vmalloc.c 68 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698
  1. /*
  2. * linux/mm/vmalloc.c
  3. *
  4. * Copyright (C) 1993 Linus Torvalds
  5. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  6. * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
  7. * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
  8. * Numa awareness, Christoph Lameter, SGI, June 2005
  9. */
  10. #include <linux/vmalloc.h>
  11. #include <linux/mm.h>
  12. #include <linux/module.h>
  13. #include <linux/highmem.h>
  14. #include <linux/sched.h>
  15. #include <linux/slab.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/debugobjects.h>
  21. #include <linux/kallsyms.h>
  22. #include <linux/list.h>
  23. #include <linux/rbtree.h>
  24. #include <linux/radix-tree.h>
  25. #include <linux/rcupdate.h>
  26. #include <linux/pfn.h>
  27. #include <linux/kmemleak.h>
  28. #include <linux/atomic.h>
  29. #include <linux/compiler.h>
  30. #include <linux/llist.h>
  31. #include <linux/bitops.h>
  32. #include <asm/uaccess.h>
  33. #include <asm/tlbflush.h>
  34. #include <asm/shmparam.h>
  35. #include "internal.h"
  36. struct vfree_deferred {
  37. struct llist_head list;
  38. struct work_struct wq;
  39. };
  40. static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  41. static void __vunmap(const void *, int);
  42. static void free_work(struct work_struct *w)
  43. {
  44. struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  45. struct llist_node *llnode = llist_del_all(&p->list);
  46. while (llnode) {
  47. void *p = llnode;
  48. llnode = llist_next(llnode);
  49. __vunmap(p, 1);
  50. }
  51. }
  52. /*** Page table manipulation functions ***/
  53. static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  54. {
  55. pte_t *pte;
  56. pte = pte_offset_kernel(pmd, addr);
  57. do {
  58. pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  59. WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  60. } while (pte++, addr += PAGE_SIZE, addr != end);
  61. }
  62. static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  63. {
  64. pmd_t *pmd;
  65. unsigned long next;
  66. pmd = pmd_offset(pud, addr);
  67. do {
  68. next = pmd_addr_end(addr, end);
  69. if (pmd_clear_huge(pmd))
  70. continue;
  71. if (pmd_none_or_clear_bad(pmd))
  72. continue;
  73. vunmap_pte_range(pmd, addr, next);
  74. } while (pmd++, addr = next, addr != end);
  75. }
  76. static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  77. {
  78. pud_t *pud;
  79. unsigned long next;
  80. pud = pud_offset(pgd, addr);
  81. do {
  82. next = pud_addr_end(addr, end);
  83. if (pud_clear_huge(pud))
  84. continue;
  85. if (pud_none_or_clear_bad(pud))
  86. continue;
  87. vunmap_pmd_range(pud, addr, next);
  88. } while (pud++, addr = next, addr != end);
  89. }
  90. static void vunmap_page_range(unsigned long addr, unsigned long end)
  91. {
  92. pgd_t *pgd;
  93. unsigned long next;
  94. BUG_ON(addr >= end);
  95. pgd = pgd_offset_k(addr);
  96. do {
  97. next = pgd_addr_end(addr, end);
  98. if (pgd_none_or_clear_bad(pgd))
  99. continue;
  100. vunmap_pud_range(pgd, addr, next);
  101. } while (pgd++, addr = next, addr != end);
  102. }
  103. static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
  104. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  105. {
  106. pte_t *pte;
  107. /*
  108. * nr is a running index into the array which helps higher level
  109. * callers keep track of where we're up to.
  110. */
  111. pte = pte_alloc_kernel(pmd, addr);
  112. if (!pte)
  113. return -ENOMEM;
  114. do {
  115. struct page *page = pages[*nr];
  116. if (WARN_ON(!pte_none(*pte)))
  117. return -EBUSY;
  118. if (WARN_ON(!page))
  119. return -ENOMEM;
  120. set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
  121. (*nr)++;
  122. } while (pte++, addr += PAGE_SIZE, addr != end);
  123. return 0;
  124. }
  125. static int vmap_pmd_range(pud_t *pud, unsigned long addr,
  126. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  127. {
  128. pmd_t *pmd;
  129. unsigned long next;
  130. pmd = pmd_alloc(&init_mm, pud, addr);
  131. if (!pmd)
  132. return -ENOMEM;
  133. do {
  134. next = pmd_addr_end(addr, end);
  135. if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
  136. return -ENOMEM;
  137. } while (pmd++, addr = next, addr != end);
  138. return 0;
  139. }
  140. static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
  141. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  142. {
  143. pud_t *pud;
  144. unsigned long next;
  145. pud = pud_alloc(&init_mm, pgd, addr);
  146. if (!pud)
  147. return -ENOMEM;
  148. do {
  149. next = pud_addr_end(addr, end);
  150. if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
  151. return -ENOMEM;
  152. } while (pud++, addr = next, addr != end);
  153. return 0;
  154. }
  155. /*
  156. * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
  157. * will have pfns corresponding to the "pages" array.
  158. *
  159. * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
  160. */
  161. static int vmap_page_range_noflush(unsigned long start, unsigned long end,
  162. pgprot_t prot, struct page **pages)
  163. {
  164. pgd_t *pgd;
  165. unsigned long next;
  166. unsigned long addr = start;
  167. int err = 0;
  168. int nr = 0;
  169. BUG_ON(addr >= end);
  170. pgd = pgd_offset_k(addr);
  171. do {
  172. next = pgd_addr_end(addr, end);
  173. err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
  174. if (err)
  175. return err;
  176. } while (pgd++, addr = next, addr != end);
  177. return nr;
  178. }
  179. static int vmap_page_range(unsigned long start, unsigned long end,
  180. pgprot_t prot, struct page **pages)
  181. {
  182. int ret;
  183. ret = vmap_page_range_noflush(start, end, prot, pages);
  184. flush_cache_vmap(start, end);
  185. return ret;
  186. }
  187. int is_vmalloc_or_module_addr(const void *x)
  188. {
  189. /*
  190. * ARM, x86-64 and sparc64 put modules in a special place,
  191. * and fall back on vmalloc() if that fails. Others
  192. * just put it in the vmalloc space.
  193. */
  194. #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
  195. unsigned long addr = (unsigned long)x;
  196. if (addr >= MODULES_VADDR && addr < MODULES_END)
  197. return 1;
  198. #endif
  199. return is_vmalloc_addr(x);
  200. }
  201. /*
  202. * Walk a vmap address to the struct page it maps.
  203. */
  204. struct page *vmalloc_to_page(const void *vmalloc_addr)
  205. {
  206. unsigned long addr = (unsigned long) vmalloc_addr;
  207. struct page *page = NULL;
  208. pgd_t *pgd = pgd_offset_k(addr);
  209. /*
  210. * XXX we might need to change this if we add VIRTUAL_BUG_ON for
  211. * architectures that do not vmalloc module space
  212. */
  213. VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
  214. if (!pgd_none(*pgd)) {
  215. pud_t *pud = pud_offset(pgd, addr);
  216. if (!pud_none(*pud)) {
  217. pmd_t *pmd = pmd_offset(pud, addr);
  218. if (!pmd_none(*pmd)) {
  219. pte_t *ptep, pte;
  220. ptep = pte_offset_map(pmd, addr);
  221. pte = *ptep;
  222. if (pte_present(pte))
  223. page = pte_page(pte);
  224. pte_unmap(ptep);
  225. }
  226. }
  227. }
  228. return page;
  229. }
  230. EXPORT_SYMBOL(vmalloc_to_page);
  231. /*
  232. * Map a vmalloc()-space virtual address to the physical page frame number.
  233. */
  234. unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
  235. {
  236. return page_to_pfn(vmalloc_to_page(vmalloc_addr));
  237. }
  238. EXPORT_SYMBOL(vmalloc_to_pfn);
  239. /*** Global kva allocator ***/
  240. #define VM_LAZY_FREE 0x01
  241. #define VM_LAZY_FREEING 0x02
  242. #define VM_VM_AREA 0x04
  243. static DEFINE_SPINLOCK(vmap_area_lock);
  244. /* Export for kexec only */
  245. LIST_HEAD(vmap_area_list);
  246. static struct rb_root vmap_area_root = RB_ROOT;
  247. /* The vmap cache globals are protected by vmap_area_lock */
  248. static struct rb_node *free_vmap_cache;
  249. static unsigned long cached_hole_size;
  250. static unsigned long cached_vstart;
  251. static unsigned long cached_align;
  252. static unsigned long vmap_area_pcpu_hole;
  253. static struct vmap_area *__find_vmap_area(unsigned long addr)
  254. {
  255. struct rb_node *n = vmap_area_root.rb_node;
  256. while (n) {
  257. struct vmap_area *va;
  258. va = rb_entry(n, struct vmap_area, rb_node);
  259. if (addr < va->va_start)
  260. n = n->rb_left;
  261. else if (addr >= va->va_end)
  262. n = n->rb_right;
  263. else
  264. return va;
  265. }
  266. return NULL;
  267. }
  268. static void __insert_vmap_area(struct vmap_area *va)
  269. {
  270. struct rb_node **p = &vmap_area_root.rb_node;
  271. struct rb_node *parent = NULL;
  272. struct rb_node *tmp;
  273. while (*p) {
  274. struct vmap_area *tmp_va;
  275. parent = *p;
  276. tmp_va = rb_entry(parent, struct vmap_area, rb_node);
  277. if (va->va_start < tmp_va->va_end)
  278. p = &(*p)->rb_left;
  279. else if (va->va_end > tmp_va->va_start)
  280. p = &(*p)->rb_right;
  281. else
  282. BUG();
  283. }
  284. rb_link_node(&va->rb_node, parent, p);
  285. rb_insert_color(&va->rb_node, &vmap_area_root);
  286. /* address-sort this list */
  287. tmp = rb_prev(&va->rb_node);
  288. if (tmp) {
  289. struct vmap_area *prev;
  290. prev = rb_entry(tmp, struct vmap_area, rb_node);
  291. list_add_rcu(&va->list, &prev->list);
  292. } else
  293. list_add_rcu(&va->list, &vmap_area_list);
  294. }
  295. static void purge_vmap_area_lazy(void);
  296. /*
  297. * Allocate a region of KVA of the specified size and alignment, within the
  298. * vstart and vend.
