hal2.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935
  1. /*
  2. * Driver for A2 audio system used in SGI machines
  3. * Copyright (c) 2008 Thomas Bogendoerfer <tsbogend@alpha.fanken.de>
  4. *
  5. * Based on OSS code from Ladislav Michl <ladis@linux-mips.org>, which
  6. * was based on code from Ulf Carlsson
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  20. *
  21. */
  22. #include <linux/kernel.h>
  23. #include <linux/init.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/io.h>
  28. #include <linux/slab.h>
  29. #include <linux/module.h>
  30. #include <asm/sgi/hpc3.h>
  31. #include <asm/sgi/ip22.h>
  32. #include <sound/core.h>
  33. #include <sound/control.h>
  34. #include <sound/pcm.h>
  35. #include <sound/pcm-indirect.h>
  36. #include <sound/initval.h>
  37. #include "hal2.h"
  38. static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */
  39. static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */
  40. module_param(index, int, 0444);
  41. MODULE_PARM_DESC(index, "Index value for SGI HAL2 soundcard.");
  42. module_param(id, charp, 0444);
  43. MODULE_PARM_DESC(id, "ID string for SGI HAL2 soundcard.");
  44. MODULE_DESCRIPTION("ALSA driver for SGI HAL2 audio");
  45. MODULE_AUTHOR("Thomas Bogendoerfer");
  46. MODULE_LICENSE("GPL");
  47. #define H2_BLOCK_SIZE 1024
  48. #define H2_BUF_SIZE 16384
  49. struct hal2_pbus {
  50. struct hpc3_pbus_dmacregs *pbus;
  51. int pbusnr;
  52. unsigned int ctrl; /* Current state of pbus->pbdma_ctrl */
  53. };
  54. struct hal2_desc {
  55. struct hpc_dma_desc desc;
  56. u32 pad; /* padding */
  57. };
  58. struct hal2_codec {
  59. struct snd_pcm_indirect pcm_indirect;
  60. struct snd_pcm_substream *substream;
  61. unsigned char *buffer;
  62. dma_addr_t buffer_dma;
  63. struct hal2_desc *desc;
  64. dma_addr_t desc_dma;
  65. int desc_count;
  66. struct hal2_pbus pbus;
  67. int voices; /* mono/stereo */
  68. unsigned int sample_rate;
  69. unsigned int master; /* Master frequency */
  70. unsigned short mod; /* MOD value */
  71. unsigned short inc; /* INC value */
  72. };
  73. #define H2_MIX_OUTPUT_ATT 0
  74. #define H2_MIX_INPUT_GAIN 1
  75. struct snd_hal2 {
  76. struct snd_card *card;
  77. struct hal2_ctl_regs *ctl_regs; /* HAL2 ctl registers */
  78. struct hal2_aes_regs *aes_regs; /* HAL2 aes registers */
  79. struct hal2_vol_regs *vol_regs; /* HAL2 vol registers */
  80. struct hal2_syn_regs *syn_regs; /* HAL2 syn registers */
  81. struct hal2_codec dac;
  82. struct hal2_codec adc;
  83. };
  84. #define H2_INDIRECT_WAIT(regs) while (hal2_read(&regs->isr) & H2_ISR_TSTATUS);
  85. #define H2_READ_ADDR(addr) (addr | (1<<7))
  86. #define H2_WRITE_ADDR(addr) (addr)
  87. static inline u32 hal2_read(u32 *reg)
  88. {
  89. return __raw_readl(reg);
  90. }
  91. static inline void hal2_write(u32 val, u32 *reg)
  92. {
  93. __raw_writel(val, reg);
  94. }
  95. static u32 hal2_i_read32(struct snd_hal2 *hal2, u16 addr)
  96. {
  97. u32 ret;
  98. struct hal2_ctl_regs *regs = hal2->ctl_regs;
  99. hal2_write(H2_READ_ADDR(addr), &regs->iar);
  100. H2_INDIRECT_WAIT(regs);
  101. ret = hal2_read(&regs->idr0) & 0xffff;
  102. hal2_write(H2_READ_ADDR(addr) | 0x1, &regs->iar);
  103. H2_INDIRECT_WAIT(regs);
  104. ret |= (hal2_read(&regs->idr0) & 0xffff) << 16;
  105. return ret;
  106. }
  107. static void hal2_i_write16(struct snd_hal2 *hal2, u16 addr, u16 val)
  108. {
  109. struct hal2_ctl_regs *regs = hal2->ctl_regs;
  110. hal2_write(val, &regs->idr0);
  111. hal2_write(0, &regs->idr1);
  112. hal2_write(0, &regs->idr2);
  113. hal2_write(0, &regs->idr3);
  114. hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
