amd64_edac.c 78 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080
  1. #include "amd64_edac.h"
  2. #include <asm/amd_nb.h>
  3. static struct edac_pci_ctl_info *pci_ctl;
  4. static int report_gart_errors;
  5. module_param(report_gart_errors, int, 0644);
  6. /*
  7. * Set by command line parameter. If BIOS has enabled the ECC, this override is
  8. * cleared to prevent re-enabling the hardware by this driver.
  9. */
  10. static int ecc_enable_override;
  11. module_param(ecc_enable_override, int, 0644);
  12. static struct msr __percpu *msrs;
  13. /*
  14. * count successfully initialized driver instances for setup_pci_device()
  15. */
  16. static atomic_t drv_instances = ATOMIC_INIT(0);
  17. /* Per-node stuff */
  18. static struct ecc_settings **ecc_stngs;
  19. /*
  20. * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
  21. * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
  22. * or higher value'.
  23. *
  24. *FIXME: Produce a better mapping/linearisation.
  25. */
  26. static const struct scrubrate {
  27. u32 scrubval; /* bit pattern for scrub rate */
  28. u32 bandwidth; /* bandwidth consumed (bytes/sec) */
  29. } scrubrates[] = {
  30. { 0x01, 1600000000UL},
  31. { 0x02, 800000000UL},
  32. { 0x03, 400000000UL},
  33. { 0x04, 200000000UL},
  34. { 0x05, 100000000UL},
  35. { 0x06, 50000000UL},
  36. { 0x07, 25000000UL},
  37. { 0x08, 12284069UL},
  38. { 0x09, 6274509UL},
  39. { 0x0A, 3121951UL},
  40. { 0x0B, 1560975UL},
  41. { 0x0C, 781440UL},
  42. { 0x0D, 390720UL},
  43. { 0x0E, 195300UL},
  44. { 0x0F, 97650UL},
  45. { 0x10, 48854UL},
  46. { 0x11, 24427UL},
  47. { 0x12, 12213UL},
  48. { 0x13, 6101UL},
  49. { 0x14, 3051UL},
  50. { 0x15, 1523UL},
  51. { 0x16, 761UL},
  52. { 0x00, 0UL}, /* scrubbing off */
  53. };
  54. int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
  55. u32 *val, const char *func)
  56. {
  57. int err = 0;
  58. err = pci_read_config_dword(pdev, offset, val);
  59. if (err)
  60. amd64_warn("%s: error reading F%dx%03x.\n",
  61. func, PCI_FUNC(pdev->devfn), offset);
  62. return err;
  63. }
  64. int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
  65. u32 val, const char *func)
  66. {
  67. int err = 0;
  68. err = pci_write_config_dword(pdev, offset, val);
  69. if (err)
  70. amd64_warn("%s: error writing to F%dx%03x.\n",
  71. func, PCI_FUNC(pdev->devfn), offset);
  72. return err;
  73. }
  74. /*
  75. * Select DCT to which PCI cfg accesses are routed
  76. */
  77. static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
  78. {
  79. u32 reg = 0;
  80. amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
  81. reg &= (pvt->model == 0x30) ? ~3 : ~1;
  82. reg |= dct;
  83. amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
  84. }
  85. /*
  86. *
  87. * Depending on the family, F2 DCT reads need special handling:
  88. *
  89. * K8: has a single DCT only and no address offsets >= 0x100
  90. *
  91. * F10h: each DCT has its own set of regs
  92. * DCT0 -> F2x040..
  93. * DCT1 -> F2x140..
  94. *
  95. * F16h: has only 1 DCT
  96. *
  97. * F15h: we select which DCT we access using F1x10C[DctCfgSel]
  98. */
  99. static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
  100. int offset, u32 *val)
  101. {
  102. switch (pvt->fam) {
  103. case 0xf:
  104. if (dct || offset >= 0x100)
  105. return -EINVAL;
  106. break;
  107. case 0x10:
  108. if (dct) {
  109. /*
  110. * Note: If ganging is enabled, barring the regs
  111. * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
  112. * return 0. (cf. Section 2.8.1 F10h BKDG)
  113. */
  114. if (dct_ganging_enabled(pvt))
  115. return 0;
  116. offset += 0x100;
  117. }
  118. break;
  119. case 0x15:
  120. /*
  121. * F15h: F2x1xx addresses do not map explicitly to DCT1.
  122. * We should select which DCT we access using F1x10C[DctCfgSel]
  123. */
  124. dct = (dct && pvt->model == 0x30) ? 3 : dct;
  125. f15h_select_dct(pvt, dct);
  126. break;
  127. case 0x16:
  128. if (dct)
  129. return -EINVAL;
  130. break;
  131. default:
  132. break;
  133. }
  134. return amd64_read_pci_cfg(pvt->F2, offset, val);
  135. }
  136. /*
  137. * Memory scrubber control interface. For K8, memory scrubbing is handled by
  138. * hardware and can involve L2 cache, dcache as well as the main memory. With
  139. * F10, this is extended to L3 cache scrubbing on CPU models sporting that
  140. * functionality.
  141. *
  142. * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
  143. * (dram) over to cache lines. This is nasty, so we will use bandwidth in
  144. * bytes/sec for the setting.
  145. *
  146. * Currently, we only do dram scrubbing. If the scrubbing is done in software on
  147. * other archs, we might not have access to the caches directly.
  148. */
  149. /*
  150. * scan the scrub rate mapping table for a close or matching bandwidth value to
  151. * issue. If requested is too big, then use last maximum value found.
  152. */
  153. static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate)
  154. {
  155. u32 scrubval;
  156. int i;
  157. /*
  158. * map the configured rate (new_bw) to a value specific to the AMD64
  159. * memory controller and apply to register. Search for the first
  160. * bandwidth entry that is greater or equal than the setting requested
  161. * and program that. If at last entry, turn off DRAM scrubbing.
  162. *
  163. * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
  164. * by falling back to the last element in scrubrates[].
  165. */
  166. for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
  167. /*
  168. * skip scrub rates which aren't recommended
  169. * (see F10 BKDG, F3x58)
  170. */
  171. if (scrubrates[i].scrubval < min_rate)
  172. continue;
  173. if (scrubrates[i].bandwidth <= new_bw)
  174. break;
  175. }
  176. scrubval = scrubrates[i].scrubval;
  177. if (pvt->fam == 0x15 && pvt->model == 0x60) {
  178. f15h_select_dct(pvt, 0);
  179. pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
  180. f15h_select_dct(pvt, 1);
  181. pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
  182. } else {
  183. pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F);
  184. }
  185. if (scrubval)
  186. return scrubrates[i].bandwidth;
  187. return 0;
  188. }
  189. static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
  190. {
  191. struct amd64_pvt *pvt = mci->pvt_info;
  192. u32 min_scrubrate = 0x5;
  193. if (pvt->fam == 0xf)
  194. min_scrubrate = 0x0;
  195. if (pvt->fam == 0x15) {
  196. /* Erratum #505 */
  197. if (pvt->model < 0x10)
  198. f15h_select_dct(pvt, 0);
  199. if (pvt->model == 0x60)
  200. min_scrubrate = 0x6;
  201. }
  202. return __set_scrub_rate(pvt, bw, min_scrubrate);
  203. }
  204. static int get_scrub_rate(struct mem_ctl_info *mci)
  205. {
  206. struct amd64_pvt *pvt = mci->pvt_info;
  207. u32 scrubval = 0;
  208. int i, retval = -EINVAL;
  209. if (pvt->fam == 0x15) {
  210. /* Erratum #505 */
  211. if (pvt->model < 0x10)
  212. f15h_select_dct(pvt, 0);
  213. if (pvt->model == 0x60)
  214. amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval);
  215. } else
  216. amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
  217. scrubval = scrubval & 0x001F;
  218. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  219. if (scrubrates[i].scrubval == scrubval) {
  220. retval = scrubrates[i].bandwidth;
  221. break;
  222. }
  223. }
  224. return retval;
  225. }
  226. /*
  227. * returns true if the SysAddr given by sys_addr matches the
  228. * DRAM base/limit associated with node_id
  229. */
  230. static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
  231. {
  232. u64 addr;
  233. /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
  234. * all ones if the most significant implemented address bit is 1.
