blk-flush.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542
  1. /*
  2. * Functions to sequence FLUSH and FUA writes.
  3. *
  4. * Copyright (C) 2011 Max Planck Institute for Gravitational Physics
  5. * Copyright (C) 2011 Tejun Heo <tj@kernel.org>
  6. *
  7. * This file is released under the GPLv2.
  8. *
  9. * REQ_{FLUSH|FUA} requests are decomposed to sequences consisted of three
  10. * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
  11. * properties and hardware capability.
  12. *
  13. * If a request doesn't have data, only REQ_FLUSH makes sense, which
  14. * indicates a simple flush request. If there is data, REQ_FLUSH indicates
  15. * that the device cache should be flushed before the data is executed, and
  16. * REQ_FUA means that the data must be on non-volatile media on request
  17. * completion.
  18. *
  19. * If the device doesn't have writeback cache, FLUSH and FUA don't make any
  20. * difference. The requests are either completed immediately if there's no
  21. * data or executed as normal requests otherwise.
  22. *
  23. * If the device has writeback cache and supports FUA, REQ_FLUSH is
  24. * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
  25. *
  26. * If the device has writeback cache and doesn't support FUA, REQ_FLUSH is
  27. * translated to PREFLUSH and REQ_FUA to POSTFLUSH.
  28. *
  29. * The actual execution of flush is double buffered. Whenever a request
  30. * needs to execute PRE or POSTFLUSH, it queues at
  31. * fq->flush_queue[fq->flush_pending_idx]. Once certain criteria are met, a
  32. * flush is issued and the pending_idx is toggled. When the flush
  33. * completes, all the requests which were pending are proceeded to the next
  34. * step. This allows arbitrary merging of different types of FLUSH/FUA
  35. * requests.
  36. *
  37. * Currently, the following conditions are used to determine when to issue
  38. * flush.
  39. *
  40. * C1. At any given time, only one flush shall be in progress. This makes
  41. * double buffering sufficient.
  42. *
  43. * C2. Flush is deferred if any request is executing DATA of its sequence.
  44. * This avoids issuing separate POSTFLUSHes for requests which shared
  45. * PREFLUSH.
  46. *
  47. * C3. The second condition is ignored if there is a request which has
  48. * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid
  49. * starvation in the unlikely case where there are continuous stream of
  50. * FUA (without FLUSH) requests.
  51. *
  52. * For devices which support FUA, it isn't clear whether C2 (and thus C3)
  53. * is beneficial.
  54. *
  55. * Note that a sequenced FLUSH/FUA request with DATA is completed twice.
  56. * Once while executing DATA and again after the whole sequence is
  57. * complete. The first completion updates the contained bio but doesn't
  58. * finish it so that the bio submitter is notified only after the whole
  59. * sequence is complete. This is implemented by testing REQ_FLUSH_SEQ in
  60. * req_bio_endio().
  61. *
  62. * The above peculiarity requires that each FLUSH/FUA request has only one
  63. * bio attached to it, which is guaranteed as they aren't allowed to be
  64. * merged in the usual way.
  65. */
  66. #include <linux/kernel.h>
  67. #include <linux/module.h>
  68. #include <linux/bio.h>
  69. #include <linux/blkdev.h>
  70. #include <linux/gfp.h>
  71. #include <linux/blk-mq.h>
  72. #include "blk.h"
  73. #include "blk-mq.h"
  74. #include "blk-mq-tag.h"
  75. /* FLUSH/FUA sequences */
  76. enum {
  77. REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */
  78. REQ_FSEQ_DATA = (1 << 1), /* data write in progress */
  79. REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */
  80. REQ_FSEQ_DONE = (1 << 3),
  81. REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
  82. REQ_FSEQ_POSTFLUSH,
  83. /*
  84. * If flush has been pending longer than the following timeout,
  85. * it's issued even if flush_data requests are still in flight.
