svc_rdma_recvfrom.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669
  1. /*
  2. * Copyright (c) 2014 Open Grid Computing, Inc. All rights reserved.
  3. * Copyright (c) 2005-2006 Network Appliance, Inc. All rights reserved.
  4. *
  5. * This software is available to you under a choice of one of two
  6. * licenses. You may choose to be licensed under the terms of the GNU
  7. * General Public License (GPL) Version 2, available from the file
  8. * COPYING in the main directory of this source tree, or the BSD-type
  9. * license below:
  10. *
  11. * Redistribution and use in source and binary forms, with or without
  12. * modification, are permitted provided that the following conditions
  13. * are met:
  14. *
  15. * Redistributions of source code must retain the above copyright
  16. * notice, this list of conditions and the following disclaimer.
  17. *
  18. * Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials provided
  21. * with the distribution.
  22. *
  23. * Neither the name of the Network Appliance, Inc. nor the names of
  24. * its contributors may be used to endorse or promote products
  25. * derived from this software without specific prior written
  26. * permission.
  27. *
  28. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  29. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  30. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  31. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  32. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  33. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  34. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  35. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  36. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  37. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  38. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  39. *
  40. * Author: Tom Tucker <tom@opengridcomputing.com>
  41. */
  42. #include <linux/sunrpc/debug.h>
  43. #include <linux/sunrpc/rpc_rdma.h>
  44. #include <linux/spinlock.h>
  45. #include <asm/unaligned.h>
  46. #include <rdma/ib_verbs.h>
  47. #include <rdma/rdma_cm.h>
  48. #include <linux/sunrpc/svc_rdma.h>
  49. #define RPCDBG_FACILITY RPCDBG_SVCXPRT
  50. /*
  51. * Replace the pages in the rq_argpages array with the pages from the SGE in
  52. * the RDMA_RECV completion. The SGL should contain full pages up until the
  53. * last one.
  54. */
  55. static void rdma_build_arg_xdr(struct svc_rqst *rqstp,
  56. struct svc_rdma_op_ctxt *ctxt,
  57. u32 byte_count)
  58. {
  59. struct rpcrdma_msg *rmsgp;
  60. struct page *page;
  61. u32 bc;
  62. int sge_no;
  63. /* Swap the page in the SGE with the page in argpages */
  64. page = ctxt->pages[0];
  65. put_page(rqstp->rq_pages[0]);
  66. rqstp->rq_pages[0] = page;
  67. /* Set up the XDR head */
  68. rqstp->rq_arg.head[0].iov_base = page_address(page);
  69. rqstp->rq_arg.head[0].iov_len =
  70. min_t(size_t, byte_count, ctxt->sge[0].length);
  71. rqstp->rq_arg.len = byte_count;
  72. rqstp->rq_arg.buflen = byte_count;