  235. * Here we discard bits 63-40. See section 3.4.2 of AMD publication
  236. * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
  237. * Application Programming.
  238. */
  239. addr = sys_addr & 0x000000ffffffffffull;
  240. return ((addr >= get_dram_base(pvt, nid)) &&
  241. (addr <= get_dram_limit(pvt, nid)));
  242. }
  243. /*
  244. * Attempt to map a SysAddr to a node. On success, return a pointer to the
  245. * mem_ctl_info structure for the node that the SysAddr maps to.
  246. *
  247. * On failure, return NULL.
  248. */
  249. static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
  250. u64 sys_addr)
  251. {
  252. struct amd64_pvt *pvt;
  253. u8 node_id;
  254. u32 intlv_en, bits;
  255. /*
  256. * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
  257. * 3.4.4.2) registers to map the SysAddr to a node ID.
  258. */
  259. pvt = mci->pvt_info;
  260. /*
  261. * The value of this field should be the same for all DRAM Base
  262. * registers. Therefore we arbitrarily choose to read it from the
  263. * register for node 0.
  264. */
  265. intlv_en = dram_intlv_en(pvt, 0);
  266. if (intlv_en == 0) {
  267. for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
  268. if (base_limit_match(pvt, sys_addr, node_id))
  269. goto found;
  270. }
  271. goto err_no_match;
  272. }
  273. if (unlikely((intlv_en != 0x01) &&
  274. (intlv_en != 0x03) &&
  275. (intlv_en != 0x07))) {
  276. amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
  277. return NULL;
  278. }
  279. bits = (((u32) sys_addr) >> 12) & intlv_en;
  280. for (node_id = 0; ; ) {
  281. if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
  282. break; /* intlv_sel field matches */
  283. if (++node_id >= DRAM_RANGES)
  284. goto err_no_match;
  285. }
  286. /* sanity test for sys_addr */
  287. if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
  288. amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
  289. "range for node %d with node interleaving enabled.\n",
  290. __func__, sys_addr, node_id);
  291. return NULL;
  292. }
  293. found:
  294. return edac_mc_find((int)node_id);
  295. err_no_match:
  296. edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
  297. (unsigned long)sys_addr);
  298. return NULL;
  299. }
  300. /*
  301. * compute the CS base address of the @csrow on the DRAM controller @dct.
  302. * For details see F2x[5C:40] in the processor's BKDG
  303. */
  304. static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
  305. u64 *base, u64 *mask)
  306. {
  307. u64 csbase, csmask, base_bits, mask_bits;
  308. u8 addr_shift;
  309. if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
  310. csbase = pvt->csels[dct].csbases[csrow];
  311. csmask = pvt->csels[dct].csmasks[csrow];
  312. base_bits = GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
  313. mask_bits = GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
  314. addr_shift = 4;
  315. /*
  316. * F16h and F15h, models 30h and later need two addr_shift values:
  317. * 8 for high and 6 for low (cf. F16h BKDG).
  318. */
  319. } else if (pvt->fam == 0x16 ||
  320. (pvt->fam == 0x15 && pvt->model >= 0x30)) {
  321. csbase = pvt->csels[dct].csbases[csrow];
  322. csmask = pvt->csels[dct].csmasks[csrow >> 1];
  323. *base = (csbase & GENMASK_ULL(15, 5)) << 6;
  324. *base |= (csbase & GENMASK_ULL(30, 19)) << 8;
  325. *mask = ~0ULL;
  326. /* poke holes for the csmask */
  327. *mask &= ~((GENMASK_ULL(15, 5) << 6) |
  328. (GENMASK_ULL(30, 19) << 8));
  329. *mask |= (csmask & GENMASK_ULL(15, 5)) << 6;
  330. *mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
  331. return;
  332. } else {
  333. csbase = pvt->csels[dct].csbases[csrow];
  334. csmask = pvt->csels[dct].csmasks[csrow >> 1];
  335. addr_shift = 8;
  336. if (pvt->fam == 0x15)
  337. base_bits = mask_bits =
  338. GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
  339. else
  340. base_bits = mask_bits =
  341. GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
  342. }
  343. *base = (csbase & base_bits) << addr_shift;
  344. *mask = ~0ULL;
  345. /* poke holes for the csmask */
  346. *mask &= ~(mask_bits << addr_shift);
  347. /* OR them in */
  348. *mask |= (csmask & mask_bits) << addr_shift;
  349. }
  350. #define for_each_chip_select(i, dct, pvt) \
  351. for (i = 0; i < pvt->csels[dct].b_cnt; i++)
  352. #define chip_select_base(i, dct, pvt) \
  353. pvt->csels[dct].csbases[i]
  354. #define for_each_chip_select_mask(i, dct, pvt) \
  355. for (i = 0; i < pvt->csels[dct].m_cnt; i++)
  356. /*
  357. * @input_addr is an InputAddr associated with the node given by mci. Return the
  358. * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
  359. */
  360. static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
  361. {
  362. struct amd64_pvt *pvt;
  363. int csrow;
  364. u64 base, mask;
  365. pvt = mci->pvt_info;
  366. for_each_chip_select(csrow, 0, pvt) {
  367. if (!csrow_enabled(csrow, 0, pvt))
  368. continue;
  369. get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
  370. mask = ~mask;
  371. if ((input_addr & mask) == (base & mask)) {
  372. edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
  373. (unsigned long)input_addr, csrow,
  374. pvt->mc_node_id);
  375. return csrow;
  376. }
  377. }
  378. edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
  379. (unsigned long)input_addr, pvt->mc_node_id);
  380. return -1;
  381. }
  382. /*
  383. * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
  384. * for the node represented by mci. Info is passed back in *hole_base,
  385. * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
  386. * info is invalid. Info may be invalid for either of the following reasons:
  387. *
  388. * - The revision of the node is not E or greater. In this case, the DRAM Hole
  389. * Address Register does not exist.
  390. *
  391. * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
  392. * indicating that its contents are not valid.
  393. *
  394. * The values passed back in *hole_base, *hole_offset, and *hole_size are
  395. * complete 32-bit values despite the fact that the bitfields in the DHAR
  396. * only represent bits 31-24 of the base and offset values.
  397. */
  398. int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
  399. u64 *hole_offset, u64 *hole_size)
  400. {
  401. struct amd64_pvt *pvt = mci->pvt_info;
  402. /* only revE and later have the DRAM Hole Address Register */
  403. if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
  404. edac_dbg(1, " revision %d for node %d does not support DHAR\n",
  405. pvt->ext_model, pvt->mc_node_id);
  406. return 1;
  407. }
  408. /* valid for Fam10h and above */
  409. if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
  410. edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
  411. return 1;
  412. }
  413. if (!dhar_valid(pvt)) {
  414. edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
  415. pvt->mc_node_id);
  416. return 1;
  417. }
  418. /* This node has Memory Hoisting */
  419. /* +------------------+--------------------+--------------------+-----
  420. * | memory | DRAM hole | relocated |
  421. * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
  422. * | | | DRAM hole |
  423. * | | | [0x100000000, |
  424. * | | | (0x100000000+ |
  425. * | | | (0xffffffff-x))] |
  426. * +------------------+--------------------+--------------------+-----
  427. *
  428. * Above is a diagram of physical memory showing the DRAM hole and the
  429. * relocated addresses from the DRAM hole. As shown, the DRAM hole
  430. * starts at address x (the base address) and extends through address
  431. * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
  432. * addresses in the hole so that they start at 0x100000000.
