sys_regs.c 49 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758
  1. /*
  2. * Copyright (C) 2012,2013 - ARM Ltd
  3. * Author: Marc Zyngier <marc.zyngier@arm.com>
  4. *
  5. * Derived from arch/arm/kvm/coproc.c:
  6. * Copyright (C) 2012 - Virtual Open Systems and Columbia University
  7. * Authors: Rusty Russell <rusty@rustcorp.com.au>
  8. * Christoffer Dall <c.dall@virtualopensystems.com>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License, version 2, as
  12. * published by the Free Software Foundation.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  21. */
  22. #include <linux/kvm_host.h>
  23. #include <linux/mm.h>
  24. #include <linux/uaccess.h>
  25. #include <asm/cacheflush.h>
  26. #include <asm/cputype.h>
  27. #include <asm/debug-monitors.h>
  28. #include <asm/esr.h>
  29. #include <asm/kvm_arm.h>
  30. #include <asm/kvm_coproc.h>
  31. #include <asm/kvm_emulate.h>
  32. #include <asm/kvm_host.h>
  33. #include <asm/kvm_mmu.h>
  34. #include <trace/events/kvm.h>
  35. #include "sys_regs.h"
  36. #include "trace.h"
  37. /*
  38. * All of this file is extremly similar to the ARM coproc.c, but the
  39. * types are different. My gut feeling is that it should be pretty
  40. * easy to merge, but that would be an ABI breakage -- again. VFP
  41. * would also need to be abstracted.
  42. *
  43. * For AArch32, we only take care of what is being trapped. Anything
  44. * that has to do with init and userspace access has to go via the
  45. * 64bit interface.
  46. */
  47. /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
  48. static u32 cache_levels;
  49. /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
  50. #define CSSELR_MAX 12
  51. /* Which cache CCSIDR represents depends on CSSELR value. */
  52. static u32 get_ccsidr(u32 csselr)
  53. {
  54. u32 ccsidr;
  55. /* Make sure noone else changes CSSELR during this! */
  56. local_irq_disable();
  57. /* Put value into CSSELR */
  58. asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
  59. isb();
  60. /* Read result out of CCSIDR */
  61. asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
  62. local_irq_enable();
  63. return ccsidr;
  64. }
  65. /*
  66. * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
  67. */
  68. static bool access_dcsw(struct kvm_vcpu *vcpu,
  69. struct sys_reg_params *p,
  70. const struct sys_reg_desc *r)
  71. {
  72. if (!p->is_write)
  73. return read_from_write_only(vcpu, p);
  74. kvm_set_way_flush(vcpu);
  75. return true;
  76. }
  77. /*
  78. * Generic accessor for VM registers. Only called as long as HCR_TVM
  79. * is set. If the guest enables the MMU, we stop trapping the VM
  80. * sys_regs and leave it in complete control of the caches.
  81. */
  82. static bool access_vm_reg(struct kvm_vcpu *vcpu,
  83. struct sys_reg_params *p,
  84. const struct sys_reg_desc *r)
  85. {
  86. bool was_enabled = vcpu_has_cache_enabled(vcpu);
  87. BUG_ON(!p->is_write);
  88. if (!p->is_aarch32) {
  89. vcpu_sys_reg(vcpu, r->reg) = p->regval;
  90. } else {
  91. if (!p->is_32bit)
  92. vcpu_cp15_64_high(vcpu, r->reg) = upper_32_bits(p->regval);
  93. vcpu_cp15_64_low(vcpu, r->reg) = lower_32_bits(p->regval);
  94. }
  95. kvm_toggle_cache(vcpu, was_enabled);
  96. return true;
  97. }
  98. /*
  99. * Trap handler for the GICv3 SGI generation system register.
  100. * Forward the request to the VGIC emulation.
  101. * The cp15_64 code makes sure this automatically works
  102. * for both AArch64 and AArch32 accesses.
  103. */
  104. static bool access_gic_sgi(struct kvm_vcpu *vcpu,
  105. struct sys_reg_params *p,
  106. const struct sys_reg_desc *r)
  107. {
  108. if (!p->is_write)
  109. return read_from_write_only(vcpu, p);
  110. vgic_v3_dispatch_sgi(vcpu, p->regval);
  111. return true;
  112. }
  113. static bool trap_raz_wi(struct kvm_vcpu *vcpu,
  114. struct sys_reg_params *p,
  115. const struct sys_reg_desc *r)
  116. {
  117. if (p->is_write)
  118. return ignore_write(vcpu, p);
  119. else
  120. return read_zero(vcpu, p);
  121. }
  122. static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
  123. struct sys_reg_params *p,
  124. const struct sys_reg_desc *r)
  125. {
  126. if (p->is_write) {
  127. return ignore_write(vcpu, p);
  128. } else {
  129. p->regval = (1 << 3);
  130. return true;
  131. }
  132. }
  133. static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
  134. struct sys_reg_params *p,
  135. const struct sys_reg_desc *r)
  136. {
  137. if (p->is_write) {
  138. return ignore_write(vcpu, p);
  139. } else {
  140. u32 val;
  141. asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val));
  142. p->regval = val;
  143. return true;
  144. }
  145. }
  146. /*
  147. * We want to avoid world-switching all the DBG registers all the
  148. * time:
  149. *
  150. * - If we've touched any debug register, it is likely that we're
  151. * going to touch more of them. It then makes sense to disable the
  152. * traps and start doing the save/restore dance
  153. * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
  154. * then mandatory to save/restore the registers, as the guest
  155. * depends on them.
  156. *
  157. * For this, we use a DIRTY bit, indicating the guest has modified the
  158. * debug registers, used as follow:
  159. *
  160. * On guest entry:
  161. * - If the dirty bit is set (because we're coming back from trapping),
  162. * disable the traps, save host registers, restore guest registers.
  163. * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
  164. * set the dirty bit, disable the traps, save host registers,
  165. * restore guest registers.
  166. * - Otherwise, enable the traps
  167. *
  168. * On guest exit:
  169. * - If the dirty bit is set, save guest registers, restore host
  170. * registers and clear the dirty bit. This ensure that the host can
  171. * now use the debug registers.
  172. */
  173. static bool trap_debug_regs(struct kvm_vcpu *vcpu,
  174. struct sys_reg_params *p,
  175. const struct sys_reg_desc *r)
  176. {
  177. if (p->is_write) {
  178. vcpu_sys_reg(vcpu, r->reg) = p->regval;
  179. vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
  180. } else {
  181. p->regval = vcpu_sys_reg(vcpu, r->reg);
  182. }
  183. trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
  184. return true;
  185. }
  186. /*
  187. * reg_to_dbg/dbg_to_reg
  188. *
  189. * A 32 bit write to a debug register leave top bits alone
  190. * A 32 bit read from a debug register only returns the bottom bits
  191. *
  192. * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
  193. * hyp.S code switches between host and guest values in future.