  86. */
  87. FLUSH_PENDING_TIMEOUT = 5 * HZ,
  88. };
  89. static bool blk_kick_flush(struct request_queue *q,
  90. struct blk_flush_queue *fq);
  91. static unsigned int blk_flush_policy(unsigned int fflags, struct request *rq)
  92. {
  93. unsigned int policy = 0;
  94. if (blk_rq_sectors(rq))
  95. policy |= REQ_FSEQ_DATA;
  96. if (fflags & REQ_FLUSH) {
  97. if (rq->cmd_flags & REQ_FLUSH)
  98. policy |= REQ_FSEQ_PREFLUSH;
  99. if (!(fflags & REQ_FUA) && (rq->cmd_flags & REQ_FUA))
  100. policy |= REQ_FSEQ_POSTFLUSH;
  101. }
  102. return policy;
  103. }
  104. static unsigned int blk_flush_cur_seq(struct request *rq)
  105. {
  106. return 1 << ffz(rq->flush.seq);
  107. }
  108. static void blk_flush_restore_request(struct request *rq)
  109. {
  110. /*
  111. * After flush data completion, @rq->bio is %NULL but we need to
  112. * complete the bio again. @rq->biotail is guaranteed to equal the
  113. * original @rq->bio. Restore it.
  114. */
  115. rq->bio = rq->biotail;
  116. /* make @rq a normal request */
  117. rq->cmd_flags &= ~REQ_FLUSH_SEQ;
  118. rq->end_io = rq->flush.saved_end_io;
  119. }
  120. static bool blk_flush_queue_rq(struct request *rq, bool add_front)
  121. {
  122. if (rq->q->mq_ops) {
  123. struct request_queue *q = rq->q;
  124. blk_mq_add_to_requeue_list(rq, add_front);
  125. blk_mq_kick_requeue_list(q);
  126. return false;
  127. } else {
  128. if (add_front)
  129. list_add(&rq->queuelist, &rq->q->queue_head);
  130. else
  131. list_add_tail(&rq->queuelist, &rq->q->queue_head);
  132. return true;
  133. }
  134. }
  135. /**
  136. * blk_flush_complete_seq - complete flush sequence
  137. * @rq: FLUSH/FUA request being sequenced
  138. * @fq: flush queue
  139. * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
  140. * @error: whether an error occurred
  141. *
  142. * @rq just completed @seq part of its flush sequence, record the
  143. * completion and trigger the next step.
  144. *
  145. * CONTEXT:
  146. * spin_lock_irq(q->queue_lock or fq->mq_flush_lock)
  147. *
  148. * RETURNS:
  149. * %true if requests were added to the dispatch queue, %false otherwise.
  150. */
  151. static bool blk_flush_complete_seq(struct request *rq,
  152. struct blk_flush_queue *fq,
  153. unsigned int seq, int error)
  154. {
  155. struct request_queue *q = rq->q;
  156. struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
  157. bool queued = false, kicked;
  158. BUG_ON(rq->flush.seq & seq);
  159. rq->flush.seq |= seq;
  160. if (likely(!error))
  161. seq = blk_flush_cur_seq(rq);
  162. else
  163. seq = REQ_FSEQ_DONE;
  164. switch (seq) {
  165. case REQ_FSEQ_PREFLUSH:
  166. case REQ_FSEQ_POSTFLUSH:
  167. /* queue for flush */
  168. if (list_empty(pending))
  169. fq->flush_pending_since = jiffies;
  170. list_move_tail(&rq->flush.list, pending);
  171. break;
  172. case REQ_FSEQ_DATA:
  173. list_move_tail(&rq->flush.list, &fq->flush_data_in_flight);
  174. queued = blk_flush_queue_rq(rq, true);
  175. break;
  176. case REQ_FSEQ_DONE:
  177. /*
  178. * @rq was previously adjusted by blk_flush_issue() for
  179. * flush sequencing and may already have gone through the
  180. * flush data request completion path. Restore @rq for
  181. * normal completion and end it.
