123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745 |
- |
- | ssin.sa 3.3 7/29/91
- |
- | The entry point sSIN computes the sine of an input argument
- | sCOS computes the cosine, and sSINCOS computes both. The
- | corresponding entry points with a "d" computes the same
- | corresponding function values for denormalized inputs.
- |
- | Input: Double-extended number X in location pointed to
- | by address register a0.
- |
- | Output: The function value sin(X) or cos(X) returned in Fp0 if SIN or
- | COS is requested. Otherwise, for SINCOS, sin(X) is returned
- | in Fp0, and cos(X) is returned in Fp1.
- |
- | Modifies: Fp0 for SIN or COS; both Fp0 and Fp1 for SINCOS.
- |
- | Accuracy and Monotonicity: The returned result is within 1 ulp in
- | 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
- | result is subsequently rounded to double precision. The
- | result is provably monotonic in double precision.
- |
- | Speed: The programs sSIN and sCOS take approximately 150 cycles for
- | input argument X such that |X| < 15Pi, which is the usual
- | situation. The speed for sSINCOS is approximately 190 cycles.
- |
- | Algorithm:
- |
- | SIN and COS:
- | 1. If SIN is invoked, set AdjN := 0; otherwise, set AdjN := 1.
- |
- | 2. If |X| >= 15Pi or |X| < 2**(-40), go to 7.
- |
- | 3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let
- | k = N mod 4, so in particular, k = 0,1,2,or 3. Overwrite
- | k by k := k + AdjN.
- |
- | 4. If k is even, go to 6.
- |
- | 5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j. Return sgn*cos(r)
- | where cos(r) is approximated by an even polynomial in r,
- | 1 + r*r*(B1+s*(B2+ ... + s*B8)), s = r*r.
- | Exit.
- |
- | 6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r)
- | where sin(r) is approximated by an odd polynomial in r
- | r + r*s*(A1+s*(A2+ ... + s*A7)), s = r*r.
- | Exit.
- |
- | 7. If |X| > 1, go to 9.
- |
- | 8. (|X|<2**(-40)) If SIN is invoked, return X; otherwise return 1.
- |
- | 9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 3.
- |
- | SINCOS:
- | 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6.
- |
- | 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let
- | k = N mod 4, so in particular, k = 0,1,2,or 3.
- |
- | 3. If k is even, go to 5.
- |
- | 4. (k is odd) Set j1 := (k-1)/2, j2 := j1 (EOR) (k mod 2), i.e.
- | j1 exclusive or with the l.s.b. of k.
- | sgn1 := (-1)**j1, sgn2 := (-1)**j2.
- | SIN(X) = sgn1 * cos(r) and COS(X) = sgn2*sin(r) where
- | sin(r) and cos(r) are computed as odd and even polynomials
- | in r, respectively. Exit
- |
- | 5. (k is even) Set j1 := k/2, sgn1 := (-1)**j1.
- | SIN(X) = sgn1 * sin(r) and COS(X) = sgn1*cos(r) where
- | sin(r) and cos(r) are computed as odd and even polynomials
- | in r, respectively. Exit
- |
- | 6. If |X| > 1, go to 8.
- |
- | 7. (|X|<2**(-40)) SIN(X) = X and COS(X) = 1. Exit.
- |
- | 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 2.
- |
- | Copyright (C) Motorola, Inc. 1990
- | All Rights Reserved
- |
- | For details on the license for this file, please see the
- | file, README, in this same directory.