  115. H2_INDIRECT_WAIT(regs);
  116. }
  117. static void hal2_i_write32(struct snd_hal2 *hal2, u16 addr, u32 val)
  118. {
  119. struct hal2_ctl_regs *regs = hal2->ctl_regs;
  120. hal2_write(val & 0xffff, &regs->idr0);
  121. hal2_write(val >> 16, &regs->idr1);
  122. hal2_write(0, &regs->idr2);
  123. hal2_write(0, &regs->idr3);
  124. hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
  125. H2_INDIRECT_WAIT(regs);
  126. }
  127. static void hal2_i_setbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
  128. {
  129. struct hal2_ctl_regs *regs = hal2->ctl_regs;
  130. hal2_write(H2_READ_ADDR(addr), &regs->iar);
  131. H2_INDIRECT_WAIT(regs);
  132. hal2_write((hal2_read(&regs->idr0) & 0xffff) | bit, &regs->idr0);
  133. hal2_write(0, &regs->idr1);
  134. hal2_write(0, &regs->idr2);
  135. hal2_write(0, &regs->idr3);
  136. hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
  137. H2_INDIRECT_WAIT(regs);
  138. }
  139. static void hal2_i_clearbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
  140. {
  141. struct hal2_ctl_regs *regs = hal2->ctl_regs;
  142. hal2_write(H2_READ_ADDR(addr), &regs->iar);
  143. H2_INDIRECT_WAIT(regs);
  144. hal2_write((hal2_read(&regs->idr0) & 0xffff) & ~bit, &regs->idr0);
  145. hal2_write(0, &regs->idr1);
  146. hal2_write(0, &regs->idr2);
  147. hal2_write(0, &regs->idr3);
  148. hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
  149. H2_INDIRECT_WAIT(regs);
  150. }
  151. static int hal2_gain_info(struct snd_kcontrol *kcontrol,
  152. struct snd_ctl_elem_info *uinfo)
  153. {
  154. uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  155. uinfo->count = 2;
  156. uinfo->value.integer.min = 0;
  157. switch ((int)kcontrol->private_value) {
  158. case H2_MIX_OUTPUT_ATT:
  159. uinfo->value.integer.max = 31;
  160. break;
  161. case H2_MIX_INPUT_GAIN:
  162. uinfo->value.integer.max = 15;
  163. break;
  164. }
  165. return 0;
  166. }
  167. static int hal2_gain_get(struct snd_kcontrol *kcontrol,
  168. struct snd_ctl_elem_value *ucontrol)
  169. {
  170. struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
  171. u32 tmp;
  172. int l, r;
  173. switch ((int)kcontrol->private_value) {
  174. case H2_MIX_OUTPUT_ATT:
  175. tmp = hal2_i_read32(hal2, H2I_DAC_C2);
  176. if (tmp & H2I_C2_MUTE) {
  177. l = 0;
  178. r = 0;
  179. } else {
  180. l = 31 - ((tmp >> H2I_C2_L_ATT_SHIFT) & 31);
  181. r = 31 - ((tmp >> H2I_C2_R_ATT_SHIFT) & 31);
  182. }
  183. break;
  184. case H2_MIX_INPUT_GAIN:
  185. tmp = hal2_i_read32(hal2, H2I_ADC_C2);
  186. l = (tmp >> H2I_C2_L_GAIN_SHIFT) & 15;
  187. r = (tmp >> H2I_C2_R_GAIN_SHIFT) & 15;
  188. break;
  189. }
  190. ucontrol->value.integer.value[0] = l;
  191. ucontrol->value.integer.value[1] = r;
  192. return 0;
  193. }
  194. static int hal2_gain_put(struct snd_kcontrol *kcontrol,
  195. struct snd_ctl_elem_value *ucontrol)
  196. {
  197. struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
  198. u32 old, new;
  199. int l, r;
  200. l = ucontrol->value.integer.value[0];
  201. r = ucontrol->value.integer.value[1];
  202. switch ((int)kcontrol->private_value) {
  203. case H2_MIX_OUTPUT_ATT:
  204. old = hal2_i_read32(hal2, H2I_DAC_C2);
  205. new = old & ~(H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
  206. if (l | r) {
  207. l = 31 - l;
  208. r = 31 - r;
  209. new |= (l << H2I_C2_L_ATT_SHIFT);
  210. new |= (r << H2I_C2_R_ATT_SHIFT);
  211. } else
  212. new |= H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE;
  213. hal2_i_write32(hal2, H2I_DAC_C2, new);
  214. break;
  215. case H2_MIX_INPUT_GAIN:
  216. old = hal2_i_read32(hal2, H2I_ADC_C2);