  182. */
  183. BUG_ON(!list_empty(&rq->queuelist));
  184. list_del_init(&rq->flush.list);
  185. blk_flush_restore_request(rq);
  186. if (q->mq_ops)
  187. blk_mq_end_request(rq, error);
  188. else
  189. __blk_end_request_all(rq, error);
  190. break;
  191. default:
  192. BUG();
  193. }
  194. kicked = blk_kick_flush(q, fq);
  195. return kicked | queued;
  196. }
  197. static void flush_end_io(struct request *flush_rq, int error)
  198. {
  199. struct request_queue *q = flush_rq->q;
  200. struct list_head *running;
  201. bool queued = false;
  202. struct request *rq, *n;
  203. unsigned long flags = 0;
  204. struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx);
  205. if (q->mq_ops) {
  206. struct blk_mq_hw_ctx *hctx;
  207. /* release the tag's ownership to the req cloned from */
  208. spin_lock_irqsave(&fq->mq_flush_lock, flags);
  209. hctx = q->mq_ops->map_queue(q, flush_rq->mq_ctx->cpu);
  210. blk_mq_tag_set_rq(hctx, flush_rq->tag, fq->orig_rq);
  211. flush_rq->tag = -1;
  212. }
  213. running = &fq->flush_queue[fq->flush_running_idx];
  214. BUG_ON(fq->flush_pending_idx == fq->flush_running_idx);
  215. /* account completion of the flush request */
  216. fq->flush_running_idx ^= 1;
  217. if (!q->mq_ops)
  218. elv_completed_request(q, flush_rq);
  219. /* and push the waiting requests to the next stage */
  220. list_for_each_entry_safe(rq, n, running, flush.list) {
  221. unsigned int seq = blk_flush_cur_seq(rq);
  222. BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
  223. queued |= blk_flush_complete_seq(rq, fq, seq, error);
  224. }
  225. /*
  226. * Kick the queue to avoid stall for two cases:
  227. * 1. Moving a request silently to empty queue_head may stall the
  228. * queue.
  229. * 2. When flush request is running in non-queueable queue, the
  230. * queue is hold. Restart the queue after flush request is finished
  231. * to avoid stall.
  232. * This function is called from request completion path and calling
  233. * directly into request_fn may confuse the driver. Always use
  234. * kblockd.
  235. */
  236. if (queued || fq->flush_queue_delayed) {
  237. WARN_ON(q->mq_ops);
  238. blk_run_queue_async(q);
  239. }
  240. fq->flush_queue_delayed = 0;
  241. if (q->mq_ops)
  242. spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
  243. }
  244. /**
  245. * blk_kick_flush - consider issuing flush request
  246. * @q: request_queue being kicked
  247. * @fq: flush queue
  248. *
  249. * Flush related states of @q have changed, consider issuing flush request.
  250. * Please read the comment at the top of this file for more info.
  251. *
  252. * CONTEXT:
  253. * spin_lock_irq(q->queue_lock or fq->mq_flush_lock)
  254. *
  255. * RETURNS:
  256. * %true if flush was issued, %false otherwise.
  257. */
  258. static bool blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq)
  259. {
  260. struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
  261. struct request *first_rq =
  262. list_first_entry(pending, struct request, flush.list);
  263. struct request *flush_rq = fq->flush_rq;
  264. /* C1 described at the top of this file */
  265. if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending))
  266. return false;
  267. /* C2 and C3 */
  268. if (!list_empty(&fq->flush_data_in_flight) &&
  269. time_before(jiffies,
  270. fq->flush_pending_since + FLUSH_PENDING_TIMEOUT))
  271. return false;
  272. /*
  273. * Issue flush and toggle pending_idx. This makes pending_idx
  274. * different from running_idx, which means flush is in flight.
