s5p-sss.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763
  1. /*
  2. * Cryptographic API.
  3. *
  4. * Support for Samsung S5PV210 HW acceleration.
  5. *
  6. * Copyright (C) 2011 NetUP Inc. All rights reserved.
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as published
  10. * by the Free Software Foundation.
  11. *
  12. */
  13. #include <linux/delay.h>
  14. #include <linux/err.h>
  15. #include <linux/module.h>
  16. #include <linux/init.h>
  17. #include <linux/errno.h>
  18. #include <linux/kernel.h>
  19. #include <linux/clk.h>
  20. #include <linux/platform_device.h>
  21. #include <linux/scatterlist.h>
  22. #include <linux/dma-mapping.h>
  23. #include <linux/io.h>
  24. #include <linux/of.h>
  25. #include <linux/crypto.h>
  26. #include <linux/interrupt.h>
  27. #include <crypto/algapi.h>
  28. #include <crypto/aes.h>
  29. #include <crypto/ctr.h>
  30. #define _SBF(s, v) ((v) << (s))
  31. #define _BIT(b) _SBF(b, 1)
  32. /* Feed control registers */
  33. #define SSS_REG_FCINTSTAT 0x0000
  34. #define SSS_FCINTSTAT_BRDMAINT _BIT(3)
  35. #define SSS_FCINTSTAT_BTDMAINT _BIT(2)
  36. #define SSS_FCINTSTAT_HRDMAINT _BIT(1)
  37. #define SSS_FCINTSTAT_PKDMAINT _BIT(0)
  38. #define SSS_REG_FCINTENSET 0x0004
  39. #define SSS_FCINTENSET_BRDMAINTENSET _BIT(3)
  40. #define SSS_FCINTENSET_BTDMAINTENSET _BIT(2)
  41. #define SSS_FCINTENSET_HRDMAINTENSET _BIT(1)
  42. #define SSS_FCINTENSET_PKDMAINTENSET _BIT(0)
  43. #define SSS_REG_FCINTENCLR 0x0008
  44. #define SSS_FCINTENCLR_BRDMAINTENCLR _BIT(3)
  45. #define SSS_FCINTENCLR_BTDMAINTENCLR _BIT(2)
  46. #define SSS_FCINTENCLR_HRDMAINTENCLR _BIT(1)
  47. #define SSS_FCINTENCLR_PKDMAINTENCLR _BIT(0)
  48. #define SSS_REG_FCINTPEND 0x000C
  49. #define SSS_FCINTPEND_BRDMAINTP _BIT(3)
  50. #define SSS_FCINTPEND_BTDMAINTP _BIT(2)
  51. #define SSS_FCINTPEND_HRDMAINTP _BIT(1)
  52. #define SSS_FCINTPEND_PKDMAINTP _BIT(0)
  53. #define SSS_REG_FCFIFOSTAT 0x0010
  54. #define SSS_FCFIFOSTAT_BRFIFOFUL _BIT(7)
  55. #define SSS_FCFIFOSTAT_BRFIFOEMP _BIT(6)
  56. #define SSS_FCFIFOSTAT_BTFIFOFUL _BIT(5)
  57. #define SSS_FCFIFOSTAT_BTFIFOEMP _BIT(4)
  58. #define SSS_FCFIFOSTAT_HRFIFOFUL _BIT(3)
  59. #define SSS_FCFIFOSTAT_HRFIFOEMP _BIT(2)
  60. #define SSS_FCFIFOSTAT_PKFIFOFUL _BIT(1)
  61. #define SSS_FCFIFOSTAT_PKFIFOEMP _BIT(0)
  62. #define SSS_REG_FCFIFOCTRL 0x0014
  63. #define SSS_FCFIFOCTRL_DESSEL _BIT(2)
  64. #define SSS_HASHIN_INDEPENDENT _SBF(0, 0x00)
  65. #define SSS_HASHIN_CIPHER_INPUT _SBF(0, 0x01)
  66. #define SSS_HASHIN_CIPHER_OUTPUT _SBF(0, 0x02)
  67. #define SSS_REG_FCBRDMAS 0x0020
  68. #define SSS_REG_FCBRDMAL 0x0024
  69. #define SSS_REG_FCBRDMAC 0x0028
  70. #define SSS_FCBRDMAC_BYTESWAP _BIT(1)
  71. #define SSS_FCBRDMAC_FLUSH _BIT(0)
