acpi_pad.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499
  1. /*
  2. * acpi_pad.c ACPI Processor Aggregator Driver
  3. *
  4. * Copyright (c) 2009, Intel Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. */
  16. #include <linux/kernel.h>
  17. #include <linux/cpumask.h>
  18. #include <linux/module.h>
  19. #include <linux/init.h>
  20. #include <linux/types.h>
  21. #include <linux/kthread.h>
  22. #include <linux/freezer.h>
  23. #include <linux/cpu.h>
  24. #include <linux/tick.h>
  25. #include <linux/slab.h>
  26. #include <linux/acpi.h>
  27. #include <asm/mwait.h>
  28. #define ACPI_PROCESSOR_AGGREGATOR_CLASS "acpi_pad"
  29. #define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
  30. #define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
  31. static DEFINE_MUTEX(isolated_cpus_lock);
  32. static DEFINE_MUTEX(round_robin_lock);
  33. static unsigned long power_saving_mwait_eax;
  34. static unsigned char tsc_detected_unstable;
  35. static unsigned char tsc_marked_unstable;
  36. static void power_saving_mwait_init(void)
  37. {
  38. unsigned int eax, ebx, ecx, edx;
  39. unsigned int highest_cstate = 0;
  40. unsigned int highest_subcstate = 0;
  41. int i;
  42. if (!boot_cpu_has(X86_FEATURE_MWAIT))
  43. return;
  44. if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
  45. return;
  46. cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
  47. if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
  48. !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
  49. return;
  50. edx >>= MWAIT_SUBSTATE_SIZE;
  51. for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
  52. if (edx & MWAIT_SUBSTATE_MASK) {
  53. highest_cstate = i;
  54. highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
  55. }
  56. }
  57. power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
  58. (highest_subcstate - 1);
  59. #if defined(CONFIG_X86)
  60. switch (boot_cpu_data.x86_vendor) {
  61. case X86_VENDOR_AMD:
  62. case X86_VENDOR_INTEL:
  63. /*
  64. * AMD Fam10h TSC will tick in all
  65. * C/P/S0/S1 states when this bit is set.
  66. */
  67. if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
  68. tsc_detected_unstable = 1;
  69. break;
  70. default:
  71. /* TSC could halt in idle */
  72. tsc_detected_unstable = 1;
  73. }
  74. #endif
  75. }
  76. static unsigned long cpu_weight[NR_CPUS];
  77. static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
  78. static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
  79. static void round_robin_cpu(unsigned int tsk_index)
  80. {
  81. struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
  82. cpumask_var_t tmp;
  83. int cpu;
  84. unsigned long min_weight = -1;
  85. unsigned long uninitialized_var(preferred_cpu);
  86. if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
  87. return;
  88. mutex_lock(&round_robin_lock);
  89. cpumask_clear(tmp);
  90. for_each_cpu(cpu, pad_busy_cpus)
  91. cpumask_or(tmp, tmp, topology_sibling_cpumask(cpu));
  92. cpumask_andnot(tmp, cpu_online_mask, tmp);
  93. /* avoid HT sibilings if possible */
  94. if (cpumask_empty(tmp))
  95. cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
  96. if (cpumask_empty(tmp)) {
  97. mutex_unlock(&round_robin_lock);
  98. free_cpumask_var(tmp);
  99. return;
  100. }
  101. for_each_cpu(cpu, tmp) {
  102. if (cpu_weight[cpu] < min_weight) {
  103. min_weight = cpu_weight[cpu];
  104. preferred_cpu = cpu;
  105. }
  106. }
  107. if (tsk_in_cpu[tsk_index] != -1)
  108. cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
  109. tsk_in_cpu[tsk_index] = preferred_cpu;