  275. */
  276. fq->flush_pending_idx ^= 1;
  277. blk_rq_init(q, flush_rq);
  278. /*
  279. * Borrow tag from the first request since they can't
  280. * be in flight at the same time. And acquire the tag's
  281. * ownership for flush req.
  282. */
  283. if (q->mq_ops) {
  284. struct blk_mq_hw_ctx *hctx;
  285. flush_rq->mq_ctx = first_rq->mq_ctx;
  286. flush_rq->tag = first_rq->tag;
  287. fq->orig_rq = first_rq;
  288. hctx = q->mq_ops->map_queue(q, first_rq->mq_ctx->cpu);
  289. blk_mq_tag_set_rq(hctx, first_rq->tag, flush_rq);
  290. }
  291. flush_rq->cmd_type = REQ_TYPE_FS;
  292. flush_rq->cmd_flags = WRITE_FLUSH | REQ_FLUSH_SEQ;
  293. flush_rq->rq_disk = first_rq->rq_disk;
  294. flush_rq->end_io = flush_end_io;
  295. return blk_flush_queue_rq(flush_rq, false);
  296. }
  297. static void flush_data_end_io(struct request *rq, int error)
  298. {
  299. struct request_queue *q = rq->q;
  300. struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
  301. /*
  302. * After populating an empty queue, kick it to avoid stall. Read
  303. * the comment in flush_end_io().
  304. */
  305. if (blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error))
  306. blk_run_queue_async(q);
  307. }
  308. static void mq_flush_data_end_io(struct request *rq, int error)
  309. {
  310. struct request_queue *q = rq->q;
  311. struct blk_mq_hw_ctx *hctx;
  312. struct blk_mq_ctx *ctx = rq->mq_ctx;
  313. unsigned long flags;
  314. struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx);
  315. hctx = q->mq_ops->map_queue(q, ctx->cpu);
  316. /*
  317. * After populating an empty queue, kick it to avoid stall. Read
  318. * the comment in flush_end_io().
  319. */
  320. spin_lock_irqsave(&fq->mq_flush_lock, flags);
  321. if (blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error))
  322. blk_mq_run_hw_queue(hctx, true);
  323. spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
  324. }
  325. /**
  326. * blk_insert_flush - insert a new FLUSH/FUA request
  327. * @rq: request to insert
  328. *
  329. * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions.
  330. * or __blk_mq_run_hw_queue() to dispatch request.
  331. * @rq is being submitted. Analyze what needs to be done and put it on the
  332. * right queue.
  333. *
  334. * CONTEXT:
  335. * spin_lock_irq(q->queue_lock) in !mq case
  336. */
  337. void blk_insert_flush(struct request *rq)
  338. {
  339. struct request_queue *q = rq->q;
  340. unsigned int fflags = q->flush_flags; /* may change, cache */
  341. unsigned int policy = blk_flush_policy(fflags, rq);
  342. struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx);
  343. /*
  344. * @policy now records what operations need to be done. Adjust
  345. * REQ_FLUSH and FUA for the driver.
  346. */
  347. rq->cmd_flags &= ~REQ_FLUSH;
  348. if (!(fflags & REQ_FUA))
  349. rq->cmd_flags &= ~REQ_FUA;
  350. /*
  351. * An empty flush handed down from a stacking driver may
  352. * translate into nothing if the underlying device does not
  353. * advertise a write-back cache. In this case, simply
  354. * complete the request.
  355. */
  356. if (!policy) {
  357. if (q->mq_ops)
  358. blk_mq_end_request(rq, 0);
  359. else
  360. __blk_end_bidi_request(rq, 0, 0, 0);
  361. return;
  362. }
  363. BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */
  364. /*
  365. * If there's data but flush is not necessary, the request can be
  366. * processed directly without going through flush machinery. Queue
  367. * for normal execution.