  194. */
  195. static inline void reg_to_dbg(struct kvm_vcpu *vcpu,
  196. struct sys_reg_params *p,
  197. u64 *dbg_reg)
  198. {
  199. u64 val = p->regval;
  200. if (p->is_32bit) {
  201. val &= 0xffffffffUL;
  202. val |= ((*dbg_reg >> 32) << 32);
  203. }
  204. *dbg_reg = val;
  205. vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
  206. }
  207. static inline void dbg_to_reg(struct kvm_vcpu *vcpu,
  208. struct sys_reg_params *p,
  209. u64 *dbg_reg)
  210. {
  211. p->regval = *dbg_reg;
  212. if (p->is_32bit)
  213. p->regval &= 0xffffffffUL;
  214. }
  215. static inline bool trap_bvr(struct kvm_vcpu *vcpu,
  216. struct sys_reg_params *p,
  217. const struct sys_reg_desc *rd)
  218. {
  219. u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
  220. if (p->is_write)
  221. reg_to_dbg(vcpu, p, dbg_reg);
  222. else
  223. dbg_to_reg(vcpu, p, dbg_reg);
  224. trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
  225. return true;
  226. }
  227. static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  228. const struct kvm_one_reg *reg, void __user *uaddr)
  229. {
  230. __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
  231. if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
  232. return -EFAULT;
  233. return 0;
  234. }
  235. static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  236. const struct kvm_one_reg *reg, void __user *uaddr)
  237. {
  238. __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
  239. if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
  240. return -EFAULT;
  241. return 0;
  242. }
  243. static inline void reset_bvr(struct kvm_vcpu *vcpu,
  244. const struct sys_reg_desc *rd)
  245. {
  246. vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
  247. }
  248. static inline bool trap_bcr(struct kvm_vcpu *vcpu,
  249. struct sys_reg_params *p,
  250. const struct sys_reg_desc *rd)
  251. {
  252. u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
  253. if (p->is_write)
  254. reg_to_dbg(vcpu, p, dbg_reg);
  255. else
  256. dbg_to_reg(vcpu, p, dbg_reg);
  257. trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
  258. return true;
  259. }
  260. static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  261. const struct kvm_one_reg *reg, void __user *uaddr)
  262. {
  263. __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
  264. if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
  265. return -EFAULT;
  266. return 0;
  267. }
  268. static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  269. const struct kvm_one_reg *reg, void __user *uaddr)
  270. {
  271. __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
  272. if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
  273. return -EFAULT;
  274. return 0;
  275. }
  276. static inline void reset_bcr(struct kvm_vcpu *vcpu,
  277. const struct sys_reg_desc *rd)
  278. {
  279. vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
  280. }
  281. static inline bool trap_wvr(struct kvm_vcpu *vcpu,
  282. struct sys_reg_params *p,
  283. const struct sys_reg_desc *rd)
  284. {
  285. u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
  286. if (p->is_write)
  287. reg_to_dbg(vcpu, p, dbg_reg);
  288. else
  289. dbg_to_reg(vcpu, p, dbg_reg);
  290. trace_trap_reg(__func__, rd->reg, p->is_write,
  291. vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
  292. return true;
  293. }
  294. static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  295. const struct kvm_one_reg *reg, void __user *uaddr)
  296. {
  297. __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
  298. if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
  299. return -EFAULT;
  300. return 0;
  301. }
  302. static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  303. const struct kvm_one_reg *reg, void __user *uaddr)
  304. {
  305. __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
  306. if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
  307. return -EFAULT;
  308. return 0;
  309. }
  310. static inline void reset_wvr(struct kvm_vcpu *vcpu,
  311. const struct sys_reg_desc *rd)
  312. {
  313. vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
  314. }
  315. static inline bool trap_wcr(struct kvm_vcpu *vcpu,
  316. struct sys_reg_params *p,
  317. const struct sys_reg_desc *rd)
  318. {
  319. u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
  320. if (p->is_write)
  321. reg_to_dbg(vcpu, p, dbg_reg);
  322. else
  323. dbg_to_reg(vcpu, p, dbg_reg);
  324. trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
  325. return true;
  326. }
  327. static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  328. const struct kvm_one_reg *reg, void __user *uaddr)
  329. {
  330. __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
  331. if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
  332. return -EFAULT;
  333. return 0;
  334. }
  335. static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  336. const struct kvm_one_reg *reg, void __user *uaddr)
  337. {
  338. __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
  339. if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
  340. return -EFAULT;
  341. return 0;
  342. }
  343. static inline void reset_wcr(struct kvm_vcpu *vcpu,
  344. const struct sys_reg_desc *rd)
  345. {
  346. vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
  347. }
  348. static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
  349. {
  350. u64 amair;
  351. asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
  352. vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
  353. }
  354. static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
  355. {
  356. u64 mpidr;
  357. /*
  358. * Map the vcpu_id into the first three affinity level fields of
  359. * the MPIDR. We limit the number of VCPUs in level 0 due to a
  360. * limitation to 16 CPUs in that level in the ICC_SGIxR registers
  361. * of the GICv3 to be able to address each CPU directly when
  362. * sending IPIs.
  363. */
  364. mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
  365. mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
  366. mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
  367. vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
  368. }
  369. /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
  370. #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
  371. /* DBGBVRn_EL1 */ \
  372. { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100), \
  373. trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr }, \
  374. /* DBGBCRn_EL1 */ \
  375. { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101), \
  376. trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr }, \
  377. /* DBGWVRn_EL1 */ \
  378. { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110), \
  379. trap_wvr, reset_wvr, n, 0, get_wvr, set_wvr }, \
  380. /* DBGWCRn_EL1 */ \
  381. { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111), \
  382. trap_wcr, reset_wcr, n, 0, get_wcr, set_wcr }
  383. /*
  384. * Architected system registers.
  385. * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
  386. *
  387. * We could trap ID_DFR0 and tell the guest we don't support performance
  388. * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
  389. * NAKed, so it will read the PMCR anyway.
  390. *
  391. * Therefore we tell the guest we have 0 counters. Unfortunately, we
  392. * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
  393. * all PM registers, which doesn't crash the guest kernel at least.
  394. *
  395. * Debug handling: We do trap most, if not all debug related system
  396. * registers. The implementation is good enough to ensure that a guest
  397. * can use these with minimal performance degradation. The drawback is
  398. * that we don't implement any of the external debug, none of the
  399. * OSlock protocol. This should be revisited if we ever encounter a
  400. * more demanding guest...
