123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421 |
- |
- | srem_mod.sa 3.1 12/10/90
- |
- | The entry point sMOD computes the floating point MOD of the
- | input values X and Y. The entry point sREM computes the floating
- | point (IEEE) REM of the input values X and Y.
- |
- | INPUT
- | -----
- | Double-extended value Y is pointed to by address in register
- | A0. Double-extended value X is located in -12(A0). The values
- | of X and Y are both nonzero and finite; although either or both
- | of them can be denormalized. The special cases of zeros, NaNs,
- | and infinities are handled elsewhere.
- |
- | OUTPUT
- | ------
- | FREM(X,Y) or FMOD(X,Y), depending on entry point.
- |
- | ALGORITHM
- | ---------
- |
- | Step 1. Save and strip signs of X and Y: signX := sign(X),
- | signY := sign(Y), X := |X|, Y := |Y|,
- | signQ := signX EOR signY. Record whether MOD or REM
- | is requested.
- |
- | Step 2. Set L := expo(X)-expo(Y), k := 0, Q := 0.
- | If (L < 0) then
- | R := X, go to Step 4.
- | else
- | R := 2^(-L)X, j := L.
- | endif
- |
- | Step 3. Perform MOD(X,Y)
- | 3.1 If R = Y, go to Step 9.
- | 3.2 If R > Y, then { R := R - Y, Q := Q + 1}
- | 3.3 If j = 0, go to Step 4.
- | 3.4 k := k + 1, j := j - 1, Q := 2Q, R := 2R. Go to
- | Step 3.1.
- |
- | Step 4. At this point, R = X - QY = MOD(X,Y). Set
- | Last_Subtract := false (used in Step 7 below). If
- | MOD is requested, go to Step 6.
- |
- | Step 5. R = MOD(X,Y), but REM(X,Y) is requested.
- | 5.1 If R < Y/2, then R = MOD(X,Y) = REM(X,Y). Go to
- | Step 6.
- | 5.2 If R > Y/2, then { set Last_Subtract := true,
- | Q := Q + 1, Y := signY*Y }. Go to Step 6.
- | 5.3 This is the tricky case of R = Y/2. If Q is odd,
- | then { Q := Q + 1, signX := -signX }.
- |
- | Step 6. R := signX*R.
- |
- | Step 7. If Last_Subtract = true, R := R - Y.
- |
- | Step 8. Return signQ, last 7 bits of Q, and R as required.
- |
- | Step 9. At this point, R = 2^(-j)*X - Q Y = Y. Thus,
- | X = 2^(j)*(Q+1)Y. set Q := 2^(j)*(Q+1),
- | R := 0. Return signQ, last 7 bits of Q, and R.
- |
- |
- | Copyright (C) Motorola, Inc. 1990
- | All Rights Reserved
- |
- | For details on the license for this file, please see the
- | file, README, in this same directory.
- SREM_MOD: |idnt 2,1 | Motorola 040 Floating Point Software Package
- |section 8
- #include "fpsp.h"
- .set Mod_Flag,L_SCR3
- .set SignY,FP_SCR3+4
- .set SignX,FP_SCR3+8
- .set SignQ,FP_SCR3+12
- .set Sc_Flag,FP_SCR4
- .set Y,FP_SCR1
- .set Y_Hi,Y+4
- .set Y_Lo,Y+8
- .set R,FP_SCR2
- .set R_Hi,R+4
- .set R_Lo,R+8
- Scale: .long 0x00010000,0x80000000,0x00000000,0x00000000
- |xref t_avoid_unsupp
- .global smod
- smod:
- movel #0,Mod_Flag(%a6)
- bras Mod_Rem
- .global srem
- srem:
- movel #1,Mod_Flag(%a6)
- Mod_Rem:
- |..Save sign of X and Y
- moveml %d2-%d7,-(%a7) | ...save data registers
- movew (%a0),%d3
- movew %d3,SignY(%a6)
- andil #0x00007FFF,%d3 | ...Y := |Y|
- |
- movel 4(%a0),%d4
- movel 8(%a0),%d5 | ...(D3,D4,D5) is |Y|
- tstl %d3
- bnes Y_Normal