- |SSIN idnt 2,1 | Motorola 040 Floating Point Software Package
- |section 8
- #include "fpsp.h"
- BOUNDS1: .long 0x3FD78000,0x4004BC7E
- TWOBYPI: .long 0x3FE45F30,0x6DC9C883
- SINA7: .long 0xBD6AAA77,0xCCC994F5
- SINA6: .long 0x3DE61209,0x7AAE8DA1
- SINA5: .long 0xBE5AE645,0x2A118AE4
- SINA4: .long 0x3EC71DE3,0xA5341531
- SINA3: .long 0xBF2A01A0,0x1A018B59,0x00000000,0x00000000
- SINA2: .long 0x3FF80000,0x88888888,0x888859AF,0x00000000
- SINA1: .long 0xBFFC0000,0xAAAAAAAA,0xAAAAAA99,0x00000000
- COSB8: .long 0x3D2AC4D0,0xD6011EE3
- COSB7: .long 0xBDA9396F,0x9F45AC19
- COSB6: .long 0x3E21EED9,0x0612C972
- COSB5: .long 0xBE927E4F,0xB79D9FCF
- COSB4: .long 0x3EFA01A0,0x1A01D423,0x00000000,0x00000000
- COSB3: .long 0xBFF50000,0xB60B60B6,0x0B61D438,0x00000000
- COSB2: .long 0x3FFA0000,0xAAAAAAAA,0xAAAAAB5E
- COSB1: .long 0xBF000000
- INVTWOPI: .long 0x3FFC0000,0xA2F9836E,0x4E44152A
- TWOPI1: .long 0x40010000,0xC90FDAA2,0x00000000,0x00000000
- TWOPI2: .long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000
- |xref PITBL
- .set INARG,FP_SCR4
- .set X,FP_SCR5
- .set XDCARE,X+2
- .set XFRAC,X+4
- .set RPRIME,FP_SCR1
- .set SPRIME,FP_SCR2
- .set POSNEG1,L_SCR1
- .set TWOTO63,L_SCR1
- .set ENDFLAG,L_SCR2
- .set N,L_SCR2
- .set ADJN,L_SCR3
- | xref t_frcinx
- |xref t_extdnrm
- |xref sto_cos
- .global ssind
- ssind:
- |--SIN(X) = X FOR DENORMALIZED X
- bra t_extdnrm
- .global scosd
- scosd:
- |--COS(X) = 1 FOR DENORMALIZED X
- fmoves #0x3F800000,%fp0
- |
- | 9D25B Fix: Sometimes the previous fmove.s sets fpsr bits
- |
- fmovel #0,%fpsr
- |
- bra t_frcinx
- .global ssin
- ssin:
- |--SET ADJN TO 0
- movel #0,ADJN(%a6)
- bras SINBGN
- .global scos
- scos:
- |--SET ADJN TO 1
- movel #1,ADJN(%a6)
- SINBGN:
- |--SAVE FPCR, FP1. CHECK IF |X| IS TOO SMALL OR LARGE
- fmovex (%a0),%fp0 | ...LOAD INPUT
- movel (%a0),%d0
- movew 4(%a0),%d0
- fmovex %fp0,X(%a6)
- andil #0x7FFFFFFF,%d0 | ...COMPACTIFY X
- cmpil #0x3FD78000,%d0 | ...|X| >= 2**(-40)?
- bges SOK1
- bra SINSM
- SOK1:
- cmpil #0x4004BC7E,%d0 | ...|X| < 15 PI?
- blts SINMAIN
- bra REDUCEX
- SINMAIN:
- |--THIS IS THE USUAL CASE, |X| <= 15 PI.
- |--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
- fmovex %fp0,%fp1
- fmuld TWOBYPI,%fp1 | ...X*2/PI
- |--HIDE THE NEXT THREE INSTRUCTIONS
- lea PITBL+0x200,%a1 | ...TABLE OF N*PI/2, N = -32,...,32
- |--FP1 IS NOW READY
- fmovel %fp1,N(%a6) | ...CONVERT TO INTEGER
- movel N(%a6),%d0
- asll #4,%d0
- addal %d0,%a1 | ...A1 IS THE ADDRESS OF N*PIBY2
- | ...WHICH IS IN TWO PIECES Y1 & Y2
- fsubx (%a1)+,%fp0 | ...X-Y1
- |--HIDE THE NEXT ONE
- fsubs (%a1),%fp0 | ...FP0 IS R = (X-Y1)-Y2
- SINCONT:
- |--continuation from REDUCEX
- |--GET N+ADJN AND SEE IF SIN(R) OR COS(R) IS NEEDED
- movel N(%a6),%d0
- addl ADJN(%a6),%d0 | ...SEE IF D0 IS ODD OR EVEN
- rorl #1,%d0 | ...D0 WAS ODD IFF D0 IS NEGATIVE
- cmpil #0,%d0
- blt COSPOLY
- SINPOLY:
- |--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.
- |--THEN WE RETURN SGN*SIN(R). SGN*SIN(R) IS COMPUTED BY
- |--R' + R'*S*(A1 + S(A2 + S(A3 + S(A4 + ... + SA7)))), WHERE
- |--R' = SGN*R, S=R*R. THIS CAN BE REWRITTEN AS
- |--R' + R'*S*( [A1+T(A3+T(A5+TA7))] + [S(A2+T(A4+TA6))])
- |--WHERE T=S*S.
