atmel-aes.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482
  1. /*
  2. * Cryptographic API.
  3. *
  4. * Support for ATMEL AES HW acceleration.
  5. *
  6. * Copyright (c) 2012 Eukréa Electromatique - ATMEL
  7. * Author: Nicolas Royer <nicolas@eukrea.com>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as published
  11. * by the Free Software Foundation.
  12. *
  13. * Some ideas are from omap-aes.c driver.
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/module.h>
  17. #include <linux/slab.h>
  18. #include <linux/err.h>
  19. #include <linux/clk.h>
  20. #include <linux/io.h>
  21. #include <linux/hw_random.h>
  22. #include <linux/platform_device.h>
  23. #include <linux/device.h>
  24. #include <linux/init.h>
  25. #include <linux/errno.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/irq.h>
  28. #include <linux/scatterlist.h>
  29. #include <linux/dma-mapping.h>
  30. #include <linux/of_device.h>
  31. #include <linux/delay.h>
  32. #include <linux/crypto.h>
  33. #include <linux/cryptohash.h>
  34. #include <crypto/scatterwalk.h>
  35. #include <crypto/algapi.h>
  36. #include <crypto/aes.h>
  37. #include <crypto/hash.h>
  38. #include <crypto/internal/hash.h>
  39. #include <linux/platform_data/crypto-atmel.h>
  40. #include <dt-bindings/dma/at91.h>
  41. #include "atmel-aes-regs.h"
  42. #define CFB8_BLOCK_SIZE 1
  43. #define CFB16_BLOCK_SIZE 2
  44. #define CFB32_BLOCK_SIZE 4
  45. #define CFB64_BLOCK_SIZE 8
  46. /* AES flags */
  47. #define AES_FLAGS_MODE_MASK 0x03ff
  48. #define AES_FLAGS_ENCRYPT BIT(0)
  49. #define AES_FLAGS_CBC BIT(1)
  50. #define AES_FLAGS_CFB BIT(2)
  51. #define AES_FLAGS_CFB8 BIT(3)
  52. #define AES_FLAGS_CFB16 BIT(4)
  53. #define AES_FLAGS_CFB32 BIT(5)
  54. #define AES_FLAGS_CFB64 BIT(6)
  55. #define AES_FLAGS_CFB128 BIT(7)
  56. #define AES_FLAGS_OFB BIT(8)
  57. #define AES_FLAGS_CTR BIT(9)
  58. #define AES_FLAGS_INIT BIT(16)
  59. #define AES_FLAGS_DMA BIT(17)
  60. #define AES_FLAGS_BUSY BIT(18)
  61. #define AES_FLAGS_FAST BIT(19)
  62. #define ATMEL_AES_QUEUE_LENGTH 50
  63. #define ATMEL_AES_DMA_THRESHOLD 16
  64. struct atmel_aes_caps {
  65. bool has_dualbuff;
  66. bool has_cfb64;
  67. u32 max_burst_size;
  68. };
  69. struct atmel_aes_dev;
  70. struct atmel_aes_ctx {
  71. struct atmel_aes_dev *dd;
  72. int keylen;
  73. u32 key[AES_KEYSIZE_256 / sizeof(u32)];
  74. u16 block_size;
  75. };
  76. struct atmel_aes_reqctx {
  77. unsigned long mode;
  78. };
  79. struct atmel_aes_dma {
  80. struct dma_chan *chan;
  81. struct dma_slave_config dma_conf;
  82. };
  83. struct atmel_aes_dev {
  84. struct list_head list;
  85. unsigned long phys_base;
  86. void __iomem *io_base;
  87. struct atmel_aes_ctx *ctx;
  88. struct device *dev;
  89. struct clk *iclk;
  90. int irq;
  91. unsigned long flags;
  92. int err;
  93. spinlock_t lock;
  94. struct crypto_queue queue;
  95. struct tasklet_struct done_task;
  96. struct tasklet_struct queue_task;
  97. struct ablkcipher_request *req;
  98. size_t total;
  99. struct scatterlist *in_sg;
  100. unsigned int nb_in_sg;
  101. size_t in_offset;
  102. struct scatterlist *out_sg;
  103. unsigned int nb_out_sg;
  104. size_t out_offset;
  105. size_t bufcnt;
  106. size_t buflen;
  107. size_t dma_size;
  108. void *buf_in;
  109. int dma_in;
  110. dma_addr_t dma_addr_in;
  111. struct atmel_aes_dma dma_lch_in;
  112. void *buf_out;
  113. int dma_out;
  114. dma_addr_t dma_addr_out;
  115. struct atmel_aes_dma dma_lch_out;
  116. struct atmel_aes_caps caps;
  117. u32 hw_version;
  118. };
  119. struct atmel_aes_drv {
  120. struct list_head dev_list;
  121. spinlock_t lock;
  122. };
  123. static struct atmel_aes_drv atmel_aes = {
  124. .dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
  125. .lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
  126. };
  127. static int atmel_aes_sg_length(struct ablkcipher_request *req,
  128. struct scatterlist *sg)
  129. {
  130. unsigned int total = req->nbytes;
  131. int sg_nb;
  132. unsigned int len;
  133. struct scatterlist *sg_list;
  134. sg_nb = 0;
  135. sg_list = sg;
  136. total = req->nbytes;
  137. while (total) {
  138. len = min(sg_list->length, total);
  139. sg_nb++;
  140. total -= len;
  141. sg_list = sg_next(sg_list);
  142. if (!sg_list)
  143. total = 0;
  144. }
  145. return sg_nb;
  146. }
  147. static int atmel_aes_sg_copy(struct scatterlist **sg, size_t *offset,
  148. void *buf, size_t buflen, size_t total, int out)
  149. {
  150. unsigned int count, off = 0;
  151. while (buflen && total) {
  152. count = min((*sg)->length - *offset, total);
  153. count = min(count, buflen);
  154. if (!count)
  155. return off;
  156. scatterwalk_map_and_copy(buf + off, *sg, *offset, count, out);
  157. off += count;
  158. buflen -= count;
  159. *offset += count;
  160. total -= count;
  161. if (*offset == (*sg)->length) {
  162. *sg = sg_next(*sg);
  163. if (*sg)
  164. *offset = 0;
  165. else
  166. total = 0;
  167. }
  168. }
  169. return off;
  170. }
  171. static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
  172. {
  173. return readl_relaxed(dd->io_base + offset);
  174. }
  175. static inline void atmel_aes_write(struct atmel_aes_dev *dd,
  176. u32 offset, u32 value)
  177. {
  178. writel_relaxed(value, dd->io_base + offset);
