clk-axi-clkgen.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555
  1. /*
  2. * AXI clkgen driver
  3. *
  4. * Copyright 2012-2013 Analog Devices Inc.
  5. * Author: Lars-Peter Clausen <lars@metafoo.de>
  6. *
  7. * Licensed under the GPL-2.
  8. *
  9. */
  10. #include <linux/platform_device.h>
  11. #include <linux/clk-provider.h>
  12. #include <linux/slab.h>
  13. #include <linux/io.h>
  14. #include <linux/of.h>
  15. #include <linux/module.h>
  16. #include <linux/err.h>
  17. #define AXI_CLKGEN_V1_REG_UPDATE_ENABLE 0x04
  18. #define AXI_CLKGEN_V1_REG_CLK_OUT1 0x08
  19. #define AXI_CLKGEN_V1_REG_CLK_OUT2 0x0c
  20. #define AXI_CLKGEN_V1_REG_CLK_DIV 0x10
  21. #define AXI_CLKGEN_V1_REG_CLK_FB1 0x14
  22. #define AXI_CLKGEN_V1_REG_CLK_FB2 0x18
  23. #define AXI_CLKGEN_V1_REG_LOCK1 0x1c
  24. #define AXI_CLKGEN_V1_REG_LOCK2 0x20
  25. #define AXI_CLKGEN_V1_REG_LOCK3 0x24
  26. #define AXI_CLKGEN_V1_REG_FILTER1 0x28
  27. #define AXI_CLKGEN_V1_REG_FILTER2 0x2c
  28. #define AXI_CLKGEN_V2_REG_RESET 0x40
  29. #define AXI_CLKGEN_V2_REG_DRP_CNTRL 0x70
  30. #define AXI_CLKGEN_V2_REG_DRP_STATUS 0x74
  31. #define AXI_CLKGEN_V2_RESET_MMCM_ENABLE BIT(1)
  32. #define AXI_CLKGEN_V2_RESET_ENABLE BIT(0)
  33. #define AXI_CLKGEN_V2_DRP_CNTRL_SEL BIT(29)
  34. #define AXI_CLKGEN_V2_DRP_CNTRL_READ BIT(28)
  35. #define AXI_CLKGEN_V2_DRP_STATUS_BUSY BIT(16)
  36. #define MMCM_REG_CLKOUT0_1 0x08
  37. #define MMCM_REG_CLKOUT0_2 0x09
  38. #define MMCM_REG_CLK_FB1 0x14
  39. #define MMCM_REG_CLK_FB2 0x15
  40. #define MMCM_REG_CLK_DIV 0x16
  41. #define MMCM_REG_LOCK1 0x18
  42. #define MMCM_REG_LOCK2 0x19
  43. #define MMCM_REG_LOCK3 0x1a
  44. #define MMCM_REG_FILTER1 0x4e
  45. #define MMCM_REG_FILTER2 0x4f
  46. struct axi_clkgen;
  47. struct axi_clkgen_mmcm_ops {
  48. void (*enable)(struct axi_clkgen *axi_clkgen, bool enable);
  49. int (*write)(struct axi_clkgen *axi_clkgen, unsigned int reg,
  50. unsigned int val, unsigned int mask);
  51. int (*read)(struct axi_clkgen *axi_clkgen, unsigned int reg,
  52. unsigned int *val);
  53. };
  54. struct axi_clkgen {
  55. void __iomem *base;
  56. const struct axi_clkgen_mmcm_ops *mmcm_ops;
  57. struct clk_hw clk_hw;
  58. };
  59. static void axi_clkgen_mmcm_enable(struct axi_clkgen *axi_clkgen,
  60. bool enable)
  61. {
  62. axi_clkgen->mmcm_ops->enable(axi_clkgen, enable);
  63. }
  64. static int axi_clkgen_mmcm_write(struct axi_clkgen *axi_clkgen,
  65. unsigned int reg, unsigned int val, unsigned int mask)
  66. {
  67. return axi_clkgen->mmcm_ops->write(axi_clkgen, reg, val, mask);
  68. }
  69. static int axi_clkgen_mmcm_read(struct axi_clkgen *axi_clkgen,
  70. unsigned int reg, unsigned int *val)
  71. {
  72. return axi_clkgen->mmcm_ops->read(axi_clkgen, reg, val);