  433. */
  434. *hole_base = dhar_base(pvt);
  435. *hole_size = (1ULL << 32) - *hole_base;
  436. *hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
  437. : k8_dhar_offset(pvt);
  438. edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
  439. pvt->mc_node_id, (unsigned long)*hole_base,
  440. (unsigned long)*hole_offset, (unsigned long)*hole_size);
  441. return 0;
  442. }
  443. EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
  444. /*
  445. * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
  446. * assumed that sys_addr maps to the node given by mci.
  447. *
  448. * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
  449. * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
  450. * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
  451. * then it is also involved in translating a SysAddr to a DramAddr. Sections
  452. * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
  453. * These parts of the documentation are unclear. I interpret them as follows:
  454. *
  455. * When node n receives a SysAddr, it processes the SysAddr as follows:
  456. *
  457. * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
  458. * Limit registers for node n. If the SysAddr is not within the range
  459. * specified by the base and limit values, then node n ignores the Sysaddr
  460. * (since it does not map to node n). Otherwise continue to step 2 below.
  461. *
  462. * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
  463. * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
  464. * the range of relocated addresses (starting at 0x100000000) from the DRAM
  465. * hole. If not, skip to step 3 below. Else get the value of the
  466. * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
  467. * offset defined by this value from the SysAddr.
  468. *
  469. * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
  470. * Base register for node n. To obtain the DramAddr, subtract the base
  471. * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
  472. */
  473. static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
  474. {
  475. struct amd64_pvt *pvt = mci->pvt_info;
  476. u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
  477. int ret;
  478. dram_base = get_dram_base(pvt, pvt->mc_node_id);
  479. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  480. &hole_size);
  481. if (!ret) {
  482. if ((sys_addr >= (1ULL << 32)) &&
  483. (sys_addr < ((1ULL << 32) + hole_size))) {
  484. /* use DHAR to translate SysAddr to DramAddr */
  485. dram_addr = sys_addr - hole_offset;
  486. edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
  487. (unsigned long)sys_addr,
  488. (unsigned long)dram_addr);
  489. return dram_addr;
  490. }
  491. }
  492. /*
  493. * Translate the SysAddr to a DramAddr as shown near the start of
  494. * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
  495. * only deals with 40-bit values. Therefore we discard bits 63-40 of
  496. * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
  497. * discard are all 1s. Otherwise the bits we discard are all 0s. See
  498. * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
  499. * Programmer's Manual Volume 1 Application Programming.
  500. */
  501. dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
  502. edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
  503. (unsigned long)sys_addr, (unsigned long)dram_addr);
  504. return dram_addr;
  505. }
  506. /*
  507. * @intlv_en is the value of the IntlvEn field from a DRAM Base register
  508. * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
  509. * for node interleaving.
  510. */
  511. static int num_node_interleave_bits(unsigned intlv_en)
  512. {
  513. static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
  514. int n;
  515. BUG_ON(intlv_en > 7);
  516. n = intlv_shift_table[intlv_en];
  517. return n;
  518. }
  519. /* Translate the DramAddr given by @dram_addr to an InputAddr. */
  520. static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
  521. {
  522. struct amd64_pvt *pvt;
  523. int intlv_shift;
  524. u64 input_addr;
  525. pvt = mci->pvt_info;
  526. /*
  527. * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  528. * concerning translating a DramAddr to an InputAddr.
  529. */
  530. intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
  531. input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
  532. (dram_addr & 0xfff);
  533. edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
  534. intlv_shift, (unsigned long)dram_addr,
  535. (unsigned long)input_addr);
  536. return input_addr;
  537. }
  538. /*
  539. * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
  540. * assumed that @sys_addr maps to the node given by mci.
  541. */
  542. static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
  543. {
  544. u64 input_addr;
  545. input_addr =
  546. dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
  547. edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
  548. (unsigned long)sys_addr, (unsigned long)input_addr);
  549. return input_addr;
  550. }
  551. /* Map the Error address to a PAGE and PAGE OFFSET. */
  552. static inline void error_address_to_page_and_offset(u64 error_address,
  553. struct err_info *err)
  554. {
  555. err->page = (u32) (error_address >> PAGE_SHIFT);
  556. err->offset = ((u32) error_address) & ~PAGE_MASK;
  557. }
  558. /*
  559. * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
  560. * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
  561. * of a node that detected an ECC memory error. mci represents the node that
  562. * the error address maps to (possibly different from the node that detected
  563. * the error). Return the number of the csrow that sys_addr maps to, or -1 on
  564. * error.
  565. */
  566. static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
  567. {
  568. int csrow;
  569. csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
  570. if (csrow == -1)
  571. amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
  572. "address 0x%lx\n", (unsigned long)sys_addr);
  573. return csrow;
  574. }
  575. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
  576. /*
  577. * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
  578. * are ECC capable.
  579. */
  580. static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
  581. {
  582. u8 bit;
  583. unsigned long edac_cap = EDAC_FLAG_NONE;
  584. bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
  585. ? 19
  586. : 17;
  587. if (pvt->dclr0 & BIT(bit))
  588. edac_cap = EDAC_FLAG_SECDED;
  589. return edac_cap;
  590. }
  591. static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
  592. static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
  593. {
  594. edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
  595. if (pvt->dram_type == MEM_LRDDR3) {
  596. u32 dcsm = pvt->csels[chan].csmasks[0];
  597. /*
  598. * It's assumed all LRDIMMs in a DCT are going to be of
  599. * same 'type' until proven otherwise. So, use a cs
  600. * value of '0' here to get dcsm value.
