- */
- static const struct seq_operations slabinfo_op = {
- .start = slab_start,
- .next = slab_next,
- .stop = slab_stop,
- .show = slab_show,
- };
- static int slabinfo_open(struct inode *inode, struct file *file)
- {
- return seq_open(file, &slabinfo_op);
- }
- static const struct file_operations proc_slabinfo_operations = {
- .open = slabinfo_open,
- .read = seq_read,
- .write = slabinfo_write,
- .llseek = seq_lseek,
- .release = seq_release,
- };
- static int __init slab_proc_init(void)
- {
- proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
- &proc_slabinfo_operations);
- return 0;
- }
- module_init(slab_proc_init);
- #endif /* CONFIG_SLABINFO */
- static __always_inline void *__do_krealloc(const void *p, size_t new_size,
- gfp_t flags)
- {
- void *ret;
- size_t ks = 0;
- if (p)
- ks = ksize(p);
- if (ks >= new_size) {
- kasan_krealloc((void *)p, new_size);
- return (void *)p;
- }
- ret = kmalloc_track_caller(new_size, flags);
- if (ret && p)
- memcpy(ret, p, ks);
- return ret;
- }
- /**
- * __krealloc - like krealloc() but don't free @p.
- * @p: object to reallocate memory for.
- * @new_size: how many bytes of memory are required.
- * @flags: the type of memory to allocate.
- *
- * This function is like krealloc() except it never frees the originally
- * allocated buffer. Use this if you don't want to free the buffer immediately
- * like, for example, with RCU.
- */
- void *__krealloc(const void *p, size_t new_size, gfp_t flags)
- {
- if (unlikely(!new_size))
- return ZERO_SIZE_PTR;
- return __do_krealloc(p, new_size, flags);
- }
- EXPORT_SYMBOL(__krealloc);
- /**
- * krealloc - reallocate memory. The contents will remain unchanged.
- * @p: object to reallocate memory for.
- * @new_size: how many bytes of memory are required.
- * @flags: the type of memory to allocate.
- *
- * The contents of the object pointed to are preserved up to the
- * lesser of the new and old sizes. If @p is %NULL, krealloc()
- * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
- * %NULL pointer, the object pointed to is freed.
- */
- void *krealloc(const void *p, size_t new_size, gfp_t flags)
- {
- void *ret;
- if (unlikely(!new_size)) {
- kfree(p);
- return ZERO_SIZE_PTR;
- }
- ret = __do_krealloc(p, new_size, flags);
- if (ret && p != ret)
- kfree(p);
- return ret;
- }
- EXPORT_SYMBOL(krealloc);
- /**
- * kzfree - like kfree but zero memory
- * @p: object to free memory of
- *
- * The memory of the object @p points to is zeroed before freed.
- * If @p is %NULL, kzfree() does nothing.
- *
- * Note: this function zeroes the whole allocated buffer which can be a good
- * deal bigger than the requested buffer size passed to kmalloc(). So be
- * careful when using this function in performance sensitive code.
- */
- void kzfree(const void *p)
- {
- size_t ks;
- void *mem = (void *)p;
- if (unlikely(ZERO_OR_NULL_PTR(mem)))
- return;
- ks = ksize(mem);
- memset(mem, 0, ks);
- kfree(mem);
- }
- EXPORT_SYMBOL(kzfree);
- /* Tracepoints definitions. */
- EXPORT_TRACEPOINT_SYMBOL(kmalloc);
- EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
- EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
- EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
- EXPORT_TRACEPOINT_SYMBOL(kfree);
- EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
|