  73. }
  74. static uint32_t axi_clkgen_lookup_filter(unsigned int m)
  75. {
  76. switch (m) {
  77. case 0:
  78. return 0x01001990;
  79. case 1:
  80. return 0x01001190;
  81. case 2:
  82. return 0x01009890;
  83. case 3:
  84. return 0x01001890;
  85. case 4:
  86. return 0x01008890;
  87. case 5 ... 8:
  88. return 0x01009090;
  89. case 9 ... 11:
  90. return 0x01000890;
  91. case 12:
  92. return 0x08009090;
  93. case 13 ... 22:
  94. return 0x01001090;
  95. case 23 ... 36:
  96. return 0x01008090;
  97. case 37 ... 46:
  98. return 0x08001090;
  99. default:
  100. return 0x08008090;
  101. }
  102. }
  103. static const uint32_t axi_clkgen_lock_table[] = {
  104. 0x060603e8, 0x060603e8, 0x080803e8, 0x0b0b03e8,
  105. 0x0e0e03e8, 0x111103e8, 0x131303e8, 0x161603e8,
  106. 0x191903e8, 0x1c1c03e8, 0x1f1f0384, 0x1f1f0339,
  107. 0x1f1f02ee, 0x1f1f02bc, 0x1f1f028a, 0x1f1f0271,
  108. 0x1f1f023f, 0x1f1f0226, 0x1f1f020d, 0x1f1f01f4,
  109. 0x1f1f01db, 0x1f1f01c2, 0x1f1f01a9, 0x1f1f0190,
  110. 0x1f1f0190, 0x1f1f0177, 0x1f1f015e, 0x1f1f015e,
  111. 0x1f1f0145, 0x1f1f0145, 0x1f1f012c, 0x1f1f012c,
  112. 0x1f1f012c, 0x1f1f0113, 0x1f1f0113, 0x1f1f0113,
  113. };
  114. static uint32_t axi_clkgen_lookup_lock(unsigned int m)
  115. {
  116. if (m < ARRAY_SIZE(axi_clkgen_lock_table))
  117. return axi_clkgen_lock_table[m];
  118. return 0x1f1f00fa;
  119. }
  120. static const unsigned int fpfd_min = 10000;
  121. static const unsigned int fpfd_max = 300000;
  122. static const unsigned int fvco_min = 600000;
  123. static const unsigned int fvco_max = 1200000;
  124. static void axi_clkgen_calc_params(unsigned long fin, unsigned long fout,
  125. unsigned int *best_d, unsigned int *best_m, unsigned int *best_dout)
  126. {
  127. unsigned long d, d_min, d_max, _d_min, _d_max;
  128. unsigned long m, m_min, m_max;
  129. unsigned long f, dout, best_f, fvco;
  130. fin /= 1000;
  131. fout /= 1000;
  132. best_f = ULONG_MAX;
  133. *best_d = 0;
  134. *best_m = 0;
  135. *best_dout = 0;
  136. d_min = max_t(unsigned long, DIV_ROUND_UP(fin, fpfd_max), 1);
  137. d_max = min_t(unsigned long, fin / fpfd_min, 80);
  138. m_min = max_t(unsigned long, DIV_ROUND_UP(fvco_min, fin) * d_min, 1);
  139. m_max = min_t(unsigned long, fvco_max * d_max / fin, 64);
  140. for (m = m_min; m <= m_max; m++) {
  141. _d_min = max(d_min, DIV_ROUND_UP(fin * m, fvco_max));
  142. _d_max = min(d_max, fin * m / fvco_min);
  143. for (d = _d_min; d <= _d_max; d++) {
  144. fvco = fin * m / d;
  145. dout = DIV_ROUND_CLOSEST(fvco, fout);
  146. dout = clamp_t(unsigned long, dout, 1, 128);
  147. f = fvco / dout;
  148. if (abs(f - fout) < abs(best_f - fout)) {
  149. best_f = f;
  150. *best_d = d;
  151. *best_m = m;
  152. *best_dout = dout;