  299. */
  300. static struct vmap_area *alloc_vmap_area(unsigned long size,
  301. unsigned long align,
  302. unsigned long vstart, unsigned long vend,
  303. int node, gfp_t gfp_mask)
  304. {
  305. struct vmap_area *va;
  306. struct rb_node *n;
  307. unsigned long addr;
  308. int purged = 0;
  309. struct vmap_area *first;
  310. BUG_ON(!size);
  311. BUG_ON(offset_in_page(size));
  312. BUG_ON(!is_power_of_2(align));
  313. va = kmalloc_node(sizeof(struct vmap_area),
  314. gfp_mask & GFP_RECLAIM_MASK, node);
  315. if (unlikely(!va))
  316. return ERR_PTR(-ENOMEM);
  317. /*
  318. * Only scan the relevant parts containing pointers to other objects
  319. * to avoid false negatives.
  320. */
  321. kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
  322. retry:
  323. spin_lock(&vmap_area_lock);
  324. /*
  325. * Invalidate cache if we have more permissive parameters.
  326. * cached_hole_size notes the largest hole noticed _below_
  327. * the vmap_area cached in free_vmap_cache: if size fits
  328. * into that hole, we want to scan from vstart to reuse
  329. * the hole instead of allocating above free_vmap_cache.
  330. * Note that __free_vmap_area may update free_vmap_cache
  331. * without updating cached_hole_size or cached_align.
  332. */
  333. if (!free_vmap_cache ||
  334. size < cached_hole_size ||
  335. vstart < cached_vstart ||
  336. align < cached_align) {
  337. nocache:
  338. cached_hole_size = 0;
  339. free_vmap_cache = NULL;
  340. }
  341. /* record if we encounter less permissive parameters */
  342. cached_vstart = vstart;
  343. cached_align = align;
  344. /* find starting point for our search */
  345. if (free_vmap_cache) {
  346. first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
  347. addr = ALIGN(first->va_end, align);
  348. if (addr < vstart)
  349. goto nocache;
  350. if (addr + size < addr)
  351. goto overflow;
  352. } else {
  353. addr = ALIGN(vstart, align);
  354. if (addr + size < addr)
  355. goto overflow;
  356. n = vmap_area_root.rb_node;
  357. first = NULL;
  358. while (n) {
  359. struct vmap_area *tmp;
  360. tmp = rb_entry(n, struct vmap_area, rb_node);
  361. if (tmp->va_end >= addr) {
  362. first = tmp;
  363. if (tmp->va_start <= addr)
  364. break;
  365. n = n->rb_left;
  366. } else
  367. n = n->rb_right;
  368. }
  369. if (!first)
  370. goto found;
  371. }
  372. /* from the starting point, walk areas until a suitable hole is found */
  373. while (addr + size > first->va_start && addr + size <= vend) {
  374. if (addr + cached_hole_size < first->va_start)
  375. cached_hole_size = first->va_start - addr;
  376. addr = ALIGN(first->va_end, align);
  377. if (addr + size < addr)
  378. goto overflow;
  379. if (list_is_last(&first->list, &vmap_area_list))
  380. goto found;
  381. first = list_entry(first->list.next,
  382. struct vmap_area, list);
  383. }
  384. found:
  385. /*
  386. * Check also calculated address against the vstart,
  387. * because it can be 0 because of big align request.
  388. */
  389. if (addr + size > vend || addr < vstart)
  390. goto overflow;
  391. va->va_start = addr;
  392. va->va_end = addr + size;
  393. va->flags = 0;
  394. __insert_vmap_area(va);
  395. free_vmap_cache = &va->rb_node;
  396. spin_unlock(&vmap_area_lock);
  397. BUG_ON(va->va_start & (align-1));
  398. BUG_ON(va->va_start < vstart);
  399. BUG_ON(va->va_end > vend);
  400. return va;
  401. overflow:
  402. spin_unlock(&vmap_area_lock);
  403. if (!purged) {
  404. purge_vmap_area_lazy();
  405. purged = 1;
  406. goto retry;
  407. }
  408. if (printk_ratelimit())
  409. pr_warn("vmap allocation for size %lu failed: "
  410. "use vmalloc=<size> to increase size.\n", size);
  411. kfree(va);
  412. return ERR_PTR(-EBUSY);
  413. }
  414. static void __free_vmap_area(struct vmap_area *va)
  415. {
  416. BUG_ON(RB_EMPTY_NODE(&va->rb_node));
  417. if (free_vmap_cache) {
  418. if (va->va_end < cached_vstart) {
  419. free_vmap_cache = NULL;
  420. } else {
  421. struct vmap_area *cache;
  422. cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
  423. if (va->va_start <= cache->va_start) {
  424. free_vmap_cache = rb_prev(&va->rb_node);
  425. /*
  426. * We don't try to update cached_hole_size or
  427. * cached_align, but it won't go very wrong.
  428. */
  429. }
  430. }
  431. }
  432. rb_erase(&va->rb_node, &vmap_area_root);
  433. RB_CLEAR_NODE(&va->rb_node);
  434. list_del_rcu(&va->list);
  435. /*
  436. * Track the highest possible candidate for pcpu area
  437. * allocation. Areas outside of vmalloc area can be returned
  438. * here too, consider only end addresses which fall inside
  439. * vmalloc area proper.
  440. */
  441. if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
  442. vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
  443. kfree_rcu(va, rcu_head);
  444. }
  445. /*
  446. * Free a region of KVA allocated by alloc_vmap_area
  447. */
  448. static void free_vmap_area(struct vmap_area *va)
  449. {
  450. spin_lock(&vmap_area_lock);
  451. __free_vmap_area(va);
  452. spin_unlock(&vmap_area_lock);
  453. }
  454. /*
  455. * Clear the pagetable entries of a given vmap_area
  456. */
  457. static void unmap_vmap_area(struct vmap_area *va)
  458. {
  459. vunmap_page_range(va->va_start, va->va_end);
  460. }
  461. static void vmap_debug_free_range(unsigned long start, unsigned long end)
  462. {
  463. /*
  464. * Unmap page tables and force a TLB flush immediately if
  465. * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
  466. * bugs similarly to those in linear kernel virtual address
  467. * space after a page has been freed.
  468. *
  469. * All the lazy freeing logic is still retained, in order to
  470. * minimise intrusiveness of this debugging feature.
  471. *
  472. * This is going to be *slow* (linear kernel virtual address
  473. * debugging doesn't do a broadcast TLB flush so it is a lot
  474. * faster).
  475. */
  476. #ifdef CONFIG_DEBUG_PAGEALLOC
  477. vunmap_page_range(start, end);
  478. flush_tlb_kernel_range(start, end);
  479. #endif
  480. }
  481. /*
  482. * lazy_max_pages is the maximum amount of virtual address space we gather up
  483. * before attempting to purge with a TLB flush.
  484. *
  485. * There is a tradeoff here: a larger number will cover more kernel page tables
  486. * and take slightly longer to purge, but it will linearly reduce the number of
  487. * global TLB flushes that must be performed. It would seem natural to scale
  488. * this number up linearly with the number of CPUs (because vmapping activity
  489. * could also scale linearly with the number of CPUs), however it is likely
  490. * that in practice, workloads might be constrained in other ways that mean
  491. * vmap activity will not scale linearly with CPUs. Also, I want to be
  492. * conservative and not introduce a big latency on huge systems, so go with
  493. * a less aggressive log scale. It will still be an improvement over the old
  494. * code, and it will be simple to change the scale factor if we find that it
  495. * becomes a problem on bigger systems.
  496. */
  497. static unsigned long lazy_max_pages(void)
  498. {
  499. unsigned int log;
  500. log = fls(num_online_cpus());
  501. return log * (32UL * 1024 * 1024 / PAGE_SIZE);
  502. }
  503. static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
  504. /* for per-CPU blocks */
  505. static void purge_fragmented_blocks_allcpus(void);
  506. /*
  507. * called before a call to iounmap() if the caller wants vm_area_struct's
  508. * immediately freed.
  509. */
  510. void set_iounmap_nonlazy(void)
  511. {
  512. atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
  513. }
  514. /*
  515. * Purges all lazily-freed vmap areas.
  516. *
  517. * If sync is 0 then don't purge if there is already a purge in progress.
  518. * If force_flush is 1, then flush kernel TLBs between *start and *end even
  519. * if we found no lazy vmap areas to unmap (callers can use this to optimise
  520. * their own TLB flushing).
  521. * Returns with *start = min(*start, lowest purged address)
  522. * *end = max(*end, highest purged address)
  523. */
  524. static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
  525. int sync, int force_flush)
  526. {
  527. static DEFINE_SPINLOCK(purge_lock);
  528. LIST_HEAD(valist);
  529. struct vmap_area *va;
  530. struct vmap_area *n_va;
  531. int nr = 0;
  532. /*
  533. * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
  534. * should not expect such behaviour. This just simplifies locking for
  535. * the case that isn't actually used at the moment anyway.
  536. */
  537. if (!sync && !force_flush) {
  538. if (!spin_trylock(&purge_lock))
  539. return;
  540. } else
  541. spin_lock(&purge_lock);
  542. if (sync)
  543. purge_fragmented_blocks_allcpus();
  544. rcu_read_lock();
  545. list_for_each_entry_rcu(va, &vmap_area_list, list) {
  546. if (va->flags & VM_LAZY_FREE) {
  547. if (va->va_start < *start)
  548. *start = va->va_start;
  549. if (va->va_end > *end)
  550. *end = va->va_end;
  551. nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
  552. list_add_tail(&va->purge_list, &valist);
  553. va->flags |= VM_LAZY_FREEING;
  554. va->flags &= ~VM_LAZY_FREE;
  555. }
  556. }
  557. rcu_read_unlock();
  558. if (nr)
  559. atomic_sub(nr, &vmap_lazy_nr);
  560. if (nr || force_flush)
  561. flush_tlb_kernel_range(*start, *end);
  562. if (nr) {
  563. spin_lock(&vmap_area_lock);
  564. list_for_each_entry_safe(va, n_va, &valist, purge_list)
  565. __free_vmap_area(va);
  566. spin_unlock(&vmap_area_lock);
  567. }
  568. spin_unlock(&purge_lock);
  569. }
  570. /*
  571. * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
  572. * is already purging.
  573. */
  574. static void try_purge_vmap_area_lazy(void)
  575. {
  576. unsigned long start = ULONG_MAX, end = 0;
  577. __purge_vmap_area_lazy(&start, &end, 0, 0);
  578. }
  579. /*
  580. * Kick off a purge of the outstanding lazy areas.
  581. */
  582. static void purge_vmap_area_lazy(void)
  583. {
  584. unsigned long start = ULONG_MAX, end = 0;
  585. __purge_vmap_area_lazy(&start, &end, 1, 0);
  586. }
  587. /*
  588. * Free a vmap area, caller ensuring that the area has been unmapped
  589. * and flush_cache_vunmap had been called for the correct range
  590. * previously.
  591. */
  592. static void free_vmap_area_noflush(struct vmap_area *va)
  593. {
  594. va->flags |= VM_LAZY_FREE;
  595. atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
  596. if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
  597. try_purge_vmap_area_lazy();
  598. }
  599. /*
  600. * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
  601. * called for the correct range previously.