  72. #define SSS_REG_FCBTDMAS 0x0030
  73. #define SSS_REG_FCBTDMAL 0x0034
  74. #define SSS_REG_FCBTDMAC 0x0038
  75. #define SSS_FCBTDMAC_BYTESWAP _BIT(1)
  76. #define SSS_FCBTDMAC_FLUSH _BIT(0)
  77. #define SSS_REG_FCHRDMAS 0x0040
  78. #define SSS_REG_FCHRDMAL 0x0044
  79. #define SSS_REG_FCHRDMAC 0x0048
  80. #define SSS_FCHRDMAC_BYTESWAP _BIT(1)
  81. #define SSS_FCHRDMAC_FLUSH _BIT(0)
  82. #define SSS_REG_FCPKDMAS 0x0050
  83. #define SSS_REG_FCPKDMAL 0x0054
  84. #define SSS_REG_FCPKDMAC 0x0058
  85. #define SSS_FCPKDMAC_BYTESWAP _BIT(3)
  86. #define SSS_FCPKDMAC_DESCEND _BIT(2)
  87. #define SSS_FCPKDMAC_TRANSMIT _BIT(1)
  88. #define SSS_FCPKDMAC_FLUSH _BIT(0)
  89. #define SSS_REG_FCPKDMAO 0x005C
  90. /* AES registers */
  91. #define SSS_REG_AES_CONTROL 0x00
  92. #define SSS_AES_BYTESWAP_DI _BIT(11)
  93. #define SSS_AES_BYTESWAP_DO _BIT(10)
  94. #define SSS_AES_BYTESWAP_IV _BIT(9)
  95. #define SSS_AES_BYTESWAP_CNT _BIT(8)
  96. #define SSS_AES_BYTESWAP_KEY _BIT(7)
  97. #define SSS_AES_KEY_CHANGE_MODE _BIT(6)
  98. #define SSS_AES_KEY_SIZE_128 _SBF(4, 0x00)
  99. #define SSS_AES_KEY_SIZE_192 _SBF(4, 0x01)
  100. #define SSS_AES_KEY_SIZE_256 _SBF(4, 0x02)
  101. #define SSS_AES_FIFO_MODE _BIT(3)
  102. #define SSS_AES_CHAIN_MODE_ECB _SBF(1, 0x00)
  103. #define SSS_AES_CHAIN_MODE_CBC _SBF(1, 0x01)
  104. #define SSS_AES_CHAIN_MODE_CTR _SBF(1, 0x02)
  105. #define SSS_AES_MODE_DECRYPT _BIT(0)
  106. #define SSS_REG_AES_STATUS 0x04
  107. #define SSS_AES_BUSY _BIT(2)
  108. #define SSS_AES_INPUT_READY _BIT(1)
  109. #define SSS_AES_OUTPUT_READY _BIT(0)
  110. #define SSS_REG_AES_IN_DATA(s) (0x10 + (s << 2))
  111. #define SSS_REG_AES_OUT_DATA(s) (0x20 + (s << 2))
  112. #define SSS_REG_AES_IV_DATA(s) (0x30 + (s << 2))
  113. #define SSS_REG_AES_CNT_DATA(s) (0x40 + (s << 2))
  114. #define SSS_REG_AES_KEY_DATA(s) (0x80 + (s << 2))
  115. #define SSS_REG(dev, reg) ((dev)->ioaddr + (SSS_REG_##reg))
  116. #define SSS_READ(dev, reg) __raw_readl(SSS_REG(dev, reg))
  117. #define SSS_WRITE(dev, reg, val) __raw_writel((val), SSS_REG(dev, reg))
  118. #define SSS_AES_REG(dev, reg) ((dev)->aes_ioaddr + SSS_REG_##reg)
  119. #define SSS_AES_WRITE(dev, reg, val) __raw_writel((val), \
  120. SSS_AES_REG(dev, reg))
  121. /* HW engine modes */
  122. #define FLAGS_AES_DECRYPT _BIT(0)
  123. #define FLAGS_AES_MODE_MASK _SBF(1, 0x03)
  124. #define FLAGS_AES_CBC _SBF(1, 0x01)
  125. #define FLAGS_AES_CTR _SBF(1, 0x02)
  126. #define AES_KEY_LEN 16
  127. #define CRYPTO_QUEUE_LEN 1
  128. /**
  129. * struct samsung_aes_variant - platform specific SSS driver data
  130. * @has_hash_irq: true if SSS module uses hash interrupt, false otherwise
  131. * @aes_offset: AES register offset from SSS module's base.