  179. }
  180. static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
  181. u32 *value, int count)
  182. {
  183. for (; count--; value++, offset += 4)
  184. *value = atmel_aes_read(dd, offset);
  185. }
  186. static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
  187. u32 *value, int count)
  188. {
  189. for (; count--; value++, offset += 4)
  190. atmel_aes_write(dd, offset, *value);
  191. }
  192. static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_ctx *ctx)
  193. {
  194. struct atmel_aes_dev *aes_dd = NULL;
  195. struct atmel_aes_dev *tmp;
  196. spin_lock_bh(&atmel_aes.lock);
  197. if (!ctx->dd) {
  198. list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
  199. aes_dd = tmp;
  200. break;
  201. }
  202. ctx->dd = aes_dd;
  203. } else {
  204. aes_dd = ctx->dd;
  205. }
  206. spin_unlock_bh(&atmel_aes.lock);
  207. return aes_dd;
  208. }
  209. static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
  210. {
  211. int err;
  212. err = clk_prepare_enable(dd->iclk);
  213. if (err)
  214. return err;
  215. if (!(dd->flags & AES_FLAGS_INIT)) {
  216. atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
  217. atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
  218. dd->flags |= AES_FLAGS_INIT;
  219. dd->err = 0;
  220. }
  221. return 0;
  222. }
  223. static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
  224. {
  225. return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
  226. }
  227. static void atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
  228. {
  229. atmel_aes_hw_init(dd);
  230. dd->hw_version = atmel_aes_get_version(dd);
  231. dev_info(dd->dev,
  232. "version: 0x%x\n", dd->hw_version);
  233. clk_disable_unprepare(dd->iclk);
  234. }
  235. static void atmel_aes_finish_req(struct atmel_aes_dev *dd, int err)
  236. {
  237. struct ablkcipher_request *req = dd->req;
  238. clk_disable_unprepare(dd->iclk);
  239. dd->flags &= ~AES_FLAGS_BUSY;
  240. req->base.complete(&req->base, err);
  241. }
  242. static void atmel_aes_dma_callback(void *data)
  243. {
  244. struct atmel_aes_dev *dd = data;
  245. /* dma_lch_out - completed */
  246. tasklet_schedule(&dd->done_task);
  247. }
  248. static int atmel_aes_crypt_dma(struct atmel_aes_dev *dd,
  249. dma_addr_t dma_addr_in, dma_addr_t dma_addr_out, int length)
  250. {
  251. struct scatterlist sg[2];
  252. struct dma_async_tx_descriptor *in_desc, *out_desc;
  253. dd->dma_size = length;
  254. dma_sync_single_for_device(dd->dev, dma_addr_in, length,
  255. DMA_TO_DEVICE);
  256. dma_sync_single_for_device(dd->dev, dma_addr_out, length,
  257. DMA_FROM_DEVICE);
  258. if (dd->flags & AES_FLAGS_CFB8) {
  259. dd->dma_lch_in.dma_conf.dst_addr_width =
  260. DMA_SLAVE_BUSWIDTH_1_BYTE;
  261. dd->dma_lch_out.dma_conf.src_addr_width =
  262. DMA_SLAVE_BUSWIDTH_1_BYTE;
  263. } else if (dd->flags & AES_FLAGS_CFB16) {
  264. dd->dma_lch_in.dma_conf.dst_addr_width =
  265. DMA_SLAVE_BUSWIDTH_2_BYTES;
  266. dd->dma_lch_out.dma_conf.src_addr_width =
  267. DMA_SLAVE_BUSWIDTH_2_BYTES;
  268. } else {
  269. dd->dma_lch_in.dma_conf.dst_addr_width =
  270. DMA_SLAVE_BUSWIDTH_4_BYTES;
  271. dd->dma_lch_out.dma_conf.src_addr_width =
  272. DMA_SLAVE_BUSWIDTH_4_BYTES;
  273. }
  274. if (dd->flags & (AES_FLAGS_CFB8 | AES_FLAGS_CFB16 |
  275. AES_FLAGS_CFB32 | AES_FLAGS_CFB64)) {
  276. dd->dma_lch_in.dma_conf.src_maxburst = 1;
  277. dd->dma_lch_in.dma_conf.dst_maxburst = 1;
  278. dd->dma_lch_out.dma_conf.src_maxburst = 1;
  279. dd->dma_lch_out.dma_conf.dst_maxburst = 1;
  280. } else {
  281. dd->dma_lch_in.dma_conf.src_maxburst = dd->caps.max_burst_size;
  282. dd->dma_lch_in.dma_conf.dst_maxburst = dd->caps.max_burst_size;
  283. dd->dma_lch_out.dma_conf.src_maxburst = dd->caps.max_burst_size;
  284. dd->dma_lch_out.dma_conf.dst_maxburst = dd->caps.max_burst_size;
  285. }
  286. dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
  287. dmaengine_slave_config(dd->dma_lch_out.chan, &dd->dma_lch_out.dma_conf);
  288. dd->flags |= AES_FLAGS_DMA;
  289. sg_init_table(&sg[0], 1);
  290. sg_dma_address(&sg[0]) = dma_addr_in;
  291. sg_dma_len(&sg[0]) = length;
  292. sg_init_table(&sg[1], 1);
  293. sg_dma_address(&sg[1]) = dma_addr_out;
  294. sg_dma_len(&sg[1]) = length;
  295. in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, &sg[0],
  296. 1, DMA_MEM_TO_DEV,
  297. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  298. if (!in_desc)
  299. return -EINVAL;
  300. out_desc = dmaengine_prep_slave_sg(dd->dma_lch_out.chan, &sg[1],
  301. 1, DMA_DEV_TO_MEM,
  302. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  303. if (!out_desc)
  304. return -EINVAL;
  305. out_desc->callback = atmel_aes_dma_callback;
  306. out_desc->callback_param = dd;
  307. dmaengine_submit(out_desc);
  308. dma_async_issue_pending(dd->dma_lch_out.chan);
  309. dmaengine_submit(in_desc);
  310. dma_async_issue_pending(dd->dma_lch_in.chan);
  311. return 0;
  312. }
  313. static int atmel_aes_crypt_cpu_start(struct atmel_aes_dev *dd)
  314. {
  315. dd->flags &= ~AES_FLAGS_DMA;
  316. dma_sync_single_for_cpu(dd->dev, dd->dma_addr_in,
  317. dd->dma_size, DMA_TO_DEVICE);
  318. dma_sync_single_for_cpu(dd->dev, dd->dma_addr_out,
  319. dd->dma_size, DMA_FROM_DEVICE);
  320. /* use cache buffers */
