testptp.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520
  1. /*
  2. * PTP 1588 clock support - User space test program
  3. *
  4. * Copyright (C) 2010 OMICRON electronics GmbH
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #define _GNU_SOURCE
  21. #define __SANE_USERSPACE_TYPES__ /* For PPC64, to get LL64 types */
  22. #include <errno.h>
  23. #include <fcntl.h>
  24. #include <inttypes.h>
  25. #include <math.h>
  26. #include <signal.h>
  27. #include <stdio.h>
  28. #include <stdlib.h>
  29. #include <string.h>
  30. #include <sys/ioctl.h>
  31. #include <sys/mman.h>
  32. #include <sys/stat.h>
  33. #include <sys/time.h>
  34. #include <sys/timex.h>
  35. #include <sys/types.h>
  36. #include <time.h>
  37. #include <unistd.h>
  38. #include <linux/ptp_clock.h>
  39. #define DEVICE "/dev/ptp0"
  40. #ifndef ADJ_SETOFFSET
  41. #define ADJ_SETOFFSET 0x0100
  42. #endif
  43. #ifndef CLOCK_INVALID
  44. #define CLOCK_INVALID -1
  45. #endif
  46. /* clock_adjtime is not available in GLIBC < 2.14 */
  47. #if !__GLIBC_PREREQ(2, 14)
  48. #include <sys/syscall.h>
  49. static int clock_adjtime(clockid_t id, struct timex *tx)
  50. {
  51. return syscall(__NR_clock_adjtime, id, tx);
  52. }
  53. #endif
  54. static clockid_t get_clockid(int fd)
  55. {
  56. #define CLOCKFD 3
  57. #define FD_TO_CLOCKID(fd) ((~(clockid_t) (fd) << 3) | CLOCKFD)
  58. return FD_TO_CLOCKID(fd);
  59. }
  60. static void handle_alarm(int s)
  61. {
  62. printf("received signal %d\n", s);
  63. }
  64. static int install_handler(int signum, void (*handler)(int))
  65. {
  66. struct sigaction action;
  67. sigset_t mask;
  68. /* Unblock the signal. */
  69. sigemptyset(&mask);
  70. sigaddset(&mask, signum);
  71. sigprocmask(SIG_UNBLOCK, &mask, NULL);
  72. /* Install the signal handler. */
  73. action.sa_handler = handler;
  74. action.sa_flags = 0;
  75. sigemptyset(&action.sa_mask);
  76. sigaction(signum, &action, NULL);
  77. return 0;
  78. }
  79. static long ppb_to_scaled_ppm(int ppb)
  80. {
  81. /*
  82. * The 'freq' field in the 'struct timex' is in parts per
  83. * million, but with a 16 bit binary fractional field.
  84. * Instead of calculating either one of
  85. *
  86. * scaled_ppm = (ppb / 1000) << 16 [1]
  87. * scaled_ppm = (ppb << 16) / 1000 [2]
  88. *
  89. * we simply use double precision math, in order to avoid the
  90. * truncation in [1] and the possible overflow in [2].
