ccp-crypto-sha.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494
  1. /*
  2. * AMD Cryptographic Coprocessor (CCP) SHA crypto API support
  3. *
  4. * Copyright (C) 2013 Advanced Micro Devices, Inc.
  5. *
  6. * Author: Tom Lendacky <thomas.lendacky@amd.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/module.h>
  13. #include <linux/sched.h>
  14. #include <linux/delay.h>
  15. #include <linux/scatterlist.h>
  16. #include <linux/crypto.h>
  17. #include <crypto/algapi.h>
  18. #include <crypto/hash.h>
  19. #include <crypto/internal/hash.h>
  20. #include <crypto/sha.h>
  21. #include <crypto/scatterwalk.h>
  22. #include "ccp-crypto.h"
  23. static int ccp_sha_complete(struct crypto_async_request *async_req, int ret)
  24. {
  25. struct ahash_request *req = ahash_request_cast(async_req);
  26. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  27. struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
  28. unsigned int digest_size = crypto_ahash_digestsize(tfm);
  29. if (ret)
  30. goto e_free;
  31. if (rctx->hash_rem) {
  32. /* Save remaining data to buffer */
  33. unsigned int offset = rctx->nbytes - rctx->hash_rem;
  34. scatterwalk_map_and_copy(rctx->buf, rctx->src,
  35. offset, rctx->hash_rem, 0);
  36. rctx->buf_count = rctx->hash_rem;
  37. } else {
  38. rctx->buf_count = 0;
  39. }
  40. /* Update result area if supplied */
  41. if (req->result)
  42. memcpy(req->result, rctx->ctx, digest_size);
  43. e_free:
  44. sg_free_table(&rctx->data_sg);
  45. return ret;
  46. }
  47. static int ccp_do_sha_update(struct ahash_request *req, unsigned int nbytes,
  48. unsigned int final)
  49. {
  50. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  51. struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
  52. struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
  53. struct scatterlist *sg;
  54. unsigned int block_size =
  55. crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
  56. unsigned int sg_count;
  57. gfp_t gfp;
  58. u64 len;
  59. int ret;
  60. len = (u64)rctx->buf_count + (u64)nbytes;
  61. if (!final && (len <= block_size)) {
  62. scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src,
  63. 0, nbytes, 0);
  64. rctx->buf_count += nbytes;
  65. return 0;
  66. }
  67. rctx->src = req->src;
  68. rctx->nbytes = nbytes;
  69. rctx->final = final;
  70. rctx->hash_rem = final ? 0 : len & (block_size - 1);
  71. rctx->hash_cnt = len - rctx->hash_rem;
  72. if (!final && !rctx->hash_rem) {
  73. /* CCP can't do zero length final, so keep some data around */
  74. rctx->hash_cnt -= block_size;
  75. rctx->hash_rem = block_size;
  76. }
  77. /* Initialize the context scatterlist */
  78. sg_init_one(&rctx->ctx_sg, rctx->ctx, sizeof(rctx->ctx));
  79. sg = NULL;
  80. if (rctx->buf_count && nbytes) {
  81. /* Build the data scatterlist table - allocate enough entries
  82. * for both data pieces (buffer and input data)
  83. */
  84. gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
  85. GFP_KERNEL : GFP_ATOMIC;
  86. sg_count = sg_nents(req->src) + 1;
  87. ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp);
  88. if (ret)
  89. return ret;
  90. sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
  91. sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg);
  92. if (!sg) {
  93. ret = -EINVAL;
  94. goto e_free;
  95. }
  96. sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src);
  97. if (!sg) {
  98. ret = -EINVAL;
  99. goto e_free;
  100. }
  101. sg_mark_end(sg);
  102. sg = rctx->data_sg.sgl;
  103. } else if (rctx->buf_count) {
  104. sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
  105. sg = &rctx->buf_sg;
  106. } else if (nbytes) {
  107. sg = req->src;
  108. }
  109. rctx->msg_bits += (rctx->hash_cnt << 3); /* Total in bits */
  110. memset(&rctx->cmd, 0, sizeof(rctx->cmd));
  111. INIT_LIST_HEAD(&rctx->cmd.entry);
  112. rctx->cmd.engine = CCP_ENGINE_SHA;
  113. rctx->cmd.u.sha.type = rctx->type;
  114. rctx->cmd.u.sha.ctx = &rctx->ctx_sg;
  115. rctx->cmd.u.sha.ctx_len = sizeof(rctx->ctx);
  116. rctx->cmd.u.sha.src = sg;
  117. rctx->cmd.u.sha.src_len = rctx->hash_cnt;
  118. rctx->cmd.u.sha.opad = ctx->u.sha.key_len ?