  217. new = old & ~(H2I_C2_L_GAIN_M | H2I_C2_R_GAIN_M);
  218. new |= (l << H2I_C2_L_GAIN_SHIFT);
  219. new |= (r << H2I_C2_R_GAIN_SHIFT);
  220. hal2_i_write32(hal2, H2I_ADC_C2, new);
  221. break;
  222. }
  223. return old != new;
  224. }
  225. static struct snd_kcontrol_new hal2_ctrl_headphone = {
  226. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  227. .name = "Headphone Playback Volume",
  228. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
  229. .private_value = H2_MIX_OUTPUT_ATT,
  230. .info = hal2_gain_info,
  231. .get = hal2_gain_get,
  232. .put = hal2_gain_put,
  233. };
  234. static struct snd_kcontrol_new hal2_ctrl_mic = {
  235. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  236. .name = "Mic Capture Volume",
  237. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
  238. .private_value = H2_MIX_INPUT_GAIN,
  239. .info = hal2_gain_info,
  240. .get = hal2_gain_get,
  241. .put = hal2_gain_put,
  242. };
  243. static int hal2_mixer_create(struct snd_hal2 *hal2)
  244. {
  245. int err;
  246. /* mute DAC */
  247. hal2_i_write32(hal2, H2I_DAC_C2,
  248. H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
  249. /* mute ADC */
  250. hal2_i_write32(hal2, H2I_ADC_C2, 0);
  251. err = snd_ctl_add(hal2->card,
  252. snd_ctl_new1(&hal2_ctrl_headphone, hal2));
  253. if (err < 0)
  254. return err;
  255. err = snd_ctl_add(hal2->card,
  256. snd_ctl_new1(&hal2_ctrl_mic, hal2));
  257. if (err < 0)
  258. return err;
  259. return 0;
  260. }
  261. static irqreturn_t hal2_interrupt(int irq, void *dev_id)
  262. {
  263. struct snd_hal2 *hal2 = dev_id;
  264. irqreturn_t ret = IRQ_NONE;
  265. /* decide what caused this interrupt */
  266. if (hal2->dac.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
  267. snd_pcm_period_elapsed(hal2->dac.substream);
  268. ret = IRQ_HANDLED;
  269. }
  270. if (hal2->adc.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
  271. snd_pcm_period_elapsed(hal2->adc.substream);
  272. ret = IRQ_HANDLED;
  273. }
  274. return ret;
  275. }
  276. static int hal2_compute_rate(struct hal2_codec *codec, unsigned int rate)
  277. {
  278. unsigned short mod;
  279. if (44100 % rate < 48000 % rate) {
  280. mod = 4 * 44100 / rate;
  281. codec->master = 44100;
  282. } else {
  283. mod = 4 * 48000 / rate;
  284. codec->master = 48000;
  285. }
  286. codec->inc = 4;
  287. codec->mod = mod;
  288. rate = 4 * codec->master / mod;
  289. return rate;
  290. }
  291. static void hal2_set_dac_rate(struct snd_hal2 *hal2)
  292. {
  293. unsigned int master = hal2->dac.master;
  294. int inc = hal2->dac.inc;
  295. int mod = hal2->dac.mod;
  296. hal2_i_write16(hal2, H2I_BRES1_C1, (master == 44100) ? 1 : 0);
  297. hal2_i_write32(hal2, H2I_BRES1_C2,
  298. ((0xffff & (inc - mod - 1)) << 16) | inc);
  299. }
  300. static void hal2_set_adc_rate(struct snd_hal2 *hal2)
  301. {
  302. unsigned int master = hal2->adc.master;
  303. int inc = hal2->adc.inc;
  304. int mod = hal2->adc.mod;
  305. hal2_i_write16(hal2, H2I_BRES2_C1, (master == 44100) ? 1 : 0);
  306. hal2_i_write32(hal2, H2I_BRES2_C2,
  307. ((0xffff & (inc - mod - 1)) << 16) | inc);
  308. }
  309. static void hal2_setup_dac(struct snd_hal2 *hal2)
  310. {
  311. unsigned int fifobeg, fifoend, highwater, sample_size;
  312. struct hal2_pbus *pbus = &hal2->dac.pbus;
  313. /* Now we set up some PBUS information. The PBUS needs information about
  314. * what portion of the fifo it will use. If it's receiving or
  315. * transmitting, and finally whether the stream is little endian or big
  316. * endian. The information is written later, on the start call.