  601. */
  602. edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
  603. }
  604. edac_dbg(1, "All DIMMs support ECC:%s\n",
  605. (dclr & BIT(19)) ? "yes" : "no");
  606. edac_dbg(1, " PAR/ERR parity: %s\n",
  607. (dclr & BIT(8)) ? "enabled" : "disabled");
  608. if (pvt->fam == 0x10)
  609. edac_dbg(1, " DCT 128bit mode width: %s\n",
  610. (dclr & BIT(11)) ? "128b" : "64b");
  611. edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
  612. (dclr & BIT(12)) ? "yes" : "no",
  613. (dclr & BIT(13)) ? "yes" : "no",
  614. (dclr & BIT(14)) ? "yes" : "no",
  615. (dclr & BIT(15)) ? "yes" : "no");
  616. }
  617. /* Display and decode various NB registers for debug purposes. */
  618. static void dump_misc_regs(struct amd64_pvt *pvt)
  619. {
  620. edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
  621. edac_dbg(1, " NB two channel DRAM capable: %s\n",
  622. (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
  623. edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
  624. (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
  625. (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
  626. debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
  627. edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
  628. edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
  629. pvt->dhar, dhar_base(pvt),
  630. (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
  631. : f10_dhar_offset(pvt));
  632. edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
  633. debug_display_dimm_sizes(pvt, 0);
  634. /* everything below this point is Fam10h and above */
  635. if (pvt->fam == 0xf)
  636. return;
  637. debug_display_dimm_sizes(pvt, 1);
  638. amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
  639. /* Only if NOT ganged does dclr1 have valid info */
  640. if (!dct_ganging_enabled(pvt))
  641. debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
  642. }
  643. /*
  644. * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
  645. */
  646. static void prep_chip_selects(struct amd64_pvt *pvt)
  647. {
  648. if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
  649. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
  650. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
  651. } else if (pvt->fam == 0x15 && pvt->model == 0x30) {
  652. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
  653. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
  654. } else {
  655. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
  656. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
  657. }
  658. }
  659. /*
  660. * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
  661. */
  662. static void read_dct_base_mask(struct amd64_pvt *pvt)
  663. {
  664. int cs;
  665. prep_chip_selects(pvt);
  666. for_each_chip_select(cs, 0, pvt) {
  667. int reg0 = DCSB0 + (cs * 4);
  668. int reg1 = DCSB1 + (cs * 4);
  669. u32 *base0 = &pvt->csels[0].csbases[cs];
  670. u32 *base1 = &pvt->csels[1].csbases[cs];
  671. if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
  672. edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
  673. cs, *base0, reg0);
  674. if (pvt->fam == 0xf)
  675. continue;
  676. if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
  677. edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
  678. cs, *base1, (pvt->fam == 0x10) ? reg1
  679. : reg0);
  680. }
  681. for_each_chip_select_mask(cs, 0, pvt) {
  682. int reg0 = DCSM0 + (cs * 4);
  683. int reg1 = DCSM1 + (cs * 4);
  684. u32 *mask0 = &pvt->csels[0].csmasks[cs];
  685. u32 *mask1 = &pvt->csels[1].csmasks[cs];
  686. if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
  687. edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
  688. cs, *mask0, reg0);
  689. if (pvt->fam == 0xf)
  690. continue;
  691. if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
  692. edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
  693. cs, *mask1, (pvt->fam == 0x10) ? reg1
  694. : reg0);
  695. }
  696. }
  697. static void determine_memory_type(struct amd64_pvt *pvt)
  698. {
  699. u32 dram_ctrl, dcsm;
  700. switch (pvt->fam) {
  701. case 0xf:
  702. if (pvt->ext_model >= K8_REV_F)
  703. goto ddr3;
  704. pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
  705. return;
  706. case 0x10:
  707. if (pvt->dchr0 & DDR3_MODE)
  708. goto ddr3;
  709. pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
  710. return;
  711. case 0x15:
  712. if (pvt->model < 0x60)
  713. goto ddr3;
  714. /*
  715. * Model 0x60h needs special handling:
  716. *
  717. * We use a Chip Select value of '0' to obtain dcsm.
  718. * Theoretically, it is possible to populate LRDIMMs of different
  719. * 'Rank' value on a DCT. But this is not the common case. So,
  720. * it's reasonable to assume all DIMMs are going to be of same
  721. * 'type' until proven otherwise.
  722. */
  723. amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
  724. dcsm = pvt->csels[0].csmasks[0];
  725. if (((dram_ctrl >> 8) & 0x7) == 0x2)
  726. pvt->dram_type = MEM_DDR4;
  727. else if (pvt->dclr0 & BIT(16))
  728. pvt->dram_type = MEM_DDR3;
  729. else if (dcsm & 0x3)
  730. pvt->dram_type = MEM_LRDDR3;
  731. else
  732. pvt->dram_type = MEM_RDDR3;
  733. return;
  734. case 0x16:
  735. goto ddr3;
  736. default:
  737. WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
  738. pvt->dram_type = MEM_EMPTY;
  739. }
  740. return;
  741. ddr3:
  742. pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
  743. }
  744. /* Get the number of DCT channels the memory controller is using. */
  745. static int k8_early_channel_count(struct amd64_pvt *pvt)
  746. {
  747. int flag;
  748. if (pvt->ext_model >= K8_REV_F)
  749. /* RevF (NPT) and later */
  750. flag = pvt->dclr0 & WIDTH_128;
  751. else
  752. /* RevE and earlier */
  753. flag = pvt->dclr0 & REVE_WIDTH_128;
  754. /* not used */
  755. pvt->dclr1 = 0;
  756. return (flag) ? 2 : 1;
  757. }
  758. /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
  759. static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
  760. {
  761. u16 mce_nid = amd_get_nb_id(m->extcpu);
  762. struct mem_ctl_info *mci;
  763. u8 start_bit = 1;
  764. u8 end_bit = 47;
  765. u64 addr;
  766. mci = edac_mc_find(mce_nid);
  767. if (!mci)
  768. return 0;
  769. pvt = mci->pvt_info;
  770. if (pvt->fam == 0xf) {
  771. start_bit = 3;
  772. end_bit = 39;
  773. }
  774. addr = m->addr & GENMASK_ULL(end_bit, start_bit);
  775. /*
  776. * Erratum 637 workaround
  777. */
  778. if (pvt->fam == 0x15) {
  779. u64 cc6_base, tmp_addr;
  780. u32 tmp;
  781. u8 intlv_en;
  782. if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
  783. return addr;
  784. amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
  785. intlv_en = tmp >> 21 & 0x7;
  786. /* add [47:27] + 3 trailing bits */
  787. cc6_base = (tmp & GENMASK_ULL(20, 0)) << 3;
  788. /* reverse and add DramIntlvEn */
  789. cc6_base |= intlv_en ^ 0x7;
  790. /* pin at [47:24] */
  791. cc6_base <<= 24;
  792. if (!intlv_en)
  793. return cc6_base | (addr & GENMASK_ULL(23, 0));
  794. amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
  795. /* faster log2 */
  796. tmp_addr = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
  797. /* OR DramIntlvSel into bits [14:12] */
  798. tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
  799. /* add remaining [11:0] bits from original MC4_ADDR */
  800. tmp_addr |= addr & GENMASK_ULL(11, 0);
  801. return cc6_base | tmp_addr;
  802. }
  803. return addr;
  804. }
  805. static struct pci_dev *pci_get_related_function(unsigned int vendor,
  806. unsigned int device,
  807. struct pci_dev *related)
  808. {
  809. struct pci_dev *dev = NULL;
  810. while ((dev = pci_get_device(vendor, device, dev))) {
  811. if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
  812. (dev->bus->number == related->bus->number) &&
  813. (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
  814. break;
  815. }
  816. return dev;
  817. }
  818. static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
  819. {
  820. struct amd_northbridge *nb;
  821. struct pci_dev *f1 = NULL;
  822. unsigned int pci_func;
  823. int off = range << 3;
  824. u32 llim;
  825. amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
  826. amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
  827. if (pvt->fam == 0xf)
  828. return;
  829. if (!dram_rw(pvt, range))
  830. return;
  831. amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
  832. amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
  833. /* F15h: factor in CC6 save area by reading dst node's limit reg */
  834. if (pvt->fam != 0x15)
  835. return;
  836. nb = node_to_amd_nb(dram_dst_node(pvt, range));
  837. if (WARN_ON(!nb))
  838. return;
  839. if (pvt->model == 0x60)
  840. pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
  841. else if (pvt->model == 0x30)
  842. pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
  843. else
  844. pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
  845. f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
  846. if (WARN_ON(!f1))
  847. return;
  848. amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
  849. pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
  850. /* {[39:27],111b} */
  851. pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
  852. pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
  853. /* [47:40] */
  854. pvt->ranges[range].lim.hi |= llim >> 13;
  855. pci_dev_put(f1);
  856. }
  857. static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
  858. struct err_info *err)
  859. {
  860. struct amd64_pvt *pvt = mci->pvt_info;
  861. error_address_to_page_and_offset(sys_addr, err);
  862. /*
  863. * Find out which node the error address belongs to. This may be
  864. * different from the node that detected the error.
  865. */
  866. err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
  867. if (!err->src_mci) {
  868. amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
  869. (unsigned long)sys_addr);
  870. err->err_code = ERR_NODE;
  871. return;
  872. }
  873. /* Now map the sys_addr to a CSROW */
  874. err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
  875. if (err->csrow < 0) {
  876. err->err_code = ERR_CSROW;
  877. return;
  878. }
  879. /* CHIPKILL enabled */
  880. if (pvt->nbcfg & NBCFG_CHIPKILL) {
  881. err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
  882. if (err->channel < 0) {
  883. /*
  884. * Syndrome didn't map, so we don't know which of the
  885. * 2 DIMMs is in error. So we need to ID 'both' of them
  886. * as suspect.