- |--NOTE THAT A3 THROUGH A7 ARE STORED IN DOUBLE PRECISION
- |--WHILE A1 AND A2 ARE IN DOUBLE-EXTENDED FORMAT.
- fmovex %fp0,X(%a6) | ...X IS R
- fmulx %fp0,%fp0 | ...FP0 IS S
- |---HIDE THE NEXT TWO WHILE WAITING FOR FP0
- fmoved SINA7,%fp3
- fmoved SINA6,%fp2
- |--FP0 IS NOW READY
- fmovex %fp0,%fp1
- fmulx %fp1,%fp1 | ...FP1 IS T
- |--HIDE THE NEXT TWO WHILE WAITING FOR FP1
- rorl #1,%d0
- andil #0x80000000,%d0
- | ...LEAST SIG. BIT OF D0 IN SIGN POSITION
- eorl %d0,X(%a6) | ...X IS NOW R'= SGN*R
- fmulx %fp1,%fp3 | ...TA7
- fmulx %fp1,%fp2 | ...TA6
- faddd SINA5,%fp3 | ...A5+TA7
- faddd SINA4,%fp2 | ...A4+TA6
- fmulx %fp1,%fp3 | ...T(A5+TA7)
- fmulx %fp1,%fp2 | ...T(A4+TA6)
- faddd SINA3,%fp3 | ...A3+T(A5+TA7)
- faddx SINA2,%fp2 | ...A2+T(A4+TA6)
- fmulx %fp3,%fp1 | ...T(A3+T(A5+TA7))
- fmulx %fp0,%fp2 | ...S(A2+T(A4+TA6))
- faddx SINA1,%fp1 | ...A1+T(A3+T(A5+TA7))
- fmulx X(%a6),%fp0 | ...R'*S
- faddx %fp2,%fp1 | ...[A1+T(A3+T(A5+TA7))]+[S(A2+T(A4+TA6))]
- |--FP3 RELEASED, RESTORE NOW AND TAKE SOME ADVANTAGE OF HIDING
- |--FP2 RELEASED, RESTORE NOW AND TAKE FULL ADVANTAGE OF HIDING
- fmulx %fp1,%fp0 | ...SIN(R')-R'
- |--FP1 RELEASED.
- fmovel %d1,%FPCR |restore users exceptions
- faddx X(%a6),%fp0 |last inst - possible exception set
- bra t_frcinx
- COSPOLY:
- |--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.
- |--THEN WE RETURN SGN*COS(R). SGN*COS(R) IS COMPUTED BY
- |--SGN + S'*(B1 + S(B2 + S(B3 + S(B4 + ... + SB8)))), WHERE
- |--S=R*R AND S'=SGN*S. THIS CAN BE REWRITTEN AS
- |--SGN + S'*([B1+T(B3+T(B5+TB7))] + [S(B2+T(B4+T(B6+TB8)))])
- |--WHERE T=S*S.
- |--NOTE THAT B4 THROUGH B8 ARE STORED IN DOUBLE PRECISION
- |--WHILE B2 AND B3 ARE IN DOUBLE-EXTENDED FORMAT, B1 IS -1/2
- |--AND IS THEREFORE STORED AS SINGLE PRECISION.