  602. */
  603. static void free_unmap_vmap_area_noflush(struct vmap_area *va)
  604. {
  605. unmap_vmap_area(va);
  606. free_vmap_area_noflush(va);
  607. }
  608. /*
  609. * Free and unmap a vmap area
  610. */
  611. static void free_unmap_vmap_area(struct vmap_area *va)
  612. {
  613. flush_cache_vunmap(va->va_start, va->va_end);
  614. free_unmap_vmap_area_noflush(va);
  615. }
  616. static struct vmap_area *find_vmap_area(unsigned long addr)
  617. {
  618. struct vmap_area *va;
  619. spin_lock(&vmap_area_lock);
  620. va = __find_vmap_area(addr);
  621. spin_unlock(&vmap_area_lock);
  622. return va;
  623. }
  624. static void free_unmap_vmap_area_addr(unsigned long addr)
  625. {
  626. struct vmap_area *va;
  627. va = find_vmap_area(addr);
  628. BUG_ON(!va);
  629. free_unmap_vmap_area(va);
  630. }
  631. /*** Per cpu kva allocator ***/
  632. /*
  633. * vmap space is limited especially on 32 bit architectures. Ensure there is
  634. * room for at least 16 percpu vmap blocks per CPU.
  635. */
  636. /*
  637. * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
  638. * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
  639. * instead (we just need a rough idea)
  640. */
  641. #if BITS_PER_LONG == 32
  642. #define VMALLOC_SPACE (128UL*1024*1024)
  643. #else
  644. #define VMALLOC_SPACE (128UL*1024*1024*1024)
  645. #endif
  646. #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
  647. #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
  648. #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
  649. #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
  650. #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
  651. #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
  652. #define VMAP_BBMAP_BITS \
  653. VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
  654. VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
  655. VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
  656. #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
  657. static bool vmap_initialized __read_mostly = false;
  658. struct vmap_block_queue {
  659. spinlock_t lock;
  660. struct list_head free;
  661. };
  662. struct vmap_block {
  663. spinlock_t lock;
  664. struct vmap_area *va;
  665. unsigned long free, dirty;
  666. unsigned long dirty_min, dirty_max; /*< dirty range */
  667. struct list_head free_list;
  668. struct rcu_head rcu_head;
  669. struct list_head purge;
  670. };
  671. /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
  672. static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
  673. /*
  674. * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
  675. * in the free path. Could get rid of this if we change the API to return a
  676. * "cookie" from alloc, to be passed to free. But no big deal yet.
  677. */
  678. static DEFINE_SPINLOCK(vmap_block_tree_lock);
  679. static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
  680. /*
  681. * We should probably have a fallback mechanism to allocate virtual memory
  682. * out of partially filled vmap blocks. However vmap block sizing should be
  683. * fairly reasonable according to the vmalloc size, so it shouldn't be a
  684. * big problem.
  685. */
  686. static unsigned long addr_to_vb_idx(unsigned long addr)
  687. {
  688. addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
  689. addr /= VMAP_BLOCK_SIZE;
  690. return addr;
  691. }
  692. static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
  693. {
  694. unsigned long addr;
  695. addr = va_start + (pages_off << PAGE_SHIFT);
  696. BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
  697. return (void *)addr;
  698. }
  699. /**
  700. * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
  701. * block. Of course pages number can't exceed VMAP_BBMAP_BITS
  702. * @order: how many 2^order pages should be occupied in newly allocated block
  703. * @gfp_mask: flags for the page level allocator
  704. *
  705. * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
  706. */
  707. static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
  708. {
  709. struct vmap_block_queue *vbq;
  710. struct vmap_block *vb;
  711. struct vmap_area *va;
  712. unsigned long vb_idx;
  713. int node, err;
  714. void *vaddr;
  715. node = numa_node_id();
  716. vb = kmalloc_node(sizeof(struct vmap_block),
  717. gfp_mask & GFP_RECLAIM_MASK, node);
  718. if (unlikely(!vb))
  719. return ERR_PTR(-ENOMEM);
  720. va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
  721. VMALLOC_START, VMALLOC_END,
  722. node, gfp_mask);
  723. if (IS_ERR(va)) {
  724. kfree(vb);
  725. return ERR_CAST(va);
  726. }
  727. err = radix_tree_preload(gfp_mask);
  728. if (unlikely(err)) {
  729. kfree(vb);
  730. free_vmap_area(va);
  731. return ERR_PTR(err);
  732. }
  733. vaddr = vmap_block_vaddr(va->va_start, 0);
  734. spin_lock_init(&vb->lock);
  735. vb->va = va;
  736. /* At least something should be left free */
  737. BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
  738. vb->free = VMAP_BBMAP_BITS - (1UL << order);
  739. vb->dirty = 0;
  740. vb->dirty_min = VMAP_BBMAP_BITS;
  741. vb->dirty_max = 0;
  742. INIT_LIST_HEAD(&vb->free_list);
  743. vb_idx = addr_to_vb_idx(va->va_start);
  744. spin_lock(&vmap_block_tree_lock);
  745. err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
  746. spin_unlock(&vmap_block_tree_lock);
  747. BUG_ON(err);
  748. radix_tree_preload_end();
  749. vbq = &get_cpu_var(vmap_block_queue);
  750. spin_lock(&vbq->lock);
  751. list_add_tail_rcu(&vb->free_list, &vbq->free);
  752. spin_unlock(&vbq->lock);
  753. put_cpu_var(vmap_block_queue);
  754. return vaddr;
  755. }
  756. static void free_vmap_block(struct vmap_block *vb)
  757. {
  758. struct vmap_block *tmp;
  759. unsigned long vb_idx;
  760. vb_idx = addr_to_vb_idx(vb->va->va_start);
  761. spin_lock(&vmap_block_tree_lock);
  762. tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
  763. spin_unlock(&vmap_block_tree_lock);
  764. BUG_ON(tmp != vb);
  765. free_vmap_area_noflush(vb->va);
  766. kfree_rcu(vb, rcu_head);
  767. }
  768. static void purge_fragmented_blocks(int cpu)
  769. {
  770. LIST_HEAD(purge);
  771. struct vmap_block *vb;
  772. struct vmap_block *n_vb;
  773. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  774. rcu_read_lock();
  775. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  776. if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
  777. continue;
  778. spin_lock(&vb->lock);
  779. if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
  780. vb->free = 0; /* prevent further allocs after releasing lock */
  781. vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
  782. vb->dirty_min = 0;
  783. vb->dirty_max = VMAP_BBMAP_BITS;
  784. spin_lock(&vbq->lock);
  785. list_del_rcu(&vb->free_list);
  786. spin_unlock(&vbq->lock);
  787. spin_unlock(&vb->lock);
  788. list_add_tail(&vb->purge, &purge);
  789. } else
  790. spin_unlock(&vb->lock);
  791. }
  792. rcu_read_unlock();
  793. list_for_each_entry_safe(vb, n_vb, &purge, purge) {
  794. list_del(&vb->purge);
  795. free_vmap_block(vb);
  796. }
  797. }
  798. static void purge_fragmented_blocks_allcpus(void)
  799. {
  800. int cpu;
  801. for_each_possible_cpu(cpu)
  802. purge_fragmented_blocks(cpu);
  803. }
  804. static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
  805. {
  806. struct vmap_block_queue *vbq;
  807. struct vmap_block *vb;
  808. void *vaddr = NULL;
  809. unsigned int order;
  810. BUG_ON(offset_in_page(size));
  811. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  812. if (WARN_ON(size == 0)) {
  813. /*
  814. * Allocating 0 bytes isn't what caller wants since
  815. * get_order(0) returns funny result. Just warn and terminate
  816. * early.
  817. */
  818. return NULL;
  819. }
  820. order = get_order(size);
  821. rcu_read_lock();
  822. vbq = &get_cpu_var(vmap_block_queue);
  823. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  824. unsigned long pages_off;
  825. spin_lock(&vb->lock);
  826. if (vb->free < (1UL << order)) {
  827. spin_unlock(&vb->lock);
  828. continue;
  829. }
  830. pages_off = VMAP_BBMAP_BITS - vb->free;
  831. vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
  832. vb->free -= 1UL << order;
  833. if (vb->free == 0) {
  834. spin_lock(&vbq->lock);
  835. list_del_rcu(&vb->free_list);
  836. spin_unlock(&vbq->lock);
  837. }
  838. spin_unlock(&vb->lock);
  839. break;
  840. }
  841. put_cpu_var(vmap_block_queue);
  842. rcu_read_unlock();
  843. /* Allocate new block if nothing was found */
  844. if (!vaddr)
  845. vaddr = new_vmap_block(order, gfp_mask);
  846. return vaddr;
  847. }
  848. static void vb_free(const void *addr, unsigned long size)
  849. {
  850. unsigned long offset;
  851. unsigned long vb_idx;
  852. unsigned int order;
  853. struct vmap_block *vb;
  854. BUG_ON(offset_in_page(size));
  855. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  856. flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
  857. order = get_order(size);
  858. offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
  859. offset >>= PAGE_SHIFT;
  860. vb_idx = addr_to_vb_idx((unsigned long)addr);
  861. rcu_read_lock();
  862. vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
  863. rcu_read_unlock();
  864. BUG_ON(!vb);
  865. vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
  866. spin_lock(&vb->lock);
  867. /* Expand dirty range */
  868. vb->dirty_min = min(vb->dirty_min, offset);
  869. vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
  870. vb->dirty += 1UL << order;
  871. if (vb->dirty == VMAP_BBMAP_BITS) {
  872. BUG_ON(vb->free);
  873. spin_unlock(&vb->lock);
  874. free_vmap_block(vb);
  875. } else
  876. spin_unlock(&vb->lock);
  877. }
  878. /**
  879. * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
  880. *
  881. * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
  882. * to amortize TLB flushing overheads. What this means is that any page you
  883. * have now, may, in a former life, have been mapped into kernel virtual
  884. * address by the vmap layer and so there might be some CPUs with TLB entries
  885. * still referencing that page (additional to the regular 1:1 kernel mapping).
  886. *
  887. * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
  888. * be sure that none of the pages we have control over will have any aliases
  889. * from the vmap layer.