  887. */
  888. amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
  889. "possible error reporting race\n",
  890. err->syndrome);
  891. err->err_code = ERR_CHANNEL;
  892. return;
  893. }
  894. } else {
  895. /*
  896. * non-chipkill ecc mode
  897. *
  898. * The k8 documentation is unclear about how to determine the
  899. * channel number when using non-chipkill memory. This method
  900. * was obtained from email communication with someone at AMD.
  901. * (Wish the email was placed in this comment - norsk)
  902. */
  903. err->channel = ((sys_addr & BIT(3)) != 0);
  904. }
  905. }
  906. static int ddr2_cs_size(unsigned i, bool dct_width)
  907. {
  908. unsigned shift = 0;
  909. if (i <= 2)
  910. shift = i;
  911. else if (!(i & 0x1))
  912. shift = i >> 1;
  913. else
  914. shift = (i + 1) >> 1;
  915. return 128 << (shift + !!dct_width);
  916. }
  917. static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  918. unsigned cs_mode, int cs_mask_nr)
  919. {
  920. u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
  921. if (pvt->ext_model >= K8_REV_F) {
  922. WARN_ON(cs_mode > 11);
  923. return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
  924. }
  925. else if (pvt->ext_model >= K8_REV_D) {
  926. unsigned diff;
  927. WARN_ON(cs_mode > 10);
  928. /*
  929. * the below calculation, besides trying to win an obfuscated C
  930. * contest, maps cs_mode values to DIMM chip select sizes. The
  931. * mappings are:
  932. *
  933. * cs_mode CS size (mb)
  934. * ======= ============
  935. * 0 32
  936. * 1 64
  937. * 2 128
  938. * 3 128
  939. * 4 256
  940. * 5 512
  941. * 6 256
  942. * 7 512
  943. * 8 1024
  944. * 9 1024
  945. * 10 2048
  946. *
  947. * Basically, it calculates a value with which to shift the
  948. * smallest CS size of 32MB.
  949. *
  950. * ddr[23]_cs_size have a similar purpose.
  951. */
  952. diff = cs_mode/3 + (unsigned)(cs_mode > 5);
  953. return 32 << (cs_mode - diff);
  954. }
  955. else {
  956. WARN_ON(cs_mode > 6);
  957. return 32 << cs_mode;
  958. }
  959. }
  960. /*
  961. * Get the number of DCT channels in use.
  962. *
  963. * Return:
  964. * number of Memory Channels in operation
  965. * Pass back:
  966. * contents of the DCL0_LOW register
  967. */
  968. static int f1x_early_channel_count(struct amd64_pvt *pvt)
  969. {
  970. int i, j, channels = 0;
  971. /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
  972. if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
  973. return 2;
  974. /*
  975. * Need to check if in unganged mode: In such, there are 2 channels,
  976. * but they are not in 128 bit mode and thus the above 'dclr0' status
  977. * bit will be OFF.
  978. *
  979. * Need to check DCT0[0] and DCT1[0] to see if only one of them has
  980. * their CSEnable bit on. If so, then SINGLE DIMM case.
  981. */
  982. edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
  983. /*
  984. * Check DRAM Bank Address Mapping values for each DIMM to see if there
  985. * is more than just one DIMM present in unganged mode. Need to check
  986. * both controllers since DIMMs can be placed in either one.
  987. */
  988. for (i = 0; i < 2; i++) {
  989. u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
  990. for (j = 0; j < 4; j++) {
  991. if (DBAM_DIMM(j, dbam) > 0) {
  992. channels++;
  993. break;
  994. }
  995. }
  996. }
  997. if (channels > 2)
  998. channels = 2;
  999. amd64_info("MCT channel count: %d\n", channels);
  1000. return channels;
  1001. }
  1002. static int ddr3_cs_size(unsigned i, bool dct_width)
  1003. {
  1004. unsigned shift = 0;
  1005. int cs_size = 0;
  1006. if (i == 0 || i == 3 || i == 4)
  1007. cs_size = -1;
  1008. else if (i <= 2)
  1009. shift = i;
  1010. else if (i == 12)
  1011. shift = 7;
  1012. else if (!(i & 0x1))
  1013. shift = i >> 1;
  1014. else
  1015. shift = (i + 1) >> 1;
  1016. if (cs_size != -1)
  1017. cs_size = (128 * (1 << !!dct_width)) << shift;
  1018. return cs_size;
  1019. }
  1020. static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
  1021. {
  1022. unsigned shift = 0;
  1023. int cs_size = 0;
  1024. if (i < 4 || i == 6)
  1025. cs_size = -1;
  1026. else if (i == 12)
  1027. shift = 7;
  1028. else if (!(i & 0x1))
  1029. shift = i >> 1;
  1030. else
  1031. shift = (i + 1) >> 1;
  1032. if (cs_size != -1)
  1033. cs_size = rank_multiply * (128 << shift);
  1034. return cs_size;
  1035. }
  1036. static int ddr4_cs_size(unsigned i)
  1037. {
  1038. int cs_size = 0;
  1039. if (i == 0)
  1040. cs_size = -1;
  1041. else if (i == 1)
  1042. cs_size = 1024;
  1043. else
  1044. /* Min cs_size = 1G */
  1045. cs_size = 1024 * (1 << (i >> 1));
  1046. return cs_size;
  1047. }
  1048. static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  1049. unsigned cs_mode, int cs_mask_nr)
  1050. {
  1051. u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
  1052. WARN_ON(cs_mode > 11);
  1053. if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
  1054. return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
  1055. else
  1056. return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
  1057. }
  1058. /*
  1059. * F15h supports only 64bit DCT interfaces
  1060. */
  1061. static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  1062. unsigned cs_mode, int cs_mask_nr)
  1063. {
  1064. WARN_ON(cs_mode > 12);
  1065. return ddr3_cs_size(cs_mode, false);
  1066. }
  1067. /* F15h M60h supports DDR4 mapping as well.. */
  1068. static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  1069. unsigned cs_mode, int cs_mask_nr)
  1070. {
  1071. int cs_size;
  1072. u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];
  1073. WARN_ON(cs_mode > 12);
  1074. if (pvt->dram_type == MEM_DDR4) {
  1075. if (cs_mode > 9)
  1076. return -1;
  1077. cs_size = ddr4_cs_size(cs_mode);
  1078. } else if (pvt->dram_type == MEM_LRDDR3) {
  1079. unsigned rank_multiply = dcsm & 0xf;
  1080. if (rank_multiply == 3)
  1081. rank_multiply = 4;
  1082. cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
  1083. } else {
  1084. /* Minimum cs size is 512mb for F15hM60h*/
  1085. if (cs_mode == 0x1)
  1086. return -1;
  1087. cs_size = ddr3_cs_size(cs_mode, false);
  1088. }
  1089. return cs_size;
  1090. }
  1091. /*
  1092. * F16h and F15h model 30h have only limited cs_modes.