  132. *
  133. * Specifies platform specific configuration of SSS module.
  134. * Note: A structure for driver specific platform data is used for future
  135. * expansion of its usage.
  136. */
  137. struct samsung_aes_variant {
  138. bool has_hash_irq;
  139. unsigned int aes_offset;
  140. };
  141. struct s5p_aes_reqctx {
  142. unsigned long mode;
  143. };
  144. struct s5p_aes_ctx {
  145. struct s5p_aes_dev *dev;
  146. uint8_t aes_key[AES_MAX_KEY_SIZE];
  147. uint8_t nonce[CTR_RFC3686_NONCE_SIZE];
  148. int keylen;
  149. };
  150. struct s5p_aes_dev {
  151. struct device *dev;
  152. struct clk *clk;
  153. void __iomem *ioaddr;
  154. void __iomem *aes_ioaddr;
  155. int irq_hash;
  156. int irq_fc;
  157. struct ablkcipher_request *req;
  158. struct s5p_aes_ctx *ctx;
  159. struct scatterlist *sg_src;
  160. struct scatterlist *sg_dst;
  161. struct tasklet_struct tasklet;
  162. struct crypto_queue queue;
  163. bool busy;
  164. spinlock_t lock;
  165. struct samsung_aes_variant *variant;
  166. };
  167. static struct s5p_aes_dev *s5p_dev;
  168. static const struct samsung_aes_variant s5p_aes_data = {
  169. .has_hash_irq = true,
  170. .aes_offset = 0x4000,
  171. };
  172. static const struct samsung_aes_variant exynos_aes_data = {
  173. .has_hash_irq = false,
  174. .aes_offset = 0x200,
  175. };
  176. static const struct of_device_id s5p_sss_dt_match[] = {
  177. {
  178. .compatible = "samsung,s5pv210-secss",
  179. .data = &s5p_aes_data,
  180. },
  181. {
  182. .compatible = "samsung,exynos4210-secss",
  183. .data = &exynos_aes_data,
  184. },
  185. { },
  186. };
  187. MODULE_DEVICE_TABLE(of, s5p_sss_dt_match);
  188. static inline struct samsung_aes_variant *find_s5p_sss_version
  189. (struct platform_device *pdev)
  190. {
  191. if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node)) {
  192. const struct of_device_id *match;
  193. match = of_match_node(s5p_sss_dt_match,
  194. pdev->dev.of_node);
  195. return (struct samsung_aes_variant *)match->data;
  196. }
  197. return (struct samsung_aes_variant *)
  198. platform_get_device_id(pdev)->driver_data;
  199. }
  200. static void s5p_set_dma_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
  201. {
  202. SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
  203. SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
  204. }
  205. static void s5p_set_dma_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
  206. {
  207. SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
  208. SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
  209. }
  210. static void s5p_aes_complete(struct s5p_aes_dev *dev, int err)
  211. {
  212. /* holding a lock outside */
  213. dev->req->base.complete(&dev->req->base, err);
  214. dev->busy = false;
  215. }
  216. static void s5p_unset_outdata(struct s5p_aes_dev *dev)
  217. {
  218. dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
  219. }
  220. static void s5p_unset_indata(struct s5p_aes_dev *dev)
  221. {
  222. dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
  223. }
  224. static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
  225. {
  226. int err;
  227. if (!IS_ALIGNED(sg_dma_len(sg), AES_BLOCK_SIZE)) {
  228. err = -EINVAL;
  229. goto exit;
  230. }
  231. if (!sg_dma_len(sg)) {