  73. /* Compute bytes past head in the SGL */
  74. bc = byte_count - rqstp->rq_arg.head[0].iov_len;
  75. /* If data remains, store it in the pagelist */
  76. rqstp->rq_arg.page_len = bc;
  77. rqstp->rq_arg.page_base = 0;
  78. /* RDMA_NOMSG: RDMA READ data should land just after RDMA RECV data */
  79. rmsgp = (struct rpcrdma_msg *)rqstp->rq_arg.head[0].iov_base;
  80. if (rmsgp->rm_type == rdma_nomsg)
  81. rqstp->rq_arg.pages = &rqstp->rq_pages[0];
  82. else
  83. rqstp->rq_arg.pages = &rqstp->rq_pages[1];
  84. sge_no = 1;
  85. while (bc && sge_no < ctxt->count) {
  86. page = ctxt->pages[sge_no];
  87. put_page(rqstp->rq_pages[sge_no]);
  88. rqstp->rq_pages[sge_no] = page;
  89. bc -= min_t(u32, bc, ctxt->sge[sge_no].length);
  90. rqstp->rq_arg.buflen += ctxt->sge[sge_no].length;
  91. sge_no++;
  92. }
  93. rqstp->rq_respages = &rqstp->rq_pages[sge_no];
  94. rqstp->rq_next_page = rqstp->rq_respages + 1;
  95. /* If not all pages were used from the SGL, free the remaining ones */
  96. bc = sge_no;
  97. while (sge_no < ctxt->count) {
  98. page = ctxt->pages[sge_no++];
  99. put_page(page);
  100. }
  101. ctxt->count = bc;
  102. /* Set up tail */
  103. rqstp->rq_arg.tail[0].iov_base = NULL;
  104. rqstp->rq_arg.tail[0].iov_len = 0;
  105. }
  106. /* Issue an RDMA_READ using the local lkey to map the data sink */
  107. int rdma_read_chunk_lcl(struct svcxprt_rdma *xprt,
  108. struct svc_rqst *rqstp,
  109. struct svc_rdma_op_ctxt *head,
  110. int *page_no,
  111. u32 *page_offset,
  112. u32 rs_handle,
  113. u32 rs_length,
  114. u64 rs_offset,
  115. bool last)
  116. {
  117. struct ib_rdma_wr read_wr;
  118. int pages_needed = PAGE_ALIGN(*page_offset + rs_length) >> PAGE_SHIFT;
  119. struct svc_rdma_op_ctxt *ctxt = svc_rdma_get_context(xprt);
  120. int ret, read, pno;
  121. u32 pg_off = *page_offset;
  122. u32 pg_no = *page_no;
  123. ctxt->direction = DMA_FROM_DEVICE;
  124. ctxt->read_hdr = head;
  125. pages_needed = min_t(int, pages_needed, xprt->sc_max_sge_rd);
  126. read = min_t(int, (pages_needed << PAGE_SHIFT) - *page_offset,
  127. rs_length);
  128. for (pno = 0; pno < pages_needed; pno++) {
  129. int len = min_t(int, rs_length, PAGE_SIZE - pg_off);
  130. head->arg.pages[pg_no] = rqstp->rq_arg.pages[pg_no];
  131. head->arg.page_len += len;
  132. head->arg.len += len;
  133. if (!pg_off)
  134. head->count++;
  135. rqstp->rq_respages = &rqstp->rq_arg.pages[pg_no+1];
  136. rqstp->rq_next_page = rqstp->rq_respages + 1;
  137. ctxt->sge[pno].addr =
  138. ib_dma_map_page(xprt->sc_cm_id->device,
  139. head->arg.pages[pg_no], pg_off,
  140. PAGE_SIZE - pg_off,
  141. DMA_FROM_DEVICE);
  142. ret = ib_dma_mapping_error(xprt->sc_cm_id->device,
  143. ctxt->sge[pno].addr);
  144. if (ret)
  145. goto err;
  146. atomic_inc(&xprt->sc_dma_used);
  147. /* The lkey here is either a local dma lkey or a dma_mr lkey */
  148. ctxt->sge[pno].lkey = xprt->sc_dma_lkey;
  149. ctxt->sge[pno].length = len;
  150. ctxt->count++;
  151. /* adjust offset and wrap to next page if needed */
  152. pg_off += len;