  890. */
  891. void vm_unmap_aliases(void)
  892. {
  893. unsigned long start = ULONG_MAX, end = 0;
  894. int cpu;
  895. int flush = 0;
  896. if (unlikely(!vmap_initialized))
  897. return;
  898. for_each_possible_cpu(cpu) {
  899. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  900. struct vmap_block *vb;
  901. rcu_read_lock();
  902. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  903. spin_lock(&vb->lock);
  904. if (vb->dirty) {
  905. unsigned long va_start = vb->va->va_start;
  906. unsigned long s, e;
  907. s = va_start + (vb->dirty_min << PAGE_SHIFT);
  908. e = va_start + (vb->dirty_max << PAGE_SHIFT);
  909. start = min(s, start);
  910. end = max(e, end);
  911. flush = 1;
  912. }
  913. spin_unlock(&vb->lock);
  914. }
  915. rcu_read_unlock();
  916. }
  917. __purge_vmap_area_lazy(&start, &end, 1, flush);
  918. }
  919. EXPORT_SYMBOL_GPL(vm_unmap_aliases);
  920. /**
  921. * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
  922. * @mem: the pointer returned by vm_map_ram
  923. * @count: the count passed to that vm_map_ram call (cannot unmap partial)
  924. */
  925. void vm_unmap_ram(const void *mem, unsigned int count)
  926. {
  927. unsigned long size = count << PAGE_SHIFT;
  928. unsigned long addr = (unsigned long)mem;
  929. BUG_ON(!addr);
  930. BUG_ON(addr < VMALLOC_START);
  931. BUG_ON(addr > VMALLOC_END);
  932. BUG_ON(addr & (PAGE_SIZE-1));
  933. debug_check_no_locks_freed(mem, size);
  934. vmap_debug_free_range(addr, addr+size);
  935. if (likely(count <= VMAP_MAX_ALLOC))
  936. vb_free(mem, size);
  937. else
  938. free_unmap_vmap_area_addr(addr);
  939. }
  940. EXPORT_SYMBOL(vm_unmap_ram);
  941. /**
  942. * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
  943. * @pages: an array of pointers to the pages to be mapped
  944. * @count: number of pages
  945. * @node: prefer to allocate data structures on this node
  946. * @prot: memory protection to use. PAGE_KERNEL for regular RAM
  947. *
  948. * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
  949. * faster than vmap so it's good. But if you mix long-life and short-life
  950. * objects with vm_map_ram(), it could consume lots of address space through
  951. * fragmentation (especially on a 32bit machine). You could see failures in
  952. * the end. Please use this function for short-lived objects.
  953. *
  954. * Returns: a pointer to the address that has been mapped, or %NULL on failure
  955. */
  956. void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
  957. {
  958. unsigned long size = count << PAGE_SHIFT;
  959. unsigned long addr;
  960. void *mem;
  961. if (likely(count <= VMAP_MAX_ALLOC)) {
  962. mem = vb_alloc(size, GFP_KERNEL);
  963. if (IS_ERR(mem))
  964. return NULL;
  965. addr = (unsigned long)mem;
  966. } else {
  967. struct vmap_area *va;
  968. va = alloc_vmap_area(size, PAGE_SIZE,
  969. VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
  970. if (IS_ERR(va))
  971. return NULL;
  972. addr = va->va_start;
  973. mem = (void *)addr;
  974. }
  975. if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
  976. vm_unmap_ram(mem, count);
  977. return NULL;
  978. }
  979. return mem;
  980. }
  981. EXPORT_SYMBOL(vm_map_ram);
  982. static struct vm_struct *vmlist __initdata;
  983. /**
  984. * vm_area_add_early - add vmap area early during boot
  985. * @vm: vm_struct to add
  986. *
  987. * This function is used to add fixed kernel vm area to vmlist before
  988. * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
  989. * should contain proper values and the other fields should be zero.
  990. *
  991. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  992. */
  993. void __init vm_area_add_early(struct vm_struct *vm)
  994. {
  995. struct vm_struct *tmp, **p;
  996. BUG_ON(vmap_initialized);
  997. for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
  998. if (tmp->addr >= vm->addr) {
  999. BUG_ON(tmp->addr < vm->addr + vm->size);
  1000. break;
  1001. } else
  1002. BUG_ON(tmp->addr + tmp->size > vm->addr);
  1003. }
  1004. vm->next = *p;
  1005. *p = vm;
  1006. }
  1007. /**
  1008. * vm_area_register_early - register vmap area early during boot
  1009. * @vm: vm_struct to register
  1010. * @align: requested alignment
  1011. *
  1012. * This function is used to register kernel vm area before
  1013. * vmalloc_init() is called. @vm->size and @vm->flags should contain
  1014. * proper values on entry and other fields should be zero. On return,
  1015. * vm->addr contains the allocated address.
  1016. *
  1017. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  1018. */
  1019. void __init vm_area_register_early(struct vm_struct *vm, size_t align)
  1020. {
  1021. static size_t vm_init_off __initdata;
  1022. unsigned long addr;
  1023. addr = ALIGN(VMALLOC_START + vm_init_off, align);
  1024. vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
  1025. vm->addr = (void *)addr;
  1026. vm_area_add_early(vm);
  1027. }
  1028. void __init vmalloc_init(void)
  1029. {
  1030. struct vmap_area *va;
  1031. struct vm_struct *tmp;
  1032. int i;
  1033. for_each_possible_cpu(i) {
  1034. struct vmap_block_queue *vbq;
  1035. struct vfree_deferred *p;
  1036. vbq = &per_cpu(vmap_block_queue, i);
  1037. spin_lock_init(&vbq->lock);
  1038. INIT_LIST_HEAD(&vbq->free);
  1039. p = &per_cpu(vfree_deferred, i);
  1040. init_llist_head(&p->list);
  1041. INIT_WORK(&p->wq, free_work);
  1042. }
  1043. /* Import existing vmlist entries. */
  1044. for (tmp = vmlist; tmp; tmp = tmp->next) {
  1045. va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
  1046. va->flags = VM_VM_AREA;
  1047. va->va_start = (unsigned long)tmp->addr;
  1048. va->va_end = va->va_start + tmp->size;
  1049. va->vm = tmp;
  1050. __insert_vmap_area(va);
  1051. }
  1052. vmap_area_pcpu_hole = VMALLOC_END;
  1053. vmap_initialized = true;
  1054. }
  1055. /**
  1056. * map_kernel_range_noflush - map kernel VM area with the specified pages
  1057. * @addr: start of the VM area to map
  1058. * @size: size of the VM area to map
  1059. * @prot: page protection flags to use
  1060. * @pages: pages to map
  1061. *
  1062. * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
  1063. * specify should have been allocated using get_vm_area() and its
  1064. * friends.
  1065. *
  1066. * NOTE:
  1067. * This function does NOT do any cache flushing. The caller is
  1068. * responsible for calling flush_cache_vmap() on to-be-mapped areas
  1069. * before calling this function.
  1070. *
  1071. * RETURNS:
  1072. * The number of pages mapped on success, -errno on failure.
  1073. */
  1074. int map_kernel_range_noflush(unsigned long addr, unsigned long size,
  1075. pgprot_t prot, struct page **pages)
  1076. {
  1077. return vmap_page_range_noflush(addr, addr + size, prot, pages);
  1078. }
  1079. /**
  1080. * unmap_kernel_range_noflush - unmap kernel VM area
  1081. * @addr: start of the VM area to unmap
  1082. * @size: size of the VM area to unmap
  1083. *
  1084. * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
  1085. * specify should have been allocated using get_vm_area() and its
  1086. * friends.
  1087. *
  1088. * NOTE:
  1089. * This function does NOT do any cache flushing. The caller is
  1090. * responsible for calling flush_cache_vunmap() on to-be-mapped areas
  1091. * before calling this function and flush_tlb_kernel_range() after.
  1092. */
  1093. void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
  1094. {
  1095. vunmap_page_range(addr, addr + size);
  1096. }
  1097. EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
  1098. /**
  1099. * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
  1100. * @addr: start of the VM area to unmap
  1101. * @size: size of the VM area to unmap
  1102. *
  1103. * Similar to unmap_kernel_range_noflush() but flushes vcache before
  1104. * the unmapping and tlb after.
  1105. */
  1106. void unmap_kernel_range(unsigned long addr, unsigned long size)
  1107. {
  1108. unsigned long end = addr + size;
  1109. flush_cache_vunmap(addr, end);
  1110. vunmap_page_range(addr, end);
  1111. flush_tlb_kernel_range(addr, end);
  1112. }
  1113. EXPORT_SYMBOL_GPL(unmap_kernel_range);
  1114. int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
  1115. {
  1116. unsigned long addr = (unsigned long)area->addr;
  1117. unsigned long end = addr + get_vm_area_size(area);
  1118. int err;
  1119. err = vmap_page_range(addr, end, prot, pages);
  1120. return err > 0 ? 0 : err;
  1121. }
  1122. EXPORT_SYMBOL_GPL(map_vm_area);
  1123. static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
  1124. unsigned long flags, const void *caller)
  1125. {
  1126. spin_lock(&vmap_area_lock);
  1127. vm->flags = flags;
  1128. vm->addr = (void *)va->va_start;
  1129. vm->size = va->va_end - va->va_start;
  1130. vm->caller = caller;
  1131. va->vm = vm;
  1132. va->flags |= VM_VM_AREA;
  1133. spin_unlock(&vmap_area_lock);
  1134. }
  1135. static void clear_vm_uninitialized_flag(struct vm_struct *vm)
  1136. {
  1137. /*
  1138. * Before removing VM_UNINITIALIZED,
  1139. * we should make sure that vm has proper values.
  1140. * Pair with smp_rmb() in show_numa_info().
  1141. */
  1142. smp_wmb();
  1143. vm->flags &= ~VM_UNINITIALIZED;
  1144. }
  1145. static struct vm_struct *__get_vm_area_node(unsigned long size,
  1146. unsigned long align, unsigned long flags, unsigned long start,
  1147. unsigned long end, int node, gfp_t gfp_mask, const void *caller)
  1148. {
  1149. struct vmap_area *va;
  1150. struct vm_struct *area;
  1151. BUG_ON(in_interrupt());
  1152. if (flags & VM_IOREMAP)
  1153. align = 1ul << clamp_t(int, fls_long(size),
  1154. PAGE_SHIFT, IOREMAP_MAX_ORDER);
  1155. size = PAGE_ALIGN(size);
  1156. if (unlikely(!size))
  1157. return NULL;
  1158. area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
  1159. if (unlikely(!area))
  1160. return NULL;
  1161. if (!(flags & VM_NO_GUARD))
  1162. size += PAGE_SIZE;
  1163. va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
  1164. if (IS_ERR(va)) {
  1165. kfree(area);
  1166. return NULL;
  1167. }
  1168. setup_vmalloc_vm(area, va, flags, caller);
  1169. return area;
  1170. }
  1171. struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
  1172. unsigned long start, unsigned long end)
  1173. {
  1174. return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
  1175. GFP_KERNEL, __builtin_return_address(0));
  1176. }
  1177. EXPORT_SYMBOL_GPL(__get_vm_area);
  1178. struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
  1179. unsigned long start, unsigned long end,
  1180. const void *caller)
  1181. {
  1182. return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
  1183. GFP_KERNEL, caller);
  1184. }
  1185. /**
  1186. * get_vm_area - reserve a contiguous kernel virtual area
  1187. * @size: size of the area
  1188. * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
  1189. *
  1190. * Search an area of @size in the kernel virtual mapping area,
  1191. * and reserved it for out purposes. Returns the area descriptor
  1192. * on success or %NULL on failure.