  321. dd->nb_in_sg = atmel_aes_sg_length(dd->req, dd->in_sg);
  322. if (!dd->nb_in_sg)
  323. return -EINVAL;
  324. dd->nb_out_sg = atmel_aes_sg_length(dd->req, dd->out_sg);
  325. if (!dd->nb_out_sg)
  326. return -EINVAL;
  327. dd->bufcnt = sg_copy_to_buffer(dd->in_sg, dd->nb_in_sg,
  328. dd->buf_in, dd->total);
  329. if (!dd->bufcnt)
  330. return -EINVAL;
  331. dd->total -= dd->bufcnt;
  332. atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
  333. atmel_aes_write_n(dd, AES_IDATAR(0), (u32 *) dd->buf_in,
  334. dd->bufcnt >> 2);
  335. return 0;
  336. }
  337. static int atmel_aes_crypt_dma_start(struct atmel_aes_dev *dd)
  338. {
  339. int err, fast = 0, in, out;
  340. size_t count;
  341. dma_addr_t addr_in, addr_out;
  342. if ((!dd->in_offset) && (!dd->out_offset)) {
  343. /* check for alignment */
  344. in = IS_ALIGNED((u32)dd->in_sg->offset, sizeof(u32)) &&
  345. IS_ALIGNED(dd->in_sg->length, dd->ctx->block_size);
  346. out = IS_ALIGNED((u32)dd->out_sg->offset, sizeof(u32)) &&
  347. IS_ALIGNED(dd->out_sg->length, dd->ctx->block_size);
  348. fast = in && out;
  349. if (sg_dma_len(dd->in_sg) != sg_dma_len(dd->out_sg))
  350. fast = 0;
  351. }
  352. if (fast) {
  353. count = min(dd->total, sg_dma_len(dd->in_sg));
  354. count = min(count, sg_dma_len(dd->out_sg));
  355. err = dma_map_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE);
  356. if (!err) {
  357. dev_err(dd->dev, "dma_map_sg() error\n");
  358. return -EINVAL;
  359. }
  360. err = dma_map_sg(dd->dev, dd->out_sg, 1,
  361. DMA_FROM_DEVICE);
  362. if (!err) {
  363. dev_err(dd->dev, "dma_map_sg() error\n");
  364. dma_unmap_sg(dd->dev, dd->in_sg, 1,
  365. DMA_TO_DEVICE);
  366. return -EINVAL;
  367. }
  368. addr_in = sg_dma_address(dd->in_sg);
  369. addr_out = sg_dma_address(dd->out_sg);
  370. dd->flags |= AES_FLAGS_FAST;
  371. } else {
  372. dma_sync_single_for_cpu(dd->dev, dd->dma_addr_in,
  373. dd->dma_size, DMA_TO_DEVICE);
  374. /* use cache buffers */
  375. count = atmel_aes_sg_copy(&dd->in_sg, &dd->in_offset,
  376. dd->buf_in, dd->buflen, dd->total, 0);
  377. addr_in = dd->dma_addr_in;
  378. addr_out = dd->dma_addr_out;
  379. dd->flags &= ~AES_FLAGS_FAST;
  380. }
  381. dd->total -= count;
  382. err = atmel_aes_crypt_dma(dd, addr_in, addr_out, count);
  383. if (err && (dd->flags & AES_FLAGS_FAST)) {
  384. dma_unmap_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE);
  385. dma_unmap_sg(dd->dev, dd->out_sg, 1, DMA_TO_DEVICE);
  386. }
  387. return err;
  388. }
  389. static int atmel_aes_write_ctrl(struct atmel_aes_dev *dd)
  390. {
  391. int err;
  392. u32 valcr = 0, valmr = 0;
  393. err = atmel_aes_hw_init(dd);
  394. if (err)
  395. return err;
  396. /* MR register must be set before IV registers */
  397. if (dd->ctx->keylen == AES_KEYSIZE_128)
  398. valmr |= AES_MR_KEYSIZE_128;
  399. else if (dd->ctx->keylen == AES_KEYSIZE_192)
  400. valmr |= AES_MR_KEYSIZE_192;
  401. else
  402. valmr |= AES_MR_KEYSIZE_256;
  403. if (dd->flags & AES_FLAGS_CBC) {
  404. valmr |= AES_MR_OPMOD_CBC;
  405. } else if (dd->flags & AES_FLAGS_CFB) {
  406. valmr |= AES_MR_OPMOD_CFB;
  407. if (dd->flags & AES_FLAGS_CFB8)
  408. valmr |= AES_MR_CFBS_8b;
  409. else if (dd->flags & AES_FLAGS_CFB16)
  410. valmr |= AES_MR_CFBS_16b;
  411. else if (dd->flags & AES_FLAGS_CFB32)
  412. valmr |= AES_MR_CFBS_32b;
  413. else if (dd->flags & AES_FLAGS_CFB64)
  414. valmr |= AES_MR_CFBS_64b;
  415. else if (dd->flags & AES_FLAGS_CFB128)
  416. valmr |= AES_MR_CFBS_128b;
  417. } else if (dd->flags & AES_FLAGS_OFB) {
  418. valmr |= AES_MR_OPMOD_OFB;
  419. } else if (dd->flags & AES_FLAGS_CTR) {
  420. valmr |= AES_MR_OPMOD_CTR;
  421. } else {
  422. valmr |= AES_MR_OPMOD_ECB;
  423. }
  424. if (dd->flags & AES_FLAGS_ENCRYPT)
  425. valmr |= AES_MR_CYPHER_ENC;
  426. if (dd->total > ATMEL_AES_DMA_THRESHOLD) {
  427. valmr |= AES_MR_SMOD_IDATAR0;
  428. if (dd->caps.has_dualbuff)
  429. valmr |= AES_MR_DUALBUFF;
  430. } else {
  431. valmr |= AES_MR_SMOD_AUTO;
  432. }
  433. atmel_aes_write(dd, AES_CR, valcr);
  434. atmel_aes_write(dd, AES_MR, valmr);
  435. atmel_aes_write_n(dd, AES_KEYWR(0), dd->ctx->key,
  436. dd->ctx->keylen >> 2);
  437. if (((dd->flags & AES_FLAGS_CBC) || (dd->flags & AES_FLAGS_CFB) ||
  438. (dd->flags & AES_FLAGS_OFB) || (dd->flags & AES_FLAGS_CTR)) &&
  439. dd->req->info) {
  440. atmel_aes_write_n(dd, AES_IVR(0), dd->req->info, 4);
  441. }
  442. return 0;
  443. }
  444. static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
  445. struct ablkcipher_request *req)
  446. {
  447. struct crypto_async_request *async_req, *backlog;
  448. struct atmel_aes_ctx *ctx;
  449. struct atmel_aes_reqctx *rctx;
  450. unsigned long flags;
  451. int err, ret = 0;
  452. spin_lock_irqsave(&dd->lock, flags);
  453. if (req)
  454. ret = ablkcipher_enqueue_request(&dd->queue, req);
  455. if (dd->flags & AES_FLAGS_BUSY) {
  456. spin_unlock_irqrestore(&dd->lock, flags);
  457. return ret;
  458. }
  459. backlog = crypto_get_backlog(&dd->queue);
  460. async_req = crypto_dequeue_request(&dd->queue);
  461. if (async_req)
  462. dd->flags |= AES_FLAGS_BUSY;
  463. spin_unlock_irqrestore(&dd->lock, flags);
  464. if (!async_req)
  465. return ret;
  466. if (backlog)
  467. backlog->complete(backlog, -EINPROGRESS);