  153. if (pg_off == PAGE_SIZE) {
  154. pg_off = 0;
  155. pg_no++;
  156. }
  157. rs_length -= len;
  158. }
  159. if (last && rs_length == 0)
  160. set_bit(RDMACTXT_F_LAST_CTXT, &ctxt->flags);
  161. else
  162. clear_bit(RDMACTXT_F_LAST_CTXT, &ctxt->flags);
  163. memset(&read_wr, 0, sizeof(read_wr));
  164. read_wr.wr.wr_id = (unsigned long)ctxt;
  165. read_wr.wr.opcode = IB_WR_RDMA_READ;
  166. ctxt->wr_op = read_wr.wr.opcode;
  167. read_wr.wr.send_flags = IB_SEND_SIGNALED;
  168. read_wr.rkey = rs_handle;
  169. read_wr.remote_addr = rs_offset;
  170. read_wr.wr.sg_list = ctxt->sge;
  171. read_wr.wr.num_sge = pages_needed;
  172. ret = svc_rdma_send(xprt, &read_wr.wr);
  173. if (ret) {
  174. pr_err("svcrdma: Error %d posting RDMA_READ\n", ret);
  175. set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
  176. goto err;
  177. }
  178. /* return current location in page array */
  179. *page_no = pg_no;
  180. *page_offset = pg_off;
  181. ret = read;
  182. atomic_inc(&rdma_stat_read);
  183. return ret;
  184. err:
  185. svc_rdma_unmap_dma(ctxt);
  186. svc_rdma_put_context(ctxt, 0);
  187. return ret;
  188. }
  189. /* Issue an RDMA_READ using an FRMR to map the data sink */
  190. int rdma_read_chunk_frmr(struct svcxprt_rdma *xprt,
  191. struct svc_rqst *rqstp,
  192. struct svc_rdma_op_ctxt *head,
  193. int *page_no,
  194. u32 *page_offset,
  195. u32 rs_handle,
  196. u32 rs_length,
  197. u64 rs_offset,
  198. bool last)
  199. {
  200. struct ib_rdma_wr read_wr;
  201. struct ib_send_wr inv_wr;
  202. struct ib_reg_wr reg_wr;
  203. u8 key;
  204. int nents = PAGE_ALIGN(*page_offset + rs_length) >> PAGE_SHIFT;
  205. struct svc_rdma_op_ctxt *ctxt = svc_rdma_get_context(xprt);
  206. struct svc_rdma_fastreg_mr *frmr = svc_rdma_get_frmr(xprt);
  207. int ret, read, pno, dma_nents, n;
  208. u32 pg_off = *page_offset;
  209. u32 pg_no = *page_no;
  210. if (IS_ERR(frmr))
  211. return -ENOMEM;
  212. ctxt->direction = DMA_FROM_DEVICE;
  213. ctxt->frmr = frmr;
  214. nents = min_t(unsigned int, nents, xprt->sc_frmr_pg_list_len);
  215. read = min_t(int, (nents << PAGE_SHIFT) - *page_offset, rs_length);
  216. frmr->direction = DMA_FROM_DEVICE;
  217. frmr->access_flags = (IB_ACCESS_LOCAL_WRITE|IB_ACCESS_REMOTE_WRITE);
  218. frmr->sg_nents = nents;
  219. for (pno = 0; pno < nents; pno++) {
  220. int len = min_t(int, rs_length, PAGE_SIZE - pg_off);
  221. head->arg.pages[pg_no] = rqstp->rq_arg.pages[pg_no];
  222. head->arg.page_len += len;
  223. head->arg.len += len;
  224. if (!pg_off)
  225. head->count++;
  226. sg_set_page(&frmr->sg[pno], rqstp->rq_arg.pages[pg_no],
  227. len, pg_off);
  228. rqstp->rq_respages = &rqstp->rq_arg.pages[pg_no+1];
  229. rqstp->rq_next_page = rqstp->rq_respages + 1;
  230. /* adjust offset and wrap to next page if needed */
  231. pg_off += len;
  232. if (pg_off == PAGE_SIZE) {
  233. pg_off = 0;
  234. pg_no++;
  235. }
  236. rs_length -= len;
  237. }
  238. if (last && rs_length == 0)
  239. set_bit(RDMACTXT_F_LAST_CTXT, &ctxt->flags);
  240. else