  1193. */
  1194. struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
  1195. {
  1196. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1197. NUMA_NO_NODE, GFP_KERNEL,
  1198. __builtin_return_address(0));
  1199. }
  1200. struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
  1201. const void *caller)
  1202. {
  1203. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1204. NUMA_NO_NODE, GFP_KERNEL, caller);
  1205. }
  1206. /**
  1207. * find_vm_area - find a continuous kernel virtual area
  1208. * @addr: base address
  1209. *
  1210. * Search for the kernel VM area starting at @addr, and return it.
  1211. * It is up to the caller to do all required locking to keep the returned
  1212. * pointer valid.
  1213. */
  1214. struct vm_struct *find_vm_area(const void *addr)
  1215. {
  1216. struct vmap_area *va;
  1217. va = find_vmap_area((unsigned long)addr);
  1218. if (va && va->flags & VM_VM_AREA)
  1219. return va->vm;
  1220. return NULL;
  1221. }
  1222. /**
  1223. * remove_vm_area - find and remove a continuous kernel virtual area
  1224. * @addr: base address
  1225. *
  1226. * Search for the kernel VM area starting at @addr, and remove it.
  1227. * This function returns the found VM area, but using it is NOT safe
  1228. * on SMP machines, except for its size or flags.
  1229. */
  1230. struct vm_struct *remove_vm_area(const void *addr)
  1231. {
  1232. struct vmap_area *va;
  1233. va = find_vmap_area((unsigned long)addr);
  1234. if (va && va->flags & VM_VM_AREA) {
  1235. struct vm_struct *vm = va->vm;
  1236. spin_lock(&vmap_area_lock);
  1237. va->vm = NULL;
  1238. va->flags &= ~VM_VM_AREA;
  1239. spin_unlock(&vmap_area_lock);
  1240. vmap_debug_free_range(va->va_start, va->va_end);
  1241. kasan_free_shadow(vm);
  1242. free_unmap_vmap_area(va);
  1243. return vm;
  1244. }
  1245. return NULL;
  1246. }
  1247. static void __vunmap(const void *addr, int deallocate_pages)
  1248. {
  1249. struct vm_struct *area;
  1250. if (!addr)
  1251. return;
  1252. if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
  1253. addr))
  1254. return;
  1255. area = find_vmap_area((unsigned long)addr)->vm;
  1256. if (unlikely(!area)) {
  1257. WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
  1258. addr);
  1259. return;
  1260. }
  1261. debug_check_no_locks_freed(addr, get_vm_area_size(area));
  1262. debug_check_no_obj_freed(addr, get_vm_area_size(area));
  1263. remove_vm_area(addr);
  1264. if (deallocate_pages) {
  1265. int i;
  1266. for (i = 0; i < area->nr_pages; i++) {
  1267. struct page *page = area->pages[i];
  1268. BUG_ON(!page);
  1269. __free_page(page);
  1270. }
  1271. if (area->flags & VM_VPAGES)
  1272. vfree(area->pages);
  1273. else
  1274. kfree(area->pages);
  1275. }
  1276. kfree(area);
  1277. return;
  1278. }
  1279. /**
  1280. * vfree - release memory allocated by vmalloc()
  1281. * @addr: memory base address
  1282. *
  1283. * Free the virtually continuous memory area starting at @addr, as
  1284. * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
  1285. * NULL, no operation is performed.
  1286. *
  1287. * Must not be called in NMI context (strictly speaking, only if we don't
  1288. * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
  1289. * conventions for vfree() arch-depenedent would be a really bad idea)
  1290. *
  1291. * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
  1292. */
  1293. void vfree(const void *addr)
  1294. {
  1295. BUG_ON(in_nmi());
  1296. kmemleak_free(addr);
  1297. if (!addr)
  1298. return;
  1299. if (unlikely(in_interrupt())) {
  1300. struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
  1301. if (llist_add((struct llist_node *)addr, &p->list))
  1302. schedule_work(&p->wq);
  1303. } else
  1304. __vunmap(addr, 1);
  1305. }
  1306. EXPORT_SYMBOL(vfree);
  1307. /**
  1308. * vunmap - release virtual mapping obtained by vmap()
  1309. * @addr: memory base address
  1310. *
  1311. * Free the virtually contiguous memory area starting at @addr,
  1312. * which was created from the page array passed to vmap().
  1313. *
  1314. * Must not be called in interrupt context.
  1315. */
  1316. void vunmap(const void *addr)
  1317. {
  1318. BUG_ON(in_interrupt());
  1319. might_sleep();
  1320. if (addr)
  1321. __vunmap(addr, 0);
  1322. }
  1323. EXPORT_SYMBOL(vunmap);
  1324. /**
  1325. * vmap - map an array of pages into virtually contiguous space
  1326. * @pages: array of page pointers
  1327. * @count: number of pages to map
  1328. * @flags: vm_area->flags
  1329. * @prot: page protection for the mapping
  1330. *
  1331. * Maps @count pages from @pages into contiguous kernel virtual
  1332. * space.
  1333. */
  1334. void *vmap(struct page **pages, unsigned int count,
  1335. unsigned long flags, pgprot_t prot)
  1336. {
  1337. struct vm_struct *area;
  1338. might_sleep();
  1339. if (count > totalram_pages)
  1340. return NULL;
  1341. area = get_vm_area_caller((count << PAGE_SHIFT), flags,
  1342. __builtin_return_address(0));
  1343. if (!area)
  1344. return NULL;
  1345. if (map_vm_area(area, prot, pages)) {
  1346. vunmap(area->addr);
  1347. return NULL;
  1348. }
  1349. return area->addr;
  1350. }
  1351. EXPORT_SYMBOL(vmap);
  1352. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1353. gfp_t gfp_mask, pgprot_t prot,
  1354. int node, const void *caller);
  1355. static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
  1356. pgprot_t prot, int node)
  1357. {
  1358. const int order = 0;
  1359. struct page **pages;
  1360. unsigned int nr_pages, array_size, i;
  1361. const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
  1362. const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
  1363. nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
  1364. array_size = (nr_pages * sizeof(struct page *));
  1365. area->nr_pages = nr_pages;
  1366. /* Please note that the recursion is strictly bounded. */
  1367. if (array_size > PAGE_SIZE) {
  1368. pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
  1369. PAGE_KERNEL, node, area->caller);
  1370. area->flags |= VM_VPAGES;
  1371. } else {
  1372. pages = kmalloc_node(array_size, nested_gfp, node);
  1373. }
  1374. area->pages = pages;
  1375. if (!area->pages) {
  1376. remove_vm_area(area->addr);
  1377. kfree(area);
  1378. return NULL;
  1379. }
  1380. for (i = 0; i < area->nr_pages; i++) {
  1381. struct page *page;
  1382. if (node == NUMA_NO_NODE)
  1383. page = alloc_page(alloc_mask);
  1384. else
  1385. page = alloc_pages_node(node, alloc_mask, order);
  1386. if (unlikely(!page)) {
  1387. /* Successfully allocated i pages, free them in __vunmap() */
  1388. area->nr_pages = i;
  1389. goto fail;
  1390. }
  1391. area->pages[i] = page;
  1392. if (gfpflags_allow_blocking(gfp_mask))
  1393. cond_resched();
  1394. }
  1395. if (map_vm_area(area, prot, pages))
  1396. goto fail;
  1397. return area->addr;
  1398. fail:
  1399. warn_alloc_failed(gfp_mask, order,
  1400. "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
  1401. (area->nr_pages*PAGE_SIZE), area->size);
  1402. vfree(area->addr);
  1403. return NULL;
  1404. }
  1405. /**
  1406. * __vmalloc_node_range - allocate virtually contiguous memory
  1407. * @size: allocation size
  1408. * @align: desired alignment
  1409. * @start: vm area range start
  1410. * @end: vm area range end
  1411. * @gfp_mask: flags for the page level allocator
  1412. * @prot: protection mask for the allocated pages
  1413. * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
  1414. * @node: node to use for allocation or NUMA_NO_NODE
  1415. * @caller: caller's return address
  1416. *
  1417. * Allocate enough pages to cover @size from the page level
  1418. * allocator with @gfp_mask flags. Map them into contiguous
  1419. * kernel virtual space, using a pagetable protection of @prot.
  1420. */
  1421. void *__vmalloc_node_range(unsigned long size, unsigned long align,
  1422. unsigned long start, unsigned long end, gfp_t gfp_mask,
  1423. pgprot_t prot, unsigned long vm_flags, int node,
  1424. const void *caller)
  1425. {
  1426. struct vm_struct *area;
  1427. void *addr;
  1428. unsigned long real_size = size;
  1429. size = PAGE_ALIGN(size);
  1430. if (!size || (size >> PAGE_SHIFT) > totalram_pages)
  1431. goto fail;
  1432. area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
  1433. vm_flags, start, end, node, gfp_mask, caller);
  1434. if (!area)
  1435. goto fail;
  1436. addr = __vmalloc_area_node(area, gfp_mask, prot, node);
  1437. if (!addr)
  1438. return NULL;
  1439. /*
  1440. * In this function, newly allocated vm_struct has VM_UNINITIALIZED
  1441. * flag. It means that vm_struct is not fully initialized.
  1442. * Now, it is fully initialized, so remove this flag here.
  1443. */
  1444. clear_vm_uninitialized_flag(area);
  1445. /*
  1446. * A ref_count = 2 is needed because vm_struct allocated in
  1447. * __get_vm_area_node() contains a reference to the virtual address of
  1448. * the vmalloc'ed block.
  1449. */
  1450. kmemleak_alloc(addr, real_size, 2, gfp_mask);
  1451. return addr;
  1452. fail:
  1453. warn_alloc_failed(gfp_mask, 0,
  1454. "vmalloc: allocation failure: %lu bytes\n",
  1455. real_size);
  1456. return NULL;
  1457. }
  1458. /**
  1459. * __vmalloc_node - allocate virtually contiguous memory
  1460. * @size: allocation size
  1461. * @align: desired alignment
  1462. * @gfp_mask: flags for the page level allocator
  1463. * @prot: protection mask for the allocated pages
  1464. * @node: node to use for allocation or NUMA_NO_NODE
  1465. * @caller: caller's return address
  1466. *
  1467. * Allocate enough pages to cover @size from the page level
  1468. * allocator with @gfp_mask flags. Map them into contiguous
  1469. * kernel virtual space, using a pagetable protection of @prot.