  91. */
  92. return (long) (ppb * 65.536);
  93. }
  94. static int64_t pctns(struct ptp_clock_time *t)
  95. {
  96. return t->sec * 1000000000LL + t->nsec;
  97. }
  98. static void usage(char *progname)
  99. {
  100. fprintf(stderr,
  101. "usage: %s [options]\n"
  102. " -a val request a one-shot alarm after 'val' seconds\n"
  103. " -A val request a periodic alarm every 'val' seconds\n"
  104. " -c query the ptp clock's capabilities\n"
  105. " -d name device to open\n"
  106. " -e val read 'val' external time stamp events\n"
  107. " -f val adjust the ptp clock frequency by 'val' ppb\n"
  108. " -g get the ptp clock time\n"
  109. " -h prints this message\n"
  110. " -i val index for event/trigger\n"
  111. " -k val measure the time offset between system and phc clock\n"
  112. " for 'val' times (Maximum 25)\n"
  113. " -l list the current pin configuration\n"
  114. " -L pin,val configure pin index 'pin' with function 'val'\n"
  115. " the channel index is taken from the '-i' option\n"
  116. " 'val' specifies the auxiliary function:\n"
  117. " 0 - none\n"
  118. " 1 - external time stamp\n"
  119. " 2 - periodic output\n"
  120. " -p val enable output with a period of 'val' nanoseconds\n"
  121. " -P val enable or disable (val=1|0) the system clock PPS\n"
  122. " -s set the ptp clock time from the system time\n"
  123. " -S set the system time from the ptp clock time\n"
  124. " -t val shift the ptp clock time by 'val' seconds\n"
  125. " -T val set the ptp clock time to 'val' seconds\n",
  126. progname);
  127. }
  128. int main(int argc, char *argv[])
  129. {
  130. struct ptp_clock_caps caps;
  131. struct ptp_extts_event event;
  132. struct ptp_extts_request extts_request;
  133. struct ptp_perout_request perout_request;
  134. struct ptp_pin_desc desc;
  135. struct timespec ts;
  136. struct timex tx;
  137. static timer_t timerid;
  138. struct itimerspec timeout;
  139. struct sigevent sigevent;
  140. struct ptp_clock_time *pct;
  141. struct ptp_sys_offset *sysoff;
  142. char *progname;
  143. int i, c, cnt, fd;
  144. char *device = DEVICE;
  145. clockid_t clkid;
  146. int adjfreq = 0x7fffffff;
  147. int adjtime = 0;
  148. int capabilities = 0;
  149. int extts = 0;
  150. int gettime = 0;
  151. int index = 0;
  152. int list_pins = 0;
  153. int oneshot = 0;
  154. int pct_offset = 0;
  155. int n_samples = 0;
  156. int periodic = 0;
  157. int perout = -1;
  158. int pin_index = -1, pin_func;
  159. int pps = -1;
  160. int seconds = 0;
  161. int settime = 0;
  162. int64_t t1, t2, tp;
  163. int64_t interval, offset;
  164. progname = strrchr(argv[0], '/');
  165. progname = progname ? 1+progname : argv[0];
  166. while (EOF != (c = getopt(argc, argv, "a:A:cd:e:f:ghi:k:lL:p:P:sSt:T:v"))) {
  167. switch (c) {
  168. case 'a':
  169. oneshot = atoi(optarg);
  170. break;
  171. case 'A':
  172. periodic = atoi(optarg);
  173. break;
  174. case 'c':
  175. capabilities = 1;
  176. break;
  177. case 'd':
  178. device = optarg;
  179. break;
  180. case 'e':
  181. extts = atoi(optarg);
  182. break;
  183. case 'f':
  184. adjfreq = atoi(optarg);
  185. break;
  186. case 'g':
  187. gettime = 1;
  188. break;
  189. case 'i':
  190. index = atoi(optarg);
  191. break;
  192. case 'k':
  193. pct_offset = 1;
  194. n_samples = atoi(optarg);
  195. break;
  196. case 'l':
  197. list_pins = 1;
  198. break;
  199. case 'L':
  200. cnt = sscanf(optarg, "%d,%d", &pin_index, &pin_func);
  201. if (cnt != 2) {
  202. usage(progname);
  203. return -1;
  204. }
  205. break;
  206. case 'p':
  207. perout = atoi(optarg);
  208. break;
  209. case 'P':
  210. pps = atoi(optarg);
  211. break;
  212. case 's':
  213. settime = 1;