  317. */
  318. sample_size = 2 * hal2->dac.voices;
  319. /* Fifo should be set to hold exactly four samples. Highwater mark
  320. * should be set to two samples. */
  321. highwater = (sample_size * 2) >> 1; /* halfwords */
  322. fifobeg = 0; /* playback is first */
  323. fifoend = (sample_size * 4) >> 3; /* doublewords */
  324. pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_LD |
  325. (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
  326. /* We disable everything before we do anything at all */
  327. pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
  328. hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
  329. /* Setup the HAL2 for playback */
  330. hal2_set_dac_rate(hal2);
  331. /* Set endianess */
  332. hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX);
  333. /* Set DMA bus */
  334. hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
  335. /* We are using 1st Bresenham clock generator for playback */
  336. hal2_i_write16(hal2, H2I_DAC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
  337. | (1 << H2I_C1_CLKID_SHIFT)
  338. | (hal2->dac.voices << H2I_C1_DATAT_SHIFT));
  339. }
  340. static void hal2_setup_adc(struct snd_hal2 *hal2)
  341. {
  342. unsigned int fifobeg, fifoend, highwater, sample_size;
  343. struct hal2_pbus *pbus = &hal2->adc.pbus;
  344. sample_size = 2 * hal2->adc.voices;
  345. highwater = (sample_size * 2) >> 1; /* halfwords */
  346. fifobeg = (4 * 4) >> 3; /* record is second */
  347. fifoend = (4 * 4 + sample_size * 4) >> 3; /* doublewords */
  348. pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_RCV | HPC3_PDMACTRL_LD |
  349. (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
  350. pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
  351. hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
  352. /* Setup the HAL2 for record */
  353. hal2_set_adc_rate(hal2);
  354. /* Set endianess */
  355. hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR);
  356. /* Set DMA bus */
  357. hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
  358. /* We are using 2nd Bresenham clock generator for record */
  359. hal2_i_write16(hal2, H2I_ADC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
  360. | (2 << H2I_C1_CLKID_SHIFT)
  361. | (hal2->adc.voices << H2I_C1_DATAT_SHIFT));
  362. }
  363. static void hal2_start_dac(struct snd_hal2 *hal2)
  364. {
  365. struct hal2_pbus *pbus = &hal2->dac.pbus;
  366. pbus->pbus->pbdma_dptr = hal2->dac.desc_dma;
  367. pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
  368. /* enable DAC */
  369. hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
  370. }
  371. static void hal2_start_adc(struct snd_hal2 *hal2)
  372. {
  373. struct hal2_pbus *pbus = &hal2->adc.pbus;
  374. pbus->pbus->pbdma_dptr = hal2->adc.desc_dma;
  375. pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
  376. /* enable ADC */
  377. hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
  378. }
  379. static inline void hal2_stop_dac(struct snd_hal2 *hal2)
  380. {
  381. hal2->dac.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
  382. /* The HAL2 itself may remain enabled safely */
  383. }
  384. static inline void hal2_stop_adc(struct snd_hal2 *hal2)
  385. {
  386. hal2->adc.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
  387. }
  388. static int hal2_alloc_dmabuf(struct hal2_codec *codec)
  389. {
  390. struct hal2_desc *desc;
  391. dma_addr_t desc_dma, buffer_dma;
  392. int count = H2_BUF_SIZE / H2_BLOCK_SIZE;
  393. int i;
  394. codec->buffer = dma_alloc_noncoherent(NULL, H2_BUF_SIZE,
  395. &buffer_dma, GFP_KERNEL);
  396. if (!codec->buffer)
  397. return -ENOMEM;
  398. desc = dma_alloc_noncoherent(NULL, count * sizeof(struct hal2_desc),
  399. &desc_dma, GFP_KERNEL);
  400. if (!desc) {
  401. dma_free_noncoherent(NULL, H2_BUF_SIZE,
  402. codec->buffer, buffer_dma);
  403. return -ENOMEM;
  404. }
  405. codec->buffer_dma = buffer_dma;
  406. codec->desc_dma = desc_dma;
  407. codec->desc = desc;
  408. for (i = 0; i < count; i++) {
  409. desc->desc.pbuf = buffer_dma + i * H2_BLOCK_SIZE;
  410. desc->desc.cntinfo = HPCDMA_XIE | H2_BLOCK_SIZE;
  411. desc->desc.pnext = (i == count - 1) ?