  1470. */
  1471. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1472. gfp_t gfp_mask, pgprot_t prot,
  1473. int node, const void *caller)
  1474. {
  1475. return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
  1476. gfp_mask, prot, 0, node, caller);
  1477. }
  1478. void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
  1479. {
  1480. return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
  1481. __builtin_return_address(0));
  1482. }
  1483. EXPORT_SYMBOL(__vmalloc);
  1484. static inline void *__vmalloc_node_flags(unsigned long size,
  1485. int node, gfp_t flags)
  1486. {
  1487. return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
  1488. node, __builtin_return_address(0));
  1489. }
  1490. /**
  1491. * vmalloc - allocate virtually contiguous memory
  1492. * @size: allocation size
  1493. * Allocate enough pages to cover @size from the page level
  1494. * allocator and map them into contiguous kernel virtual space.
  1495. *
  1496. * For tight control over page level allocator and protection flags
  1497. * use __vmalloc() instead.
  1498. */
  1499. void *vmalloc(unsigned long size)
  1500. {
  1501. return __vmalloc_node_flags(size, NUMA_NO_NODE,
  1502. GFP_KERNEL | __GFP_HIGHMEM);
  1503. }
  1504. EXPORT_SYMBOL(vmalloc);
  1505. /**
  1506. * vzalloc - allocate virtually contiguous memory with zero fill
  1507. * @size: allocation size
  1508. * Allocate enough pages to cover @size from the page level
  1509. * allocator and map them into contiguous kernel virtual space.
  1510. * The memory allocated is set to zero.
  1511. *
  1512. * For tight control over page level allocator and protection flags
  1513. * use __vmalloc() instead.
  1514. */
  1515. void *vzalloc(unsigned long size)
  1516. {
  1517. return __vmalloc_node_flags(size, NUMA_NO_NODE,
  1518. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
  1519. }
  1520. EXPORT_SYMBOL(vzalloc);
  1521. /**
  1522. * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
  1523. * @size: allocation size
  1524. *
  1525. * The resulting memory area is zeroed so it can be mapped to userspace
  1526. * without leaking data.
  1527. */
  1528. void *vmalloc_user(unsigned long size)
  1529. {
  1530. struct vm_struct *area;
  1531. void *ret;
  1532. ret = __vmalloc_node(size, SHMLBA,
  1533. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
  1534. PAGE_KERNEL, NUMA_NO_NODE,
  1535. __builtin_return_address(0));
  1536. if (ret) {
  1537. area = find_vm_area(ret);
  1538. area->flags |= VM_USERMAP;
  1539. }
  1540. return ret;
  1541. }
  1542. EXPORT_SYMBOL(vmalloc_user);
  1543. /**
  1544. * vmalloc_node - allocate memory on a specific node
  1545. * @size: allocation size
  1546. * @node: numa node
  1547. *
  1548. * Allocate enough pages to cover @size from the page level
  1549. * allocator and map them into contiguous kernel virtual space.
  1550. *
  1551. * For tight control over page level allocator and protection flags
  1552. * use __vmalloc() instead.
  1553. */
  1554. void *vmalloc_node(unsigned long size, int node)
  1555. {
  1556. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
  1557. node, __builtin_return_address(0));
  1558. }
  1559. EXPORT_SYMBOL(vmalloc_node);
  1560. /**
  1561. * vzalloc_node - allocate memory on a specific node with zero fill
  1562. * @size: allocation size
  1563. * @node: numa node
  1564. *
  1565. * Allocate enough pages to cover @size from the page level
  1566. * allocator and map them into contiguous kernel virtual space.
  1567. * The memory allocated is set to zero.
  1568. *
  1569. * For tight control over page level allocator and protection flags
  1570. * use __vmalloc_node() instead.
  1571. */
  1572. void *vzalloc_node(unsigned long size, int node)
  1573. {
  1574. return __vmalloc_node_flags(size, node,
  1575. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
  1576. }
  1577. EXPORT_SYMBOL(vzalloc_node);
  1578. #ifndef PAGE_KERNEL_EXEC
  1579. # define PAGE_KERNEL_EXEC PAGE_KERNEL
  1580. #endif
  1581. /**
  1582. * vmalloc_exec - allocate virtually contiguous, executable memory
  1583. * @size: allocation size
  1584. *
  1585. * Kernel-internal function to allocate enough pages to cover @size
  1586. * the page level allocator and map them into contiguous and
  1587. * executable kernel virtual space.
  1588. *
  1589. * For tight control over page level allocator and protection flags
  1590. * use __vmalloc() instead.
  1591. */
  1592. void *vmalloc_exec(unsigned long size)
  1593. {
  1594. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
  1595. NUMA_NO_NODE, __builtin_return_address(0));
  1596. }
  1597. #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
  1598. #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
  1599. #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
  1600. #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
  1601. #else
  1602. #define GFP_VMALLOC32 GFP_KERNEL
  1603. #endif
  1604. /**
  1605. * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
  1606. * @size: allocation size
  1607. *
  1608. * Allocate enough 32bit PA addressable pages to cover @size from the
  1609. * page level allocator and map them into contiguous kernel virtual space.
  1610. */
  1611. void *vmalloc_32(unsigned long size)
  1612. {
  1613. return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
  1614. NUMA_NO_NODE, __builtin_return_address(0));
  1615. }
  1616. EXPORT_SYMBOL(vmalloc_32);
  1617. /**
  1618. * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
  1619. * @size: allocation size
  1620. *
  1621. * The resulting memory area is 32bit addressable and zeroed so it can be
  1622. * mapped to userspace without leaking data.
  1623. */
  1624. void *vmalloc_32_user(unsigned long size)
  1625. {
  1626. struct vm_struct *area;
  1627. void *ret;
  1628. ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
  1629. NUMA_NO_NODE, __builtin_return_address(0));
  1630. if (ret) {
  1631. area = find_vm_area(ret);
  1632. area->flags |= VM_USERMAP;
  1633. }
  1634. return ret;
  1635. }
  1636. EXPORT_SYMBOL(vmalloc_32_user);
  1637. /*
  1638. * small helper routine , copy contents to buf from addr.
  1639. * If the page is not present, fill zero.
  1640. */
  1641. static int aligned_vread(char *buf, char *addr, unsigned long count)
  1642. {
  1643. struct page *p;
  1644. int copied = 0;
  1645. while (count) {
  1646. unsigned long offset, length;
  1647. offset = offset_in_page(addr);
  1648. length = PAGE_SIZE - offset;
  1649. if (length > count)
  1650. length = count;
  1651. p = vmalloc_to_page(addr);
  1652. /*
  1653. * To do safe access to this _mapped_ area, we need
  1654. * lock. But adding lock here means that we need to add
  1655. * overhead of vmalloc()/vfree() calles for this _debug_
  1656. * interface, rarely used. Instead of that, we'll use
  1657. * kmap() and get small overhead in this access function.
  1658. */
  1659. if (p) {
  1660. /*
  1661. * we can expect USER0 is not used (see vread/vwrite's
  1662. * function description)
  1663. */
  1664. void *map = kmap_atomic(p);
  1665. memcpy(buf, map + offset, length);
  1666. kunmap_atomic(map);
  1667. } else
  1668. memset(buf, 0, length);
  1669. addr += length;
  1670. buf += length;
  1671. copied += length;
  1672. count -= length;
  1673. }
  1674. return copied;
  1675. }
  1676. static int aligned_vwrite(char *buf, char *addr, unsigned long count)
  1677. {
  1678. struct page *p;
  1679. int copied = 0;
  1680. while (count) {
  1681. unsigned long offset, length;
  1682. offset = offset_in_page(addr);
  1683. length = PAGE_SIZE - offset;
  1684. if (length > count)
  1685. length = count;
  1686. p = vmalloc_to_page(addr);
  1687. /*
  1688. * To do safe access to this _mapped_ area, we need
  1689. * lock. But adding lock here means that we need to add
  1690. * overhead of vmalloc()/vfree() calles for this _debug_
  1691. * interface, rarely used. Instead of that, we'll use
  1692. * kmap() and get small overhead in this access function.
  1693. */
  1694. if (p) {
  1695. /*
  1696. * we can expect USER0 is not used (see vread/vwrite's
  1697. * function description)
  1698. */
  1699. void *map = kmap_atomic(p);
  1700. memcpy(map + offset, buf, length);
  1701. kunmap_atomic(map);
  1702. }
  1703. addr += length;
  1704. buf += length;
  1705. copied += length;
  1706. count -= length;
  1707. }
  1708. return copied;
  1709. }
  1710. /**
  1711. * vread() - read vmalloc area in a safe way.
  1712. * @buf: buffer for reading data
  1713. * @addr: vm address.
  1714. * @count: number of bytes to be read.
  1715. *
  1716. * Returns # of bytes which addr and buf should be increased.
  1717. * (same number to @count). Returns 0 if [addr...addr+count) doesn't
  1718. * includes any intersect with alive vmalloc area.
  1719. *
  1720. * This function checks that addr is a valid vmalloc'ed area, and
  1721. * copy data from that area to a given buffer. If the given memory range
  1722. * of [addr...addr+count) includes some valid address, data is copied to
  1723. * proper area of @buf. If there are memory holes, they'll be zero-filled.
  1724. * IOREMAP area is treated as memory hole and no copy is done.
  1725. *
  1726. * If [addr...addr+count) doesn't includes any intersects with alive
  1727. * vm_struct area, returns 0. @buf should be kernel's buffer.
  1728. *
  1729. * Note: In usual ops, vread() is never necessary because the caller
  1730. * should know vmalloc() area is valid and can use memcpy().
  1731. * This is for routines which have to access vmalloc area without
  1732. * any informaion, as /dev/kmem.