  468. req = ablkcipher_request_cast(async_req);
  469. /* assign new request to device */
  470. dd->req = req;
  471. dd->total = req->nbytes;
  472. dd->in_offset = 0;
  473. dd->in_sg = req->src;
  474. dd->out_offset = 0;
  475. dd->out_sg = req->dst;
  476. rctx = ablkcipher_request_ctx(req);
  477. ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
  478. rctx->mode &= AES_FLAGS_MODE_MASK;
  479. dd->flags = (dd->flags & ~AES_FLAGS_MODE_MASK) | rctx->mode;
  480. dd->ctx = ctx;
  481. ctx->dd = dd;
  482. err = atmel_aes_write_ctrl(dd);
  483. if (!err) {
  484. if (dd->total > ATMEL_AES_DMA_THRESHOLD)
  485. err = atmel_aes_crypt_dma_start(dd);
  486. else
  487. err = atmel_aes_crypt_cpu_start(dd);
  488. }
  489. if (err) {
  490. /* aes_task will not finish it, so do it here */
  491. atmel_aes_finish_req(dd, err);
  492. tasklet_schedule(&dd->queue_task);
  493. }
  494. return ret;
  495. }
  496. static int atmel_aes_crypt_dma_stop(struct atmel_aes_dev *dd)
  497. {
  498. int err = -EINVAL;
  499. size_t count;
  500. if (dd->flags & AES_FLAGS_DMA) {
  501. err = 0;
  502. if (dd->flags & AES_FLAGS_FAST) {
  503. dma_unmap_sg(dd->dev, dd->out_sg, 1, DMA_FROM_DEVICE);
  504. dma_unmap_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE);
  505. } else {
  506. dma_sync_single_for_cpu(dd->dev, dd->dma_addr_out,
  507. dd->dma_size, DMA_FROM_DEVICE);
  508. /* copy data */
  509. count = atmel_aes_sg_copy(&dd->out_sg, &dd->out_offset,
  510. dd->buf_out, dd->buflen, dd->dma_size, 1);
  511. if (count != dd->dma_size) {
  512. err = -EINVAL;
  513. pr_err("not all data converted: %u\n", count);
  514. }
  515. }
  516. }
  517. return err;
  518. }
  519. static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
  520. {
  521. int err = -ENOMEM;
  522. dd->buf_in = (void *)__get_free_pages(GFP_KERNEL, 0);
  523. dd->buf_out = (void *)__get_free_pages(GFP_KERNEL, 0);
  524. dd->buflen = PAGE_SIZE;
  525. dd->buflen &= ~(AES_BLOCK_SIZE - 1);
  526. if (!dd->buf_in || !dd->buf_out) {
  527. dev_err(dd->dev, "unable to alloc pages.\n");
  528. goto err_alloc;
  529. }
  530. /* MAP here */
  531. dd->dma_addr_in = dma_map_single(dd->dev, dd->buf_in,
  532. dd->buflen, DMA_TO_DEVICE);
  533. if (dma_mapping_error(dd->dev, dd->dma_addr_in)) {
  534. dev_err(dd->dev, "dma %d bytes error\n", dd->buflen);
  535. err = -EINVAL;
  536. goto err_map_in;
  537. }
  538. dd->dma_addr_out = dma_map_single(dd->dev, dd->buf_out,
  539. dd->buflen, DMA_FROM_DEVICE);
  540. if (dma_mapping_error(dd->dev, dd->dma_addr_out)) {
  541. dev_err(dd->dev, "dma %d bytes error\n", dd->buflen);
  542. err = -EINVAL;
  543. goto err_map_out;
  544. }
  545. return 0;
  546. err_map_out:
  547. dma_unmap_single(dd->dev, dd->dma_addr_in, dd->buflen,
  548. DMA_TO_DEVICE);
  549. err_map_in:
  550. err_alloc:
  551. free_page((unsigned long)dd->buf_out);
  552. free_page((unsigned long)dd->buf_in);
  553. if (err)
  554. pr_err("error: %d\n", err);
  555. return err;
  556. }
  557. static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
  558. {
  559. dma_unmap_single(dd->dev, dd->dma_addr_out, dd->buflen,
  560. DMA_FROM_DEVICE);
  561. dma_unmap_single(dd->dev, dd->dma_addr_in, dd->buflen,
  562. DMA_TO_DEVICE);
  563. free_page((unsigned long)dd->buf_out);
  564. free_page((unsigned long)dd->buf_in);
  565. }
  566. static int atmel_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
  567. {
  568. struct atmel_aes_ctx *ctx = crypto_ablkcipher_ctx(
  569. crypto_ablkcipher_reqtfm(req));
  570. struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
  571. struct atmel_aes_dev *dd;
  572. if (mode & AES_FLAGS_CFB8) {
  573. if (!IS_ALIGNED(req->nbytes, CFB8_BLOCK_SIZE)) {
  574. pr_err("request size is not exact amount of CFB8 blocks\n");
  575. return -EINVAL;
  576. }
  577. ctx->block_size = CFB8_BLOCK_SIZE;
  578. } else if (mode & AES_FLAGS_CFB16) {
  579. if (!IS_ALIGNED(req->nbytes, CFB16_BLOCK_SIZE)) {
  580. pr_err("request size is not exact amount of CFB16 blocks\n");
  581. return -EINVAL;
  582. }
  583. ctx->block_size = CFB16_BLOCK_SIZE;
  584. } else if (mode & AES_FLAGS_CFB32) {
  585. if (!IS_ALIGNED(req->nbytes, CFB32_BLOCK_SIZE)) {
  586. pr_err("request size is not exact amount of CFB32 blocks\n");
  587. return -EINVAL;
  588. }
  589. ctx->block_size = CFB32_BLOCK_SIZE;
  590. } else if (mode & AES_FLAGS_CFB64) {
  591. if (!IS_ALIGNED(req->nbytes, CFB64_BLOCK_SIZE)) {
  592. pr_err("request size is not exact amount of CFB64 blocks\n");
  593. return -EINVAL;
  594. }
  595. ctx->block_size = CFB64_BLOCK_SIZE;
  596. } else {
  597. if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE)) {
  598. pr_err("request size is not exact amount of AES blocks\n");
  599. return -EINVAL;
  600. }
  601. ctx->block_size = AES_BLOCK_SIZE;
  602. }
  603. dd = atmel_aes_find_dev(ctx);
  604. if (!dd)
  605. return -ENODEV;
  606. rctx->mode = mode;
  607. return atmel_aes_handle_queue(dd, req);
  608. }
  609. static bool atmel_aes_filter(struct dma_chan *chan, void *slave)
  610. {
  611. struct at_dma_slave *sl = slave;
  612. if (sl && sl->dma_dev == chan->device->dev) {
  613. chan->private = sl;
  614. return true;
  615. } else {
  616. return false;
  617. }
  618. }
  619. static int atmel_aes_dma_init(struct atmel_aes_dev *dd,
  620. struct crypto_platform_data *pdata)