  153. if (best_f == fout)
  154. return;
  155. }
  156. }
  157. }
  158. }
  159. static void axi_clkgen_calc_clk_params(unsigned int divider, unsigned int *low,
  160. unsigned int *high, unsigned int *edge, unsigned int *nocount)
  161. {
  162. if (divider == 1)
  163. *nocount = 1;
  164. else
  165. *nocount = 0;
  166. *high = divider / 2;
  167. *edge = divider % 2;
  168. *low = divider - *high;
  169. }
  170. static void axi_clkgen_write(struct axi_clkgen *axi_clkgen,
  171. unsigned int reg, unsigned int val)
  172. {
  173. writel(val, axi_clkgen->base + reg);
  174. }
  175. static void axi_clkgen_read(struct axi_clkgen *axi_clkgen,
  176. unsigned int reg, unsigned int *val)
  177. {
  178. *val = readl(axi_clkgen->base + reg);
  179. }
  180. static unsigned int axi_clkgen_v1_map_mmcm_reg(unsigned int reg)
  181. {
  182. switch (reg) {
  183. case MMCM_REG_CLKOUT0_1:
  184. return AXI_CLKGEN_V1_REG_CLK_OUT1;
  185. case MMCM_REG_CLKOUT0_2:
  186. return AXI_CLKGEN_V1_REG_CLK_OUT2;
  187. case MMCM_REG_CLK_FB1:
  188. return AXI_CLKGEN_V1_REG_CLK_FB1;
  189. case MMCM_REG_CLK_FB2:
  190. return AXI_CLKGEN_V1_REG_CLK_FB2;
  191. case MMCM_REG_CLK_DIV:
  192. return AXI_CLKGEN_V1_REG_CLK_DIV;
  193. case MMCM_REG_LOCK1:
  194. return AXI_CLKGEN_V1_REG_LOCK1;
  195. case MMCM_REG_LOCK2:
  196. return AXI_CLKGEN_V1_REG_LOCK2;
  197. case MMCM_REG_LOCK3:
  198. return AXI_CLKGEN_V1_REG_LOCK3;
  199. case MMCM_REG_FILTER1:
  200. return AXI_CLKGEN_V1_REG_FILTER1;
  201. case MMCM_REG_FILTER2:
  202. return AXI_CLKGEN_V1_REG_FILTER2;
  203. default:
  204. return 0;
  205. }
  206. }
  207. static int axi_clkgen_v1_mmcm_write(struct axi_clkgen *axi_clkgen,
  208. unsigned int reg, unsigned int val, unsigned int mask)
  209. {
  210. reg = axi_clkgen_v1_map_mmcm_reg(reg);
  211. if (reg == 0)
  212. return -EINVAL;
  213. axi_clkgen_write(axi_clkgen, reg, val);
  214. return 0;
  215. }
  216. static int axi_clkgen_v1_mmcm_read(struct axi_clkgen *axi_clkgen,
  217. unsigned int reg, unsigned int *val)
  218. {
  219. reg = axi_clkgen_v1_map_mmcm_reg(reg);
  220. if (reg == 0)
  221. return -EINVAL;
  222. axi_clkgen_read(axi_clkgen, reg, val);
  223. return 0;
  224. }
  225. static void axi_clkgen_v1_mmcm_enable(struct axi_clkgen *axi_clkgen,
  226. bool enable)
  227. {
  228. axi_clkgen_write(axi_clkgen, AXI_CLKGEN_V1_REG_UPDATE_ENABLE, enable);
  229. }
  230. static const struct axi_clkgen_mmcm_ops axi_clkgen_v1_mmcm_ops = {
  231. .write = axi_clkgen_v1_mmcm_write,
  232. .read = axi_clkgen_v1_mmcm_read,
  233. .enable = axi_clkgen_v1_mmcm_enable,
  234. };
  235. static int axi_clkgen_wait_non_busy(struct axi_clkgen *axi_clkgen)
  236. {
  237. unsigned int timeout = 10000;
  238. unsigned int val;
  239. do {