  1733. *
  1734. */
  1735. long vread(char *buf, char *addr, unsigned long count)
  1736. {
  1737. struct vmap_area *va;
  1738. struct vm_struct *vm;
  1739. char *vaddr, *buf_start = buf;
  1740. unsigned long buflen = count;
  1741. unsigned long n;
  1742. /* Don't allow overflow */
  1743. if ((unsigned long) addr + count < count)
  1744. count = -(unsigned long) addr;
  1745. spin_lock(&vmap_area_lock);
  1746. list_for_each_entry(va, &vmap_area_list, list) {
  1747. if (!count)
  1748. break;
  1749. if (!(va->flags & VM_VM_AREA))
  1750. continue;
  1751. vm = va->vm;
  1752. vaddr = (char *) vm->addr;
  1753. if (addr >= vaddr + get_vm_area_size(vm))
  1754. continue;
  1755. while (addr < vaddr) {
  1756. if (count == 0)
  1757. goto finished;
  1758. *buf = '\0';
  1759. buf++;
  1760. addr++;
  1761. count--;
  1762. }
  1763. n = vaddr + get_vm_area_size(vm) - addr;
  1764. if (n > count)
  1765. n = count;
  1766. if (!(vm->flags & VM_IOREMAP))
  1767. aligned_vread(buf, addr, n);
  1768. else /* IOREMAP area is treated as memory hole */
  1769. memset(buf, 0, n);
  1770. buf += n;
  1771. addr += n;
  1772. count -= n;
  1773. }
  1774. finished:
  1775. spin_unlock(&vmap_area_lock);
  1776. if (buf == buf_start)
  1777. return 0;
  1778. /* zero-fill memory holes */
  1779. if (buf != buf_start + buflen)
  1780. memset(buf, 0, buflen - (buf - buf_start));
  1781. return buflen;
  1782. }
  1783. /**
  1784. * vwrite() - write vmalloc area in a safe way.
  1785. * @buf: buffer for source data
  1786. * @addr: vm address.
  1787. * @count: number of bytes to be read.
  1788. *
  1789. * Returns # of bytes which addr and buf should be incresed.
  1790. * (same number to @count).
  1791. * If [addr...addr+count) doesn't includes any intersect with valid
  1792. * vmalloc area, returns 0.
  1793. *
  1794. * This function checks that addr is a valid vmalloc'ed area, and
  1795. * copy data from a buffer to the given addr. If specified range of
  1796. * [addr...addr+count) includes some valid address, data is copied from
  1797. * proper area of @buf. If there are memory holes, no copy to hole.
  1798. * IOREMAP area is treated as memory hole and no copy is done.
  1799. *
  1800. * If [addr...addr+count) doesn't includes any intersects with alive
  1801. * vm_struct area, returns 0. @buf should be kernel's buffer.
  1802. *
  1803. * Note: In usual ops, vwrite() is never necessary because the caller
  1804. * should know vmalloc() area is valid and can use memcpy().
  1805. * This is for routines which have to access vmalloc area without
  1806. * any informaion, as /dev/kmem.
  1807. */
  1808. long vwrite(char *buf, char *addr, unsigned long count)
  1809. {
  1810. struct vmap_area *va;
  1811. struct vm_struct *vm;
  1812. char *vaddr;
  1813. unsigned long n, buflen;
  1814. int copied = 0;
  1815. /* Don't allow overflow */
  1816. if ((unsigned long) addr + count < count)
  1817. count = -(unsigned long) addr;
  1818. buflen = count;
  1819. spin_lock(&vmap_area_lock);
  1820. list_for_each_entry(va, &vmap_area_list, list) {
  1821. if (!count)
  1822. break;
  1823. if (!(va->flags & VM_VM_AREA))
  1824. continue;
  1825. vm = va->vm;
  1826. vaddr = (char *) vm->addr;
  1827. if (addr >= vaddr + get_vm_area_size(vm))
  1828. continue;
  1829. while (addr < vaddr) {
  1830. if (count == 0)
  1831. goto finished;
  1832. buf++;
  1833. addr++;
  1834. count--;
  1835. }
  1836. n = vaddr + get_vm_area_size(vm) - addr;
  1837. if (n > count)
  1838. n = count;
  1839. if (!(vm->flags & VM_IOREMAP)) {
  1840. aligned_vwrite(buf, addr, n);
  1841. copied++;
  1842. }
  1843. buf += n;
  1844. addr += n;
  1845. count -= n;
  1846. }
  1847. finished:
  1848. spin_unlock(&vmap_area_lock);
  1849. if (!copied)
  1850. return 0;
  1851. return buflen;
  1852. }
  1853. /**
  1854. * remap_vmalloc_range_partial - map vmalloc pages to userspace
  1855. * @vma: vma to cover
  1856. * @uaddr: target user address to start at
  1857. * @kaddr: virtual address of vmalloc kernel memory
  1858. * @size: size of map area
  1859. *
  1860. * Returns: 0 for success, -Exxx on failure
  1861. *
  1862. * This function checks that @kaddr is a valid vmalloc'ed area,
  1863. * and that it is big enough to cover the range starting at
  1864. * @uaddr in @vma. Will return failure if that criteria isn't
  1865. * met.
  1866. *
  1867. * Similar to remap_pfn_range() (see mm/memory.c)
  1868. */
  1869. int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
  1870. void *kaddr, unsigned long size)
  1871. {
  1872. struct vm_struct *area;
  1873. size = PAGE_ALIGN(size);
  1874. if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
  1875. return -EINVAL;
  1876. area = find_vm_area(kaddr);
  1877. if (!area)
  1878. return -EINVAL;
  1879. if (!(area->flags & VM_USERMAP))
  1880. return -EINVAL;
  1881. if (kaddr + size > area->addr + get_vm_area_size(area))
  1882. return -EINVAL;
  1883. do {
  1884. struct page *page = vmalloc_to_page(kaddr);
  1885. int ret;
  1886. ret = vm_insert_page(vma, uaddr, page);
  1887. if (ret)
  1888. return ret;
  1889. uaddr += PAGE_SIZE;
  1890. kaddr += PAGE_SIZE;
  1891. size -= PAGE_SIZE;
  1892. } while (size > 0);
  1893. vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
  1894. return 0;
  1895. }
  1896. EXPORT_SYMBOL(remap_vmalloc_range_partial);
  1897. /**
  1898. * remap_vmalloc_range - map vmalloc pages to userspace
  1899. * @vma: vma to cover (map full range of vma)
  1900. * @addr: vmalloc memory
  1901. * @pgoff: number of pages into addr before first page to map
  1902. *
  1903. * Returns: 0 for success, -Exxx on failure
  1904. *
  1905. * This function checks that addr is a valid vmalloc'ed area, and
  1906. * that it is big enough to cover the vma. Will return failure if
  1907. * that criteria isn't met.
  1908. *
  1909. * Similar to remap_pfn_range() (see mm/memory.c)
  1910. */
  1911. int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
  1912. unsigned long pgoff)
  1913. {
  1914. return remap_vmalloc_range_partial(vma, vma->vm_start,
  1915. addr + (pgoff << PAGE_SHIFT),
  1916. vma->vm_end - vma->vm_start);
  1917. }
  1918. EXPORT_SYMBOL(remap_vmalloc_range);
  1919. /*
  1920. * Implement a stub for vmalloc_sync_all() if the architecture chose not to
  1921. * have one.
  1922. */
  1923. void __weak vmalloc_sync_all(void)
  1924. {
  1925. }
  1926. static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
  1927. {
  1928. pte_t ***p = data;
  1929. if (p) {
  1930. *(*p) = pte;
  1931. (*p)++;
  1932. }
  1933. return 0;
  1934. }
  1935. /**
  1936. * alloc_vm_area - allocate a range of kernel address space
  1937. * @size: size of the area
  1938. * @ptes: returns the PTEs for the address space
  1939. *
  1940. * Returns: NULL on failure, vm_struct on success
  1941. *
  1942. * This function reserves a range of kernel address space, and
  1943. * allocates pagetables to map that range. No actual mappings
  1944. * are created.
  1945. *
  1946. * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
  1947. * allocated for the VM area are returned.
  1948. */
  1949. struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
  1950. {
  1951. struct vm_struct *area;
  1952. area = get_vm_area_caller(size, VM_IOREMAP,
  1953. __builtin_return_address(0));
  1954. if (area == NULL)
  1955. return NULL;
  1956. /*
  1957. * This ensures that page tables are constructed for this region
  1958. * of kernel virtual address space and mapped into init_mm.
  1959. */
  1960. if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
  1961. size, f, ptes ? &ptes : NULL)) {
  1962. free_vm_area(area);
  1963. return NULL;
  1964. }
  1965. return area;
  1966. }
  1967. EXPORT_SYMBOL_GPL(alloc_vm_area);
  1968. void free_vm_area(struct vm_struct *area)
  1969. {
  1970. struct vm_struct *ret;
  1971. ret = remove_vm_area(area->addr);
  1972. BUG_ON(ret != area);
  1973. kfree(area);
  1974. }
  1975. EXPORT_SYMBOL_GPL(free_vm_area);
  1976. #ifdef CONFIG_SMP
  1977. static struct vmap_area *node_to_va(struct rb_node *n)
  1978. {
  1979. return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
  1980. }
  1981. /**
  1982. * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
  1983. * @end: target address
  1984. * @pnext: out arg for the next vmap_area
  1985. * @pprev: out arg for the previous vmap_area
  1986. *
  1987. * Returns: %true if either or both of next and prev are found,
  1988. * %false if no vmap_area exists
  1989. *
  1990. * Find vmap_areas end addresses of which enclose @end. ie. if not
  1991. * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
  1992. */
  1993. static bool pvm_find_next_prev(unsigned long end,
  1994. struct vmap_area **pnext,
  1995. struct vmap_area **pprev)
  1996. {
  1997. struct rb_node *n = vmap_area_root.rb_node;
  1998. struct vmap_area *va = NULL;
  1999. while (n) {
  2000. va = rb_entry(n, struct vmap_area, rb_node);
  2001. if (end < va->va_end)
  2002. n = n->rb_left;
  2003. else if (end > va->va_end)
  2004. n = n->rb_right;
  2005. else
  2006. break;
  2007. }
  2008. if (!va)
  2009. return false;
  2010. if (va->va_end > end) {
  2011. *pnext = va;
  2012. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  2013. } else {
  2014. *pprev = va;
  2015. *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
  2016. }
  2017. return true;
  2018. }
  2019. /**
  2020. * pvm_determine_end - find the highest aligned address between two vmap_areas
  2021. * @pnext: in/out arg for the next vmap_area
  2022. * @pprev: in/out arg for the previous vmap_area
  2023. * @align: alignment
  2024. *
  2025. * Returns: determined end address
  2026. *
  2027. * Find the highest aligned address between *@pnext and *@pprev below
  2028. * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
  2029. * down address is between the end addresses of the two vmap_areas.
  2030. *
  2031. * Please note that the address returned by this function may fall
  2032. * inside *@pnext vmap_area. The caller is responsible for checking
  2033. * that.