- fmulx %fp0,%fp0 | ...FP0 IS S
- |---HIDE THE NEXT TWO WHILE WAITING FOR FP0
- fmoved COSB8,%fp2
- fmoved COSB7,%fp3
- |--FP0 IS NOW READY
- fmovex %fp0,%fp1
- fmulx %fp1,%fp1 | ...FP1 IS T
- |--HIDE THE NEXT TWO WHILE WAITING FOR FP1
- fmovex %fp0,X(%a6) | ...X IS S
- rorl #1,%d0
- andil #0x80000000,%d0
- | ...LEAST SIG. BIT OF D0 IN SIGN POSITION
- fmulx %fp1,%fp2 | ...TB8
- |--HIDE THE NEXT TWO WHILE WAITING FOR THE XU
- eorl %d0,X(%a6) | ...X IS NOW S'= SGN*S
- andil #0x80000000,%d0
- fmulx %fp1,%fp3 | ...TB7
- |--HIDE THE NEXT TWO WHILE WAITING FOR THE XU
- oril #0x3F800000,%d0 | ...D0 IS SGN IN SINGLE
- movel %d0,POSNEG1(%a6)
- faddd COSB6,%fp2 | ...B6+TB8
- faddd COSB5,%fp3 | ...B5+TB7
- fmulx %fp1,%fp2 | ...T(B6+TB8)
- fmulx %fp1,%fp3 | ...T(B5+TB7)
- faddd COSB4,%fp2 | ...B4+T(B6+TB8)
- faddx COSB3,%fp3 | ...B3+T(B5+TB7)
- fmulx %fp1,%fp2 | ...T(B4+T(B6+TB8))
- fmulx %fp3,%fp1 | ...T(B3+T(B5+TB7))
- faddx COSB2,%fp2 | ...B2+T(B4+T(B6+TB8))
- fadds COSB1,%fp1 | ...B1+T(B3+T(B5+TB7))
- fmulx %fp2,%fp0 | ...S(B2+T(B4+T(B6+TB8)))
- |--FP3 RELEASED, RESTORE NOW AND TAKE SOME ADVANTAGE OF HIDING
- |--FP2 RELEASED.
- faddx %fp1,%fp0
- |--FP1 RELEASED
- fmulx X(%a6),%fp0
- fmovel %d1,%FPCR |restore users exceptions
- fadds POSNEG1(%a6),%fp0 |last inst - possible exception set
- bra t_frcinx
- SINBORS:
- |--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
- |--IF |X| < 2**(-40), RETURN X OR 1.
- cmpil #0x3FFF8000,%d0
- bgts REDUCEX
- SINSM:
- movel ADJN(%a6),%d0
- cmpil #0,%d0
- bgts COSTINY
- SINTINY:
- movew #0x0000,XDCARE(%a6) | ...JUST IN CASE
- fmovel %d1,%FPCR |restore users exceptions
- fmovex X(%a6),%fp0 |last inst - possible exception set
- bra t_frcinx
- COSTINY:
- fmoves #0x3F800000,%fp0
- fmovel %d1,%FPCR |restore users exceptions
- fsubs #0x00800000,%fp0 |last inst - possible exception set
- bra t_frcinx
- REDUCEX:
- |--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW.
- |--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING
- |--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE.
- fmovemx %fp2-%fp5,-(%a7) | ...save FP2 through FP5
- movel %d2,-(%a7)
- fmoves #0x00000000,%fp1
- |--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that
- |--there is a danger of unwanted overflow in first LOOP iteration. In this
- |--case, reduce argument by one remainder step to make subsequent reduction
- |--safe.
- cmpil #0x7ffeffff,%d0 |is argument dangerously large?
- bnes LOOP
- movel #0x7ffe0000,FP_SCR2(%a6) |yes
- | ;create 2**16383*PI/2
- movel #0xc90fdaa2,FP_SCR2+4(%a6)
- clrl FP_SCR2+8(%a6)
- ftstx %fp0 |test sign of argument
- movel #0x7fdc0000,FP_SCR3(%a6) |create low half of 2**16383*
- | ;PI/2 at FP_SCR3
- movel #0x85a308d3,FP_SCR3+4(%a6)
- clrl FP_SCR3+8(%a6)
- fblt red_neg
- orw #0x8000,FP_SCR2(%a6) |positive arg
- orw #0x8000,FP_SCR3(%a6)
- red_neg:
- faddx FP_SCR2(%a6),%fp0 |high part of reduction is exact
- fmovex %fp0,%fp1 |save high result in fp1
- faddx FP_SCR3(%a6),%fp0 |low part of reduction
- fsubx %fp0,%fp1 |determine low component of result
- faddx FP_SCR3(%a6),%fp1 |fp0/fp1 are reduced argument.
- |--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
- |--integer quotient will be stored in N
- |--Intermediate remainder is 66-bit long; (R,r) in (FP0,FP1)
- LOOP:
- fmovex %fp0,INARG(%a6) | ...+-2**K * F, 1 <= F < 2
- movew INARG(%a6),%d0
- movel %d0,%a1 | ...save a copy of D0
- andil #0x00007FFF,%d0
- subil #0x00003FFF,%d0 | ...D0 IS K
- cmpil #28,%d0
- bles LASTLOOP
- CONTLOOP:
- subil #27,%d0 | ...D0 IS L := K-27
- movel #0,ENDFLAG(%a6)
- bras WORK
- LASTLOOP:
- clrl %d0 | ...D0 IS L := 0
- movel #1,ENDFLAG(%a6)
- WORK:
- |--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN
- |--THAT INT( X * (2/PI) / 2**(L) ) < 2**29.