  119. &ctx->u.sha.opad_sg : NULL;
  120. rctx->cmd.u.sha.opad_len = ctx->u.sha.key_len ?
  121. ctx->u.sha.opad_count : 0;
  122. rctx->cmd.u.sha.first = rctx->first;
  123. rctx->cmd.u.sha.final = rctx->final;
  124. rctx->cmd.u.sha.msg_bits = rctx->msg_bits;
  125. rctx->first = 0;
  126. ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
  127. return ret;
  128. e_free:
  129. sg_free_table(&rctx->data_sg);
  130. return ret;
  131. }
  132. static int ccp_sha_init(struct ahash_request *req)
  133. {
  134. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  135. struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
  136. struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
  137. struct ccp_crypto_ahash_alg *alg =
  138. ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm));
  139. unsigned int block_size =
  140. crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
  141. memset(rctx, 0, sizeof(*rctx));
  142. rctx->type = alg->type;
  143. rctx->first = 1;
  144. if (ctx->u.sha.key_len) {
  145. /* Buffer the HMAC key for first update */
  146. memcpy(rctx->buf, ctx->u.sha.ipad, block_size);
  147. rctx->buf_count = block_size;
  148. }
  149. return 0;
  150. }
  151. static int ccp_sha_update(struct ahash_request *req)
  152. {
  153. return ccp_do_sha_update(req, req->nbytes, 0);
  154. }
  155. static int ccp_sha_final(struct ahash_request *req)
  156. {
  157. return ccp_do_sha_update(req, 0, 1);
  158. }
  159. static int ccp_sha_finup(struct ahash_request *req)
  160. {
  161. return ccp_do_sha_update(req, req->nbytes, 1);
  162. }
  163. static int ccp_sha_digest(struct ahash_request *req)
  164. {
  165. int ret;
  166. ret = ccp_sha_init(req);
  167. if (ret)
  168. return ret;
  169. return ccp_sha_finup(req);
  170. }
  171. static int ccp_sha_export(struct ahash_request *req, void *out)
  172. {
  173. struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
  174. struct ccp_sha_exp_ctx state;
  175. /* Don't let anything leak to 'out' */
  176. memset(&state, 0, sizeof(state));
  177. state.type = rctx->type;
  178. state.msg_bits = rctx->msg_bits;
  179. state.first = rctx->first;
  180. memcpy(state.ctx, rctx->ctx, sizeof(state.ctx));
  181. state.buf_count = rctx->buf_count;
  182. memcpy(state.buf, rctx->buf, sizeof(state.buf));
  183. /* 'out' may not be aligned so memcpy from local variable */
  184. memcpy(out, &state, sizeof(state));
  185. return 0;
  186. }
  187. static int ccp_sha_import(struct ahash_request *req, const void *in)
  188. {
  189. struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
  190. struct ccp_sha_exp_ctx state;
  191. /* 'in' may not be aligned so memcpy to local variable */
  192. memcpy(&state, in, sizeof(state));
  193. memset(rctx, 0, sizeof(*rctx));
  194. rctx->type = state.type;
  195. rctx->msg_bits = state.msg_bits;
  196. rctx->first = state.first;
  197. memcpy(rctx->ctx, state.ctx, sizeof(rctx->ctx));
  198. rctx->buf_count = state.buf_count;
  199. memcpy(rctx->buf, state.buf, sizeof(rctx->buf));
  200. return 0;
  201. }
  202. static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
  203. unsigned int key_len)
  204. {
  205. struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
  206. struct crypto_shash *shash = ctx->u.sha.hmac_tfm;