  621. {
  622. int err = -ENOMEM;
  623. dma_cap_mask_t mask;
  624. dma_cap_zero(mask);
  625. dma_cap_set(DMA_SLAVE, mask);
  626. /* Try to grab 2 DMA channels */
  627. dd->dma_lch_in.chan = dma_request_slave_channel_compat(mask,
  628. atmel_aes_filter, &pdata->dma_slave->rxdata, dd->dev, "tx");
  629. if (!dd->dma_lch_in.chan)
  630. goto err_dma_in;
  631. dd->dma_lch_in.dma_conf.direction = DMA_MEM_TO_DEV;
  632. dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
  633. AES_IDATAR(0);
  634. dd->dma_lch_in.dma_conf.src_maxburst = dd->caps.max_burst_size;
  635. dd->dma_lch_in.dma_conf.src_addr_width =
  636. DMA_SLAVE_BUSWIDTH_4_BYTES;
  637. dd->dma_lch_in.dma_conf.dst_maxburst = dd->caps.max_burst_size;
  638. dd->dma_lch_in.dma_conf.dst_addr_width =
  639. DMA_SLAVE_BUSWIDTH_4_BYTES;
  640. dd->dma_lch_in.dma_conf.device_fc = false;
  641. dd->dma_lch_out.chan = dma_request_slave_channel_compat(mask,
  642. atmel_aes_filter, &pdata->dma_slave->txdata, dd->dev, "rx");
  643. if (!dd->dma_lch_out.chan)
  644. goto err_dma_out;
  645. dd->dma_lch_out.dma_conf.direction = DMA_DEV_TO_MEM;
  646. dd->dma_lch_out.dma_conf.src_addr = dd->phys_base +
  647. AES_ODATAR(0);
  648. dd->dma_lch_out.dma_conf.src_maxburst = dd->caps.max_burst_size;
  649. dd->dma_lch_out.dma_conf.src_addr_width =
  650. DMA_SLAVE_BUSWIDTH_4_BYTES;
  651. dd->dma_lch_out.dma_conf.dst_maxburst = dd->caps.max_burst_size;
  652. dd->dma_lch_out.dma_conf.dst_addr_width =
  653. DMA_SLAVE_BUSWIDTH_4_BYTES;
  654. dd->dma_lch_out.dma_conf.device_fc = false;
  655. return 0;
  656. err_dma_out:
  657. dma_release_channel(dd->dma_lch_in.chan);
  658. err_dma_in:
  659. dev_warn(dd->dev, "no DMA channel available\n");
  660. return err;
  661. }
  662. static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
  663. {
  664. dma_release_channel(dd->dma_lch_in.chan);
  665. dma_release_channel(dd->dma_lch_out.chan);
  666. }
  667. static int atmel_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
  668. unsigned int keylen)
  669. {
  670. struct atmel_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
  671. if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
  672. keylen != AES_KEYSIZE_256) {
  673. crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  674. return -EINVAL;
  675. }
  676. memcpy(ctx->key, key, keylen);
  677. ctx->keylen = keylen;
  678. return 0;
  679. }
  680. static int atmel_aes_ecb_encrypt(struct ablkcipher_request *req)
  681. {
  682. return atmel_aes_crypt(req,
  683. AES_FLAGS_ENCRYPT);
  684. }
  685. static int atmel_aes_ecb_decrypt(struct ablkcipher_request *req)
  686. {
  687. return atmel_aes_crypt(req,
  688. 0);
  689. }
  690. static int atmel_aes_cbc_encrypt(struct ablkcipher_request *req)
  691. {
  692. return atmel_aes_crypt(req,
  693. AES_FLAGS_ENCRYPT | AES_FLAGS_CBC);
  694. }
  695. static int atmel_aes_cbc_decrypt(struct ablkcipher_request *req)
  696. {
  697. return atmel_aes_crypt(req,
  698. AES_FLAGS_CBC);
  699. }
  700. static int atmel_aes_ofb_encrypt(struct ablkcipher_request *req)
  701. {
  702. return atmel_aes_crypt(req,
  703. AES_FLAGS_ENCRYPT | AES_FLAGS_OFB);
  704. }
  705. static int atmel_aes_ofb_decrypt(struct ablkcipher_request *req)
  706. {
  707. return atmel_aes_crypt(req,
  708. AES_FLAGS_OFB);
  709. }
  710. static int atmel_aes_cfb_encrypt(struct ablkcipher_request *req)
  711. {
  712. return atmel_aes_crypt(req,
  713. AES_FLAGS_ENCRYPT | AES_FLAGS_CFB | AES_FLAGS_CFB128);
  714. }
  715. static int atmel_aes_cfb_decrypt(struct ablkcipher_request *req)
  716. {
  717. return atmel_aes_crypt(req,
  718. AES_FLAGS_CFB | AES_FLAGS_CFB128);
  719. }
  720. static int atmel_aes_cfb64_encrypt(struct ablkcipher_request *req)
  721. {
  722. return atmel_aes_crypt(req,
  723. AES_FLAGS_ENCRYPT | AES_FLAGS_CFB | AES_FLAGS_CFB64);
  724. }
  725. static int atmel_aes_cfb64_decrypt(struct ablkcipher_request *req)
  726. {
  727. return atmel_aes_crypt(req,
  728. AES_FLAGS_CFB | AES_FLAGS_CFB64);
  729. }
  730. static int atmel_aes_cfb32_encrypt(struct ablkcipher_request *req)
  731. {
  732. return atmel_aes_crypt(req,
  733. AES_FLAGS_ENCRYPT | AES_FLAGS_CFB | AES_FLAGS_CFB32);
  734. }
  735. static int atmel_aes_cfb32_decrypt(struct ablkcipher_request *req)
  736. {
  737. return atmel_aes_crypt(req,
  738. AES_FLAGS_CFB | AES_FLAGS_CFB32);
  739. }
  740. static int atmel_aes_cfb16_encrypt(struct ablkcipher_request *req)
  741. {
  742. return atmel_aes_crypt(req,
  743. AES_FLAGS_ENCRYPT | AES_FLAGS_CFB | AES_FLAGS_CFB16);
  744. }
  745. static int atmel_aes_cfb16_decrypt(struct ablkcipher_request *req)
  746. {
  747. return atmel_aes_crypt(req,
  748. AES_FLAGS_CFB | AES_FLAGS_CFB16);
  749. }
  750. static int atmel_aes_cfb8_encrypt(struct ablkcipher_request *req)
  751. {
  752. return atmel_aes_crypt(req,
  753. AES_FLAGS_ENCRYPT | AES_FLAGS_CFB | AES_FLAGS_CFB8);
  754. }
  755. static int atmel_aes_cfb8_decrypt(struct ablkcipher_request *req)
  756. {
  757. return atmel_aes_crypt(req,
  758. AES_FLAGS_CFB | AES_FLAGS_CFB8);
  759. }
  760. static int atmel_aes_ctr_encrypt(struct ablkcipher_request *req)
  761. {
  762. return atmel_aes_crypt(req,
  763. AES_FLAGS_ENCRYPT | AES_FLAGS_CTR);
  764. }
  765. static int atmel_aes_ctr_decrypt(struct ablkcipher_request *req)