  401. */
  402. static const struct sys_reg_desc sys_reg_descs[] = {
  403. /* DC ISW */
  404. { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
  405. access_dcsw },
  406. /* DC CSW */
  407. { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
  408. access_dcsw },
  409. /* DC CISW */
  410. { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
  411. access_dcsw },
  412. DBG_BCR_BVR_WCR_WVR_EL1(0),
  413. DBG_BCR_BVR_WCR_WVR_EL1(1),
  414. /* MDCCINT_EL1 */
  415. { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
  416. trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
  417. /* MDSCR_EL1 */
  418. { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
  419. trap_debug_regs, reset_val, MDSCR_EL1, 0 },
  420. DBG_BCR_BVR_WCR_WVR_EL1(2),
  421. DBG_BCR_BVR_WCR_WVR_EL1(3),
  422. DBG_BCR_BVR_WCR_WVR_EL1(4),
  423. DBG_BCR_BVR_WCR_WVR_EL1(5),
  424. DBG_BCR_BVR_WCR_WVR_EL1(6),
  425. DBG_BCR_BVR_WCR_WVR_EL1(7),
  426. DBG_BCR_BVR_WCR_WVR_EL1(8),
  427. DBG_BCR_BVR_WCR_WVR_EL1(9),
  428. DBG_BCR_BVR_WCR_WVR_EL1(10),
  429. DBG_BCR_BVR_WCR_WVR_EL1(11),
  430. DBG_BCR_BVR_WCR_WVR_EL1(12),
  431. DBG_BCR_BVR_WCR_WVR_EL1(13),
  432. DBG_BCR_BVR_WCR_WVR_EL1(14),
  433. DBG_BCR_BVR_WCR_WVR_EL1(15),
  434. /* MDRAR_EL1 */
  435. { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
  436. trap_raz_wi },
  437. /* OSLAR_EL1 */
  438. { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
  439. trap_raz_wi },
  440. /* OSLSR_EL1 */
  441. { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
  442. trap_oslsr_el1 },
  443. /* OSDLR_EL1 */
  444. { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
  445. trap_raz_wi },
  446. /* DBGPRCR_EL1 */
  447. { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
  448. trap_raz_wi },
  449. /* DBGCLAIMSET_EL1 */
  450. { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
  451. trap_raz_wi },
  452. /* DBGCLAIMCLR_EL1 */
  453. { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
  454. trap_raz_wi },
  455. /* DBGAUTHSTATUS_EL1 */
  456. { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
  457. trap_dbgauthstatus_el1 },
  458. /* MDCCSR_EL1 */
  459. { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
  460. trap_raz_wi },
  461. /* DBGDTR_EL0 */
  462. { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
  463. trap_raz_wi },
  464. /* DBGDTR[TR]X_EL0 */
  465. { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
  466. trap_raz_wi },
  467. /* DBGVCR32_EL2 */
  468. { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
  469. NULL, reset_val, DBGVCR32_EL2, 0 },
  470. /* MPIDR_EL1 */
  471. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
  472. NULL, reset_mpidr, MPIDR_EL1 },
  473. /* SCTLR_EL1 */
  474. { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
  475. access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
  476. /* CPACR_EL1 */
  477. { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
  478. NULL, reset_val, CPACR_EL1, 0 },
  479. /* TTBR0_EL1 */
  480. { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
  481. access_vm_reg, reset_unknown, TTBR0_EL1 },
  482. /* TTBR1_EL1 */
  483. { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
  484. access_vm_reg, reset_unknown, TTBR1_EL1 },
  485. /* TCR_EL1 */
  486. { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
  487. access_vm_reg, reset_val, TCR_EL1, 0 },
  488. /* AFSR0_EL1 */
  489. { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
  490. access_vm_reg, reset_unknown, AFSR0_EL1 },
  491. /* AFSR1_EL1 */
  492. { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
  493. access_vm_reg, reset_unknown, AFSR1_EL1 },
  494. /* ESR_EL1 */
  495. { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
  496. access_vm_reg, reset_unknown, ESR_EL1 },
  497. /* FAR_EL1 */
  498. { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
  499. access_vm_reg, reset_unknown, FAR_EL1 },
  500. /* PAR_EL1 */
  501. { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
  502. NULL, reset_unknown, PAR_EL1 },
  503. /* PMINTENSET_EL1 */
  504. { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
  505. trap_raz_wi },
  506. /* PMINTENCLR_EL1 */
  507. { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
  508. trap_raz_wi },
  509. /* MAIR_EL1 */
  510. { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
  511. access_vm_reg, reset_unknown, MAIR_EL1 },
  512. /* AMAIR_EL1 */
  513. { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
  514. access_vm_reg, reset_amair_el1, AMAIR_EL1 },
  515. /* VBAR_EL1 */
  516. { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
  517. NULL, reset_val, VBAR_EL1, 0 },
  518. /* ICC_SGI1R_EL1 */
  519. { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
  520. access_gic_sgi },
  521. /* ICC_SRE_EL1 */
  522. { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
  523. trap_raz_wi },
  524. /* CONTEXTIDR_EL1 */
  525. { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
  526. access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
  527. /* TPIDR_EL1 */
  528. { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
  529. NULL, reset_unknown, TPIDR_EL1 },
  530. /* CNTKCTL_EL1 */
  531. { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
  532. NULL, reset_val, CNTKCTL_EL1, 0},
  533. /* CSSELR_EL1 */
  534. { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
  535. NULL, reset_unknown, CSSELR_EL1 },
  536. /* PMCR_EL0 */
  537. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
  538. trap_raz_wi },
  539. /* PMCNTENSET_EL0 */
  540. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
  541. trap_raz_wi },
  542. /* PMCNTENCLR_EL0 */
  543. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
  544. trap_raz_wi },
  545. /* PMOVSCLR_EL0 */
  546. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
  547. trap_raz_wi },
  548. /* PMSWINC_EL0 */
  549. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
  550. trap_raz_wi },
  551. /* PMSELR_EL0 */
  552. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
  553. trap_raz_wi },
  554. /* PMCEID0_EL0 */
  555. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
  556. trap_raz_wi },
  557. /* PMCEID1_EL0 */
  558. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
  559. trap_raz_wi },
  560. /* PMCCNTR_EL0 */
  561. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
  562. trap_raz_wi },
  563. /* PMXEVTYPER_EL0 */
  564. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
  565. trap_raz_wi },
  566. /* PMXEVCNTR_EL0 */
  567. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
  568. trap_raz_wi },
  569. /* PMUSERENR_EL0 */
  570. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
  571. trap_raz_wi },
  572. /* PMOVSSET_EL0 */
  573. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
  574. trap_raz_wi },
  575. /* TPIDR_EL0 */
  576. { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
  577. NULL, reset_unknown, TPIDR_EL0 },
  578. /* TPIDRRO_EL0 */
  579. { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
  580. NULL, reset_unknown, TPIDRRO_EL0 },
  581. /* DACR32_EL2 */
  582. { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
  583. NULL, reset_unknown, DACR32_EL2 },
  584. /* IFSR32_EL2 */
  585. { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
  586. NULL, reset_unknown, IFSR32_EL2 },
  587. /* FPEXC32_EL2 */
  588. { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
  589. NULL, reset_val, FPEXC32_EL2, 0x70 },
  590. };
  591. static bool trap_dbgidr(struct kvm_vcpu *vcpu,
  592. struct sys_reg_params *p,
  593. const struct sys_reg_desc *r)
  594. {
  595. if (p->is_write) {
  596. return ignore_write(vcpu, p);
  597. } else {
  598. u64 dfr = read_system_reg(SYS_ID_AA64DFR0_EL1);
  599. u64 pfr = read_system_reg(SYS_ID_AA64PFR0_EL1);
  600. u32 el3 = !!cpuid_feature_extract_field(pfr, ID_AA64PFR0_EL3_SHIFT);
  601. p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
  602. (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
  603. (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
  604. | (6 << 16) | (el3 << 14) | (el3 << 12));
  605. return true;
  606. }
  607. }
  608. static bool trap_debug32(struct kvm_vcpu *vcpu,
  609. struct sys_reg_params *p,
  610. const struct sys_reg_desc *r)
  611. {
  612. if (p->is_write) {
  613. vcpu_cp14(vcpu, r->reg) = p->regval;
  614. vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
  615. } else {
  616. p->regval = vcpu_cp14(vcpu, r->reg);
  617. }
  618. return true;
  619. }
  620. /* AArch32 debug register mappings
  621. *
  622. * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
  623. * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
  624. *
  625. * All control registers and watchpoint value registers are mapped to
  626. * the lower 32 bits of their AArch64 equivalents. We share the trap
  627. * handlers with the above AArch64 code which checks what mode the
  628. * system is in.