  232. err = -EINVAL;
  233. goto exit;
  234. }
  235. err = dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE);
  236. if (!err) {
  237. err = -ENOMEM;
  238. goto exit;
  239. }
  240. dev->sg_dst = sg;
  241. err = 0;
  242. exit:
  243. return err;
  244. }
  245. static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
  246. {
  247. int err;
  248. if (!IS_ALIGNED(sg_dma_len(sg), AES_BLOCK_SIZE)) {
  249. err = -EINVAL;
  250. goto exit;
  251. }
  252. if (!sg_dma_len(sg)) {
  253. err = -EINVAL;
  254. goto exit;
  255. }
  256. err = dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE);
  257. if (!err) {
  258. err = -ENOMEM;
  259. goto exit;
  260. }
  261. dev->sg_src = sg;
  262. err = 0;
  263. exit:
  264. return err;
  265. }
  266. static void s5p_aes_tx(struct s5p_aes_dev *dev)
  267. {
  268. int err = 0;
  269. s5p_unset_outdata(dev);
  270. if (!sg_is_last(dev->sg_dst)) {
  271. err = s5p_set_outdata(dev, sg_next(dev->sg_dst));
  272. if (err) {
  273. s5p_aes_complete(dev, err);
  274. return;
  275. }
  276. s5p_set_dma_outdata(dev, dev->sg_dst);
  277. } else {
  278. s5p_aes_complete(dev, err);
  279. dev->busy = true;
  280. tasklet_schedule(&dev->tasklet);
  281. }
  282. }
  283. static void s5p_aes_rx(struct s5p_aes_dev *dev)
  284. {
  285. int err;
  286. s5p_unset_indata(dev);
  287. if (!sg_is_last(dev->sg_src)) {
  288. err = s5p_set_indata(dev, sg_next(dev->sg_src));
  289. if (err) {
  290. s5p_aes_complete(dev, err);
  291. return;
  292. }
  293. s5p_set_dma_indata(dev, dev->sg_src);
  294. }
  295. }
  296. static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
  297. {
  298. struct platform_device *pdev = dev_id;
  299. struct s5p_aes_dev *dev = platform_get_drvdata(pdev);
  300. uint32_t status;
  301. unsigned long flags;
  302. spin_lock_irqsave(&dev->lock, flags);
  303. if (irq == dev->irq_fc) {
  304. status = SSS_READ(dev, FCINTSTAT);
  305. if (status & SSS_FCINTSTAT_BRDMAINT)
  306. s5p_aes_rx(dev);
  307. if (status & SSS_FCINTSTAT_BTDMAINT)
  308. s5p_aes_tx(dev);
  309. SSS_WRITE(dev, FCINTPEND, status);
  310. }
  311. spin_unlock_irqrestore(&dev->lock, flags);
  312. return IRQ_HANDLED;
  313. }
  314. static void s5p_set_aes(struct s5p_aes_dev *dev,
  315. uint8_t *key, uint8_t *iv, unsigned int keylen)
  316. {
  317. void __iomem *keystart;
  318. if (iv)
  319. memcpy(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv, 0x10);
  320. if (keylen == AES_KEYSIZE_256)
  321. keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0);
  322. else if (keylen == AES_KEYSIZE_192)
  323. keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2);
  324. else
  325. keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4);
  326. memcpy(keystart, key, keylen);
  327. }
  328. static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
  329. {
  330. struct ablkcipher_request *req = dev->req;
  331. uint32_t aes_control;
  332. int err;
  333. unsigned long flags;
  334. u8 *iv;
  335. aes_control = SSS_AES_KEY_CHANGE_MODE;
  336. if (mode & FLAGS_AES_DECRYPT)
  337. aes_control |= SSS_AES_MODE_DECRYPT;
  338. if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) {
  339. aes_control |= SSS_AES_CHAIN_MODE_CBC;
  340. iv = req->info;