- movel #0x00003FFE,%d3 | ...$3FFD + 1
- tstl %d4
- bnes HiY_not0
- HiY_0:
- movel %d5,%d4
- clrl %d5
- subil #32,%d3
- clrl %d6
- bfffo %d4{#0:#32},%d6
- lsll %d6,%d4
- subl %d6,%d3 | ...(D3,D4,D5) is normalized
- | ...with bias $7FFD
- bras Chk_X
- HiY_not0:
- clrl %d6
- bfffo %d4{#0:#32},%d6
- subl %d6,%d3
- lsll %d6,%d4
- movel %d5,%d7 | ...a copy of D5
- lsll %d6,%d5
- negl %d6
- addil #32,%d6
- lsrl %d6,%d7
- orl %d7,%d4 | ...(D3,D4,D5) normalized
- | ...with bias $7FFD
- bras Chk_X
- Y_Normal:
- addil #0x00003FFE,%d3 | ...(D3,D4,D5) normalized
- | ...with bias $7FFD
- Chk_X:
- movew -12(%a0),%d0
- movew %d0,SignX(%a6)
- movew SignY(%a6),%d1
- eorl %d0,%d1
- andil #0x00008000,%d1
- movew %d1,SignQ(%a6) | ...sign(Q) obtained
- andil #0x00007FFF,%d0
- movel -8(%a0),%d1
- movel -4(%a0),%d2 | ...(D0,D1,D2) is |X|
- tstl %d0
- bnes X_Normal
- movel #0x00003FFE,%d0
- tstl %d1
- bnes HiX_not0
- HiX_0:
- movel %d2,%d1
- clrl %d2
- subil #32,%d0
- clrl %d6
- bfffo %d1{#0:#32},%d6
- lsll %d6,%d1
- subl %d6,%d0 | ...(D0,D1,D2) is normalized
- | ...with bias $7FFD
- bras Init
- HiX_not0:
- clrl %d6
- bfffo %d1{#0:#32},%d6
- subl %d6,%d0
- lsll %d6,%d1
- movel %d2,%d7 | ...a copy of D2
- lsll %d6,%d2
- negl %d6
- addil #32,%d6
- lsrl %d6,%d7
- orl %d7,%d1 | ...(D0,D1,D2) normalized
- | ...with bias $7FFD
- bras Init
- X_Normal:
- addil #0x00003FFE,%d0 | ...(D0,D1,D2) normalized
- | ...with bias $7FFD
- Init:
- |
- movel %d3,L_SCR1(%a6) | ...save biased expo(Y)
- movel %d0,L_SCR2(%a6) |save d0
- subl %d3,%d0 | ...L := expo(X)-expo(Y)
- | Move.L D0,L ...D0 is j
- clrl %d6 | ...D6 := carry <- 0
- clrl %d3 | ...D3 is Q
- moveal #0,%a1 | ...A1 is k; j+k=L, Q=0
- |..(Carry,D1,D2) is R
- tstl %d0
- bges Mod_Loop
- |..expo(X) < expo(Y). Thus X = mod(X,Y)
- |
- movel L_SCR2(%a6),%d0 |restore d0
- bra Get_Mod
- |..At this point R = 2^(-L)X; Q = 0; k = 0; and k+j = L
- Mod_Loop:
- tstl %d6 | ...test carry bit
- bgts R_GT_Y
- |..At this point carry = 0, R = (D1,D2), Y = (D4,D5)
- cmpl %d4,%d1 | ...compare hi(R) and hi(Y)
- bnes R_NE_Y
- cmpl %d5,%d2 | ...compare lo(R) and lo(Y)
- bnes R_NE_Y
- |..At this point, R = Y
- bra Rem_is_0
- R_NE_Y:
- |..use the borrow of the previous compare
- bcss R_LT_Y | ...borrow is set iff R < Y
- R_GT_Y:
- |..If Carry is set, then Y < (Carry,D1,D2) < 2Y. Otherwise, Carry = 0
- |..and Y < (D1,D2) < 2Y. Either way, perform R - Y
- subl %d5,%d2 | ...lo(R) - lo(Y)
- subxl %d4,%d1 | ...hi(R) - hi(Y)
- clrl %d6 | ...clear carry
- addql #1,%d3 | ...Q := Q + 1
- R_LT_Y:
- |..At this point, Carry=0, R < Y. R = 2^(k-L)X - QY; k+j = L; j >= 0.
- tstl %d0 | ...see if j = 0.
- beqs PostLoop
- addl %d3,%d3 | ...Q := 2Q
- addl %d2,%d2 | ...lo(R) = 2lo(R)
- roxll #1,%d1 | ...hi(R) = 2hi(R) + carry
- scs %d6 | ...set Carry if 2(R) overflows
- addql #1,%a1 | ...k := k+1
- subql #1,%d0 | ...j := j - 1
- |..At this point, R=(Carry,D1,D2) = 2^(k-L)X - QY, j+k=L, j >= 0, R < 2Y.
- bras Mod_Loop
- PostLoop:
- |..k = L, j = 0, Carry = 0, R = (D1,D2) = X - QY, R < Y.
- |..normalize R.