  240. axi_clkgen_read(axi_clkgen, AXI_CLKGEN_V2_REG_DRP_STATUS, &val);
  241. } while ((val & AXI_CLKGEN_V2_DRP_STATUS_BUSY) && --timeout);
  242. if (val & AXI_CLKGEN_V2_DRP_STATUS_BUSY)
  243. return -EIO;
  244. return val & 0xffff;
  245. }
  246. static int axi_clkgen_v2_mmcm_read(struct axi_clkgen *axi_clkgen,
  247. unsigned int reg, unsigned int *val)
  248. {
  249. unsigned int reg_val;
  250. int ret;
  251. ret = axi_clkgen_wait_non_busy(axi_clkgen);
  252. if (ret < 0)
  253. return ret;
  254. reg_val = AXI_CLKGEN_V2_DRP_CNTRL_SEL | AXI_CLKGEN_V2_DRP_CNTRL_READ;
  255. reg_val |= (reg << 16);
  256. axi_clkgen_write(axi_clkgen, AXI_CLKGEN_V2_REG_DRP_CNTRL, reg_val);
  257. ret = axi_clkgen_wait_non_busy(axi_clkgen);
  258. if (ret < 0)
  259. return ret;
  260. *val = ret;
  261. return 0;
  262. }
  263. static int axi_clkgen_v2_mmcm_write(struct axi_clkgen *axi_clkgen,
  264. unsigned int reg, unsigned int val, unsigned int mask)
  265. {
  266. unsigned int reg_val = 0;
  267. int ret;
  268. ret = axi_clkgen_wait_non_busy(axi_clkgen);
  269. if (ret < 0)
  270. return ret;
  271. if (mask != 0xffff) {
  272. axi_clkgen_v2_mmcm_read(axi_clkgen, reg, &reg_val);
  273. reg_val &= ~mask;
  274. }
  275. reg_val |= AXI_CLKGEN_V2_DRP_CNTRL_SEL | (reg << 16) | (val & mask);
  276. axi_clkgen_write(axi_clkgen, AXI_CLKGEN_V2_REG_DRP_CNTRL, reg_val);
  277. return 0;
  278. }
  279. static void axi_clkgen_v2_mmcm_enable(struct axi_clkgen *axi_clkgen,
  280. bool enable)
  281. {
  282. unsigned int val = AXI_CLKGEN_V2_RESET_ENABLE;
  283. if (enable)
  284. val |= AXI_CLKGEN_V2_RESET_MMCM_ENABLE;
  285. axi_clkgen_write(axi_clkgen, AXI_CLKGEN_V2_REG_RESET, val);
  286. }
  287. static const struct axi_clkgen_mmcm_ops axi_clkgen_v2_mmcm_ops = {
  288. .write = axi_clkgen_v2_mmcm_write,
  289. .read = axi_clkgen_v2_mmcm_read,
  290. .enable = axi_clkgen_v2_mmcm_enable,
  291. };
  292. static struct axi_clkgen *clk_hw_to_axi_clkgen(struct clk_hw *clk_hw)
  293. {
  294. return container_of(clk_hw, struct axi_clkgen, clk_hw);
  295. }
  296. static int axi_clkgen_set_rate(struct clk_hw *clk_hw,
  297. unsigned long rate, unsigned long parent_rate)
  298. {
  299. struct axi_clkgen *axi_clkgen = clk_hw_to_axi_clkgen(clk_hw);
  300. unsigned int d, m, dout;
  301. unsigned int nocount;
  302. unsigned int high;
  303. unsigned int edge;
  304. unsigned int low;
  305. uint32_t filter;
  306. uint32_t lock;
  307. if (parent_rate == 0 || rate == 0)
  308. return -EINVAL;
  309. axi_clkgen_calc_params(parent_rate, rate, &d, &m, &dout);
  310. if (d == 0 || dout == 0 || m == 0)
  311. return -EINVAL;
  312. filter = axi_clkgen_lookup_filter(m - 1);
  313. lock = axi_clkgen_lookup_lock(m - 1);