  1093. */
  1094. static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  1095. unsigned cs_mode, int cs_mask_nr)
  1096. {
  1097. WARN_ON(cs_mode > 12);
  1098. if (cs_mode == 6 || cs_mode == 8 ||
  1099. cs_mode == 9 || cs_mode == 12)
  1100. return -1;
  1101. else
  1102. return ddr3_cs_size(cs_mode, false);
  1103. }
  1104. static void read_dram_ctl_register(struct amd64_pvt *pvt)
  1105. {
  1106. if (pvt->fam == 0xf)
  1107. return;
  1108. if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
  1109. edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
  1110. pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
  1111. edac_dbg(0, " DCTs operate in %s mode\n",
  1112. (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
  1113. if (!dct_ganging_enabled(pvt))
  1114. edac_dbg(0, " Address range split per DCT: %s\n",
  1115. (dct_high_range_enabled(pvt) ? "yes" : "no"));
  1116. edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
  1117. (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
  1118. (dct_memory_cleared(pvt) ? "yes" : "no"));
  1119. edac_dbg(0, " channel interleave: %s, "
  1120. "interleave bits selector: 0x%x\n",
  1121. (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
  1122. dct_sel_interleave_addr(pvt));
  1123. }
  1124. amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
  1125. }
  1126. /*
  1127. * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
  1128. * 2.10.12 Memory Interleaving Modes).
  1129. */
  1130. static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
  1131. u8 intlv_en, int num_dcts_intlv,
  1132. u32 dct_sel)
  1133. {
  1134. u8 channel = 0;
  1135. u8 select;
  1136. if (!(intlv_en))
  1137. return (u8)(dct_sel);
  1138. if (num_dcts_intlv == 2) {
  1139. select = (sys_addr >> 8) & 0x3;
  1140. channel = select ? 0x3 : 0;
  1141. } else if (num_dcts_intlv == 4) {
  1142. u8 intlv_addr = dct_sel_interleave_addr(pvt);
  1143. switch (intlv_addr) {
  1144. case 0x4:
  1145. channel = (sys_addr >> 8) & 0x3;
  1146. break;
  1147. case 0x5:
  1148. channel = (sys_addr >> 9) & 0x3;
  1149. break;
  1150. }
  1151. }
  1152. return channel;
  1153. }
  1154. /*
  1155. * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
  1156. * Interleaving Modes.
  1157. */
  1158. static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
  1159. bool hi_range_sel, u8 intlv_en)
  1160. {
  1161. u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
  1162. if (dct_ganging_enabled(pvt))
  1163. return 0;
  1164. if (hi_range_sel)
  1165. return dct_sel_high;
  1166. /*
  1167. * see F2x110[DctSelIntLvAddr] - channel interleave mode
  1168. */
  1169. if (dct_interleave_enabled(pvt)) {
  1170. u8 intlv_addr = dct_sel_interleave_addr(pvt);
  1171. /* return DCT select function: 0=DCT0, 1=DCT1 */
  1172. if (!intlv_addr)
  1173. return sys_addr >> 6 & 1;
  1174. if (intlv_addr & 0x2) {
  1175. u8 shift = intlv_addr & 0x1 ? 9 : 6;
  1176. u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
  1177. return ((sys_addr >> shift) & 1) ^ temp;
  1178. }
  1179. return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
  1180. }
  1181. if (dct_high_range_enabled(pvt))
  1182. return ~dct_sel_high & 1;
  1183. return 0;
  1184. }
  1185. /* Convert the sys_addr to the normalized DCT address */
  1186. static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
  1187. u64 sys_addr, bool hi_rng,
  1188. u32 dct_sel_base_addr)
  1189. {
  1190. u64 chan_off;
  1191. u64 dram_base = get_dram_base(pvt, range);
  1192. u64 hole_off = f10_dhar_offset(pvt);
  1193. u64 dct_sel_base_off = (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16;
  1194. if (hi_rng) {
  1195. /*
  1196. * if
  1197. * base address of high range is below 4Gb
  1198. * (bits [47:27] at [31:11])
  1199. * DRAM address space on this DCT is hoisted above 4Gb &&
  1200. * sys_addr > 4Gb
  1201. *
  1202. * remove hole offset from sys_addr
  1203. * else
  1204. * remove high range offset from sys_addr
  1205. */
  1206. if ((!(dct_sel_base_addr >> 16) ||
  1207. dct_sel_base_addr < dhar_base(pvt)) &&
  1208. dhar_valid(pvt) &&
  1209. (sys_addr >= BIT_64(32)))
  1210. chan_off = hole_off;
  1211. else
  1212. chan_off = dct_sel_base_off;
  1213. } else {
  1214. /*
  1215. * if
  1216. * we have a valid hole &&
  1217. * sys_addr > 4Gb
  1218. *
  1219. * remove hole
  1220. * else
  1221. * remove dram base to normalize to DCT address
  1222. */
  1223. if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
  1224. chan_off = hole_off;
  1225. else
  1226. chan_off = dram_base;
  1227. }
  1228. return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
  1229. }
  1230. /*
  1231. * checks if the csrow passed in is marked as SPARED, if so returns the new
  1232. * spare row
  1233. */
  1234. static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
  1235. {
  1236. int tmp_cs;
  1237. if (online_spare_swap_done(pvt, dct) &&
  1238. csrow == online_spare_bad_dramcs(pvt, dct)) {
  1239. for_each_chip_select(tmp_cs, dct, pvt) {
  1240. if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
  1241. csrow = tmp_cs;
  1242. break;
  1243. }
  1244. }
  1245. }
  1246. return csrow;
  1247. }
  1248. /*
  1249. * Iterate over the DRAM DCT "base" and "mask" registers looking for a
  1250. * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
  1251. *
  1252. * Return:
  1253. * -EINVAL: NOT FOUND
  1254. * 0..csrow = Chip-Select Row
  1255. */
  1256. static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
  1257. {
  1258. struct mem_ctl_info *mci;
  1259. struct amd64_pvt *pvt;
  1260. u64 cs_base, cs_mask;
  1261. int cs_found = -EINVAL;
  1262. int csrow;
  1263. mci = edac_mc_find(nid);
  1264. if (!mci)
  1265. return cs_found;
  1266. pvt = mci->pvt_info;
  1267. edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
  1268. for_each_chip_select(csrow, dct, pvt) {
  1269. if (!csrow_enabled(csrow, dct, pvt))
  1270. continue;
  1271. get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
  1272. edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
  1273. csrow, cs_base, cs_mask);
  1274. cs_mask = ~cs_mask;
  1275. edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
  1276. (in_addr & cs_mask), (cs_base & cs_mask));
  1277. if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
  1278. if (pvt->fam == 0x15 && pvt->model >= 0x30) {
  1279. cs_found = csrow;
  1280. break;
  1281. }
  1282. cs_found = f10_process_possible_spare(pvt, dct, csrow);
  1283. edac_dbg(1, " MATCH csrow=%d\n", cs_found);
  1284. break;
  1285. }
  1286. }
  1287. return cs_found;
  1288. }
  1289. /*
  1290. * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
  1291. * swapped with a region located at the bottom of memory so that the GPU can use
  1292. * the interleaved region and thus two channels.
  1293. */
  1294. static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
  1295. {
  1296. u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
  1297. if (pvt->fam == 0x10) {
  1298. /* only revC3 and revE have that feature */
  1299. if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
  1300. return sys_addr;
  1301. }
  1302. amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
  1303. if (!(swap_reg & 0x1))
  1304. return sys_addr;
  1305. swap_base = (swap_reg >> 3) & 0x7f;
  1306. swap_limit = (swap_reg >> 11) & 0x7f;
  1307. rgn_size = (swap_reg >> 20) & 0x7f;
  1308. tmp_addr = sys_addr >> 27;
  1309. if (!(sys_addr >> 34) &&
  1310. (((tmp_addr >= swap_base) &&
  1311. (tmp_addr <= swap_limit)) ||
  1312. (tmp_addr < rgn_size)))
  1313. return sys_addr ^ (u64)swap_base << 27;
  1314. return sys_addr;
  1315. }
  1316. /* For a given @dram_range, check if @sys_addr falls within it. */
  1317. static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
  1318. u64 sys_addr, int *chan_sel)
  1319. {
  1320. int cs_found = -EINVAL;
  1321. u64 chan_addr;
  1322. u32 dct_sel_base;
  1323. u8 channel;
  1324. bool high_range = false;
  1325. u8 node_id = dram_dst_node(pvt, range);
  1326. u8 intlv_en = dram_intlv_en(pvt, range);
  1327. u32 intlv_sel = dram_intlv_sel(pvt, range);
  1328. edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
  1329. range, sys_addr, get_dram_limit(pvt, range));
  1330. if (dhar_valid(pvt) &&
  1331. dhar_base(pvt) <= sys_addr &&
  1332. sys_addr < BIT_64(32)) {
  1333. amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
  1334. sys_addr);
  1335. return -EINVAL;
  1336. }
  1337. if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
  1338. return -EINVAL;
  1339. sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
  1340. dct_sel_base = dct_sel_baseaddr(pvt);
  1341. /*
  1342. * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
  1343. * select between DCT0 and DCT1.