  241. clear_bit(RDMACTXT_F_LAST_CTXT, &ctxt->flags);
  242. dma_nents = ib_dma_map_sg(xprt->sc_cm_id->device,
  243. frmr->sg, frmr->sg_nents,
  244. frmr->direction);
  245. if (!dma_nents) {
  246. pr_err("svcrdma: failed to dma map sg %p\n",
  247. frmr->sg);
  248. return -ENOMEM;
  249. }
  250. atomic_inc(&xprt->sc_dma_used);
  251. n = ib_map_mr_sg(frmr->mr, frmr->sg, frmr->sg_nents, PAGE_SIZE);
  252. if (unlikely(n != frmr->sg_nents)) {
  253. pr_err("svcrdma: failed to map mr %p (%d/%d elements)\n",
  254. frmr->mr, n, frmr->sg_nents);
  255. return n < 0 ? n : -EINVAL;
  256. }
  257. /* Bump the key */
  258. key = (u8)(frmr->mr->lkey & 0x000000FF);
  259. ib_update_fast_reg_key(frmr->mr, ++key);
  260. ctxt->sge[0].addr = frmr->mr->iova;
  261. ctxt->sge[0].lkey = frmr->mr->lkey;
  262. ctxt->sge[0].length = frmr->mr->length;
  263. ctxt->count = 1;
  264. ctxt->read_hdr = head;
  265. /* Prepare REG WR */
  266. reg_wr.wr.opcode = IB_WR_REG_MR;
  267. reg_wr.wr.wr_id = 0;
  268. reg_wr.wr.send_flags = IB_SEND_SIGNALED;
  269. reg_wr.wr.num_sge = 0;
  270. reg_wr.mr = frmr->mr;
  271. reg_wr.key = frmr->mr->lkey;
  272. reg_wr.access = frmr->access_flags;
  273. reg_wr.wr.next = &read_wr.wr;
  274. /* Prepare RDMA_READ */
  275. memset(&read_wr, 0, sizeof(read_wr));
  276. read_wr.wr.send_flags = IB_SEND_SIGNALED;
  277. read_wr.rkey = rs_handle;
  278. read_wr.remote_addr = rs_offset;
  279. read_wr.wr.sg_list = ctxt->sge;
  280. read_wr.wr.num_sge = 1;
  281. if (xprt->sc_dev_caps & SVCRDMA_DEVCAP_READ_W_INV) {
  282. read_wr.wr.opcode = IB_WR_RDMA_READ_WITH_INV;
  283. read_wr.wr.wr_id = (unsigned long)ctxt;
  284. read_wr.wr.ex.invalidate_rkey = ctxt->frmr->mr->lkey;
  285. } else {
  286. read_wr.wr.opcode = IB_WR_RDMA_READ;
  287. read_wr.wr.next = &inv_wr;
  288. /* Prepare invalidate */
  289. memset(&inv_wr, 0, sizeof(inv_wr));
  290. inv_wr.wr_id = (unsigned long)ctxt;
  291. inv_wr.opcode = IB_WR_LOCAL_INV;
  292. inv_wr.send_flags = IB_SEND_SIGNALED | IB_SEND_FENCE;
  293. inv_wr.ex.invalidate_rkey = frmr->mr->lkey;
  294. }
  295. ctxt->wr_op = read_wr.wr.opcode;
  296. /* Post the chain */
  297. ret = svc_rdma_send(xprt, &reg_wr.wr);
  298. if (ret) {
  299. pr_err("svcrdma: Error %d posting RDMA_READ\n", ret);
  300. set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
  301. goto err;
  302. }
  303. /* return current location in page array */
  304. *page_no = pg_no;
  305. *page_offset = pg_off;
  306. ret = read;
  307. atomic_inc(&rdma_stat_read);
  308. return ret;
  309. err:
  310. svc_rdma_put_context(ctxt, 0);
  311. svc_rdma_put_frmr(xprt, frmr);
  312. return ret;
  313. }
  314. static unsigned int
  315. rdma_rcl_chunk_count(struct rpcrdma_read_chunk *ch)
  316. {
  317. unsigned int count;
  318. for (count = 0; ch->rc_discrim != xdr_zero; ch++)
  319. count++;
  320. return count;
  321. }
  322. /* If there was additional inline content, append it to the end of arg.pages.
  323. * Tail copy has to be done after the reader function has determined how many
  324. * pages are needed for RDMA READ.