  314. axi_clkgen_calc_clk_params(dout, &low, &high, &edge, &nocount);
  315. axi_clkgen_mmcm_write(axi_clkgen, MMCM_REG_CLKOUT0_1,
  316. (high << 6) | low, 0xefff);
  317. axi_clkgen_mmcm_write(axi_clkgen, MMCM_REG_CLKOUT0_2,
  318. (edge << 7) | (nocount << 6), 0x03ff);
  319. axi_clkgen_calc_clk_params(d, &low, &high, &edge, &nocount);
  320. axi_clkgen_mmcm_write(axi_clkgen, MMCM_REG_CLK_DIV,
  321. (edge << 13) | (nocount << 12) | (high << 6) | low, 0x3fff);
  322. axi_clkgen_calc_clk_params(m, &low, &high, &edge, &nocount);
  323. axi_clkgen_mmcm_write(axi_clkgen, MMCM_REG_CLK_FB1,
  324. (high << 6) | low, 0xefff);
  325. axi_clkgen_mmcm_write(axi_clkgen, MMCM_REG_CLK_FB2,
  326. (edge << 7) | (nocount << 6), 0x03ff);
  327. axi_clkgen_mmcm_write(axi_clkgen, MMCM_REG_LOCK1, lock & 0x3ff, 0x3ff);
  328. axi_clkgen_mmcm_write(axi_clkgen, MMCM_REG_LOCK2,
  329. (((lock >> 16) & 0x1f) << 10) | 0x1, 0x7fff);
  330. axi_clkgen_mmcm_write(axi_clkgen, MMCM_REG_LOCK3,
  331. (((lock >> 24) & 0x1f) << 10) | 0x3e9, 0x7fff);
  332. axi_clkgen_mmcm_write(axi_clkgen, MMCM_REG_FILTER1, filter >> 16, 0x9900);
  333. axi_clkgen_mmcm_write(axi_clkgen, MMCM_REG_FILTER2, filter, 0x9900);
  334. return 0;
  335. }
  336. static long axi_clkgen_round_rate(struct clk_hw *hw, unsigned long rate,
  337. unsigned long *parent_rate)
  338. {
  339. unsigned int d, m, dout;
  340. axi_clkgen_calc_params(*parent_rate, rate, &d, &m, &dout);
  341. if (d == 0 || dout == 0 || m == 0)
  342. return -EINVAL;
  343. return *parent_rate / d * m / dout;
  344. }
  345. static unsigned long axi_clkgen_recalc_rate(struct clk_hw *clk_hw,
  346. unsigned long parent_rate)
  347. {
  348. struct axi_clkgen *axi_clkgen = clk_hw_to_axi_clkgen(clk_hw);
  349. unsigned int d, m, dout;
  350. unsigned int reg;
  351. unsigned long long tmp;
  352. axi_clkgen_mmcm_read(axi_clkgen, MMCM_REG_CLKOUT0_1, &reg);
  353. dout = (reg & 0x3f) + ((reg >> 6) & 0x3f);
  354. axi_clkgen_mmcm_read(axi_clkgen, MMCM_REG_CLK_DIV, &reg);
  355. d = (reg & 0x3f) + ((reg >> 6) & 0x3f);
  356. axi_clkgen_mmcm_read(axi_clkgen, MMCM_REG_CLK_FB1, &reg);
  357. m = (reg & 0x3f) + ((reg >> 6) & 0x3f);
  358. if (d == 0 || dout == 0)
  359. return 0;
  360. tmp = (unsigned long long)(parent_rate / d) * m;
  361. do_div(tmp, dout);
  362. if (tmp > ULONG_MAX)
  363. return ULONG_MAX;
  364. return tmp;
  365. }
  366. static int axi_clkgen_enable(struct clk_hw *clk_hw)
  367. {
  368. struct axi_clkgen *axi_clkgen = clk_hw_to_axi_clkgen(clk_hw);
  369. axi_clkgen_mmcm_enable(axi_clkgen, true);
  370. return 0;
  371. }
  372. static void axi_clkgen_disable(struct clk_hw *clk_hw)
  373. {
  374. struct axi_clkgen *axi_clkgen = clk_hw_to_axi_clkgen(clk_hw);
  375. axi_clkgen_mmcm_enable(axi_clkgen, false);
  376. }