  2034. */
  2035. static unsigned long pvm_determine_end(struct vmap_area **pnext,
  2036. struct vmap_area **pprev,
  2037. unsigned long align)
  2038. {
  2039. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  2040. unsigned long addr;
  2041. if (*pnext)
  2042. addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
  2043. else
  2044. addr = vmalloc_end;
  2045. while (*pprev && (*pprev)->va_end > addr) {
  2046. *pnext = *pprev;
  2047. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  2048. }
  2049. return addr;
  2050. }
  2051. /**
  2052. * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
  2053. * @offsets: array containing offset of each area
  2054. * @sizes: array containing size of each area
  2055. * @nr_vms: the number of areas to allocate
  2056. * @align: alignment, all entries in @offsets and @sizes must be aligned to this
  2057. *
  2058. * Returns: kmalloc'd vm_struct pointer array pointing to allocated
  2059. * vm_structs on success, %NULL on failure
  2060. *
  2061. * Percpu allocator wants to use congruent vm areas so that it can
  2062. * maintain the offsets among percpu areas. This function allocates
  2063. * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
  2064. * be scattered pretty far, distance between two areas easily going up
  2065. * to gigabytes. To avoid interacting with regular vmallocs, these
  2066. * areas are allocated from top.
  2067. *
  2068. * Despite its complicated look, this allocator is rather simple. It
  2069. * does everything top-down and scans areas from the end looking for
  2070. * matching slot. While scanning, if any of the areas overlaps with
  2071. * existing vmap_area, the base address is pulled down to fit the
  2072. * area. Scanning is repeated till all the areas fit and then all
  2073. * necessary data structres are inserted and the result is returned.
  2074. */
  2075. struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
  2076. const size_t *sizes, int nr_vms,
  2077. size_t align)
  2078. {
  2079. const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
  2080. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  2081. struct vmap_area **vas, *prev, *next;
  2082. struct vm_struct **vms;
  2083. int area, area2, last_area, term_area;
  2084. unsigned long base, start, end, last_end;
  2085. bool purged = false;
  2086. /* verify parameters and allocate data structures */
  2087. BUG_ON(offset_in_page(align) || !is_power_of_2(align));
  2088. for (last_area = 0, area = 0; area < nr_vms; area++) {
  2089. start = offsets[area];
  2090. end = start + sizes[area];
  2091. /* is everything aligned properly? */
  2092. BUG_ON(!IS_ALIGNED(offsets[area], align));
  2093. BUG_ON(!IS_ALIGNED(sizes[area], align));
  2094. /* detect the area with the highest address */
  2095. if (start > offsets[last_area])
  2096. last_area = area;
  2097. for (area2 = 0; area2 < nr_vms; area2++) {
  2098. unsigned long start2 = offsets[area2];
  2099. unsigned long end2 = start2 + sizes[area2];
  2100. if (area2 == area)
  2101. continue;
  2102. BUG_ON(start2 >= start && start2 < end);
  2103. BUG_ON(end2 <= end && end2 > start);
  2104. }
  2105. }
  2106. last_end = offsets[last_area] + sizes[last_area];
  2107. if (vmalloc_end - vmalloc_start < last_end) {
  2108. WARN_ON(true);
  2109. return NULL;
  2110. }
  2111. vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
  2112. vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
  2113. if (!vas || !vms)
  2114. goto err_free2;
  2115. for (area = 0; area < nr_vms; area++) {
  2116. vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
  2117. vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
  2118. if (!vas[area] || !vms[area])
  2119. goto err_free;
  2120. }
  2121. retry:
  2122. spin_lock(&vmap_area_lock);
  2123. /* start scanning - we scan from the top, begin with the last area */
  2124. area = term_area = last_area;
  2125. start = offsets[area];
  2126. end = start + sizes[area];
  2127. if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
  2128. base = vmalloc_end - last_end;
  2129. goto found;
  2130. }
  2131. base = pvm_determine_end(&next, &prev, align) - end;
  2132. while (true) {
  2133. BUG_ON(next && next->va_end <= base + end);
  2134. BUG_ON(prev && prev->va_end > base + end);
  2135. /*
  2136. * base might have underflowed, add last_end before
  2137. * comparing.
  2138. */
  2139. if (base + last_end < vmalloc_start + last_end) {
  2140. spin_unlock(&vmap_area_lock);
  2141. if (!purged) {
  2142. purge_vmap_area_lazy();
  2143. purged = true;
  2144. goto retry;
  2145. }
  2146. goto err_free;
  2147. }
  2148. /*
  2149. * If next overlaps, move base downwards so that it's
  2150. * right below next and then recheck.
  2151. */
  2152. if (next && next->va_start < base + end) {
  2153. base = pvm_determine_end(&next, &prev, align) - end;
  2154. term_area = area;
  2155. continue;
  2156. }
  2157. /*
  2158. * If prev overlaps, shift down next and prev and move
  2159. * base so that it's right below new next and then
  2160. * recheck.
  2161. */
  2162. if (prev && prev->va_end > base + start) {
  2163. next = prev;
  2164. prev = node_to_va(rb_prev(&next->rb_node));
  2165. base = pvm_determine_end(&next, &prev, align) - end;
  2166. term_area = area;
  2167. continue;
  2168. }
  2169. /*
  2170. * This area fits, move on to the previous one. If
  2171. * the previous one is the terminal one, we're done.
  2172. */
  2173. area = (area + nr_vms - 1) % nr_vms;
  2174. if (area == term_area)
  2175. break;
  2176. start = offsets[area];
  2177. end = start + sizes[area];
  2178. pvm_find_next_prev(base + end, &next, &prev);
  2179. }
  2180. found:
  2181. /* we've found a fitting base, insert all va's */
  2182. for (area = 0; area < nr_vms; area++) {
  2183. struct vmap_area *va = vas[area];
  2184. va->va_start = base + offsets[area];
  2185. va->va_end = va->va_start + sizes[area];
  2186. __insert_vmap_area(va);
  2187. }
  2188. vmap_area_pcpu_hole = base + offsets[last_area];
  2189. spin_unlock(&vmap_area_lock);
  2190. /* insert all vm's */
  2191. for (area = 0; area < nr_vms; area++)
  2192. setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
  2193. pcpu_get_vm_areas);
  2194. kfree(vas);
  2195. return vms;
  2196. err_free:
  2197. for (area = 0; area < nr_vms; area++) {
  2198. kfree(vas[area]);
  2199. kfree(vms[area]);
  2200. }
  2201. err_free2:
  2202. kfree(vas);
  2203. kfree(vms);
  2204. return NULL;
  2205. }
  2206. /**
  2207. * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
  2208. * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
  2209. * @nr_vms: the number of allocated areas
  2210. *
  2211. * Free vm_structs and the array allocated by pcpu_get_vm_areas().
  2212. */
  2213. void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
  2214. {
  2215. int i;
  2216. for (i = 0; i < nr_vms; i++)
  2217. free_vm_area(vms[i]);
  2218. kfree(vms);
  2219. }
  2220. #endif /* CONFIG_SMP */
  2221. #ifdef CONFIG_PROC_FS
  2222. static void *s_start(struct seq_file *m, loff_t *pos)
  2223. __acquires(&vmap_area_lock)
  2224. {
  2225. loff_t n = *pos;
  2226. struct vmap_area *va;
  2227. spin_lock(&vmap_area_lock);
  2228. va = list_entry((&vmap_area_list)->next, typeof(*va), list);
  2229. while (n > 0 && &va->list != &vmap_area_list) {
  2230. n--;
  2231. va = list_entry(va->list.next, typeof(*va), list);
  2232. }
  2233. if (!n && &va->list != &vmap_area_list)
  2234. return va;
  2235. return NULL;
  2236. }
  2237. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  2238. {
  2239. struct vmap_area *va = p, *next;
  2240. ++*pos;
  2241. next = list_entry(va->list.next, typeof(*va), list);
  2242. if (&next->list != &vmap_area_list)
  2243. return next;
  2244. return NULL;
  2245. }
  2246. static void s_stop(struct seq_file *m, void *p)
  2247. __releases(&vmap_area_lock)
  2248. {
  2249. spin_unlock(&vmap_area_lock);
  2250. }
  2251. static void show_numa_info(struct seq_file *m, struct vm_struct *v)
  2252. {
  2253. if (IS_ENABLED(CONFIG_NUMA)) {
  2254. unsigned int nr, *counters = m->private;
  2255. if (!counters)
  2256. return;
  2257. if (v->flags & VM_UNINITIALIZED)
  2258. return;
  2259. /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
  2260. smp_rmb();
  2261. memset(counters, 0, nr_node_ids * sizeof(unsigned int));
  2262. for (nr = 0; nr < v->nr_pages; nr++)
  2263. counters[page_to_nid(v->pages[nr])]++;
  2264. for_each_node_state(nr, N_HIGH_MEMORY)
  2265. if (counters[nr])
  2266. seq_printf(m, " N%u=%u", nr, counters[nr]);
  2267. }
  2268. }
  2269. static int s_show(struct seq_file *m, void *p)
  2270. {
  2271. struct vmap_area *va = p;
  2272. struct vm_struct *v;
  2273. /*
  2274. * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
  2275. * behalf of vmap area is being tear down or vm_map_ram allocation.
  2276. */
  2277. if (!(va->flags & VM_VM_AREA))
  2278. return 0;
  2279. v = va->vm;
  2280. seq_printf(m, "0x%pK-0x%pK %7ld",
  2281. v->addr, v->addr + v->size, v->size);
  2282. if (v->caller)
  2283. seq_printf(m, " %pS", v->caller);
  2284. if (v->nr_pages)
  2285. seq_printf(m, " pages=%d", v->nr_pages);
  2286. if (v->phys_addr)
  2287. seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
  2288. if (v->flags & VM_IOREMAP)
  2289. seq_puts(m, " ioremap");
  2290. if (v->flags & VM_ALLOC)
  2291. seq_puts(m, " vmalloc");
  2292. if (v->flags & VM_MAP)
  2293. seq_puts(m, " vmap");
  2294. if (v->flags & VM_USERMAP)
  2295. seq_puts(m, " user");
  2296. if (v->flags & VM_VPAGES)
  2297. seq_puts(m, " vpages");
  2298. show_numa_info(m, v);
  2299. seq_putc(m, '\n');
  2300. return 0;
  2301. }
  2302. static const struct seq_operations vmalloc_op = {
  2303. .start = s_start,
  2304. .next = s_next,
  2305. .stop = s_stop,
  2306. .show = s_show,
  2307. };
  2308. static int vmalloc_open(struct inode *inode, struct file *file)
  2309. {
  2310. if (IS_ENABLED(CONFIG_NUMA))
  2311. return seq_open_private(file, &vmalloc_op,
  2312. nr_node_ids * sizeof(unsigned int));
  2313. else
  2314. return seq_open(file, &vmalloc_op);
  2315. }
  2316. static const struct file_operations proc_vmalloc_operations = {
  2317. .open = vmalloc_open,
  2318. .read = seq_read,
  2319. .llseek = seq_lseek,
  2320. .release = seq_release_private,
  2321. };
  2322. static int __init proc_vmalloc_init(void)
  2323. {
  2324. proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
  2325. return 0;
  2326. }
  2327. module_init(proc_vmalloc_init);
  2328. #endif