  341. } else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) {
  342. aes_control |= SSS_AES_CHAIN_MODE_CTR;
  343. iv = req->info;
  344. } else {
  345. iv = NULL; /* AES_ECB */
  346. }
  347. if (dev->ctx->keylen == AES_KEYSIZE_192)
  348. aes_control |= SSS_AES_KEY_SIZE_192;
  349. else if (dev->ctx->keylen == AES_KEYSIZE_256)
  350. aes_control |= SSS_AES_KEY_SIZE_256;
  351. aes_control |= SSS_AES_FIFO_MODE;
  352. /* as a variant it is possible to use byte swapping on DMA side */
  353. aes_control |= SSS_AES_BYTESWAP_DI
  354. | SSS_AES_BYTESWAP_DO
  355. | SSS_AES_BYTESWAP_IV
  356. | SSS_AES_BYTESWAP_KEY
  357. | SSS_AES_BYTESWAP_CNT;
  358. spin_lock_irqsave(&dev->lock, flags);
  359. SSS_WRITE(dev, FCINTENCLR,
  360. SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
  361. SSS_WRITE(dev, FCFIFOCTRL, 0x00);
  362. err = s5p_set_indata(dev, req->src);
  363. if (err)
  364. goto indata_error;
  365. err = s5p_set_outdata(dev, req->dst);
  366. if (err)
  367. goto outdata_error;
  368. SSS_AES_WRITE(dev, AES_CONTROL, aes_control);
  369. s5p_set_aes(dev, dev->ctx->aes_key, iv, dev->ctx->keylen);
  370. s5p_set_dma_indata(dev, req->src);
  371. s5p_set_dma_outdata(dev, req->dst);
  372. SSS_WRITE(dev, FCINTENSET,
  373. SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);
  374. spin_unlock_irqrestore(&dev->lock, flags);
  375. return;
  376. outdata_error:
  377. s5p_unset_indata(dev);
  378. indata_error:
  379. s5p_aes_complete(dev, err);
  380. spin_unlock_irqrestore(&dev->lock, flags);
  381. }
  382. static void s5p_tasklet_cb(unsigned long data)
  383. {
  384. struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
  385. struct crypto_async_request *async_req, *backlog;
  386. struct s5p_aes_reqctx *reqctx;
  387. unsigned long flags;
  388. spin_lock_irqsave(&dev->lock, flags);
  389. backlog = crypto_get_backlog(&dev->queue);
  390. async_req = crypto_dequeue_request(&dev->queue);
  391. if (!async_req) {
  392. dev->busy = false;
  393. spin_unlock_irqrestore(&dev->lock, flags);
  394. return;
  395. }
  396. spin_unlock_irqrestore(&dev->lock, flags);
  397. if (backlog)
  398. backlog->complete(backlog, -EINPROGRESS);
  399. dev->req = ablkcipher_request_cast(async_req);
  400. dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
  401. reqctx = ablkcipher_request_ctx(dev->req);
  402. s5p_aes_crypt_start(dev, reqctx->mode);
  403. }
  404. static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
  405. struct ablkcipher_request *req)
  406. {
  407. unsigned long flags;
  408. int err;
  409. spin_lock_irqsave(&dev->lock, flags);
  410. err = ablkcipher_enqueue_request(&dev->queue, req);
  411. if (dev->busy) {
  412. spin_unlock_irqrestore(&dev->lock, flags);
  413. goto exit;
  414. }
  415. dev->busy = true;
  416. spin_unlock_irqrestore(&dev->lock, flags);
  417. tasklet_schedule(&dev->tasklet);
  418. exit:
  419. return err;
  420. }
  421. static int s5p_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
  422. {
  423. struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
  424. struct s5p_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
  425. struct s5p_aes_reqctx *reqctx = ablkcipher_request_ctx(req);
  426. struct s5p_aes_dev *dev = ctx->dev;
  427. if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE)) {
