mmu_context.h 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177
  1. /*
  2. * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. *
  8. * vineetg: May 2011
  9. * -Refactored get_new_mmu_context( ) to only handle live-mm.
  10. * retiring-mm handled in other hooks
  11. *
  12. * Vineetg: March 25th, 2008: Bug #92690
  13. * -Major rewrite of Core ASID allocation routine get_new_mmu_context
  14. *
  15. * Amit Bhor, Sameer Dhavale: Codito Technologies 2004
  16. */
  17. #ifndef _ASM_ARC_MMU_CONTEXT_H
  18. #define _ASM_ARC_MMU_CONTEXT_H
  19. #include <asm/arcregs.h>
  20. #include <asm/tlb.h>
  21. #include <asm-generic/mm_hooks.h>
  22. /* ARC700 ASID Management
  23. *
  24. * ARC MMU provides 8-bit ASID (0..255) to TAG TLB entries, allowing entries
  25. * with same vaddr (different tasks) to co-exit. This provides for
  26. * "Fast Context Switch" i.e. no TLB flush on ctxt-switch
  27. *
  28. * Linux assigns each task a unique ASID. A simple round-robin allocation
  29. * of H/w ASID is done using software tracker @asid_cpu.
  30. * When it reaches max 255, the allocation cycle starts afresh by flushing
  31. * the entire TLB and wrapping ASID back to zero.
  32. *
  33. * A new allocation cycle, post rollover, could potentially reassign an ASID
  34. * to a different task. Thus the rule is to refresh the ASID in a new cycle.
  35. * The 32 bit @asid_cpu (and mm->asid) have 8 bits MMU PID and rest 24 bits
  36. * serve as cycle/generation indicator and natural 32 bit unsigned math
  37. * automagically increments the generation when lower 8 bits rollover.
  38. */
  39. #define MM_CTXT_ASID_MASK 0x000000ff /* MMU PID reg :8 bit PID */
  40. #define MM_CTXT_CYCLE_MASK (~MM_CTXT_ASID_MASK)
  41. #define MM_CTXT_FIRST_CYCLE (MM_CTXT_ASID_MASK + 1)
  42. #define MM_CTXT_NO_ASID 0UL
  43. #define asid_mm(mm, cpu) mm->context.asid[cpu]
  44. #define hw_pid(mm, cpu) (asid_mm(mm, cpu) & MM_CTXT_ASID_MASK)
  45. DECLARE_PER_CPU(unsigned int, asid_cache);
  46. #define asid_cpu(cpu) per_cpu(asid_cache, cpu)
  47. /*
  48. * Get a new ASID if task doesn't have a valid one (unalloc or from prev cycle)
  49. * Also set the MMU PID register to existing/updated ASID
  50. */
  51. static inline void get_new_mmu_context(struct mm_struct *mm)
  52. {
  53. const unsigned int cpu = smp_processor_id();
  54. unsigned long flags;
  55. local_irq_save(flags);
  56. /*
  57. * Move to new ASID if it was not from current alloc-cycle/generation.
  58. * This is done by ensuring that the generation bits in both mm->ASID
  59. * and cpu's ASID counter are exactly same.
  60. *
  61. * Note: Callers needing new ASID unconditionally, independent of
  62. * generation, e.g. local_flush_tlb_mm() for forking parent,
  63. * first need to destroy the context, setting it to invalid
  64. * value.
  65. */
  66. if (!((asid_mm(mm, cpu) ^ asid_cpu(cpu)) & MM_CTXT_CYCLE_MASK))
  67. goto set_hw;
  68. /* move to new ASID and handle rollover */
  69. if (unlikely(!(++asid_cpu(cpu) & MM_CTXT_ASID_MASK))) {
  70. local_flush_tlb_all();
  71. /*
  72. * Above checke for rollover of 8 bit ASID in 32 bit container.
  73. * If the container itself wrapped around, set it to a non zero
  74. * "generation" to distinguish from no context
  75. */
  76. if (!asid_cpu(cpu))
  77. asid_cpu(cpu) = MM_CTXT_FIRST_CYCLE;
  78. }
  79. /* Assign new ASID to tsk */
  80. asid_mm(mm, cpu) = asid_cpu(cpu);
  81. set_hw:
  82. write_aux_reg(ARC_REG_PID, hw_pid(mm, cpu) | MMU_ENABLE);
  83. local_irq_restore(flags);
  84. }
  85. /*
  86. * Initialize the context related info for a new mm_struct
  87. * instance.
  88. */
  89. static inline int
  90. init_new_context(struct task_struct *tsk, struct mm_struct *mm)
  91. {
  92. int i;
  93. for_each_possible_cpu(i)
  94. asid_mm(mm, i) = MM_CTXT_NO_ASID;
  95. return 0;
  96. }
  97. static inline void destroy_context(struct mm_struct *mm)
  98. {
  99. unsigned long flags;
  100. /* Needed to elide CONFIG_DEBUG_PREEMPT warning */
  101. local_irq_save(flags);
  102. asid_mm(mm, smp_processor_id()) = MM_CTXT_NO_ASID;
  103. local_irq_restore(flags);
  104. }
  105. /* Prepare the MMU for task: setup PID reg with allocated ASID
  106. If task doesn't have an ASID (never alloc or stolen, get a new ASID)
  107. */
  108. static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
  109. struct task_struct *tsk)
  110. {
  111. const int cpu = smp_processor_id();
  112. /*
  113. * Note that the mm_cpumask is "aggregating" only, we don't clear it
  114. * for the switched-out task, unlike some other arches.
  115. * It is used to enlist cpus for sending TLB flush IPIs and not sending
  116. * it to CPUs where a task once ran-on, could cause stale TLB entry
  117. * re-use, specially for a multi-threaded task.
  118. * e.g. T1 runs on C1, migrates to C3. T2 running on C2 munmaps.
  119. * For a non-aggregating mm_cpumask, IPI not sent C1, and if T1
  120. * were to re-migrate to C1, it could access the unmapped region
  121. * via any existing stale TLB entries.
  122. */
  123. cpumask_set_cpu(cpu, mm_cpumask(next));
  124. #ifndef CONFIG_SMP
  125. /* PGD cached in MMU reg to avoid 3 mem lookups: task->mm->pgd */
  126. write_aux_reg(ARC_REG_SCRATCH_DATA0, next->pgd);
  127. #endif
  128. get_new_mmu_context(next);
  129. }
  130. /*
  131. * Called at the time of execve() to get a new ASID
  132. * Note the subtlety here: get_new_mmu_context() behaves differently here
  133. * vs. in switch_mm(). Here it always returns a new ASID, because mm has
  134. * an unallocated "initial" value, while in latter, it moves to a new ASID,
  135. * only if it was unallocated
  136. */
  137. #define activate_mm(prev, next) switch_mm(prev, next, NULL)
  138. /* it seemed that deactivate_mm( ) is a reasonable place to do book-keeping
  139. * for retiring-mm. However destroy_context( ) still needs to do that because
  140. * between mm_release( ) = >deactive_mm( ) and
  141. * mmput => .. => __mmdrop( ) => destroy_context( )
  142. * there is a good chance that task gets sched-out/in, making it's ASID valid
  143. * again (this teased me for a whole day).
  144. */
  145. #define deactivate_mm(tsk, mm) do { } while (0)
  146. #define enter_lazy_tlb(mm, tsk)
  147. #endif /* __ASM_ARC_MMU_CONTEXT_H */