- |--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
- |--2**L * (PIby2_1), 2**L * (PIby2_2)
- movel #0x00003FFE,%d2 | ...BIASED EXPO OF 2/PI
- subl %d0,%d2 | ...BIASED EXPO OF 2**(-L)*(2/PI)
- movel #0xA2F9836E,FP_SCR1+4(%a6)
- movel #0x4E44152A,FP_SCR1+8(%a6)
- movew %d2,FP_SCR1(%a6) | ...FP_SCR1 is 2**(-L)*(2/PI)
- fmovex %fp0,%fp2
- fmulx FP_SCR1(%a6),%fp2
- |--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
- |--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N
- |--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT
- |--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE
- |--US THE DESIRED VALUE IN FLOATING POINT.
- |--HIDE SIX CYCLES OF INSTRUCTION
- movel %a1,%d2
- swap %d2
- andil #0x80000000,%d2
- oril #0x5F000000,%d2 | ...D2 IS SIGN(INARG)*2**63 IN SGL
- movel %d2,TWOTO63(%a6)
- movel %d0,%d2
- addil #0x00003FFF,%d2 | ...BIASED EXPO OF 2**L * (PI/2)
- |--FP2 IS READY
- fadds TWOTO63(%a6),%fp2 | ...THE FRACTIONAL PART OF FP1 IS ROUNDED
- |--HIDE 4 CYCLES OF INSTRUCTION; creating 2**(L)*Piby2_1 and 2**(L)*Piby2_2
- movew %d2,FP_SCR2(%a6)
- clrw FP_SCR2+2(%a6)
- movel #0xC90FDAA2,FP_SCR2+4(%a6)
- clrl FP_SCR2+8(%a6) | ...FP_SCR2 is 2**(L) * Piby2_1
- |--FP2 IS READY
- fsubs TWOTO63(%a6),%fp2 | ...FP2 is N
- addil #0x00003FDD,%d0
- movew %d0,FP_SCR3(%a6)
- clrw FP_SCR3+2(%a6)
- movel #0x85A308D3,FP_SCR3+4(%a6)
- clrl FP_SCR3+8(%a6) | ...FP_SCR3 is 2**(L) * Piby2_2
- movel ENDFLAG(%a6),%d0
- |--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
- |--P2 = 2**(L) * Piby2_2
- fmovex %fp2,%fp4
- fmulx FP_SCR2(%a6),%fp4 | ...W = N*P1
- fmovex %fp2,%fp5
- fmulx FP_SCR3(%a6),%fp5 | ...w = N*P2
- fmovex %fp4,%fp3
- |--we want P+p = W+w but |p| <= half ulp of P
- |--Then, we need to compute A := R-P and a := r-p
- faddx %fp5,%fp3 | ...FP3 is P
- fsubx %fp3,%fp4 | ...W-P
- fsubx %fp3,%fp0 | ...FP0 is A := R - P
- faddx %fp5,%fp4 | ...FP4 is p = (W-P)+w
- fmovex %fp0,%fp3 | ...FP3 A
- fsubx %fp4,%fp1 | ...FP1 is a := r - p
- |--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but
- |--|r| <= half ulp of R.
- faddx %fp1,%fp0 | ...FP0 is R := A+a
- |--No need to calculate r if this is the last loop
- cmpil #0,%d0
- bgt RESTORE
- |--Need to calculate r
- fsubx %fp0,%fp3 | ...A-R
- faddx %fp3,%fp1 | ...FP1 is r := (A-R)+a
- bra LOOP
- RESTORE:
- fmovel %fp2,N(%a6)
- movel (%a7)+,%d2
- fmovemx (%a7)+,%fp2-%fp5
- movel ADJN(%a6),%d0
- cmpil #4,%d0
- blt SINCONT
- bras SCCONT
- .global ssincosd
- ssincosd:
- |--SIN AND COS OF X FOR DENORMALIZED X
- fmoves #0x3F800000,%fp1
- bsr sto_cos |store cosine result
- bra t_extdnrm
- .global ssincos
- ssincos:
- |--SET ADJN TO 4
- movel #4,ADJN(%a6)
- fmovex (%a0),%fp0 | ...LOAD INPUT
- movel (%a0),%d0
- movew 4(%a0),%d0
- fmovex %fp0,X(%a6)
- andil #0x7FFFFFFF,%d0 | ...COMPACTIFY X
- cmpil #0x3FD78000,%d0 | ...|X| >= 2**(-40)?