  629. */
  630. static inline bool trap_xvr(struct kvm_vcpu *vcpu,
  631. struct sys_reg_params *p,
  632. const struct sys_reg_desc *rd)
  633. {
  634. u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
  635. if (p->is_write) {
  636. u64 val = *dbg_reg;
  637. val &= 0xffffffffUL;
  638. val |= p->regval << 32;
  639. *dbg_reg = val;
  640. vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
  641. } else {
  642. p->regval = *dbg_reg >> 32;
  643. }
  644. trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
  645. return true;
  646. }
  647. #define DBG_BCR_BVR_WCR_WVR(n) \
  648. /* DBGBVRn */ \
  649. { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
  650. /* DBGBCRn */ \
  651. { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
  652. /* DBGWVRn */ \
  653. { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
  654. /* DBGWCRn */ \
  655. { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
  656. #define DBGBXVR(n) \
  657. { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
  658. /*
  659. * Trapped cp14 registers. We generally ignore most of the external
  660. * debug, on the principle that they don't really make sense to a
  661. * guest. Revisit this one day, would this principle change.
  662. */
  663. static const struct sys_reg_desc cp14_regs[] = {
  664. /* DBGIDR */
  665. { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
  666. /* DBGDTRRXext */
  667. { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
  668. DBG_BCR_BVR_WCR_WVR(0),
  669. /* DBGDSCRint */
  670. { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
  671. DBG_BCR_BVR_WCR_WVR(1),
  672. /* DBGDCCINT */
  673. { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
  674. /* DBGDSCRext */
  675. { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
  676. DBG_BCR_BVR_WCR_WVR(2),
  677. /* DBGDTR[RT]Xint */
  678. { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
  679. /* DBGDTR[RT]Xext */
  680. { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
  681. DBG_BCR_BVR_WCR_WVR(3),
  682. DBG_BCR_BVR_WCR_WVR(4),
  683. DBG_BCR_BVR_WCR_WVR(5),
  684. /* DBGWFAR */
  685. { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
  686. /* DBGOSECCR */
  687. { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
  688. DBG_BCR_BVR_WCR_WVR(6),
  689. /* DBGVCR */
  690. { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
  691. DBG_BCR_BVR_WCR_WVR(7),
  692. DBG_BCR_BVR_WCR_WVR(8),
  693. DBG_BCR_BVR_WCR_WVR(9),
  694. DBG_BCR_BVR_WCR_WVR(10),
  695. DBG_BCR_BVR_WCR_WVR(11),
  696. DBG_BCR_BVR_WCR_WVR(12),
  697. DBG_BCR_BVR_WCR_WVR(13),
  698. DBG_BCR_BVR_WCR_WVR(14),
  699. DBG_BCR_BVR_WCR_WVR(15),
  700. /* DBGDRAR (32bit) */
  701. { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
  702. DBGBXVR(0),
  703. /* DBGOSLAR */
  704. { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
  705. DBGBXVR(1),
  706. /* DBGOSLSR */
  707. { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
  708. DBGBXVR(2),
  709. DBGBXVR(3),
  710. /* DBGOSDLR */
  711. { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
  712. DBGBXVR(4),
  713. /* DBGPRCR */
  714. { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
  715. DBGBXVR(5),
  716. DBGBXVR(6),
  717. DBGBXVR(7),
  718. DBGBXVR(8),
  719. DBGBXVR(9),
  720. DBGBXVR(10),
  721. DBGBXVR(11),
  722. DBGBXVR(12),
  723. DBGBXVR(13),
  724. DBGBXVR(14),
  725. DBGBXVR(15),
  726. /* DBGDSAR (32bit) */
  727. { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
  728. /* DBGDEVID2 */
  729. { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
  730. /* DBGDEVID1 */
  731. { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
  732. /* DBGDEVID */
  733. { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
  734. /* DBGCLAIMSET */
  735. { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
  736. /* DBGCLAIMCLR */
  737. { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
  738. /* DBGAUTHSTATUS */
  739. { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
  740. };
  741. /* Trapped cp14 64bit registers */
  742. static const struct sys_reg_desc cp14_64_regs[] = {
  743. /* DBGDRAR (64bit) */
  744. { Op1( 0), CRm( 1), .access = trap_raz_wi },
  745. /* DBGDSAR (64bit) */
  746. { Op1( 0), CRm( 2), .access = trap_raz_wi },
  747. };
  748. /*
  749. * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
  750. * depending on the way they are accessed (as a 32bit or a 64bit
  751. * register).