  428. pr_err("request size is not exact amount of AES blocks\n");
  429. return -EINVAL;
  430. }
  431. reqctx->mode = mode;
  432. return s5p_aes_handle_req(dev, req);
  433. }
  434. static int s5p_aes_setkey(struct crypto_ablkcipher *cipher,
  435. const uint8_t *key, unsigned int keylen)
  436. {
  437. struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
  438. struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
  439. if (keylen != AES_KEYSIZE_128 &&
  440. keylen != AES_KEYSIZE_192 &&
  441. keylen != AES_KEYSIZE_256)
  442. return -EINVAL;
  443. memcpy(ctx->aes_key, key, keylen);
  444. ctx->keylen = keylen;
  445. return 0;
  446. }
  447. static int s5p_aes_ecb_encrypt(struct ablkcipher_request *req)
  448. {
  449. return s5p_aes_crypt(req, 0);
  450. }
  451. static int s5p_aes_ecb_decrypt(struct ablkcipher_request *req)
  452. {
  453. return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
  454. }
  455. static int s5p_aes_cbc_encrypt(struct ablkcipher_request *req)
  456. {
  457. return s5p_aes_crypt(req, FLAGS_AES_CBC);
  458. }
  459. static int s5p_aes_cbc_decrypt(struct ablkcipher_request *req)
  460. {
  461. return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
  462. }
  463. static int s5p_aes_cra_init(struct crypto_tfm *tfm)
  464. {
  465. struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
  466. ctx->dev = s5p_dev;
  467. tfm->crt_ablkcipher.reqsize = sizeof(struct s5p_aes_reqctx);
  468. return 0;
  469. }
  470. static struct crypto_alg algs[] = {
  471. {
  472. .cra_name = "ecb(aes)",
  473. .cra_driver_name = "ecb-aes-s5p",
  474. .cra_priority = 100,
  475. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
  476. CRYPTO_ALG_ASYNC |
  477. CRYPTO_ALG_KERN_DRIVER_ONLY,
  478. .cra_blocksize = AES_BLOCK_SIZE,
  479. .cra_ctxsize = sizeof(struct s5p_aes_ctx),
  480. .cra_alignmask = 0x0f,
  481. .cra_type = &crypto_ablkcipher_type,
  482. .cra_module = THIS_MODULE,
  483. .cra_init = s5p_aes_cra_init,
  484. .cra_u.ablkcipher = {
  485. .min_keysize = AES_MIN_KEY_SIZE,
  486. .max_keysize = AES_MAX_KEY_SIZE,
  487. .setkey = s5p_aes_setkey,
  488. .encrypt = s5p_aes_ecb_encrypt,
  489. .decrypt = s5p_aes_ecb_decrypt,
  490. }
  491. },
  492. {
  493. .cra_name = "cbc(aes)",
  494. .cra_driver_name = "cbc-aes-s5p",
  495. .cra_priority = 100,
  496. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
  497. CRYPTO_ALG_ASYNC |
  498. CRYPTO_ALG_KERN_DRIVER_ONLY,
  499. .cra_blocksize = AES_BLOCK_SIZE,
  500. .cra_ctxsize = sizeof(struct s5p_aes_ctx),
  501. .cra_alignmask = 0x0f,
  502. .cra_type = &crypto_ablkcipher_type,
  503. .cra_module = THIS_MODULE,
  504. .cra_init = s5p_aes_cra_init,
  505. .cra_u.ablkcipher = {
  506. .min_keysize = AES_MIN_KEY_SIZE,
  507. .max_keysize = AES_MAX_KEY_SIZE,
  508. .ivsize = AES_BLOCK_SIZE,
  509. .setkey = s5p_aes_setkey,
  510. .encrypt = s5p_aes_cbc_encrypt,
  511. .decrypt = s5p_aes_cbc_decrypt,
  512. }
  513. },
  514. };
  515. static int s5p_aes_probe(struct platform_device *pdev)
  516. {
  517. int i, j, err = -ENODEV;
  518. struct s5p_aes_dev *pdata;
  519. struct device *dev = &pdev->dev;
  520. struct resource *res;
  521. struct samsung_aes_variant *variant;
  522. if (s5p_dev)
  523. return -EEXIST;
  524. pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