  110. cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
  111. cpu_weight[preferred_cpu]++;
  112. mutex_unlock(&round_robin_lock);
  113. set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
  114. free_cpumask_var(tmp);
  115. }
  116. static void exit_round_robin(unsigned int tsk_index)
  117. {
  118. struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
  119. cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
  120. tsk_in_cpu[tsk_index] = -1;
  121. }
  122. static unsigned int idle_pct = 5; /* percentage */
  123. static unsigned int round_robin_time = 1; /* second */
  124. static int power_saving_thread(void *data)
  125. {
  126. struct sched_param param = {.sched_priority = 1};
  127. int do_sleep;
  128. unsigned int tsk_index = (unsigned long)data;
  129. u64 last_jiffies = 0;
  130. sched_setscheduler(current, SCHED_RR, &param);
  131. while (!kthread_should_stop()) {
  132. unsigned long expire_time;
  133. /* round robin to cpus */
  134. expire_time = last_jiffies + round_robin_time * HZ;
  135. if (time_before(expire_time, jiffies)) {
  136. last_jiffies = jiffies;
  137. round_robin_cpu(tsk_index);
  138. }
  139. do_sleep = 0;
  140. expire_time = jiffies + HZ * (100 - idle_pct) / 100;
  141. while (!need_resched()) {
  142. if (tsc_detected_unstable && !tsc_marked_unstable) {
  143. /* TSC could halt in idle, so notify users */
  144. mark_tsc_unstable("TSC halts in idle");
  145. tsc_marked_unstable = 1;
  146. }
  147. local_irq_disable();
  148. tick_broadcast_enable();
  149. tick_broadcast_enter();
  150. stop_critical_timings();
  151. mwait_idle_with_hints(power_saving_mwait_eax, 1);
  152. start_critical_timings();
  153. tick_broadcast_exit();
  154. local_irq_enable();
  155. if (time_before(expire_time, jiffies)) {
  156. do_sleep = 1;
  157. break;
  158. }
  159. }
  160. /*
  161. * current sched_rt has threshold for rt task running time.
  162. * When a rt task uses 95% CPU time, the rt thread will be
  163. * scheduled out for 5% CPU time to not starve other tasks. But
  164. * the mechanism only works when all CPUs have RT task running,
  165. * as if one CPU hasn't RT task, RT task from other CPUs will
  166. * borrow CPU time from this CPU and cause RT task use > 95%
  167. * CPU time. To make 'avoid starvation' work, takes a nap here.
  168. */
  169. if (unlikely(do_sleep))
  170. schedule_timeout_killable(HZ * idle_pct / 100);
  171. /* If an external event has set the need_resched flag, then
  172. * we need to deal with it, or this loop will continue to
  173. * spin without calling __mwait().
  174. */
  175. if (unlikely(need_resched()))
  176. schedule();
  177. }
  178. exit_round_robin(tsk_index);
  179. return 0;
  180. }
  181. static struct task_struct *ps_tsks[NR_CPUS];
  182. static unsigned int ps_tsk_num;
  183. static int create_power_saving_task(void)
  184. {
  185. int rc;
  186. ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
  187. (void *)(unsigned long)ps_tsk_num,
  188. "acpi_pad/%d", ps_tsk_num);
  189. if (IS_ERR(ps_tsks[ps_tsk_num])) {
  190. rc = PTR_ERR(ps_tsks[ps_tsk_num]);
  191. ps_tsks[ps_tsk_num] = NULL;
  192. } else {
  193. rc = 0;
  194. ps_tsk_num++;
  195. }
  196. return rc;
  197. }
  198. static void destroy_power_saving_task(void)
  199. {
  200. if (ps_tsk_num > 0) {
  201. ps_tsk_num--;
  202. kthread_stop(ps_tsks[ps_tsk_num]);
  203. ps_tsks[ps_tsk_num] = NULL;
  204. }
  205. }
  206. static void set_power_saving_task_num(unsigned int num)
  207. {
  208. if (num > ps_tsk_num) {
  209. while (ps_tsk_num < num) {
  210. if (create_power_saving_task())
  211. return;
  212. }