  766. {
  767. return atmel_aes_crypt(req,
  768. AES_FLAGS_CTR);
  769. }
  770. static int atmel_aes_cra_init(struct crypto_tfm *tfm)
  771. {
  772. tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
  773. return 0;
  774. }
  775. static void atmel_aes_cra_exit(struct crypto_tfm *tfm)
  776. {
  777. }
  778. static struct crypto_alg aes_algs[] = {
  779. {
  780. .cra_name = "ecb(aes)",
  781. .cra_driver_name = "atmel-ecb-aes",
  782. .cra_priority = 100,
  783. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  784. .cra_blocksize = AES_BLOCK_SIZE,
  785. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  786. .cra_alignmask = 0xf,
  787. .cra_type = &crypto_ablkcipher_type,
  788. .cra_module = THIS_MODULE,
  789. .cra_init = atmel_aes_cra_init,
  790. .cra_exit = atmel_aes_cra_exit,
  791. .cra_u.ablkcipher = {
  792. .min_keysize = AES_MIN_KEY_SIZE,
  793. .max_keysize = AES_MAX_KEY_SIZE,
  794. .setkey = atmel_aes_setkey,
  795. .encrypt = atmel_aes_ecb_encrypt,
  796. .decrypt = atmel_aes_ecb_decrypt,
  797. }
  798. },
  799. {
  800. .cra_name = "cbc(aes)",
  801. .cra_driver_name = "atmel-cbc-aes",
  802. .cra_priority = 100,
  803. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  804. .cra_blocksize = AES_BLOCK_SIZE,
  805. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  806. .cra_alignmask = 0xf,
  807. .cra_type = &crypto_ablkcipher_type,
  808. .cra_module = THIS_MODULE,
  809. .cra_init = atmel_aes_cra_init,
  810. .cra_exit = atmel_aes_cra_exit,
  811. .cra_u.ablkcipher = {
  812. .min_keysize = AES_MIN_KEY_SIZE,
  813. .max_keysize = AES_MAX_KEY_SIZE,
  814. .ivsize = AES_BLOCK_SIZE,
  815. .setkey = atmel_aes_setkey,
  816. .encrypt = atmel_aes_cbc_encrypt,
  817. .decrypt = atmel_aes_cbc_decrypt,
  818. }
  819. },
  820. {
  821. .cra_name = "ofb(aes)",
  822. .cra_driver_name = "atmel-ofb-aes",
  823. .cra_priority = 100,
  824. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  825. .cra_blocksize = AES_BLOCK_SIZE,
  826. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  827. .cra_alignmask = 0xf,
  828. .cra_type = &crypto_ablkcipher_type,
  829. .cra_module = THIS_MODULE,
  830. .cra_init = atmel_aes_cra_init,
  831. .cra_exit = atmel_aes_cra_exit,
  832. .cra_u.ablkcipher = {
  833. .min_keysize = AES_MIN_KEY_SIZE,
  834. .max_keysize = AES_MAX_KEY_SIZE,
  835. .ivsize = AES_BLOCK_SIZE,
  836. .setkey = atmel_aes_setkey,
  837. .encrypt = atmel_aes_ofb_encrypt,
  838. .decrypt = atmel_aes_ofb_decrypt,
  839. }
  840. },
  841. {
  842. .cra_name = "cfb(aes)",
  843. .cra_driver_name = "atmel-cfb-aes",
  844. .cra_priority = 100,
  845. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  846. .cra_blocksize = AES_BLOCK_SIZE,
  847. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  848. .cra_alignmask = 0xf,
  849. .cra_type = &crypto_ablkcipher_type,
  850. .cra_module = THIS_MODULE,
  851. .cra_init = atmel_aes_cra_init,
  852. .cra_exit = atmel_aes_cra_exit,
  853. .cra_u.ablkcipher = {
  854. .min_keysize = AES_MIN_KEY_SIZE,
  855. .max_keysize = AES_MAX_KEY_SIZE,
  856. .ivsize = AES_BLOCK_SIZE,
  857. .setkey = atmel_aes_setkey,
  858. .encrypt = atmel_aes_cfb_encrypt,
  859. .decrypt = atmel_aes_cfb_decrypt,
  860. }
  861. },
  862. {
  863. .cra_name = "cfb32(aes)",
  864. .cra_driver_name = "atmel-cfb32-aes",
  865. .cra_priority = 100,
  866. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  867. .cra_blocksize = CFB32_BLOCK_SIZE,
  868. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  869. .cra_alignmask = 0x3,
  870. .cra_type = &crypto_ablkcipher_type,
  871. .cra_module = THIS_MODULE,
  872. .cra_init = atmel_aes_cra_init,
  873. .cra_exit = atmel_aes_cra_exit,
  874. .cra_u.ablkcipher = {
  875. .min_keysize = AES_MIN_KEY_SIZE,
  876. .max_keysize = AES_MAX_KEY_SIZE,
  877. .ivsize = AES_BLOCK_SIZE,
  878. .setkey = atmel_aes_setkey,
  879. .encrypt = atmel_aes_cfb32_encrypt,
  880. .decrypt = atmel_aes_cfb32_decrypt,
  881. }
  882. },
  883. {
  884. .cra_name = "cfb16(aes)",
  885. .cra_driver_name = "atmel-cfb16-aes",
  886. .cra_priority = 100,
  887. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  888. .cra_blocksize = CFB16_BLOCK_SIZE,
  889. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  890. .cra_alignmask = 0x1,
  891. .cra_type = &crypto_ablkcipher_type,
  892. .cra_module = THIS_MODULE,
  893. .cra_init = atmel_aes_cra_init,
  894. .cra_exit = atmel_aes_cra_exit,
  895. .cra_u.ablkcipher = {
  896. .min_keysize = AES_MIN_KEY_SIZE,
  897. .max_keysize = AES_MAX_KEY_SIZE,
  898. .ivsize = AES_BLOCK_SIZE,
  899. .setkey = atmel_aes_setkey,
  900. .encrypt = atmel_aes_cfb16_encrypt,
  901. .decrypt = atmel_aes_cfb16_decrypt,
  902. }
  903. },
  904. {
  905. .cra_name = "cfb8(aes)",
  906. .cra_driver_name = "atmel-cfb8-aes",
  907. .cra_priority = 100,
  908. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  909. .cra_blocksize = CFB8_BLOCK_SIZE,
  910. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  911. .cra_alignmask = 0x0,
  912. .cra_type = &crypto_ablkcipher_type,
  913. .cra_module = THIS_MODULE,
  914. .cra_init = atmel_aes_cra_init,
  915. .cra_exit = atmel_aes_cra_exit,
  916. .cra_u.ablkcipher = {
  917. .min_keysize = AES_MIN_KEY_SIZE,
  918. .max_keysize = AES_MAX_KEY_SIZE,
  919. .ivsize = AES_BLOCK_SIZE,