  752. */
  753. static const struct sys_reg_desc cp15_regs[] = {
  754. { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
  755. { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
  756. { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
  757. { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
  758. { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
  759. { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
  760. { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
  761. { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
  762. { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
  763. { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
  764. { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
  765. { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
  766. /*
  767. * DC{C,I,CI}SW operations:
  768. */
  769. { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
  770. { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
  771. { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
  772. /* PMU */
  773. { Op1( 0), CRn( 9), CRm(12), Op2( 0), trap_raz_wi },
  774. { Op1( 0), CRn( 9), CRm(12), Op2( 1), trap_raz_wi },
  775. { Op1( 0), CRn( 9), CRm(12), Op2( 2), trap_raz_wi },
  776. { Op1( 0), CRn( 9), CRm(12), Op2( 3), trap_raz_wi },
  777. { Op1( 0), CRn( 9), CRm(12), Op2( 5), trap_raz_wi },
  778. { Op1( 0), CRn( 9), CRm(12), Op2( 6), trap_raz_wi },
  779. { Op1( 0), CRn( 9), CRm(12), Op2( 7), trap_raz_wi },
  780. { Op1( 0), CRn( 9), CRm(13), Op2( 0), trap_raz_wi },
  781. { Op1( 0), CRn( 9), CRm(13), Op2( 1), trap_raz_wi },
  782. { Op1( 0), CRn( 9), CRm(13), Op2( 2), trap_raz_wi },
  783. { Op1( 0), CRn( 9), CRm(14), Op2( 0), trap_raz_wi },
  784. { Op1( 0), CRn( 9), CRm(14), Op2( 1), trap_raz_wi },
  785. { Op1( 0), CRn( 9), CRm(14), Op2( 2), trap_raz_wi },
  786. { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
  787. { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
  788. { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
  789. { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
  790. /* ICC_SRE */
  791. { Op1( 0), CRn(12), CRm(12), Op2( 5), trap_raz_wi },
  792. { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
  793. };
  794. static const struct sys_reg_desc cp15_64_regs[] = {
  795. { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
  796. { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
  797. { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
  798. };
  799. /* Target specific emulation tables */
  800. static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
  801. void kvm_register_target_sys_reg_table(unsigned int target,
  802. struct kvm_sys_reg_target_table *table)
  803. {
  804. target_tables[target] = table;
  805. }
  806. /* Get specific register table for this target. */
  807. static const struct sys_reg_desc *get_target_table(unsigned target,
  808. bool mode_is_64,
  809. size_t *num)
  810. {
  811. struct kvm_sys_reg_target_table *table;
  812. table = target_tables[target];
  813. if (mode_is_64) {
  814. *num = table->table64.num;
  815. return table->table64.table;
  816. } else {
  817. *num = table->table32.num;
  818. return table->table32.table;
  819. }
  820. }
  821. static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
  822. const struct sys_reg_desc table[],
  823. unsigned int num)
  824. {
  825. unsigned int i;
  826. for (i = 0; i < num; i++) {
  827. const struct sys_reg_desc *r = &table[i];
  828. if (params->Op0 != r->Op0)
  829. continue;
  830. if (params->Op1 != r->Op1)
  831. continue;
  832. if (params->CRn != r->CRn)
  833. continue;
  834. if (params->CRm != r->CRm)
  835. continue;
  836. if (params->Op2 != r->Op2)
  837. continue;
  838. return r;
  839. }
  840. return NULL;
  841. }
  842. int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
  843. {
  844. kvm_inject_undefined(vcpu);
  845. return 1;
  846. }
  847. /*
  848. * emulate_cp -- tries to match a sys_reg access in a handling table, and
  849. * call the corresponding trap handler.
  850. *
  851. * @params: pointer to the descriptor of the access
  852. * @table: array of trap descriptors
  853. * @num: size of the trap descriptor array
  854. *
  855. * Return 0 if the access has been handled, and -1 if not.
  856. */
  857. static int emulate_cp(struct kvm_vcpu *vcpu,
  858. struct sys_reg_params *params,
  859. const struct sys_reg_desc *table,
  860. size_t num)
  861. {
  862. const struct sys_reg_desc *r;
  863. if (!table)
  864. return -1; /* Not handled */
  865. r = find_reg(params, table, num);
  866. if (r) {
  867. /*
  868. * Not having an accessor means that we have
  869. * configured a trap that we don't know how to
  870. * handle. This certainly qualifies as a gross bug
  871. * that should be fixed right away.
  872. */
  873. BUG_ON(!r->access);
  874. if (likely(r->access(vcpu, params, r))) {
  875. /* Skip instruction, since it was emulated */
  876. kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
  877. }
  878. /* Handled */
  879. return 0;
  880. }
  881. /* Not handled */
  882. return -1;
  883. }
  884. static void unhandled_cp_access(struct kvm_vcpu *vcpu,
  885. struct sys_reg_params *params)
  886. {
  887. u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
  888. int cp;
  889. switch(hsr_ec) {
  890. case ESR_ELx_EC_CP15_32:
  891. case ESR_ELx_EC_CP15_64:
  892. cp = 15;
  893. break;
  894. case ESR_ELx_EC_CP14_MR:
  895. case ESR_ELx_EC_CP14_64:
  896. cp = 14;
  897. break;
  898. default:
  899. WARN_ON((cp = -1));
  900. }
  901. kvm_err("Unsupported guest CP%d access at: %08lx\n",
  902. cp, *vcpu_pc(vcpu));
  903. print_sys_reg_instr(params);
  904. kvm_inject_undefined(vcpu);
  905. }
  906. /**
  907. * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP15 access
  908. * @vcpu: The VCPU pointer
  909. * @run: The kvm_run struct
  910. */
  911. static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
  912. const struct sys_reg_desc *global,
  913. size_t nr_global,
  914. const struct sys_reg_desc *target_specific,
  915. size_t nr_specific)
  916. {
  917. struct sys_reg_params params;
  918. u32 hsr = kvm_vcpu_get_hsr(vcpu);
  919. int Rt = (hsr >> 5) & 0x1f;
  920. int Rt2 = (hsr >> 10) & 0x1f;
  921. params.is_aarch32 = true;
  922. params.is_32bit = false;
  923. params.CRm = (hsr >> 1) & 0xf;
  924. params.is_write = ((hsr & 1) == 0);
  925. params.Op0 = 0;
  926. params.Op1 = (hsr >> 16) & 0xf;
  927. params.Op2 = 0;
  928. params.CRn = 0;
  929. /*
  930. * Make a 64-bit value out of Rt and Rt2. As we use the same trap
  931. * backends between AArch32 and AArch64, we get away with it.