  213. } else if (num < ps_tsk_num) {
  214. while (ps_tsk_num > num)
  215. destroy_power_saving_task();
  216. }
  217. }
  218. static void acpi_pad_idle_cpus(unsigned int num_cpus)
  219. {
  220. get_online_cpus();
  221. num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
  222. set_power_saving_task_num(num_cpus);
  223. put_online_cpus();
  224. }
  225. static uint32_t acpi_pad_idle_cpus_num(void)
  226. {
  227. return ps_tsk_num;
  228. }
  229. static ssize_t acpi_pad_rrtime_store(struct device *dev,
  230. struct device_attribute *attr, const char *buf, size_t count)
  231. {
  232. unsigned long num;
  233. if (kstrtoul(buf, 0, &num))
  234. return -EINVAL;
  235. if (num < 1 || num >= 100)
  236. return -EINVAL;
  237. mutex_lock(&isolated_cpus_lock);
  238. round_robin_time = num;
  239. mutex_unlock(&isolated_cpus_lock);
  240. return count;
  241. }
  242. static ssize_t acpi_pad_rrtime_show(struct device *dev,
  243. struct device_attribute *attr, char *buf)
  244. {
  245. return scnprintf(buf, PAGE_SIZE, "%d\n", round_robin_time);
  246. }
  247. static DEVICE_ATTR(rrtime, S_IRUGO|S_IWUSR,
  248. acpi_pad_rrtime_show,
  249. acpi_pad_rrtime_store);
  250. static ssize_t acpi_pad_idlepct_store(struct device *dev,
  251. struct device_attribute *attr, const char *buf, size_t count)
  252. {
  253. unsigned long num;
  254. if (kstrtoul(buf, 0, &num))
  255. return -EINVAL;
  256. if (num < 1 || num >= 100)
  257. return -EINVAL;
  258. mutex_lock(&isolated_cpus_lock);
  259. idle_pct = num;
  260. mutex_unlock(&isolated_cpus_lock);
  261. return count;
  262. }
  263. static ssize_t acpi_pad_idlepct_show(struct device *dev,
  264. struct device_attribute *attr, char *buf)
  265. {
  266. return scnprintf(buf, PAGE_SIZE, "%d\n", idle_pct);
  267. }
  268. static DEVICE_ATTR(idlepct, S_IRUGO|S_IWUSR,
  269. acpi_pad_idlepct_show,
  270. acpi_pad_idlepct_store);
  271. static ssize_t acpi_pad_idlecpus_store(struct device *dev,
  272. struct device_attribute *attr, const char *buf, size_t count)
  273. {
  274. unsigned long num;
  275. if (kstrtoul(buf, 0, &num))
  276. return -EINVAL;
  277. mutex_lock(&isolated_cpus_lock);
  278. acpi_pad_idle_cpus(num);
  279. mutex_unlock(&isolated_cpus_lock);
  280. return count;
  281. }
  282. static ssize_t acpi_pad_idlecpus_show(struct device *dev,
  283. struct device_attribute *attr, char *buf)
  284. {
  285. return cpumap_print_to_pagebuf(false, buf,
  286. to_cpumask(pad_busy_cpus_bits));
  287. }
  288. static DEVICE_ATTR(idlecpus, S_IRUGO|S_IWUSR,
  289. acpi_pad_idlecpus_show,
  290. acpi_pad_idlecpus_store);
  291. static int acpi_pad_add_sysfs(struct acpi_device *device)
  292. {
  293. int result;
  294. result = device_create_file(&device->dev, &dev_attr_idlecpus);
  295. if (result)
  296. return -ENODEV;
  297. result = device_create_file(&device->dev, &dev_attr_idlepct);
  298. if (result) {
  299. device_remove_file(&device->dev, &dev_attr_idlecpus);
  300. return -ENODEV;
  301. }
  302. result = device_create_file(&device->dev, &dev_attr_rrtime);
  303. if (result) {
  304. device_remove_file(&device->dev, &dev_attr_idlecpus);
  305. device_remove_file(&device->dev, &dev_attr_idlepct);
  306. return -ENODEV;
  307. }
  308. return 0;
  309. }
  310. static void acpi_pad_remove_sysfs(struct acpi_device *device)
  311. {
  312. device_remove_file(&device->dev, &dev_attr_idlecpus);
  313. device_remove_file(&device->dev, &dev_attr_idlepct);
  314. device_remove_file(&device->dev, &dev_attr_rrtime);
  315. }
  316. /*
  317. * Query firmware how many CPUs should be idle
  318. * return -1 on failure