  207. SHASH_DESC_ON_STACK(sdesc, shash);
  208. unsigned int block_size = crypto_shash_blocksize(shash);
  209. unsigned int digest_size = crypto_shash_digestsize(shash);
  210. int i, ret;
  211. /* Set to zero until complete */
  212. ctx->u.sha.key_len = 0;
  213. /* Clear key area to provide zero padding for keys smaller
  214. * than the block size
  215. */
  216. memset(ctx->u.sha.key, 0, sizeof(ctx->u.sha.key));
  217. if (key_len > block_size) {
  218. /* Must hash the input key */
  219. sdesc->tfm = shash;
  220. sdesc->flags = crypto_ahash_get_flags(tfm) &
  221. CRYPTO_TFM_REQ_MAY_SLEEP;
  222. ret = crypto_shash_digest(sdesc, key, key_len,
  223. ctx->u.sha.key);
  224. if (ret) {
  225. crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  226. return -EINVAL;
  227. }
  228. key_len = digest_size;
  229. } else {
  230. memcpy(ctx->u.sha.key, key, key_len);
  231. }
  232. for (i = 0; i < block_size; i++) {
  233. ctx->u.sha.ipad[i] = ctx->u.sha.key[i] ^ 0x36;
  234. ctx->u.sha.opad[i] = ctx->u.sha.key[i] ^ 0x5c;
  235. }
  236. sg_init_one(&ctx->u.sha.opad_sg, ctx->u.sha.opad, block_size);
  237. ctx->u.sha.opad_count = block_size;
  238. ctx->u.sha.key_len = key_len;
  239. return 0;
  240. }
  241. static int ccp_sha_cra_init(struct crypto_tfm *tfm)
  242. {
  243. struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
  244. struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
  245. ctx->complete = ccp_sha_complete;
  246. ctx->u.sha.key_len = 0;
  247. crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_sha_req_ctx));
  248. return 0;
  249. }
  250. static void ccp_sha_cra_exit(struct crypto_tfm *tfm)
  251. {
  252. }
  253. static int ccp_hmac_sha_cra_init(struct crypto_tfm *tfm)
  254. {
  255. struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
  256. struct ccp_crypto_ahash_alg *alg = ccp_crypto_ahash_alg(tfm);
  257. struct crypto_shash *hmac_tfm;
  258. hmac_tfm = crypto_alloc_shash(alg->child_alg, 0, 0);
  259. if (IS_ERR(hmac_tfm)) {
  260. pr_warn("could not load driver %s need for HMAC support\n",
  261. alg->child_alg);
  262. return PTR_ERR(hmac_tfm);
  263. }
  264. ctx->u.sha.hmac_tfm = hmac_tfm;
  265. return ccp_sha_cra_init(tfm);
  266. }
  267. static void ccp_hmac_sha_cra_exit(struct crypto_tfm *tfm)
  268. {
  269. struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
  270. if (ctx->u.sha.hmac_tfm)
  271. crypto_free_shash(ctx->u.sha.hmac_tfm);
  272. ccp_sha_cra_exit(tfm);
  273. }
  274. struct ccp_sha_def {
  275. const char *name;
  276. const char *drv_name;
  277. enum ccp_sha_type type;
  278. u32 digest_size;
  279. u32 block_size;
  280. };
  281. static struct ccp_sha_def sha_algs[] = {
  282. {
  283. .name = "sha1",
  284. .drv_name = "sha1-ccp",
  285. .type = CCP_SHA_TYPE_1,
  286. .digest_size = SHA1_DIGEST_SIZE,
  287. .block_size = SHA1_BLOCK_SIZE,
  288. },
  289. {
  290. .name = "sha224",
  291. .drv_name = "sha224-ccp",
  292. .type = CCP_SHA_TYPE_224,
  293. .digest_size = SHA224_DIGEST_SIZE,
  294. .block_size = SHA224_BLOCK_SIZE,
  295. },
  296. {
  297. .name = "sha256",
  298. .drv_name = "sha256-ccp",
  299. .type = CCP_SHA_TYPE_256,
  300. .digest_size = SHA256_DIGEST_SIZE,
  301. .block_size = SHA256_BLOCK_SIZE,
  302. },
  303. };
  304. static int ccp_register_hmac_alg(struct list_head *head,