  325. */
  326. static int
  327. rdma_copy_tail(struct svc_rqst *rqstp, struct svc_rdma_op_ctxt *head,
  328. u32 position, u32 byte_count, u32 page_offset, int page_no)
  329. {
  330. char *srcp, *destp;
  331. int ret;
  332. ret = 0;
  333. srcp = head->arg.head[0].iov_base + position;
  334. byte_count = head->arg.head[0].iov_len - position;
  335. if (byte_count > PAGE_SIZE) {
  336. dprintk("svcrdma: large tail unsupported\n");
  337. return 0;
  338. }
  339. /* Fit as much of the tail on the current page as possible */
  340. if (page_offset != PAGE_SIZE) {
  341. destp = page_address(rqstp->rq_arg.pages[page_no]);
  342. destp += page_offset;
  343. while (byte_count--) {
  344. *destp++ = *srcp++;
  345. page_offset++;
  346. if (page_offset == PAGE_SIZE && byte_count)
  347. goto more;
  348. }
  349. goto done;
  350. }
  351. more:
  352. /* Fit the rest on the next page */
  353. page_no++;
  354. destp = page_address(rqstp->rq_arg.pages[page_no]);
  355. while (byte_count--)
  356. *destp++ = *srcp++;
  357. rqstp->rq_respages = &rqstp->rq_arg.pages[page_no+1];
  358. rqstp->rq_next_page = rqstp->rq_respages + 1;
  359. done:
  360. byte_count = head->arg.head[0].iov_len - position;
  361. head->arg.page_len += byte_count;
  362. head->arg.len += byte_count;
  363. head->arg.buflen += byte_count;
  364. return 1;
  365. }
  366. static int rdma_read_chunks(struct svcxprt_rdma *xprt,
  367. struct rpcrdma_msg *rmsgp,
  368. struct svc_rqst *rqstp,
  369. struct svc_rdma_op_ctxt *head)
  370. {
  371. int page_no, ret;
  372. struct rpcrdma_read_chunk *ch;
  373. u32 handle, page_offset, byte_count;
  374. u32 position;
  375. u64 rs_offset;
  376. bool last;
  377. /* If no read list is present, return 0 */
  378. ch = svc_rdma_get_read_chunk(rmsgp);
  379. if (!ch)
  380. return 0;
  381. if (rdma_rcl_chunk_count(ch) > RPCSVC_MAXPAGES)
  382. return -EINVAL;
  383. /* The request is completed when the RDMA_READs complete. The
  384. * head context keeps all the pages that comprise the
  385. * request.
  386. */
  387. head->arg.head[0] = rqstp->rq_arg.head[0];
  388. head->arg.tail[0] = rqstp->rq_arg.tail[0];
  389. head->hdr_count = head->count;
  390. head->arg.page_base = 0;
  391. head->arg.page_len = 0;
  392. head->arg.len = rqstp->rq_arg.len;
  393. head->arg.buflen = rqstp->rq_arg.buflen;
  394. ch = (struct rpcrdma_read_chunk *)&rmsgp->rm_body.rm_chunks[0];
  395. position = be32_to_cpu(ch->rc_position);
  396. /* RDMA_NOMSG: RDMA READ data should land just after RDMA RECV data */
  397. if (position == 0) {
  398. head->arg.pages = &head->pages[0];
  399. page_offset = head->byte_len;
  400. } else {
  401. head->arg.pages = &head->pages[head->count];
  402. page_offset = 0;
  403. }
  404. ret = 0;
  405. page_no = 0;
  406. for (; ch->rc_discrim != xdr_zero; ch++) {
  407. if (be32_to_cpu(ch->rc_position) != position)
  408. goto err;
  409. handle = be32_to_cpu(ch->rc_target.rs_handle),
  410. byte_count = be32_to_cpu(ch->rc_target.rs_length);
  411. xdr_decode_hyper((__be32 *)&ch->rc_target.rs_offset,
  412. &rs_offset);
  413. while (byte_count > 0) {
  414. last = (ch + 1)->rc_discrim == xdr_zero;