  920. .setkey = atmel_aes_setkey,
  921. .encrypt = atmel_aes_cfb8_encrypt,
  922. .decrypt = atmel_aes_cfb8_decrypt,
  923. }
  924. },
  925. {
  926. .cra_name = "ctr(aes)",
  927. .cra_driver_name = "atmel-ctr-aes",
  928. .cra_priority = 100,
  929. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  930. .cra_blocksize = AES_BLOCK_SIZE,
  931. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  932. .cra_alignmask = 0xf,
  933. .cra_type = &crypto_ablkcipher_type,
  934. .cra_module = THIS_MODULE,
  935. .cra_init = atmel_aes_cra_init,
  936. .cra_exit = atmel_aes_cra_exit,
  937. .cra_u.ablkcipher = {
  938. .min_keysize = AES_MIN_KEY_SIZE,
  939. .max_keysize = AES_MAX_KEY_SIZE,
  940. .ivsize = AES_BLOCK_SIZE,
  941. .setkey = atmel_aes_setkey,
  942. .encrypt = atmel_aes_ctr_encrypt,
  943. .decrypt = atmel_aes_ctr_decrypt,
  944. }
  945. },
  946. };
  947. static struct crypto_alg aes_cfb64_alg = {
  948. .cra_name = "cfb64(aes)",
  949. .cra_driver_name = "atmel-cfb64-aes",
  950. .cra_priority = 100,
  951. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  952. .cra_blocksize = CFB64_BLOCK_SIZE,
  953. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  954. .cra_alignmask = 0x7,
  955. .cra_type = &crypto_ablkcipher_type,
  956. .cra_module = THIS_MODULE,
  957. .cra_init = atmel_aes_cra_init,
  958. .cra_exit = atmel_aes_cra_exit,
  959. .cra_u.ablkcipher = {
  960. .min_keysize = AES_MIN_KEY_SIZE,
  961. .max_keysize = AES_MAX_KEY_SIZE,
  962. .ivsize = AES_BLOCK_SIZE,
  963. .setkey = atmel_aes_setkey,
  964. .encrypt = atmel_aes_cfb64_encrypt,
  965. .decrypt = atmel_aes_cfb64_decrypt,
  966. }
  967. };
  968. static void atmel_aes_queue_task(unsigned long data)
  969. {
  970. struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
  971. atmel_aes_handle_queue(dd, NULL);
  972. }
  973. static void atmel_aes_done_task(unsigned long data)
  974. {
  975. struct atmel_aes_dev *dd = (struct atmel_aes_dev *) data;
  976. int err;
  977. if (!(dd->flags & AES_FLAGS_DMA)) {
  978. atmel_aes_read_n(dd, AES_ODATAR(0), (u32 *) dd->buf_out,
  979. dd->bufcnt >> 2);
  980. if (sg_copy_from_buffer(dd->out_sg, dd->nb_out_sg,
  981. dd->buf_out, dd->bufcnt))
  982. err = 0;
  983. else
  984. err = -EINVAL;
  985. goto cpu_end;
  986. }
  987. err = atmel_aes_crypt_dma_stop(dd);
  988. err = dd->err ? : err;
  989. if (dd->total && !err) {
  990. if (dd->flags & AES_FLAGS_FAST) {
  991. dd->in_sg = sg_next(dd->in_sg);
  992. dd->out_sg = sg_next(dd->out_sg);
  993. if (!dd->in_sg || !dd->out_sg)
  994. err = -EINVAL;
  995. }
  996. if (!err)
  997. err = atmel_aes_crypt_dma_start(dd);
  998. if (!err)
  999. return; /* DMA started. Not fininishing. */
  1000. }
  1001. cpu_end:
  1002. atmel_aes_finish_req(dd, err);
  1003. atmel_aes_handle_queue(dd, NULL);
  1004. }
  1005. static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
  1006. {
  1007. struct atmel_aes_dev *aes_dd = dev_id;
  1008. u32 reg;
  1009. reg = atmel_aes_read(aes_dd, AES_ISR);
  1010. if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
  1011. atmel_aes_write(aes_dd, AES_IDR, reg);
  1012. if (AES_FLAGS_BUSY & aes_dd->flags)
  1013. tasklet_schedule(&aes_dd->done_task);
  1014. else
  1015. dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
  1016. return IRQ_HANDLED;
  1017. }
  1018. return IRQ_NONE;
  1019. }
  1020. static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
  1021. {
  1022. int i;
  1023. for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
  1024. crypto_unregister_alg(&aes_algs[i]);
  1025. if (dd->caps.has_cfb64)
  1026. crypto_unregister_alg(&aes_cfb64_alg);
  1027. }
  1028. static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
  1029. {
  1030. int err, i, j;
  1031. for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
  1032. err = crypto_register_alg(&aes_algs[i]);
  1033. if (err)
  1034. goto err_aes_algs;
  1035. }
  1036. if (dd->caps.has_cfb64) {
  1037. err = crypto_register_alg(&aes_cfb64_alg);
  1038. if (err)
  1039. goto err_aes_cfb64_alg;
  1040. }
  1041. return 0;
  1042. err_aes_cfb64_alg:
  1043. i = ARRAY_SIZE(aes_algs);
  1044. err_aes_algs:
  1045. for (j = 0; j < i; j++)
  1046. crypto_unregister_alg(&aes_algs[j]);
  1047. return err;
  1048. }
  1049. static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
  1050. {
  1051. dd->caps.has_dualbuff = 0;
  1052. dd->caps.has_cfb64 = 0;
  1053. dd->caps.max_burst_size = 1;
  1054. /* keep only major version number */
  1055. switch (dd->hw_version & 0xff0) {
  1056. case 0x200:
  1057. dd->caps.has_dualbuff = 1;
  1058. dd->caps.has_cfb64 = 1;
  1059. dd->caps.max_burst_size = 4;
  1060. break;
  1061. case 0x130:
  1062. dd->caps.has_dualbuff = 1;
  1063. dd->caps.has_cfb64 = 1;
  1064. dd->caps.max_burst_size = 4;
  1065. break;
  1066. case 0x120:
  1067. break;
  1068. default:
  1069. dev_warn(dd->dev,
  1070. "Unmanaged aes version, set minimum capabilities\n");
  1071. break;
  1072. }
  1073. }
  1074. #if defined(CONFIG_OF)
  1075. static const struct of_device_id atmel_aes_dt_ids[] = {
  1076. { .compatible = "atmel,at91sam9g46-aes" },
  1077. { /* sentinel */ }
  1078. };
  1079. MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
  1080. static struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
  1081. {