- movel L_SCR1(%a6),%d0 | ...new biased expo of R
- tstl %d1
- bnes HiR_not0
- HiR_0:
- movel %d2,%d1
- clrl %d2
- subil #32,%d0
- clrl %d6
- bfffo %d1{#0:#32},%d6
- lsll %d6,%d1
- subl %d6,%d0 | ...(D0,D1,D2) is normalized
- | ...with bias $7FFD
- bras Get_Mod
- HiR_not0:
- clrl %d6
- bfffo %d1{#0:#32},%d6
- bmis Get_Mod | ...already normalized
- subl %d6,%d0
- lsll %d6,%d1
- movel %d2,%d7 | ...a copy of D2
- lsll %d6,%d2
- negl %d6
- addil #32,%d6
- lsrl %d6,%d7
- orl %d7,%d1 | ...(D0,D1,D2) normalized
- |
- Get_Mod:
- cmpil #0x000041FE,%d0
- bges No_Scale
- Do_Scale:
- movew %d0,R(%a6)
- clrw R+2(%a6)
- movel %d1,R_Hi(%a6)
- movel %d2,R_Lo(%a6)
- movel L_SCR1(%a6),%d6
- movew %d6,Y(%a6)
- clrw Y+2(%a6)
- movel %d4,Y_Hi(%a6)
- movel %d5,Y_Lo(%a6)
- fmovex R(%a6),%fp0 | ...no exception
- movel #1,Sc_Flag(%a6)
- bras ModOrRem
- No_Scale:
- movel %d1,R_Hi(%a6)
- movel %d2,R_Lo(%a6)
- subil #0x3FFE,%d0
- movew %d0,R(%a6)
- clrw R+2(%a6)
- movel L_SCR1(%a6),%d6
- subil #0x3FFE,%d6
- movel %d6,L_SCR1(%a6)
- fmovex R(%a6),%fp0
- movew %d6,Y(%a6)
- movel %d4,Y_Hi(%a6)
- movel %d5,Y_Lo(%a6)
- movel #0,Sc_Flag(%a6)
- |
- ModOrRem:
- movel Mod_Flag(%a6),%d6
- beqs Fix_Sign
- movel L_SCR1(%a6),%d6 | ...new biased expo(Y)
- subql #1,%d6 | ...biased expo(Y/2)
- cmpl %d6,%d0
- blts Fix_Sign
- bgts Last_Sub
- cmpl %d4,%d1
- bnes Not_EQ
- cmpl %d5,%d2
- bnes Not_EQ
- bra Tie_Case
- Not_EQ:
- bcss Fix_Sign
- Last_Sub:
- |
- fsubx Y(%a6),%fp0 | ...no exceptions
- addql #1,%d3 | ...Q := Q + 1
- |
- Fix_Sign:
- |..Get sign of X
- movew SignX(%a6),%d6
- bges Get_Q
- fnegx %fp0
- |..Get Q
- |
- Get_Q:
- clrl %d6
- movew SignQ(%a6),%d6 | ...D6 is sign(Q)
- movel #8,%d7
- lsrl %d7,%d6
- andil #0x0000007F,%d3 | ...7 bits of Q
- orl %d6,%d3 | ...sign and bits of Q
- swap %d3
- fmovel %fpsr,%d6
- andil #0xFF00FFFF,%d6
- orl %d3,%d6
- fmovel %d6,%fpsr | ...put Q in fpsr
- |
- Restore:
- moveml (%a7)+,%d2-%d7
- fmovel USER_FPCR(%a6),%fpcr
- movel Sc_Flag(%a6),%d0
- beqs Finish
- fmulx Scale(%pc),%fp0 | ...may cause underflow
- bra t_avoid_unsupp |check for denorm as a
- | ;result of the scaling
- Finish:
- fmovex %fp0,%fp0 |capture exceptions & round
- rts
- Rem_is_0:
- |..R = 2^(-j)X - Q Y = Y, thus R = 0 and quotient = 2^j (Q+1)
- addql #1,%d3
- cmpil #8,%d0 | ...D0 is j
- bges Q_Big
- lsll %d0,%d3
- bras Set_R_0
- Q_Big:
- clrl %d3
- Set_R_0:
- fmoves #0x00000000,%fp0
- movel #0,Sc_Flag(%a6)
- bra Fix_Sign
- Tie_Case:
- |..Check parity of Q
- movel %d3,%d6
- andil #0x00000001,%d6
- tstl %d6
- beq Fix_Sign | ...Q is even
- |..Q is odd, Q := Q + 1, signX := -signX
- addql #1,%d3
- movew SignX(%a6),%d6
- eoril #0x00008000,%d6
- movew %d6,SignX(%a6)
- bra Fix_Sign
- |end
|