  214. break;
  215. case 'S':
  216. settime = 2;
  217. break;
  218. case 't':
  219. adjtime = atoi(optarg);
  220. break;
  221. case 'T':
  222. settime = 3;
  223. seconds = atoi(optarg);
  224. break;
  225. case 'h':
  226. usage(progname);
  227. return 0;
  228. case '?':
  229. default:
  230. usage(progname);
  231. return -1;
  232. }
  233. }
  234. fd = open(device, O_RDWR);
  235. if (fd < 0) {
  236. fprintf(stderr, "opening %s: %s\n", device, strerror(errno));
  237. return -1;
  238. }
  239. clkid = get_clockid(fd);
  240. if (CLOCK_INVALID == clkid) {
  241. fprintf(stderr, "failed to read clock id\n");
  242. return -1;
  243. }
  244. if (capabilities) {
  245. if (ioctl(fd, PTP_CLOCK_GETCAPS, &caps)) {
  246. perror("PTP_CLOCK_GETCAPS");
  247. } else {
  248. printf("capabilities:\n"
  249. " %d maximum frequency adjustment (ppb)\n"
  250. " %d programmable alarms\n"
  251. " %d external time stamp channels\n"
  252. " %d programmable periodic signals\n"
  253. " %d pulse per second\n"
  254. " %d programmable pins\n",
  255. caps.max_adj,
  256. caps.n_alarm,
  257. caps.n_ext_ts,
  258. caps.n_per_out,
  259. caps.pps,
  260. caps.n_pins);
  261. }
  262. }
  263. if (0x7fffffff != adjfreq) {
  264. memset(&tx, 0, sizeof(tx));
  265. tx.modes = ADJ_FREQUENCY;
  266. tx.freq = ppb_to_scaled_ppm(adjfreq);
  267. if (clock_adjtime(clkid, &tx)) {
  268. perror("clock_adjtime");
  269. } else {
  270. puts("frequency adjustment okay");
  271. }
  272. }
  273. if (adjtime) {
  274. memset(&tx, 0, sizeof(tx));
  275. tx.modes = ADJ_SETOFFSET;
  276. tx.time.tv_sec = adjtime;
  277. tx.time.tv_usec = 0;
  278. if (clock_adjtime(clkid, &tx) < 0) {
  279. perror("clock_adjtime");
  280. } else {
  281. puts("time shift okay");
  282. }
  283. }
  284. if (gettime) {
  285. if (clock_gettime(clkid, &ts)) {
  286. perror("clock_gettime");
  287. } else {
  288. printf("clock time: %ld.%09ld or %s",
  289. ts.tv_sec, ts.tv_nsec, ctime(&ts.tv_sec));
  290. }
  291. }
  292. if (settime == 1) {
  293. clock_gettime(CLOCK_REALTIME, &ts);
  294. if (clock_settime(clkid, &ts)) {
  295. perror("clock_settime");
  296. } else {
  297. puts("set time okay");
  298. }
  299. }
  300. if (settime == 2) {
  301. clock_gettime(clkid, &ts);
  302. if (clock_settime(CLOCK_REALTIME, &ts)) {
  303. perror("clock_settime");
  304. } else {
  305. puts("set time okay");
  306. }
  307. }
  308. if (settime == 3) {
  309. ts.tv_sec = seconds;
  310. ts.tv_nsec = 0;
  311. if (clock_settime(clkid, &ts)) {
  312. perror("clock_settime");
  313. } else {
  314. puts("set time okay");
  315. }
  316. }
  317. if (extts) {
  318. memset(&extts_request, 0, sizeof(extts_request));
  319. extts_request.index = index;
  320. extts_request.flags = PTP_ENABLE_FEATURE;
  321. if (ioctl(fd, PTP_EXTTS_REQUEST, &extts_request)) {
  322. perror("PTP_EXTTS_REQUEST");
  323. extts = 0;
  324. } else {
  325. puts("external time stamp request okay");
  326. }
  327. for (; extts; extts--) {
  328. cnt = read(fd, &event, sizeof(event));
  329. if (cnt != sizeof(event)) {
  330. perror("read");
  331. break;
  332. }
  333. printf("event index %u at %lld.%09u\n", event.index,
  334. event.t.sec, event.t.nsec);
  335. fflush(stdout);
  336. }
  337. /* Disable the feature again. */
  338. extts_request.flags = 0;
  339. if (ioctl(fd, PTP_EXTTS_REQUEST, &extts_request)) {
  340. perror("PTP_EXTTS_REQUEST");
  341. }
  342. }
  343. if (list_pins) {
  344. int n_pins = 0;
  345. if (ioctl(fd, PTP_CLOCK_GETCAPS, &caps)) {
  346. perror("PTP_CLOCK_GETCAPS");
  347. } else {
  348. n_pins = caps.n_pins;
  349. }
  350. for (i = 0; i < n_pins; i++) {
  351. desc.index = i;