  415. ret = xprt->sc_reader(xprt, rqstp, head,
  416. &page_no, &page_offset,
  417. handle, byte_count,
  418. rs_offset, last);
  419. if (ret < 0)
  420. goto err;
  421. byte_count -= ret;
  422. rs_offset += ret;
  423. head->arg.buflen += ret;
  424. }
  425. }
  426. /* Read list may need XDR round-up (see RFC 5666, s. 3.7) */
  427. if (page_offset & 3) {
  428. u32 pad = 4 - (page_offset & 3);
  429. head->arg.page_len += pad;
  430. head->arg.len += pad;
  431. head->arg.buflen += pad;
  432. page_offset += pad;
  433. }
  434. ret = 1;
  435. if (position && position < head->arg.head[0].iov_len)
  436. ret = rdma_copy_tail(rqstp, head, position,
  437. byte_count, page_offset, page_no);
  438. head->arg.head[0].iov_len = position;
  439. head->position = position;
  440. err:
  441. /* Detach arg pages. svc_recv will replenish them */
  442. for (page_no = 0;
  443. &rqstp->rq_pages[page_no] < rqstp->rq_respages; page_no++)
  444. rqstp->rq_pages[page_no] = NULL;
  445. return ret;
  446. }
  447. static int rdma_read_complete(struct svc_rqst *rqstp,
  448. struct svc_rdma_op_ctxt *head)
  449. {
  450. int page_no;
  451. int ret;
  452. /* Copy RPC pages */
  453. for (page_no = 0; page_no < head->count; page_no++) {
  454. put_page(rqstp->rq_pages[page_no]);
  455. rqstp->rq_pages[page_no] = head->pages[page_no];
  456. }
  457. /* Adjustments made for RDMA_NOMSG type requests */
  458. if (head->position == 0) {
  459. if (head->arg.len <= head->sge[0].length) {
  460. head->arg.head[0].iov_len = head->arg.len -
  461. head->byte_len;
  462. head->arg.page_len = 0;
  463. } else {
  464. head->arg.head[0].iov_len = head->sge[0].length -
  465. head->byte_len;
  466. head->arg.page_len = head->arg.len -
  467. head->sge[0].length;
  468. }
  469. }
  470. /* Point rq_arg.pages past header */
  471. rqstp->rq_arg.pages = &rqstp->rq_pages[head->hdr_count];
  472. rqstp->rq_arg.page_len = head->arg.page_len;
  473. rqstp->rq_arg.page_base = head->arg.page_base;
  474. /* rq_respages starts after the last arg page */
  475. rqstp->rq_respages = &rqstp->rq_pages[page_no];
  476. rqstp->rq_next_page = rqstp->rq_respages + 1;
  477. /* Rebuild rq_arg head and tail. */
  478. rqstp->rq_arg.head[0] = head->arg.head[0];
  479. rqstp->rq_arg.tail[0] = head->arg.tail[0];
  480. rqstp->rq_arg.len = head->arg.len;
  481. rqstp->rq_arg.buflen = head->arg.buflen;
  482. /* Free the context */
  483. svc_rdma_put_context(head, 0);
  484. /* XXX: What should this be? */
  485. rqstp->rq_prot = IPPROTO_MAX;
  486. svc_xprt_copy_addrs(rqstp, rqstp->rq_xprt);
  487. ret = rqstp->rq_arg.head[0].iov_len
  488. + rqstp->rq_arg.page_len
  489. + rqstp->rq_arg.tail[0].iov_len;
  490. dprintk("svcrdma: deferred read ret=%d, rq_arg.len=%u, "
  491. "rq_arg.head[0].iov_base=%p, rq_arg.head[0].iov_len=%zu\n",
  492. ret, rqstp->rq_arg.len, rqstp->rq_arg.head[0].iov_base,
  493. rqstp->rq_arg.head[0].iov_len);
  494. return ret;
  495. }
  496. /*
  497. * Set up the rqstp thread context to point to the RQ buffer. If
  498. * necessary, pull additional data from the client with an RDMA_READ
  499. * request.