  412. desc_dma : desc_dma + (i + 1) * sizeof(struct hal2_desc);
  413. desc++;
  414. }
  415. dma_cache_sync(NULL, codec->desc, count * sizeof(struct hal2_desc),
  416. DMA_TO_DEVICE);
  417. codec->desc_count = count;
  418. return 0;
  419. }
  420. static void hal2_free_dmabuf(struct hal2_codec *codec)
  421. {
  422. dma_free_noncoherent(NULL, codec->desc_count * sizeof(struct hal2_desc),
  423. codec->desc, codec->desc_dma);
  424. dma_free_noncoherent(NULL, H2_BUF_SIZE, codec->buffer,
  425. codec->buffer_dma);
  426. }
  427. static struct snd_pcm_hardware hal2_pcm_hw = {
  428. .info = (SNDRV_PCM_INFO_MMAP |
  429. SNDRV_PCM_INFO_MMAP_VALID |
  430. SNDRV_PCM_INFO_INTERLEAVED |
  431. SNDRV_PCM_INFO_BLOCK_TRANSFER),
  432. .formats = SNDRV_PCM_FMTBIT_S16_BE,
  433. .rates = SNDRV_PCM_RATE_8000_48000,
  434. .rate_min = 8000,
  435. .rate_max = 48000,
  436. .channels_min = 2,
  437. .channels_max = 2,
  438. .buffer_bytes_max = 65536,
  439. .period_bytes_min = 1024,
  440. .period_bytes_max = 65536,
  441. .periods_min = 2,
  442. .periods_max = 1024,
  443. };
  444. static int hal2_pcm_hw_params(struct snd_pcm_substream *substream,
  445. struct snd_pcm_hw_params *params)
  446. {
  447. int err;
  448. err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params));
  449. if (err < 0)
  450. return err;
  451. return 0;
  452. }
  453. static int hal2_pcm_hw_free(struct snd_pcm_substream *substream)
  454. {
  455. return snd_pcm_lib_free_pages(substream);
  456. }
  457. static int hal2_playback_open(struct snd_pcm_substream *substream)
  458. {
  459. struct snd_pcm_runtime *runtime = substream->runtime;
  460. struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  461. int err;
  462. runtime->hw = hal2_pcm_hw;
  463. err = hal2_alloc_dmabuf(&hal2->dac);
  464. if (err)
  465. return err;
  466. return 0;
  467. }
  468. static int hal2_playback_close(struct snd_pcm_substream *substream)
  469. {
  470. struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  471. hal2_free_dmabuf(&hal2->dac);
  472. return 0;
  473. }
  474. static int hal2_playback_prepare(struct snd_pcm_substream *substream)
  475. {
  476. struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  477. struct snd_pcm_runtime *runtime = substream->runtime;
  478. struct hal2_codec *dac = &hal2->dac;
  479. dac->voices = runtime->channels;
  480. dac->sample_rate = hal2_compute_rate(dac, runtime->rate);
  481. memset(&dac->pcm_indirect, 0, sizeof(dac->pcm_indirect));
  482. dac->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
  483. dac->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
  484. dac->substream = substream;
  485. hal2_setup_dac(hal2);
  486. return 0;
  487. }
  488. static int hal2_playback_trigger(struct snd_pcm_substream *substream, int cmd)
  489. {
  490. struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  491. switch (cmd) {
  492. case SNDRV_PCM_TRIGGER_START:
  493. hal2->dac.pcm_indirect.hw_io = hal2->dac.buffer_dma;
  494. hal2->dac.pcm_indirect.hw_data = 0;
  495. substream->ops->ack(substream);
  496. hal2_start_dac(hal2);
  497. break;
  498. case SNDRV_PCM_TRIGGER_STOP:
  499. hal2_stop_dac(hal2);
  500. break;
  501. default:
  502. return -EINVAL;
  503. }
  504. return 0;
  505. }
  506. static snd_pcm_uframes_t
  507. hal2_playback_pointer(struct snd_pcm_substream *substream)
  508. {
  509. struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  510. struct hal2_codec *dac = &hal2->dac;
  511. return snd_pcm_indirect_playback_pointer(substream, &dac->pcm_indirect,
  512. dac->pbus.pbus->pbdma_bptr);
  513. }
  514. static void hal2_playback_transfer(struct snd_pcm_substream *substream,
  515. struct snd_pcm_indirect *rec, size_t bytes)
  516. {
  517. struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  518. unsigned char *buf = hal2->dac.buffer + rec->hw_data;