  1082. struct device_node *np = pdev->dev.of_node;
  1083. struct crypto_platform_data *pdata;
  1084. if (!np) {
  1085. dev_err(&pdev->dev, "device node not found\n");
  1086. return ERR_PTR(-EINVAL);
  1087. }
  1088. pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
  1089. if (!pdata) {
  1090. dev_err(&pdev->dev, "could not allocate memory for pdata\n");
  1091. return ERR_PTR(-ENOMEM);
  1092. }
  1093. pdata->dma_slave = devm_kzalloc(&pdev->dev,
  1094. sizeof(*(pdata->dma_slave)),
  1095. GFP_KERNEL);
  1096. if (!pdata->dma_slave) {
  1097. dev_err(&pdev->dev, "could not allocate memory for dma_slave\n");
  1098. devm_kfree(&pdev->dev, pdata);
  1099. return ERR_PTR(-ENOMEM);
  1100. }
  1101. return pdata;
  1102. }
  1103. #else
  1104. static inline struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
  1105. {
  1106. return ERR_PTR(-EINVAL);
  1107. }
  1108. #endif
  1109. static int atmel_aes_probe(struct platform_device *pdev)
  1110. {
  1111. struct atmel_aes_dev *aes_dd;
  1112. struct crypto_platform_data *pdata;
  1113. struct device *dev = &pdev->dev;
  1114. struct resource *aes_res;
  1115. int err;
  1116. pdata = pdev->dev.platform_data;
  1117. if (!pdata) {
  1118. pdata = atmel_aes_of_init(pdev);
  1119. if (IS_ERR(pdata)) {
  1120. err = PTR_ERR(pdata);
  1121. goto aes_dd_err;
  1122. }
  1123. }
  1124. if (!pdata->dma_slave) {
  1125. err = -ENXIO;
  1126. goto aes_dd_err;
  1127. }
  1128. aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
  1129. if (aes_dd == NULL) {
  1130. dev_err(dev, "unable to alloc data struct.\n");
  1131. err = -ENOMEM;
  1132. goto aes_dd_err;
  1133. }
  1134. aes_dd->dev = dev;
  1135. platform_set_drvdata(pdev, aes_dd);
  1136. INIT_LIST_HEAD(&aes_dd->list);
  1137. spin_lock_init(&aes_dd->lock);
  1138. tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
  1139. (unsigned long)aes_dd);
  1140. tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
  1141. (unsigned long)aes_dd);
  1142. crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
  1143. aes_dd->irq = -1;
  1144. /* Get the base address */
  1145. aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1146. if (!aes_res) {
  1147. dev_err(dev, "no MEM resource info\n");
  1148. err = -ENODEV;
  1149. goto res_err;
  1150. }
  1151. aes_dd->phys_base = aes_res->start;
  1152. /* Get the IRQ */
  1153. aes_dd->irq = platform_get_irq(pdev, 0);
  1154. if (aes_dd->irq < 0) {
  1155. dev_err(dev, "no IRQ resource info\n");
  1156. err = aes_dd->irq;
  1157. goto res_err;
  1158. }
  1159. err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
  1160. IRQF_SHARED, "atmel-aes", aes_dd);
  1161. if (err) {
  1162. dev_err(dev, "unable to request aes irq.\n");
  1163. goto res_err;
  1164. }
  1165. /* Initializing the clock */
  1166. aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
  1167. if (IS_ERR(aes_dd->iclk)) {
  1168. dev_err(dev, "clock initialization failed.\n");
  1169. err = PTR_ERR(aes_dd->iclk);
  1170. goto res_err;
  1171. }
  1172. aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
  1173. if (IS_ERR(aes_dd->io_base)) {
  1174. dev_err(dev, "can't ioremap\n");
  1175. err = PTR_ERR(aes_dd->io_base);
  1176. goto res_err;
  1177. }
  1178. atmel_aes_hw_version_init(aes_dd);
  1179. atmel_aes_get_cap(aes_dd);
  1180. err = atmel_aes_buff_init(aes_dd);
  1181. if (err)
  1182. goto err_aes_buff;
  1183. err = atmel_aes_dma_init(aes_dd, pdata);
  1184. if (err)
  1185. goto err_aes_dma;
  1186. spin_lock(&atmel_aes.lock);
  1187. list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
  1188. spin_unlock(&atmel_aes.lock);
  1189. err = atmel_aes_register_algs(aes_dd);
  1190. if (err)
  1191. goto err_algs;
  1192. dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
  1193. dma_chan_name(aes_dd->dma_lch_in.chan),
  1194. dma_chan_name(aes_dd->dma_lch_out.chan));
  1195. return 0;
  1196. err_algs:
  1197. spin_lock(&atmel_aes.lock);
  1198. list_del(&aes_dd->list);
  1199. spin_unlock(&atmel_aes.lock);
  1200. atmel_aes_dma_cleanup(aes_dd);
  1201. err_aes_dma:
  1202. atmel_aes_buff_cleanup(aes_dd);
  1203. err_aes_buff:
  1204. res_err:
  1205. tasklet_kill(&aes_dd->done_task);
  1206. tasklet_kill(&aes_dd->queue_task);
  1207. aes_dd_err:
  1208. dev_err(dev, "initialization failed.\n");
  1209. return err;
  1210. }
  1211. static int atmel_aes_remove(struct platform_device *pdev)
  1212. {
  1213. static struct atmel_aes_dev *aes_dd;
  1214. aes_dd = platform_get_drvdata(pdev);
  1215. if (!aes_dd)
  1216. return -ENODEV;
  1217. spin_lock(&atmel_aes.lock);
  1218. list_del(&aes_dd->list);
  1219. spin_unlock(&atmel_aes.lock);
  1220. atmel_aes_unregister_algs(aes_dd);
  1221. tasklet_kill(&aes_dd->done_task);
  1222. tasklet_kill(&aes_dd->queue_task);
  1223. atmel_aes_dma_cleanup(aes_dd);
  1224. return 0;
  1225. }
  1226. static struct platform_driver atmel_aes_driver = {
  1227. .probe = atmel_aes_probe,
  1228. .remove = atmel_aes_remove,
  1229. .driver = {
  1230. .name = "atmel_aes",
  1231. .of_match_table = of_match_ptr(atmel_aes_dt_ids),
  1232. },
  1233. };
  1234. module_platform_driver(atmel_aes_driver);
  1235. MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
  1236. MODULE_LICENSE("GPL v2");
  1237. MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");