- bges SCOK1
- bra SCSM
- SCOK1:
- cmpil #0x4004BC7E,%d0 | ...|X| < 15 PI?
- blts SCMAIN
- bra REDUCEX
- SCMAIN:
- |--THIS IS THE USUAL CASE, |X| <= 15 PI.
- |--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
- fmovex %fp0,%fp1
- fmuld TWOBYPI,%fp1 | ...X*2/PI
- |--HIDE THE NEXT THREE INSTRUCTIONS
- lea PITBL+0x200,%a1 | ...TABLE OF N*PI/2, N = -32,...,32
- |--FP1 IS NOW READY
- fmovel %fp1,N(%a6) | ...CONVERT TO INTEGER
- movel N(%a6),%d0
- asll #4,%d0
- addal %d0,%a1 | ...ADDRESS OF N*PIBY2, IN Y1, Y2
- fsubx (%a1)+,%fp0 | ...X-Y1
- fsubs (%a1),%fp0 | ...FP0 IS R = (X-Y1)-Y2
- SCCONT:
- |--continuation point from REDUCEX
- |--HIDE THE NEXT TWO
- movel N(%a6),%d0
- rorl #1,%d0
- cmpil #0,%d0 | ...D0 < 0 IFF N IS ODD
- bge NEVEN
- NODD:
- |--REGISTERS SAVED SO FAR: D0, A0, FP2.
- fmovex %fp0,RPRIME(%a6)
- fmulx %fp0,%fp0 | ...FP0 IS S = R*R
- fmoved SINA7,%fp1 | ...A7
- fmoved COSB8,%fp2 | ...B8
- fmulx %fp0,%fp1 | ...SA7
- movel %d2,-(%a7)
- movel %d0,%d2
- fmulx %fp0,%fp2 | ...SB8
- rorl #1,%d2
- andil #0x80000000,%d2
- faddd SINA6,%fp1 | ...A6+SA7
- eorl %d0,%d2
- andil #0x80000000,%d2
- faddd COSB7,%fp2 | ...B7+SB8
- fmulx %fp0,%fp1 | ...S(A6+SA7)
- eorl %d2,RPRIME(%a6)
- movel (%a7)+,%d2
- fmulx %fp0,%fp2 | ...S(B7+SB8)
- rorl #1,%d0
- andil #0x80000000,%d0
- faddd SINA5,%fp1 | ...A5+S(A6+SA7)
- movel #0x3F800000,POSNEG1(%a6)
- eorl %d0,POSNEG1(%a6)
- faddd COSB6,%fp2 | ...B6+S(B7+SB8)
- fmulx %fp0,%fp1 | ...S(A5+S(A6+SA7))
- fmulx %fp0,%fp2 | ...S(B6+S(B7+SB8))
- fmovex %fp0,SPRIME(%a6)
- faddd SINA4,%fp1 | ...A4+S(A5+S(A6+SA7))
- eorl %d0,SPRIME(%a6)
- faddd COSB5,%fp2 | ...B5+S(B6+S(B7+SB8))
- fmulx %fp0,%fp1 | ...S(A4+...)
- fmulx %fp0,%fp2 | ...S(B5+...)
- faddd SINA3,%fp1 | ...A3+S(A4+...)
- faddd COSB4,%fp2 | ...B4+S(B5+...)
- fmulx %fp0,%fp1 | ...S(A3+...)
- fmulx %fp0,%fp2 | ...S(B4+...)
- faddx SINA2,%fp1 | ...A2+S(A3+...)
- faddx COSB3,%fp2 | ...B3+S(B4+...)
- fmulx %fp0,%fp1 | ...S(A2+...)
- fmulx %fp0,%fp2 | ...S(B3+...)
- faddx SINA1,%fp1 | ...A1+S(A2+...)
- faddx COSB2,%fp2 | ...B2+S(B3+...)
- fmulx %fp0,%fp1 | ...S(A1+...)
- fmulx %fp2,%fp0 | ...S(B2+...)