  519. memcpy(buf, substream->runtime->dma_area + rec->sw_data, bytes);
  520. dma_cache_sync(NULL, buf, bytes, DMA_TO_DEVICE);
  521. }
  522. static int hal2_playback_ack(struct snd_pcm_substream *substream)
  523. {
  524. struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  525. struct hal2_codec *dac = &hal2->dac;
  526. dac->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
  527. snd_pcm_indirect_playback_transfer(substream,
  528. &dac->pcm_indirect,
  529. hal2_playback_transfer);
  530. return 0;
  531. }
  532. static int hal2_capture_open(struct snd_pcm_substream *substream)
  533. {
  534. struct snd_pcm_runtime *runtime = substream->runtime;
  535. struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  536. struct hal2_codec *adc = &hal2->adc;
  537. int err;
  538. runtime->hw = hal2_pcm_hw;
  539. err = hal2_alloc_dmabuf(adc);
  540. if (err)
  541. return err;
  542. return 0;
  543. }
  544. static int hal2_capture_close(struct snd_pcm_substream *substream)
  545. {
  546. struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  547. hal2_free_dmabuf(&hal2->adc);
  548. return 0;
  549. }
  550. static int hal2_capture_prepare(struct snd_pcm_substream *substream)
  551. {
  552. struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  553. struct snd_pcm_runtime *runtime = substream->runtime;
  554. struct hal2_codec *adc = &hal2->adc;
  555. adc->voices = runtime->channels;
  556. adc->sample_rate = hal2_compute_rate(adc, runtime->rate);
  557. memset(&adc->pcm_indirect, 0, sizeof(adc->pcm_indirect));
  558. adc->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
  559. adc->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
  560. adc->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
  561. adc->substream = substream;
  562. hal2_setup_adc(hal2);
  563. return 0;
  564. }
  565. static int hal2_capture_trigger(struct snd_pcm_substream *substream, int cmd)
  566. {
  567. struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  568. switch (cmd) {
  569. case SNDRV_PCM_TRIGGER_START:
  570. hal2->adc.pcm_indirect.hw_io = hal2->adc.buffer_dma;
  571. hal2->adc.pcm_indirect.hw_data = 0;
  572. printk(KERN_DEBUG "buffer_dma %x\n", hal2->adc.buffer_dma);
  573. hal2_start_adc(hal2);
  574. break;
  575. case SNDRV_PCM_TRIGGER_STOP:
  576. hal2_stop_adc(hal2);
  577. break;
  578. default:
  579. return -EINVAL;
  580. }
  581. return 0;
  582. }
  583. static snd_pcm_uframes_t
  584. hal2_capture_pointer(struct snd_pcm_substream *substream)
  585. {
  586. struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  587. struct hal2_codec *adc = &hal2->adc;
  588. return snd_pcm_indirect_capture_pointer(substream, &adc->pcm_indirect,
  589. adc->pbus.pbus->pbdma_bptr);
  590. }
  591. static void hal2_capture_transfer(struct snd_pcm_substream *substream,
  592. struct snd_pcm_indirect *rec, size_t bytes)
  593. {
  594. struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  595. unsigned char *buf = hal2->adc.buffer + rec->hw_data;
  596. dma_cache_sync(NULL, buf, bytes, DMA_FROM_DEVICE);
  597. memcpy(substream->runtime->dma_area + rec->sw_data, buf, bytes);
  598. }
  599. static int hal2_capture_ack(struct snd_pcm_substream *substream)
  600. {
  601. struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  602. struct hal2_codec *adc = &hal2->adc;
  603. snd_pcm_indirect_capture_transfer(substream,
  604. &adc->pcm_indirect,
  605. hal2_capture_transfer);
  606. return 0;
  607. }
  608. static struct snd_pcm_ops hal2_playback_ops = {
  609. .open = hal2_playback_open,
  610. .close = hal2_playback_close,
  611. .ioctl = snd_pcm_lib_ioctl,
  612. .hw_params = hal2_pcm_hw_params,
  613. .hw_free = hal2_pcm_hw_free,
  614. .prepare = hal2_playback_prepare,
  615. .trigger = hal2_playback_trigger,