  932. */
  933. if (params.is_write) {
  934. params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
  935. params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
  936. }
  937. if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
  938. goto out;
  939. if (!emulate_cp(vcpu, &params, global, nr_global))
  940. goto out;
  941. unhandled_cp_access(vcpu, &params);
  942. out:
  943. /* Split up the value between registers for the read side */
  944. if (!params.is_write) {
  945. vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
  946. vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
  947. }
  948. return 1;
  949. }
  950. /**
  951. * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
  952. * @vcpu: The VCPU pointer
  953. * @run: The kvm_run struct
  954. */
  955. static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
  956. const struct sys_reg_desc *global,
  957. size_t nr_global,
  958. const struct sys_reg_desc *target_specific,
  959. size_t nr_specific)
  960. {
  961. struct sys_reg_params params;
  962. u32 hsr = kvm_vcpu_get_hsr(vcpu);
  963. int Rt = (hsr >> 5) & 0x1f;
  964. params.is_aarch32 = true;
  965. params.is_32bit = true;
  966. params.CRm = (hsr >> 1) & 0xf;
  967. params.regval = vcpu_get_reg(vcpu, Rt);
  968. params.is_write = ((hsr & 1) == 0);
  969. params.CRn = (hsr >> 10) & 0xf;
  970. params.Op0 = 0;
  971. params.Op1 = (hsr >> 14) & 0x7;
  972. params.Op2 = (hsr >> 17) & 0x7;
  973. if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
  974. !emulate_cp(vcpu, &params, global, nr_global)) {
  975. if (!params.is_write)
  976. vcpu_set_reg(vcpu, Rt, params.regval);
  977. return 1;
  978. }
  979. unhandled_cp_access(vcpu, &params);
  980. return 1;
  981. }
  982. int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
  983. {
  984. const struct sys_reg_desc *target_specific;
  985. size_t num;
  986. target_specific = get_target_table(vcpu->arch.target, false, &num);
  987. return kvm_handle_cp_64(vcpu,
  988. cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
  989. target_specific, num);
  990. }
  991. int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
  992. {
  993. const struct sys_reg_desc *target_specific;
  994. size_t num;
  995. target_specific = get_target_table(vcpu->arch.target, false, &num);
  996. return kvm_handle_cp_32(vcpu,
  997. cp15_regs, ARRAY_SIZE(cp15_regs),
  998. target_specific, num);
  999. }
  1000. int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1001. {
  1002. return kvm_handle_cp_64(vcpu,
  1003. cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
  1004. NULL, 0);
  1005. }
  1006. int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1007. {
  1008. return kvm_handle_cp_32(vcpu,
  1009. cp14_regs, ARRAY_SIZE(cp14_regs),
  1010. NULL, 0);
  1011. }
  1012. static int emulate_sys_reg(struct kvm_vcpu *vcpu,
  1013. struct sys_reg_params *params)
  1014. {
  1015. size_t num;
  1016. const struct sys_reg_desc *table, *r;
  1017. table = get_target_table(vcpu->arch.target, true, &num);
  1018. /* Search target-specific then generic table. */
  1019. r = find_reg(params, table, num);
  1020. if (!r)
  1021. r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
  1022. if (likely(r)) {
  1023. /*
  1024. * Not having an accessor means that we have
  1025. * configured a trap that we don't know how to
  1026. * handle. This certainly qualifies as a gross bug
  1027. * that should be fixed right away.
  1028. */
  1029. BUG_ON(!r->access);
  1030. if (likely(r->access(vcpu, params, r))) {
  1031. /* Skip instruction, since it was emulated */
  1032. kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
  1033. return 1;
  1034. }
  1035. /* If access function fails, it should complain. */
  1036. } else {
  1037. kvm_err("Unsupported guest sys_reg access at: %lx\n",
  1038. *vcpu_pc(vcpu));
  1039. print_sys_reg_instr(params);
  1040. }
  1041. kvm_inject_undefined(vcpu);
  1042. return 1;
  1043. }
  1044. static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
  1045. const struct sys_reg_desc *table, size_t num)
  1046. {
  1047. unsigned long i;
  1048. for (i = 0; i < num; i++)
  1049. if (table[i].reset)
  1050. table[i].reset(vcpu, &table[i]);
  1051. }
  1052. /**
  1053. * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
  1054. * @vcpu: The VCPU pointer
  1055. * @run: The kvm_run struct
  1056. */
  1057. int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1058. {
  1059. struct sys_reg_params params;
  1060. unsigned long esr = kvm_vcpu_get_hsr(vcpu);
  1061. int Rt = (esr >> 5) & 0x1f;
  1062. int ret;
  1063. trace_kvm_handle_sys_reg(esr);
  1064. params.is_aarch32 = false;
  1065. params.is_32bit = false;
  1066. params.Op0 = (esr >> 20) & 3;
  1067. params.Op1 = (esr >> 14) & 0x7;
  1068. params.CRn = (esr >> 10) & 0xf;
  1069. params.CRm = (esr >> 1) & 0xf;
  1070. params.Op2 = (esr >> 17) & 0x7;
  1071. params.regval = vcpu_get_reg(vcpu, Rt);
  1072. params.is_write = !(esr & 1);
  1073. ret = emulate_sys_reg(vcpu, &params);
  1074. if (!params.is_write)
  1075. vcpu_set_reg(vcpu, Rt, params.regval);
  1076. return ret;
  1077. }
  1078. /******************************************************************************
  1079. * Userspace API
  1080. *****************************************************************************/
  1081. static bool index_to_params(u64 id, struct sys_reg_params *params)
  1082. {
  1083. switch (id & KVM_REG_SIZE_MASK) {
  1084. case KVM_REG_SIZE_U64:
  1085. /* Any unused index bits means it's not valid. */
  1086. if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
  1087. | KVM_REG_ARM_COPROC_MASK
  1088. | KVM_REG_ARM64_SYSREG_OP0_MASK
  1089. | KVM_REG_ARM64_SYSREG_OP1_MASK
  1090. | KVM_REG_ARM64_SYSREG_CRN_MASK
  1091. | KVM_REG_ARM64_SYSREG_CRM_MASK
  1092. | KVM_REG_ARM64_SYSREG_OP2_MASK))
  1093. return false;
  1094. params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
  1095. >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
  1096. params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
  1097. >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
  1098. params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
  1099. >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
  1100. params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
  1101. >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
  1102. params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
  1103. >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
  1104. return true;
  1105. default:
  1106. return false;
  1107. }
  1108. }
  1109. /* Decode an index value, and find the sys_reg_desc entry. */
  1110. static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
  1111. u64 id)
  1112. {
  1113. size_t num;
  1114. const struct sys_reg_desc *table, *r;
  1115. struct sys_reg_params params;
  1116. /* We only do sys_reg for now. */
  1117. if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
  1118. return NULL;
  1119. if (!index_to_params(id, &params))
  1120. return NULL;
  1121. table = get_target_table(vcpu->arch.target, true, &num);
  1122. r = find_reg(&params, table, num);
  1123. if (!r)
  1124. r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
  1125. /* Not saved in the sys_reg array? */
  1126. if (r && !r->reg)
  1127. r = NULL;
  1128. return r;
  1129. }
  1130. /*
  1131. * These are the invariant sys_reg registers: we let the guest see the
  1132. * host versions of these, so they're part of the guest state.
  1133. *
  1134. * A future CPU may provide a mechanism to present different values to
  1135. * the guest, or a future kvm may trap them.