- fmulx RPRIME(%a6),%fp1 | ...R'S(A1+...)
- fadds COSB1,%fp0 | ...B1+S(B2...)
- fmulx SPRIME(%a6),%fp0 | ...S'(B1+S(B2+...))
- movel %d1,-(%sp) |restore users mode & precision
- andil #0xff,%d1 |mask off all exceptions
- fmovel %d1,%FPCR
- faddx RPRIME(%a6),%fp1 | ...COS(X)
- bsr sto_cos |store cosine result
- fmovel (%sp)+,%FPCR |restore users exceptions
- fadds POSNEG1(%a6),%fp0 | ...SIN(X)
- bra t_frcinx
- NEVEN:
- |--REGISTERS SAVED SO FAR: FP2.
- fmovex %fp0,RPRIME(%a6)
- fmulx %fp0,%fp0 | ...FP0 IS S = R*R
- fmoved COSB8,%fp1 | ...B8
- fmoved SINA7,%fp2 | ...A7
- fmulx %fp0,%fp1 | ...SB8
- fmovex %fp0,SPRIME(%a6)
- fmulx %fp0,%fp2 | ...SA7
- rorl #1,%d0
- andil #0x80000000,%d0
- faddd COSB7,%fp1 | ...B7+SB8
- faddd SINA6,%fp2 | ...A6+SA7
- eorl %d0,RPRIME(%a6)
- eorl %d0,SPRIME(%a6)
- fmulx %fp0,%fp1 | ...S(B7+SB8)
- oril #0x3F800000,%d0
- movel %d0,POSNEG1(%a6)
- fmulx %fp0,%fp2 | ...S(A6+SA7)
- faddd COSB6,%fp1 | ...B6+S(B7+SB8)
- faddd SINA5,%fp2 | ...A5+S(A6+SA7)
- fmulx %fp0,%fp1 | ...S(B6+S(B7+SB8))
- fmulx %fp0,%fp2 | ...S(A5+S(A6+SA7))
- faddd COSB5,%fp1 | ...B5+S(B6+S(B7+SB8))
- faddd SINA4,%fp2 | ...A4+S(A5+S(A6+SA7))
- fmulx %fp0,%fp1 | ...S(B5+...)
- fmulx %fp0,%fp2 | ...S(A4+...)
- faddd COSB4,%fp1 | ...B4+S(B5+...)
- faddd SINA3,%fp2 | ...A3+S(A4+...)
- fmulx %fp0,%fp1 | ...S(B4+...)
- fmulx %fp0,%fp2 | ...S(A3+...)
- faddx COSB3,%fp1 | ...B3+S(B4+...)
- faddx SINA2,%fp2 | ...A2+S(A3+...)
- fmulx %fp0,%fp1 | ...S(B3+...)
- fmulx %fp0,%fp2 | ...S(A2+...)
- faddx COSB2,%fp1 | ...B2+S(B3+...)
- faddx SINA1,%fp2 | ...A1+S(A2+...)
- fmulx %fp0,%fp1 | ...S(B2+...)
- fmulx %fp2,%fp0 | ...s(a1+...)
- fadds COSB1,%fp1 | ...B1+S(B2...)
- fmulx RPRIME(%a6),%fp0 | ...R'S(A1+...)
- fmulx SPRIME(%a6),%fp1 | ...S'(B1+S(B2+...))
- movel %d1,-(%sp) |save users mode & precision
- andil #0xff,%d1 |mask off all exceptions
- fmovel %d1,%FPCR
- fadds POSNEG1(%a6),%fp1 | ...COS(X)
- bsr sto_cos |store cosine result
- fmovel (%sp)+,%FPCR |restore users exceptions
- faddx RPRIME(%a6),%fp0 | ...SIN(X)
- bra t_frcinx
- SCBORS:
- cmpil #0x3FFF8000,%d0
- bgt REDUCEX
- SCSM:
- movew #0x0000,XDCARE(%a6)
- fmoves #0x3F800000,%fp1
- movel %d1,-(%sp) |save users mode & precision
- andil #0xff,%d1 |mask off all exceptions
- fmovel %d1,%FPCR
- fsubs #0x00800000,%fp1
- bsr sto_cos |store cosine result
- fmovel (%sp)+,%FPCR |restore users exceptions
- fmovex X(%a6),%fp0
- bra t_frcinx
- |end
|