  616. .pointer = hal2_playback_pointer,
  617. .ack = hal2_playback_ack,
  618. };
  619. static struct snd_pcm_ops hal2_capture_ops = {
  620. .open = hal2_capture_open,
  621. .close = hal2_capture_close,
  622. .ioctl = snd_pcm_lib_ioctl,
  623. .hw_params = hal2_pcm_hw_params,
  624. .hw_free = hal2_pcm_hw_free,
  625. .prepare = hal2_capture_prepare,
  626. .trigger = hal2_capture_trigger,
  627. .pointer = hal2_capture_pointer,
  628. .ack = hal2_capture_ack,
  629. };
  630. static int hal2_pcm_create(struct snd_hal2 *hal2)
  631. {
  632. struct snd_pcm *pcm;
  633. int err;
  634. /* create first pcm device with one outputs and one input */
  635. err = snd_pcm_new(hal2->card, "SGI HAL2 Audio", 0, 1, 1, &pcm);
  636. if (err < 0)
  637. return err;
  638. pcm->private_data = hal2;
  639. strcpy(pcm->name, "SGI HAL2");
  640. /* set operators */
  641. snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
  642. &hal2_playback_ops);
  643. snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
  644. &hal2_capture_ops);
  645. snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
  646. snd_dma_continuous_data(GFP_KERNEL),
  647. 0, 1024 * 1024);
  648. return 0;
  649. }
  650. static int hal2_dev_free(struct snd_device *device)
  651. {
  652. struct snd_hal2 *hal2 = device->device_data;
  653. free_irq(SGI_HPCDMA_IRQ, hal2);
  654. kfree(hal2);
  655. return 0;
  656. }
  657. static struct snd_device_ops hal2_ops = {
  658. .dev_free = hal2_dev_free,
  659. };
  660. static void hal2_init_codec(struct hal2_codec *codec, struct hpc3_regs *hpc3,
  661. int index)
  662. {
  663. codec->pbus.pbusnr = index;
  664. codec->pbus.pbus = &hpc3->pbdma[index];
  665. }
  666. static int hal2_detect(struct snd_hal2 *hal2)
  667. {
  668. unsigned short board, major, minor;
  669. unsigned short rev;
  670. /* reset HAL2 */
  671. hal2_write(0, &hal2->ctl_regs->isr);
  672. /* release reset */
  673. hal2_write(H2_ISR_GLOBAL_RESET_N | H2_ISR_CODEC_RESET_N,
  674. &hal2->ctl_regs->isr);
  675. hal2_i_write16(hal2, H2I_RELAY_C, H2I_RELAY_C_STATE);
  676. rev = hal2_read(&hal2->ctl_regs->rev);
  677. if (rev & H2_REV_AUDIO_PRESENT)
  678. return -ENODEV;
  679. board = (rev & H2_REV_BOARD_M) >> 12;
  680. major = (rev & H2_REV_MAJOR_CHIP_M) >> 4;
  681. minor = (rev & H2_REV_MINOR_CHIP_M);
  682. printk(KERN_INFO "SGI HAL2 revision %i.%i.%i\n",
  683. board, major, minor);
  684. return 0;
  685. }
  686. static int hal2_create(struct snd_card *card, struct snd_hal2 **rchip)
  687. {
  688. struct snd_hal2 *hal2;
  689. struct hpc3_regs *hpc3 = hpc3c0;
  690. int err;
  691. hal2 = kzalloc(sizeof(struct snd_hal2), GFP_KERNEL);
  692. if (!hal2)
  693. return -ENOMEM;
  694. hal2->card = card;
  695. if (request_irq(SGI_HPCDMA_IRQ, hal2_interrupt, IRQF_SHARED,
  696. "SGI HAL2", hal2)) {
  697. printk(KERN_ERR "HAL2: Can't get irq %d\n", SGI_HPCDMA_IRQ);
  698. kfree(hal2);
  699. return -EAGAIN;
  700. }
  701. hal2->ctl_regs = (struct hal2_ctl_regs *)hpc3->pbus_extregs[0];
  702. hal2->aes_regs = (struct hal2_aes_regs *)hpc3->pbus_extregs[1];
  703. hal2->vol_regs = (struct hal2_vol_regs *)hpc3->pbus_extregs[2];
  704. hal2->syn_regs = (struct hal2_syn_regs *)hpc3->pbus_extregs[3];
  705. if (hal2_detect(hal2) < 0) {
  706. kfree(hal2);
  707. return -ENODEV;
  708. }
  709. hal2_init_codec(&hal2->dac, hpc3, 0);
  710. hal2_init_codec(&hal2->adc, hpc3, 1);
  711. /*
  712. * All DMA channel interfaces in HAL2 are designed to operate with
  713. * PBUS programmed for 2 cycles in D3, 2 cycles in D4 and 2 cycles
  714. * in D5. HAL2 is a 16-bit device which can accept both big and little
  715. * endian format. It assumes that even address bytes are on high
  716. * portion of PBUS (15:8) and assumes that HPC3 is programmed to
  717. * accept a live (unsynchronized) version of P_DREQ_N from HAL2.