  1136. */
  1137. #define FUNCTION_INVARIANT(reg) \
  1138. static void get_##reg(struct kvm_vcpu *v, \
  1139. const struct sys_reg_desc *r) \
  1140. { \
  1141. u64 val; \
  1142. \
  1143. asm volatile("mrs %0, " __stringify(reg) "\n" \
  1144. : "=r" (val)); \
  1145. ((struct sys_reg_desc *)r)->val = val; \
  1146. }
  1147. FUNCTION_INVARIANT(midr_el1)
  1148. FUNCTION_INVARIANT(ctr_el0)
  1149. FUNCTION_INVARIANT(revidr_el1)
  1150. FUNCTION_INVARIANT(id_pfr0_el1)
  1151. FUNCTION_INVARIANT(id_pfr1_el1)
  1152. FUNCTION_INVARIANT(id_dfr0_el1)
  1153. FUNCTION_INVARIANT(id_afr0_el1)
  1154. FUNCTION_INVARIANT(id_mmfr0_el1)
  1155. FUNCTION_INVARIANT(id_mmfr1_el1)
  1156. FUNCTION_INVARIANT(id_mmfr2_el1)
  1157. FUNCTION_INVARIANT(id_mmfr3_el1)
  1158. FUNCTION_INVARIANT(id_isar0_el1)
  1159. FUNCTION_INVARIANT(id_isar1_el1)
  1160. FUNCTION_INVARIANT(id_isar2_el1)
  1161. FUNCTION_INVARIANT(id_isar3_el1)
  1162. FUNCTION_INVARIANT(id_isar4_el1)
  1163. FUNCTION_INVARIANT(id_isar5_el1)
  1164. FUNCTION_INVARIANT(clidr_el1)
  1165. FUNCTION_INVARIANT(aidr_el1)
  1166. /* ->val is filled in by kvm_sys_reg_table_init() */
  1167. static struct sys_reg_desc invariant_sys_regs[] = {
  1168. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
  1169. NULL, get_midr_el1 },
  1170. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
  1171. NULL, get_revidr_el1 },
  1172. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
  1173. NULL, get_id_pfr0_el1 },
  1174. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
  1175. NULL, get_id_pfr1_el1 },
  1176. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
  1177. NULL, get_id_dfr0_el1 },
  1178. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
  1179. NULL, get_id_afr0_el1 },
  1180. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
  1181. NULL, get_id_mmfr0_el1 },
  1182. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
  1183. NULL, get_id_mmfr1_el1 },
  1184. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
  1185. NULL, get_id_mmfr2_el1 },
  1186. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
  1187. NULL, get_id_mmfr3_el1 },
  1188. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
  1189. NULL, get_id_isar0_el1 },
  1190. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
  1191. NULL, get_id_isar1_el1 },
  1192. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
  1193. NULL, get_id_isar2_el1 },
  1194. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
  1195. NULL, get_id_isar3_el1 },
  1196. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
  1197. NULL, get_id_isar4_el1 },
  1198. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
  1199. NULL, get_id_isar5_el1 },
  1200. { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
  1201. NULL, get_clidr_el1 },
  1202. { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
  1203. NULL, get_aidr_el1 },
  1204. { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
  1205. NULL, get_ctr_el0 },
  1206. };
  1207. static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
  1208. {
  1209. if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
  1210. return -EFAULT;
  1211. return 0;
  1212. }
  1213. static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
  1214. {
  1215. if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
  1216. return -EFAULT;
  1217. return 0;
  1218. }
  1219. static int get_invariant_sys_reg(u64 id, void __user *uaddr)
  1220. {
  1221. struct sys_reg_params params;
  1222. const struct sys_reg_desc *r;
  1223. if (!index_to_params(id, &params))
  1224. return -ENOENT;
  1225. r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
  1226. if (!r)
  1227. return -ENOENT;
  1228. return reg_to_user(uaddr, &r->val, id);
  1229. }
  1230. static int set_invariant_sys_reg(u64 id, void __user *uaddr)
  1231. {
  1232. struct sys_reg_params params;
  1233. const struct sys_reg_desc *r;
  1234. int err;
  1235. u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
  1236. if (!index_to_params(id, &params))
  1237. return -ENOENT;
  1238. r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
  1239. if (!r)
  1240. return -ENOENT;
  1241. err = reg_from_user(&val, uaddr, id);
  1242. if (err)
  1243. return err;
  1244. /* This is what we mean by invariant: you can't change it. */
  1245. if (r->val != val)
  1246. return -EINVAL;
  1247. return 0;
  1248. }
  1249. static bool is_valid_cache(u32 val)
  1250. {
  1251. u32 level, ctype;
  1252. if (val >= CSSELR_MAX)
  1253. return false;
  1254. /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
  1255. level = (val >> 1);
  1256. ctype = (cache_levels >> (level * 3)) & 7;
  1257. switch (ctype) {
  1258. case 0: /* No cache */
  1259. return false;
  1260. case 1: /* Instruction cache only */
  1261. return (val & 1);
  1262. case 2: /* Data cache only */
  1263. case 4: /* Unified cache */
  1264. return !(val & 1);
  1265. case 3: /* Separate instruction and data caches */
  1266. return true;
  1267. default: /* Reserved: we can't know instruction or data. */
  1268. return false;
  1269. }
  1270. }
  1271. static int demux_c15_get(u64 id, void __user *uaddr)
  1272. {
  1273. u32 val;
  1274. u32 __user *uval = uaddr;
  1275. /* Fail if we have unknown bits set. */
  1276. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  1277. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  1278. return -ENOENT;
  1279. switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
  1280. case KVM_REG_ARM_DEMUX_ID_CCSIDR:
  1281. if (KVM_REG_SIZE(id) != 4)
  1282. return -ENOENT;
  1283. val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
  1284. >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
  1285. if (!is_valid_cache(val))
  1286. return -ENOENT;
  1287. return put_user(get_ccsidr(val), uval);
  1288. default:
  1289. return -ENOENT;
  1290. }
  1291. }
  1292. static int demux_c15_set(u64 id, void __user *uaddr)
  1293. {
  1294. u32 val, newval;
  1295. u32 __user *uval = uaddr;
  1296. /* Fail if we have unknown bits set. */
  1297. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  1298. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  1299. return -ENOENT;
  1300. switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
  1301. case KVM_REG_ARM_DEMUX_ID_CCSIDR:
  1302. if (KVM_REG_SIZE(id) != 4)
  1303. return -ENOENT;
  1304. val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
  1305. >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
  1306. if (!is_valid_cache(val))
  1307. return -ENOENT;
  1308. if (get_user(newval, uval))
  1309. return -EFAULT;
  1310. /* This is also invariant: you can't change it. */
  1311. if (newval != get_ccsidr(val))
  1312. return -EINVAL;
  1313. return 0;
  1314. default:
  1315. return -ENOENT;
  1316. }
  1317. }
  1318. int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
  1319. {
  1320. const struct sys_reg_desc *r;
  1321. void __user *uaddr = (void __user *)(unsigned long)reg->addr;
  1322. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
  1323. return demux_c15_get(reg->id, uaddr);
  1324. if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