  525. if (!pdata)
  526. return -ENOMEM;
  527. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  528. pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
  529. if (IS_ERR(pdata->ioaddr))
  530. return PTR_ERR(pdata->ioaddr);
  531. variant = find_s5p_sss_version(pdev);
  532. pdata->clk = devm_clk_get(dev, "secss");
  533. if (IS_ERR(pdata->clk)) {
  534. dev_err(dev, "failed to find secss clock source\n");
  535. return -ENOENT;
  536. }
  537. err = clk_prepare_enable(pdata->clk);
  538. if (err < 0) {
  539. dev_err(dev, "Enabling SSS clk failed, err %d\n", err);
  540. return err;
  541. }
  542. spin_lock_init(&pdata->lock);
  543. pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset;
  544. pdata->irq_fc = platform_get_irq(pdev, 0);
  545. if (pdata->irq_fc < 0) {
  546. err = pdata->irq_fc;
  547. dev_warn(dev, "feed control interrupt is not available.\n");
  548. goto err_irq;
  549. }
  550. err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL,
  551. s5p_aes_interrupt, IRQF_ONESHOT,
  552. pdev->name, pdev);
  553. if (err < 0) {
  554. dev_warn(dev, "feed control interrupt is not available.\n");
  555. goto err_irq;
  556. }
  557. if (variant->has_hash_irq) {
  558. pdata->irq_hash = platform_get_irq(pdev, 1);
  559. if (pdata->irq_hash < 0) {
  560. err = pdata->irq_hash;
  561. dev_warn(dev, "hash interrupt is not available.\n");
  562. goto err_irq;
  563. }
  564. err = devm_request_irq(dev, pdata->irq_hash, s5p_aes_interrupt,
  565. IRQF_SHARED, pdev->name, pdev);
  566. if (err < 0) {
  567. dev_warn(dev, "hash interrupt is not available.\n");
  568. goto err_irq;
  569. }
  570. }
  571. pdata->busy = false;
  572. pdata->variant = variant;
  573. pdata->dev = dev;
  574. platform_set_drvdata(pdev, pdata);
  575. s5p_dev = pdata;
  576. tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
  577. crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);
  578. for (i = 0; i < ARRAY_SIZE(algs); i++) {
  579. err = crypto_register_alg(&algs[i]);
  580. if (err)
  581. goto err_algs;
  582. }
  583. pr_info("s5p-sss driver registered\n");
  584. return 0;
  585. err_algs:
  586. dev_err(dev, "can't register '%s': %d\n", algs[i].cra_name, err);
  587. for (j = 0; j < i; j++)
  588. crypto_unregister_alg(&algs[j]);
  589. tasklet_kill(&pdata->tasklet);
  590. err_irq:
  591. clk_disable_unprepare(pdata->clk);
  592. s5p_dev = NULL;
  593. return err;
  594. }
  595. static int s5p_aes_remove(struct platform_device *pdev)
  596. {
  597. struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
  598. int i;
  599. if (!pdata)
  600. return -ENODEV;
  601. for (i = 0; i < ARRAY_SIZE(algs); i++)
  602. crypto_unregister_alg(&algs[i]);
  603. tasklet_kill(&pdata->tasklet);
  604. clk_disable_unprepare(pdata->clk);
  605. s5p_dev = NULL;
  606. return 0;
  607. }
  608. static struct platform_driver s5p_aes_crypto = {
  609. .probe = s5p_aes_probe,
  610. .remove = s5p_aes_remove,
  611. .driver = {
  612. .name = "s5p-secss",
  613. .of_match_table = s5p_sss_dt_match,
  614. },
  615. };
  616. module_platform_driver(s5p_aes_crypto);
  617. MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
  618. MODULE_LICENSE("GPL v2");
  619. MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");