  1344. */
  1345. if (dct_high_range_enabled(pvt) &&
  1346. !dct_ganging_enabled(pvt) &&
  1347. ((sys_addr >> 27) >= (dct_sel_base >> 11)))
  1348. high_range = true;
  1349. channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
  1350. chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
  1351. high_range, dct_sel_base);
  1352. /* Remove node interleaving, see F1x120 */
  1353. if (intlv_en)
  1354. chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
  1355. (chan_addr & 0xfff);
  1356. /* remove channel interleave */
  1357. if (dct_interleave_enabled(pvt) &&
  1358. !dct_high_range_enabled(pvt) &&
  1359. !dct_ganging_enabled(pvt)) {
  1360. if (dct_sel_interleave_addr(pvt) != 1) {
  1361. if (dct_sel_interleave_addr(pvt) == 0x3)
  1362. /* hash 9 */
  1363. chan_addr = ((chan_addr >> 10) << 9) |
  1364. (chan_addr & 0x1ff);
  1365. else
  1366. /* A[6] or hash 6 */
  1367. chan_addr = ((chan_addr >> 7) << 6) |
  1368. (chan_addr & 0x3f);
  1369. } else
  1370. /* A[12] */
  1371. chan_addr = ((chan_addr >> 13) << 12) |
  1372. (chan_addr & 0xfff);
  1373. }
  1374. edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
  1375. cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
  1376. if (cs_found >= 0)
  1377. *chan_sel = channel;
  1378. return cs_found;
  1379. }
  1380. static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
  1381. u64 sys_addr, int *chan_sel)
  1382. {
  1383. int cs_found = -EINVAL;
  1384. int num_dcts_intlv = 0;
  1385. u64 chan_addr, chan_offset;
  1386. u64 dct_base, dct_limit;
  1387. u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
  1388. u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;
  1389. u64 dhar_offset = f10_dhar_offset(pvt);
  1390. u8 intlv_addr = dct_sel_interleave_addr(pvt);
  1391. u8 node_id = dram_dst_node(pvt, range);
  1392. u8 intlv_en = dram_intlv_en(pvt, range);
  1393. amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
  1394. amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);
  1395. dct_offset_en = (u8) ((dct_cont_base_reg >> 3) & BIT(0));
  1396. dct_sel = (u8) ((dct_cont_base_reg >> 4) & 0x7);
  1397. edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
  1398. range, sys_addr, get_dram_limit(pvt, range));
  1399. if (!(get_dram_base(pvt, range) <= sys_addr) &&
  1400. !(get_dram_limit(pvt, range) >= sys_addr))
  1401. return -EINVAL;
  1402. if (dhar_valid(pvt) &&
  1403. dhar_base(pvt) <= sys_addr &&
  1404. sys_addr < BIT_64(32)) {
  1405. amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
  1406. sys_addr);
  1407. return -EINVAL;
  1408. }
  1409. /* Verify sys_addr is within DCT Range. */
  1410. dct_base = (u64) dct_sel_baseaddr(pvt);
  1411. dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
  1412. if (!(dct_cont_base_reg & BIT(0)) &&
  1413. !(dct_base <= (sys_addr >> 27) &&
  1414. dct_limit >= (sys_addr >> 27)))
  1415. return -EINVAL;
  1416. /* Verify number of dct's that participate in channel interleaving. */
  1417. num_dcts_intlv = (int) hweight8(intlv_en);
  1418. if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
  1419. return -EINVAL;
  1420. channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
  1421. num_dcts_intlv, dct_sel);
  1422. /* Verify we stay within the MAX number of channels allowed */
  1423. if (channel > 3)
  1424. return -EINVAL;
  1425. leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));
  1426. /* Get normalized DCT addr */
  1427. if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
  1428. chan_offset = dhar_offset;
  1429. else
  1430. chan_offset = dct_base << 27;
  1431. chan_addr = sys_addr - chan_offset;
  1432. /* remove channel interleave */
  1433. if (num_dcts_intlv == 2) {
  1434. if (intlv_addr == 0x4)
  1435. chan_addr = ((chan_addr >> 9) << 8) |
  1436. (chan_addr & 0xff);
  1437. else if (intlv_addr == 0x5)
  1438. chan_addr = ((chan_addr >> 10) << 9) |
  1439. (chan_addr & 0x1ff);
  1440. else
  1441. return -EINVAL;
  1442. } else if (num_dcts_intlv == 4) {
  1443. if (intlv_addr == 0x4)
  1444. chan_addr = ((chan_addr >> 10) << 8) |
  1445. (chan_addr & 0xff);
  1446. else if (intlv_addr == 0x5)
  1447. chan_addr = ((chan_addr >> 11) << 9) |
  1448. (chan_addr & 0x1ff);
  1449. else
  1450. return -EINVAL;
  1451. }
  1452. if (dct_offset_en) {
  1453. amd64_read_pci_cfg(pvt->F1,
  1454. DRAM_CONT_HIGH_OFF + (int) channel * 4,
  1455. &tmp);
  1456. chan_addr += (u64) ((tmp >> 11) & 0xfff) << 27;
  1457. }
  1458. f15h_select_dct(pvt, channel);
  1459. edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
  1460. /*
  1461. * Find Chip select:
  1462. * if channel = 3, then alias it to 1. This is because, in F15 M30h,
  1463. * there is support for 4 DCT's, but only 2 are currently functional.
  1464. * They are DCT0 and DCT3. But we have read all registers of DCT3 into
  1465. * pvt->csels[1]. So we need to use '1' here to get correct info.
  1466. * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
  1467. */
  1468. alias_channel = (channel == 3) ? 1 : channel;
  1469. cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);
  1470. if (cs_found >= 0)
  1471. *chan_sel = alias_channel;
  1472. return cs_found;
  1473. }
  1474. static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
  1475. u64 sys_addr,
  1476. int *chan_sel)
  1477. {
  1478. int cs_found = -EINVAL;
  1479. unsigned range;
  1480. for (range = 0; range < DRAM_RANGES; range++) {
  1481. if (!dram_rw(pvt, range))
  1482. continue;
  1483. if (pvt->fam == 0x15 && pvt->model >= 0x30)
  1484. cs_found = f15_m30h_match_to_this_node(pvt, range,
  1485. sys_addr,
  1486. chan_sel);
  1487. else if ((get_dram_base(pvt, range) <= sys_addr) &&
  1488. (get_dram_limit(pvt, range) >= sys_addr)) {
  1489. cs_found = f1x_match_to_this_node(pvt, range,
  1490. sys_addr, chan_sel);
  1491. if (cs_found >= 0)
  1492. break;
  1493. }
  1494. }
  1495. return cs_found;
  1496. }
  1497. /*
  1498. * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
  1499. * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
  1500. *
  1501. * The @sys_addr is usually an error address received from the hardware
  1502. * (MCX_ADDR).