  319. */
  320. static int acpi_pad_pur(acpi_handle handle)
  321. {
  322. struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
  323. union acpi_object *package;
  324. int num = -1;
  325. if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
  326. return num;
  327. if (!buffer.length || !buffer.pointer)
  328. return num;
  329. package = buffer.pointer;
  330. if (package->type == ACPI_TYPE_PACKAGE &&
  331. package->package.count == 2 &&
  332. package->package.elements[0].integer.value == 1) /* rev 1 */
  333. num = package->package.elements[1].integer.value;
  334. kfree(buffer.pointer);
  335. return num;
  336. }
  337. static void acpi_pad_handle_notify(acpi_handle handle)
  338. {
  339. int num_cpus;
  340. uint32_t idle_cpus;
  341. struct acpi_buffer param = {
  342. .length = 4,
  343. .pointer = (void *)&idle_cpus,
  344. };
  345. mutex_lock(&isolated_cpus_lock);
  346. num_cpus = acpi_pad_pur(handle);
  347. if (num_cpus < 0) {
  348. mutex_unlock(&isolated_cpus_lock);
  349. return;
  350. }
  351. acpi_pad_idle_cpus(num_cpus);
  352. idle_cpus = acpi_pad_idle_cpus_num();
  353. acpi_evaluate_ost(handle, ACPI_PROCESSOR_AGGREGATOR_NOTIFY, 0, &param);
  354. mutex_unlock(&isolated_cpus_lock);
  355. }
  356. static void acpi_pad_notify(acpi_handle handle, u32 event,
  357. void *data)
  358. {
  359. struct acpi_device *device = data;
  360. switch (event) {
  361. case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
  362. acpi_pad_handle_notify(handle);
  363. acpi_bus_generate_netlink_event(device->pnp.device_class,
  364. dev_name(&device->dev), event, 0);
  365. break;
  366. default:
  367. pr_warn("Unsupported event [0x%x]\n", event);
  368. break;
  369. }
  370. }
  371. static int acpi_pad_add(struct acpi_device *device)
  372. {
  373. acpi_status status;
  374. strcpy(acpi_device_name(device), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
  375. strcpy(acpi_device_class(device), ACPI_PROCESSOR_AGGREGATOR_CLASS);
  376. if (acpi_pad_add_sysfs(device))
  377. return -ENODEV;
  378. status = acpi_install_notify_handler(device->handle,
  379. ACPI_DEVICE_NOTIFY, acpi_pad_notify, device);
  380. if (ACPI_FAILURE(status)) {
  381. acpi_pad_remove_sysfs(device);
  382. return -ENODEV;
  383. }
  384. return 0;
  385. }
  386. static int acpi_pad_remove(struct acpi_device *device)
  387. {
  388. mutex_lock(&isolated_cpus_lock);
  389. acpi_pad_idle_cpus(0);
  390. mutex_unlock(&isolated_cpus_lock);
  391. acpi_remove_notify_handler(device->handle,
  392. ACPI_DEVICE_NOTIFY, acpi_pad_notify);
  393. acpi_pad_remove_sysfs(device);
  394. return 0;
  395. }
  396. static const struct acpi_device_id pad_device_ids[] = {
  397. {"ACPI000C", 0},
  398. {"", 0},
  399. };
  400. MODULE_DEVICE_TABLE(acpi, pad_device_ids);
  401. static struct acpi_driver acpi_pad_driver = {
  402. .name = "processor_aggregator",
  403. .class = ACPI_PROCESSOR_AGGREGATOR_CLASS,
  404. .ids = pad_device_ids,
  405. .ops = {
  406. .add = acpi_pad_add,
  407. .remove = acpi_pad_remove,
  408. },
  409. };
  410. static int __init acpi_pad_init(void)
  411. {
  412. power_saving_mwait_init();
  413. if (power_saving_mwait_eax == 0)
  414. return -EINVAL;
  415. return acpi_bus_register_driver(&acpi_pad_driver);
  416. }
  417. static void __exit acpi_pad_exit(void)
  418. {
  419. acpi_bus_unregister_driver(&acpi_pad_driver);
  420. }
  421. module_init(acpi_pad_init);
  422. module_exit(acpi_pad_exit);
  423. MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
  424. MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
  425. MODULE_LICENSE("GPL");