  500. */
  501. int svc_rdma_recvfrom(struct svc_rqst *rqstp)
  502. {
  503. struct svc_xprt *xprt = rqstp->rq_xprt;
  504. struct svcxprt_rdma *rdma_xprt =
  505. container_of(xprt, struct svcxprt_rdma, sc_xprt);
  506. struct svc_rdma_op_ctxt *ctxt = NULL;
  507. struct rpcrdma_msg *rmsgp;
  508. int ret = 0;
  509. int len;
  510. dprintk("svcrdma: rqstp=%p\n", rqstp);
  511. spin_lock_bh(&rdma_xprt->sc_rq_dto_lock);
  512. if (!list_empty(&rdma_xprt->sc_read_complete_q)) {
  513. ctxt = list_entry(rdma_xprt->sc_read_complete_q.next,
  514. struct svc_rdma_op_ctxt,
  515. dto_q);
  516. list_del_init(&ctxt->dto_q);
  517. spin_unlock_bh(&rdma_xprt->sc_rq_dto_lock);
  518. return rdma_read_complete(rqstp, ctxt);
  519. } else if (!list_empty(&rdma_xprt->sc_rq_dto_q)) {
  520. ctxt = list_entry(rdma_xprt->sc_rq_dto_q.next,
  521. struct svc_rdma_op_ctxt,
  522. dto_q);
  523. list_del_init(&ctxt->dto_q);
  524. } else {
  525. atomic_inc(&rdma_stat_rq_starve);
  526. clear_bit(XPT_DATA, &xprt->xpt_flags);
  527. ctxt = NULL;
  528. }
  529. spin_unlock_bh(&rdma_xprt->sc_rq_dto_lock);
  530. if (!ctxt) {
  531. /* This is the EAGAIN path. The svc_recv routine will
  532. * return -EAGAIN, the nfsd thread will go to call into
  533. * svc_recv again and we shouldn't be on the active
  534. * transport list
  535. */
  536. if (test_bit(XPT_CLOSE, &xprt->xpt_flags))
  537. goto close_out;
  538. goto out;
  539. }
  540. dprintk("svcrdma: processing ctxt=%p on xprt=%p, rqstp=%p, status=%d\n",
  541. ctxt, rdma_xprt, rqstp, ctxt->wc_status);
  542. atomic_inc(&rdma_stat_recv);
  543. /* Build up the XDR from the receive buffers. */
  544. rdma_build_arg_xdr(rqstp, ctxt, ctxt->byte_len);
  545. /* Decode the RDMA header. */
  546. len = svc_rdma_xdr_decode_req(&rmsgp, rqstp);
  547. rqstp->rq_xprt_hlen = len;
  548. /* If the request is invalid, reply with an error */
  549. if (len < 0) {
  550. if (len == -ENOSYS)
  551. svc_rdma_send_error(rdma_xprt, rmsgp, ERR_VERS);
  552. goto close_out;
  553. }
  554. /* Read read-list data. */
  555. ret = rdma_read_chunks(rdma_xprt, rmsgp, rqstp, ctxt);
  556. if (ret > 0) {
  557. /* read-list posted, defer until data received from client. */
  558. goto defer;
  559. } else if (ret < 0) {
  560. /* Post of read-list failed, free context. */
  561. svc_rdma_put_context(ctxt, 1);
  562. return 0;
  563. }
  564. ret = rqstp->rq_arg.head[0].iov_len
  565. + rqstp->rq_arg.page_len
  566. + rqstp->rq_arg.tail[0].iov_len;
  567. svc_rdma_put_context(ctxt, 0);
  568. out:
  569. dprintk("svcrdma: ret=%d, rq_arg.len=%u, "
  570. "rq_arg.head[0].iov_base=%p, rq_arg.head[0].iov_len=%zd\n",
  571. ret, rqstp->rq_arg.len,
  572. rqstp->rq_arg.head[0].iov_base,
  573. rqstp->rq_arg.head[0].iov_len);
  574. rqstp->rq_prot = IPPROTO_MAX;
  575. svc_xprt_copy_addrs(rqstp, xprt);
  576. return ret;
  577. close_out:
  578. if (ctxt)
  579. svc_rdma_put_context(ctxt, 1);
  580. dprintk("svcrdma: transport %p is closing\n", xprt);
  581. /*
  582. * Set the close bit and enqueue it. svc_recv will see the
  583. * close bit and call svc_xprt_delete
  584. */
  585. set_bit(XPT_CLOSE, &xprt->xpt_flags);
  586. defer:
  587. return 0;
  588. }