  352. if (ioctl(fd, PTP_PIN_GETFUNC, &desc)) {
  353. perror("PTP_PIN_GETFUNC");
  354. break;
  355. }
  356. printf("name %s index %u func %u chan %u\n",
  357. desc.name, desc.index, desc.func, desc.chan);
  358. }
  359. }
  360. if (oneshot) {
  361. install_handler(SIGALRM, handle_alarm);
  362. /* Create a timer. */
  363. sigevent.sigev_notify = SIGEV_SIGNAL;
  364. sigevent.sigev_signo = SIGALRM;
  365. if (timer_create(clkid, &sigevent, &timerid)) {
  366. perror("timer_create");
  367. return -1;
  368. }
  369. /* Start the timer. */
  370. memset(&timeout, 0, sizeof(timeout));
  371. timeout.it_value.tv_sec = oneshot;
  372. if (timer_settime(timerid, 0, &timeout, NULL)) {
  373. perror("timer_settime");
  374. return -1;
  375. }
  376. pause();
  377. timer_delete(timerid);
  378. }
  379. if (periodic) {
  380. install_handler(SIGALRM, handle_alarm);
  381. /* Create a timer. */
  382. sigevent.sigev_notify = SIGEV_SIGNAL;
  383. sigevent.sigev_signo = SIGALRM;
  384. if (timer_create(clkid, &sigevent, &timerid)) {
  385. perror("timer_create");
  386. return -1;
  387. }
  388. /* Start the timer. */
  389. memset(&timeout, 0, sizeof(timeout));
  390. timeout.it_interval.tv_sec = periodic;
  391. timeout.it_value.tv_sec = periodic;
  392. if (timer_settime(timerid, 0, &timeout, NULL)) {
  393. perror("timer_settime");
  394. return -1;
  395. }
  396. while (1) {
  397. pause();
  398. }
  399. timer_delete(timerid);
  400. }
  401. if (perout >= 0) {
  402. if (clock_gettime(clkid, &ts)) {
  403. perror("clock_gettime");
  404. return -1;
  405. }
  406. memset(&perout_request, 0, sizeof(perout_request));
  407. perout_request.index = index;
  408. perout_request.start.sec = ts.tv_sec + 2;
  409. perout_request.start.nsec = 0;
  410. perout_request.period.sec = 0;
  411. perout_request.period.nsec = perout;
  412. if (ioctl(fd, PTP_PEROUT_REQUEST, &perout_request)) {
  413. perror("PTP_PEROUT_REQUEST");
  414. } else {
  415. puts("periodic output request okay");
  416. }
  417. }
  418. if (pin_index >= 0) {
  419. memset(&desc, 0, sizeof(desc));
  420. desc.index = pin_index;
  421. desc.func = pin_func;
  422. desc.chan = index;
  423. if (ioctl(fd, PTP_PIN_SETFUNC, &desc)) {
  424. perror("PTP_PIN_SETFUNC");
  425. } else {
  426. puts("set pin function okay");
  427. }
  428. }
  429. if (pps != -1) {
  430. int enable = pps ? 1 : 0;
  431. if (ioctl(fd, PTP_ENABLE_PPS, enable)) {
  432. perror("PTP_ENABLE_PPS");
  433. } else {
  434. puts("pps for system time request okay");
  435. }
  436. }
  437. if (pct_offset) {
  438. if (n_samples <= 0 || n_samples > 25) {
  439. puts("n_samples should be between 1 and 25");
  440. usage(progname);
  441. return -1;
  442. }
  443. sysoff = calloc(1, sizeof(*sysoff));
  444. if (!sysoff) {
  445. perror("calloc");
  446. return -1;
  447. }
  448. sysoff->n_samples = n_samples;
  449. if (ioctl(fd, PTP_SYS_OFFSET, sysoff))
  450. perror("PTP_SYS_OFFSET");
  451. else
  452. puts("system and phc clock time offset request okay");
  453. pct = &sysoff->ts[0];
  454. for (i = 0; i < sysoff->n_samples; i++) {
  455. t1 = pctns(pct+2*i);
  456. tp = pctns(pct+2*i+1);
  457. t2 = pctns(pct+2*i+2);
  458. interval = t2 - t1;
  459. offset = (t2 + t1) / 2 - tp;
  460. printf("system time: %lld.%u\n",
  461. (pct+2*i)->sec, (pct+2*i)->nsec);
  462. printf("phc time: %lld.%u\n",
  463. (pct+2*i+1)->sec, (pct+2*i+1)->nsec);
  464. printf("system time: %lld.%u\n",
  465. (pct+2*i+2)->sec, (pct+2*i+2)->nsec);
  466. printf("system/phc clock time offset is %" PRId64 " ns\n"
  467. "system clock time delay is %" PRId64 " ns\n",
  468. offset, interval);
  469. }
  470. free(sysoff);
  471. }
  472. close(fd);
  473. return 0;
  474. }