  377. static const struct clk_ops axi_clkgen_ops = {
  378. .recalc_rate = axi_clkgen_recalc_rate,
  379. .round_rate = axi_clkgen_round_rate,
  380. .set_rate = axi_clkgen_set_rate,
  381. .enable = axi_clkgen_enable,
  382. .disable = axi_clkgen_disable,
  383. };
  384. static const struct of_device_id axi_clkgen_ids[] = {
  385. {
  386. .compatible = "adi,axi-clkgen-1.00.a",
  387. .data = &axi_clkgen_v1_mmcm_ops
  388. }, {
  389. .compatible = "adi,axi-clkgen-2.00.a",
  390. .data = &axi_clkgen_v2_mmcm_ops,
  391. },
  392. { },
  393. };
  394. MODULE_DEVICE_TABLE(of, axi_clkgen_ids);
  395. static int axi_clkgen_probe(struct platform_device *pdev)
  396. {
  397. const struct of_device_id *id;
  398. struct axi_clkgen *axi_clkgen;
  399. struct clk_init_data init;
  400. const char *parent_name;
  401. const char *clk_name;
  402. struct resource *mem;
  403. struct clk *clk;
  404. if (!pdev->dev.of_node)
  405. return -ENODEV;
  406. id = of_match_node(axi_clkgen_ids, pdev->dev.of_node);
  407. if (!id)
  408. return -ENODEV;
  409. axi_clkgen = devm_kzalloc(&pdev->dev, sizeof(*axi_clkgen), GFP_KERNEL);
  410. if (!axi_clkgen)
  411. return -ENOMEM;
  412. axi_clkgen->mmcm_ops = id->data;
  413. mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  414. axi_clkgen->base = devm_ioremap_resource(&pdev->dev, mem);
  415. if (IS_ERR(axi_clkgen->base))
  416. return PTR_ERR(axi_clkgen->base);
  417. parent_name = of_clk_get_parent_name(pdev->dev.of_node, 0);
  418. if (!parent_name)
  419. return -EINVAL;
  420. clk_name = pdev->dev.of_node->name;
  421. of_property_read_string(pdev->dev.of_node, "clock-output-names",
  422. &clk_name);
  423. init.name = clk_name;
  424. init.ops = &axi_clkgen_ops;
  425. init.flags = CLK_SET_RATE_GATE;
  426. init.parent_names = &parent_name;
  427. init.num_parents = 1;
  428. axi_clkgen_mmcm_enable(axi_clkgen, false);
  429. axi_clkgen->clk_hw.init = &init;
  430. clk = devm_clk_register(&pdev->dev, &axi_clkgen->clk_hw);
  431. if (IS_ERR(clk))
  432. return PTR_ERR(clk);
  433. return of_clk_add_provider(pdev->dev.of_node, of_clk_src_simple_get,
  434. clk);
  435. }
  436. static int axi_clkgen_remove(struct platform_device *pdev)
  437. {
  438. of_clk_del_provider(pdev->dev.of_node);
  439. return 0;
  440. }
  441. static struct platform_driver axi_clkgen_driver = {
  442. .driver = {
  443. .name = "adi-axi-clkgen",
  444. .of_match_table = axi_clkgen_ids,
  445. },
  446. .probe = axi_clkgen_probe,
  447. .remove = axi_clkgen_remove,
  448. };
  449. module_platform_driver(axi_clkgen_driver);
  450. MODULE_LICENSE("GPL v2");
  451. MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
  452. MODULE_DESCRIPTION("Driver for the Analog Devices' AXI clkgen pcore clock generator");