  305. const struct ccp_sha_def *def,
  306. const struct ccp_crypto_ahash_alg *base_alg)
  307. {
  308. struct ccp_crypto_ahash_alg *ccp_alg;
  309. struct ahash_alg *alg;
  310. struct hash_alg_common *halg;
  311. struct crypto_alg *base;
  312. int ret;
  313. ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
  314. if (!ccp_alg)
  315. return -ENOMEM;
  316. /* Copy the base algorithm and only change what's necessary */
  317. *ccp_alg = *base_alg;
  318. INIT_LIST_HEAD(&ccp_alg->entry);
  319. strncpy(ccp_alg->child_alg, def->name, CRYPTO_MAX_ALG_NAME);
  320. alg = &ccp_alg->alg;
  321. alg->setkey = ccp_sha_setkey;
  322. halg = &alg->halg;
  323. base = &halg->base;
  324. snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", def->name);
  325. snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s",
  326. def->drv_name);
  327. base->cra_init = ccp_hmac_sha_cra_init;
  328. base->cra_exit = ccp_hmac_sha_cra_exit;
  329. ret = crypto_register_ahash(alg);
  330. if (ret) {
  331. pr_err("%s ahash algorithm registration error (%d)\n",
  332. base->cra_name, ret);
  333. kfree(ccp_alg);
  334. return ret;
  335. }
  336. list_add(&ccp_alg->entry, head);
  337. return ret;
  338. }
  339. static int ccp_register_sha_alg(struct list_head *head,
  340. const struct ccp_sha_def *def)
  341. {
  342. struct ccp_crypto_ahash_alg *ccp_alg;
  343. struct ahash_alg *alg;
  344. struct hash_alg_common *halg;
  345. struct crypto_alg *base;
  346. int ret;
  347. ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
  348. if (!ccp_alg)
  349. return -ENOMEM;
  350. INIT_LIST_HEAD(&ccp_alg->entry);
  351. ccp_alg->type = def->type;
  352. alg = &ccp_alg->alg;
  353. alg->init = ccp_sha_init;
  354. alg->update = ccp_sha_update;
  355. alg->final = ccp_sha_final;
  356. alg->finup = ccp_sha_finup;
  357. alg->digest = ccp_sha_digest;
  358. alg->export = ccp_sha_export;
  359. alg->import = ccp_sha_import;
  360. halg = &alg->halg;
  361. halg->digestsize = def->digest_size;
  362. halg->statesize = sizeof(struct ccp_sha_exp_ctx);
  363. base = &halg->base;
  364. snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
  365. snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  366. def->drv_name);
  367. base->cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC |
  368. CRYPTO_ALG_KERN_DRIVER_ONLY |
  369. CRYPTO_ALG_NEED_FALLBACK;
  370. base->cra_blocksize = def->block_size;
  371. base->cra_ctxsize = sizeof(struct ccp_ctx);
  372. base->cra_priority = CCP_CRA_PRIORITY;
  373. base->cra_type = &crypto_ahash_type;
  374. base->cra_init = ccp_sha_cra_init;
  375. base->cra_exit = ccp_sha_cra_exit;
  376. base->cra_module = THIS_MODULE;
  377. ret = crypto_register_ahash(alg);
  378. if (ret) {
  379. pr_err("%s ahash algorithm registration error (%d)\n",
  380. base->cra_name, ret);
  381. kfree(ccp_alg);
  382. return ret;
  383. }
  384. list_add(&ccp_alg->entry, head);
  385. ret = ccp_register_hmac_alg(head, def, ccp_alg);
  386. return ret;
  387. }
  388. int ccp_register_sha_algs(struct list_head *head)
  389. {
  390. int i, ret;
  391. for (i = 0; i < ARRAY_SIZE(sha_algs); i++) {
  392. ret = ccp_register_sha_alg(head, &sha_algs[i]);
  393. if (ret)
  394. return ret;
  395. }
  396. return 0;
  397. }