  368. */
  369. if ((policy & REQ_FSEQ_DATA) &&
  370. !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) {
  371. if (q->mq_ops) {
  372. blk_mq_insert_request(rq, false, false, true);
  373. } else
  374. list_add_tail(&rq->queuelist, &q->queue_head);
  375. return;
  376. }
  377. /*
  378. * @rq should go through flush machinery. Mark it part of flush
  379. * sequence and submit for further processing.
  380. */
  381. memset(&rq->flush, 0, sizeof(rq->flush));
  382. INIT_LIST_HEAD(&rq->flush.list);
  383. rq->cmd_flags |= REQ_FLUSH_SEQ;
  384. rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
  385. if (q->mq_ops) {
  386. rq->end_io = mq_flush_data_end_io;
  387. spin_lock_irq(&fq->mq_flush_lock);
  388. blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
  389. spin_unlock_irq(&fq->mq_flush_lock);
  390. return;
  391. }
  392. rq->end_io = flush_data_end_io;
  393. blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
  394. }
  395. /**
  396. * blkdev_issue_flush - queue a flush
  397. * @bdev: blockdev to issue flush for
  398. * @gfp_mask: memory allocation flags (for bio_alloc)
  399. * @error_sector: error sector
  400. *
  401. * Description:
  402. * Issue a flush for the block device in question. Caller can supply
  403. * room for storing the error offset in case of a flush error, if they
  404. * wish to. If WAIT flag is not passed then caller may check only what
  405. * request was pushed in some internal queue for later handling.
  406. */
  407. int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
  408. sector_t *error_sector)
  409. {
  410. struct request_queue *q;
  411. struct bio *bio;
  412. int ret = 0;
  413. if (bdev->bd_disk == NULL)
  414. return -ENXIO;
  415. q = bdev_get_queue(bdev);
  416. if (!q)
  417. return -ENXIO;
  418. /*
  419. * some block devices may not have their queue correctly set up here
  420. * (e.g. loop device without a backing file) and so issuing a flush
  421. * here will panic. Ensure there is a request function before issuing
  422. * the flush.
  423. */
  424. if (!q->make_request_fn)
  425. return -ENXIO;
  426. bio = bio_alloc(gfp_mask, 0);
  427. bio->bi_bdev = bdev;
  428. ret = submit_bio_wait(WRITE_FLUSH, bio);
  429. /*
  430. * The driver must store the error location in ->bi_sector, if
  431. * it supports it. For non-stacked drivers, this should be
  432. * copied from blk_rq_pos(rq).
  433. */
  434. if (error_sector)
  435. *error_sector = bio->bi_iter.bi_sector;
  436. bio_put(bio);
  437. return ret;
  438. }
  439. EXPORT_SYMBOL(blkdev_issue_flush);
  440. struct blk_flush_queue *blk_alloc_flush_queue(struct request_queue *q,
  441. int node, int cmd_size)
  442. {
  443. struct blk_flush_queue *fq;
  444. int rq_sz = sizeof(struct request);
  445. fq = kzalloc_node(sizeof(*fq), GFP_KERNEL, node);
  446. if (!fq)
  447. goto fail;
  448. if (q->mq_ops) {
  449. spin_lock_init(&fq->mq_flush_lock);
  450. rq_sz = round_up(rq_sz + cmd_size, cache_line_size());
  451. }
  452. fq->flush_rq = kzalloc_node(rq_sz, GFP_KERNEL, node);
  453. if (!fq->flush_rq)
  454. goto fail_rq;
  455. INIT_LIST_HEAD(&fq->flush_queue[0]);
  456. INIT_LIST_HEAD(&fq->flush_queue[1]);
  457. INIT_LIST_HEAD(&fq->flush_data_in_flight);
  458. return fq;
  459. fail_rq:
  460. kfree(fq);
  461. fail:
  462. return NULL;
  463. }
  464. void blk_free_flush_queue(struct blk_flush_queue *fq)
  465. {
  466. /* bio based request queue hasn't flush queue */
  467. if (!fq)
  468. return;
  469. kfree(fq->flush_rq);
  470. kfree(fq);
  471. }