  718. */
  719. #define HAL2_PBUS_DMACFG ((0 << HPC3_DMACFG_D3R_SHIFT) | \
  720. (2 << HPC3_DMACFG_D4R_SHIFT) | \
  721. (2 << HPC3_DMACFG_D5R_SHIFT) | \
  722. (0 << HPC3_DMACFG_D3W_SHIFT) | \
  723. (2 << HPC3_DMACFG_D4W_SHIFT) | \
  724. (2 << HPC3_DMACFG_D5W_SHIFT) | \
  725. HPC3_DMACFG_DS16 | \
  726. HPC3_DMACFG_EVENHI | \
  727. HPC3_DMACFG_RTIME | \
  728. (8 << HPC3_DMACFG_BURST_SHIFT) | \
  729. HPC3_DMACFG_DRQLIVE)
  730. /*
  731. * Ignore what's mentioned in the specification and write value which
  732. * works in The Real World (TM)
  733. */
  734. hpc3->pbus_dmacfg[hal2->dac.pbus.pbusnr][0] = 0x8208844;
  735. hpc3->pbus_dmacfg[hal2->adc.pbus.pbusnr][0] = 0x8208844;
  736. err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, hal2, &hal2_ops);
  737. if (err < 0) {
  738. free_irq(SGI_HPCDMA_IRQ, hal2);
  739. kfree(hal2);
  740. return err;
  741. }
  742. *rchip = hal2;
  743. return 0;
  744. }
  745. static int hal2_probe(struct platform_device *pdev)
  746. {
  747. struct snd_card *card;
  748. struct snd_hal2 *chip;
  749. int err;
  750. err = snd_card_new(&pdev->dev, index, id, THIS_MODULE, 0, &card);
  751. if (err < 0)
  752. return err;
  753. err = hal2_create(card, &chip);
  754. if (err < 0) {
  755. snd_card_free(card);
  756. return err;
  757. }
  758. err = hal2_pcm_create(chip);
  759. if (err < 0) {
  760. snd_card_free(card);
  761. return err;
  762. }
  763. err = hal2_mixer_create(chip);
  764. if (err < 0) {
  765. snd_card_free(card);
  766. return err;
  767. }
  768. strcpy(card->driver, "SGI HAL2 Audio");
  769. strcpy(card->shortname, "SGI HAL2 Audio");
  770. sprintf(card->longname, "%s irq %i",
  771. card->shortname,
  772. SGI_HPCDMA_IRQ);
  773. err = snd_card_register(card);
  774. if (err < 0) {
  775. snd_card_free(card);
  776. return err;
  777. }
  778. platform_set_drvdata(pdev, card);
  779. return 0;
  780. }
  781. static int hal2_remove(struct platform_device *pdev)
  782. {
  783. struct snd_card *card = platform_get_drvdata(pdev);
  784. snd_card_free(card);
  785. return 0;
  786. }
  787. static struct platform_driver hal2_driver = {
  788. .probe = hal2_probe,
  789. .remove = hal2_remove,
  790. .driver = {
  791. .name = "sgihal2",
  792. }
  793. };
  794. module_platform_driver(hal2_driver);