  1325. return -ENOENT;
  1326. r = index_to_sys_reg_desc(vcpu, reg->id);
  1327. if (!r)
  1328. return get_invariant_sys_reg(reg->id, uaddr);
  1329. if (r->get_user)
  1330. return (r->get_user)(vcpu, r, reg, uaddr);
  1331. return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
  1332. }
  1333. int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
  1334. {
  1335. const struct sys_reg_desc *r;
  1336. void __user *uaddr = (void __user *)(unsigned long)reg->addr;
  1337. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
  1338. return demux_c15_set(reg->id, uaddr);
  1339. if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
  1340. return -ENOENT;
  1341. r = index_to_sys_reg_desc(vcpu, reg->id);
  1342. if (!r)
  1343. return set_invariant_sys_reg(reg->id, uaddr);
  1344. if (r->set_user)
  1345. return (r->set_user)(vcpu, r, reg, uaddr);
  1346. return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
  1347. }
  1348. static unsigned int num_demux_regs(void)
  1349. {
  1350. unsigned int i, count = 0;
  1351. for (i = 0; i < CSSELR_MAX; i++)
  1352. if (is_valid_cache(i))
  1353. count++;
  1354. return count;
  1355. }
  1356. static int write_demux_regids(u64 __user *uindices)
  1357. {
  1358. u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
  1359. unsigned int i;
  1360. val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
  1361. for (i = 0; i < CSSELR_MAX; i++) {
  1362. if (!is_valid_cache(i))
  1363. continue;
  1364. if (put_user(val | i, uindices))
  1365. return -EFAULT;
  1366. uindices++;
  1367. }
  1368. return 0;
  1369. }
  1370. static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
  1371. {
  1372. return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
  1373. KVM_REG_ARM64_SYSREG |
  1374. (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
  1375. (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
  1376. (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
  1377. (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
  1378. (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
  1379. }
  1380. static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
  1381. {
  1382. if (!*uind)
  1383. return true;
  1384. if (put_user(sys_reg_to_index(reg), *uind))
  1385. return false;
  1386. (*uind)++;
  1387. return true;
  1388. }
  1389. /* Assumed ordered tables, see kvm_sys_reg_table_init. */
  1390. static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
  1391. {
  1392. const struct sys_reg_desc *i1, *i2, *end1, *end2;
  1393. unsigned int total = 0;
  1394. size_t num;
  1395. /* We check for duplicates here, to allow arch-specific overrides. */
  1396. i1 = get_target_table(vcpu->arch.target, true, &num);
  1397. end1 = i1 + num;
  1398. i2 = sys_reg_descs;
  1399. end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
  1400. BUG_ON(i1 == end1 || i2 == end2);
  1401. /* Walk carefully, as both tables may refer to the same register. */
  1402. while (i1 || i2) {
  1403. int cmp = cmp_sys_reg(i1, i2);
  1404. /* target-specific overrides generic entry. */
  1405. if (cmp <= 0) {
  1406. /* Ignore registers we trap but don't save. */
  1407. if (i1->reg) {
  1408. if (!copy_reg_to_user(i1, &uind))
  1409. return -EFAULT;
  1410. total++;
  1411. }
  1412. } else {
  1413. /* Ignore registers we trap but don't save. */
  1414. if (i2->reg) {
  1415. if (!copy_reg_to_user(i2, &uind))
  1416. return -EFAULT;
  1417. total++;
  1418. }
  1419. }
  1420. if (cmp <= 0 && ++i1 == end1)
  1421. i1 = NULL;
  1422. if (cmp >= 0 && ++i2 == end2)
  1423. i2 = NULL;
  1424. }
  1425. return total;
  1426. }
  1427. unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
  1428. {
  1429. return ARRAY_SIZE(invariant_sys_regs)
  1430. + num_demux_regs()
  1431. + walk_sys_regs(vcpu, (u64 __user *)NULL);
  1432. }
  1433. int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
  1434. {
  1435. unsigned int i;
  1436. int err;
  1437. /* Then give them all the invariant registers' indices. */
  1438. for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
  1439. if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
  1440. return -EFAULT;
  1441. uindices++;
  1442. }
  1443. err = walk_sys_regs(vcpu, uindices);
  1444. if (err < 0)
  1445. return err;
  1446. uindices += err;
  1447. return write_demux_regids(uindices);
  1448. }
  1449. static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
  1450. {
  1451. unsigned int i;
  1452. for (i = 1; i < n; i++) {
  1453. if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
  1454. kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
  1455. return 1;
  1456. }
  1457. }
  1458. return 0;
  1459. }
  1460. void kvm_sys_reg_table_init(void)
  1461. {
  1462. unsigned int i;
  1463. struct sys_reg_desc clidr;
  1464. /* Make sure tables are unique and in order. */
  1465. BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
  1466. BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
  1467. BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
  1468. BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
  1469. BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
  1470. BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
  1471. /* We abuse the reset function to overwrite the table itself. */
  1472. for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
  1473. invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
  1474. /*
  1475. * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
  1476. *
  1477. * If software reads the Cache Type fields from Ctype1
  1478. * upwards, once it has seen a value of 0b000, no caches
  1479. * exist at further-out levels of the hierarchy. So, for
  1480. * example, if Ctype3 is the first Cache Type field with a
  1481. * value of 0b000, the values of Ctype4 to Ctype7 must be
  1482. * ignored.
  1483. */
  1484. get_clidr_el1(NULL, &clidr); /* Ugly... */
  1485. cache_levels = clidr.val;
  1486. for (i = 0; i < 7; i++)
  1487. if (((cache_levels >> (i*3)) & 7) == 0)
  1488. break;
  1489. /* Clear all higher bits. */
  1490. cache_levels &= (1 << (i*3))-1;
  1491. }
  1492. /**
  1493. * kvm_reset_sys_regs - sets system registers to reset value
  1494. * @vcpu: The VCPU pointer
  1495. *
  1496. * This function finds the right table above and sets the registers on the
  1497. * virtual CPU struct to their architecturally defined reset values.
  1498. */
  1499. void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
  1500. {
  1501. size_t num;
  1502. const struct sys_reg_desc *table;
  1503. /* Catch someone adding a register without putting in reset entry. */
  1504. memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
  1505. /* Generic chip reset first (so target could override). */
  1506. reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
  1507. table = get_target_table(vcpu->arch.target, true, &num);
  1508. reset_sys_reg_descs(vcpu, table, num);
  1509. for (num = 1; num < NR_SYS_REGS; num++)
  1510. if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
  1511. panic("Didn't reset vcpu_sys_reg(%zi)", num);
  1512. }