  1503. */
  1504. static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
  1505. struct err_info *err)
  1506. {
  1507. struct amd64_pvt *pvt = mci->pvt_info;
  1508. error_address_to_page_and_offset(sys_addr, err);
  1509. err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
  1510. if (err->csrow < 0) {
  1511. err->err_code = ERR_CSROW;
  1512. return;
  1513. }
  1514. /*
  1515. * We need the syndromes for channel detection only when we're
  1516. * ganged. Otherwise @chan should already contain the channel at
  1517. * this point.
  1518. */
  1519. if (dct_ganging_enabled(pvt))
  1520. err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
  1521. }
  1522. /*
  1523. * debug routine to display the memory sizes of all logical DIMMs and its
  1524. * CSROWs
  1525. */
  1526. static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
  1527. {
  1528. int dimm, size0, size1;
  1529. u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
  1530. u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
  1531. if (pvt->fam == 0xf) {
  1532. /* K8 families < revF not supported yet */
  1533. if (pvt->ext_model < K8_REV_F)
  1534. return;
  1535. else
  1536. WARN_ON(ctrl != 0);
  1537. }
  1538. if (pvt->fam == 0x10) {
  1539. dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
  1540. : pvt->dbam0;
  1541. dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
  1542. pvt->csels[1].csbases :
  1543. pvt->csels[0].csbases;
  1544. } else if (ctrl) {
  1545. dbam = pvt->dbam0;
  1546. dcsb = pvt->csels[1].csbases;
  1547. }
  1548. edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
  1549. ctrl, dbam);
  1550. edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
  1551. /* Dump memory sizes for DIMM and its CSROWs */
  1552. for (dimm = 0; dimm < 4; dimm++) {
  1553. size0 = 0;
  1554. if (dcsb[dimm*2] & DCSB_CS_ENABLE)
  1555. /* For f15m60h, need multiplier for LRDIMM cs_size
  1556. * calculation. We pass 'dimm' value to the dbam_to_cs
  1557. * mapper so we can find the multiplier from the
  1558. * corresponding DCSM.
  1559. */
  1560. size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
  1561. DBAM_DIMM(dimm, dbam),
  1562. dimm);
  1563. size1 = 0;
  1564. if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
  1565. size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
  1566. DBAM_DIMM(dimm, dbam),
  1567. dimm);
  1568. amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
  1569. dimm * 2, size0,
  1570. dimm * 2 + 1, size1);
  1571. }
  1572. }
  1573. static struct amd64_family_type family_types[] = {
  1574. [K8_CPUS] = {
  1575. .ctl_name = "K8",
  1576. .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
  1577. .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
  1578. .ops = {
  1579. .early_channel_count = k8_early_channel_count,
  1580. .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
  1581. .dbam_to_cs = k8_dbam_to_chip_select,
  1582. }
  1583. },
  1584. [F10_CPUS] = {
  1585. .ctl_name = "F10h",
  1586. .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
  1587. .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
  1588. .ops = {
  1589. .early_channel_count = f1x_early_channel_count,
  1590. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1591. .dbam_to_cs = f10_dbam_to_chip_select,
  1592. }
  1593. },
  1594. [F15_CPUS] = {
  1595. .ctl_name = "F15h",
  1596. .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
  1597. .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
  1598. .ops = {
  1599. .early_channel_count = f1x_early_channel_count,
  1600. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1601. .dbam_to_cs = f15_dbam_to_chip_select,
  1602. }
  1603. },
  1604. [F15_M30H_CPUS] = {
  1605. .ctl_name = "F15h_M30h",
  1606. .f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
  1607. .f3_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F3,
  1608. .ops = {
  1609. .early_channel_count = f1x_early_channel_count,
  1610. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1611. .dbam_to_cs = f16_dbam_to_chip_select,
  1612. }
  1613. },
  1614. [F15_M60H_CPUS] = {
  1615. .ctl_name = "F15h_M60h",
  1616. .f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
  1617. .f3_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F3,
  1618. .ops = {
  1619. .early_channel_count = f1x_early_channel_count,
  1620. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1621. .dbam_to_cs = f15_m60h_dbam_to_chip_select,
  1622. }
  1623. },
  1624. [F16_CPUS] = {
  1625. .ctl_name = "F16h",
  1626. .f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
  1627. .f3_id = PCI_DEVICE_ID_AMD_16H_NB_F3,
  1628. .ops = {
  1629. .early_channel_count = f1x_early_channel_count,
  1630. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1631. .dbam_to_cs = f16_dbam_to_chip_select,
  1632. }
  1633. },
  1634. [F16_M30H_CPUS] = {
  1635. .ctl_name = "F16h_M30h",
  1636. .f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
  1637. .f3_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F3,
  1638. .ops = {
  1639. .early_channel_count = f1x_early_channel_count,
  1640. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1641. .dbam_to_cs = f16_dbam_to_chip_select,
  1642. }
  1643. },
  1644. };
  1645. /*
  1646. * These are tables of eigenvectors (one per line) which can be used for the
  1647. * construction of the syndrome tables. The modified syndrome search algorithm
  1648. * uses those to find the symbol in error and thus the DIMM.
  1649. *
  1650. * Algorithm courtesy of Ross LaFetra from AMD.
  1651. */
  1652. static const u16 x4_vectors[] = {
  1653. 0x2f57, 0x1afe, 0x66cc, 0xdd88,
  1654. 0x11eb, 0x3396, 0x7f4c, 0xeac8,
  1655. 0x0001, 0x0002, 0x0004, 0x0008,
  1656. 0x1013, 0x3032, 0x4044, 0x8088,
  1657. 0x106b, 0x30d6, 0x70fc, 0xe0a8,
  1658. 0x4857, 0xc4fe, 0x13cc, 0x3288,
  1659. 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
  1660. 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
  1661. 0x15c1, 0x2a42, 0x89ac, 0x4758,
  1662. 0x2b03, 0x1602, 0x4f0c, 0xca08,
  1663. 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
  1664. 0x8ba7, 0x465e, 0x244c, 0x1cc8,
  1665. 0x2b87, 0x164e, 0x642c, 0xdc18,
  1666. 0x40b9, 0x80de, 0x1094, 0x20e8,
  1667. 0x27db, 0x1eb6, 0x9dac, 0x7b58,
  1668. 0x11c1, 0x2242, 0x84ac, 0x4c58,
  1669. 0x1be5, 0x2d7a, 0x5e34, 0xa718,
  1670. 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
  1671. 0x4c97, 0xc87e, 0x11fc, 0x33a8,
  1672. 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
  1673. 0x16b3, 0x3d62, 0x4f34, 0x8518,
  1674. 0x1e2f, 0x391a, 0x5cac, 0xf858,
  1675. 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
  1676. 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
  1677. 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
  1678. 0x4397, 0xc27e, 0x17fc, 0x3ea8,
  1679. 0x1617, 0x3d3e, 0x6464, 0xb8b8,
  1680. 0x23ff, 0x12aa, 0xab6c, 0x56d8,
  1681. 0x2dfb, 0x1ba6, 0x913c, 0x7328,
  1682. 0x185d, 0x2ca6, 0x7914, 0x9e28,
  1683. 0x171b, 0x3e36, 0x7d7c, 0xebe8,
  1684. 0x4199, 0x82ee, 0x19f4, 0x2e58,
  1685. 0x4807, 0xc40e, 0x130c, 0x3208,
  1686. 0x1905, 0x2e0a, 0x5804, 0xac08,
  1687. 0x213f, 0x132a, 0xadfc, 0x5ba8,
  1688. 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
  1689. };
  1690. static const u16 x8_vectors[] = {
  1691. 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
  1692. 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
  1693. 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
  1694. 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
  1695. 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
  1696. 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
  1697. 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
  1698. 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
  1699. 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
  1700. 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
  1701. 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
  1702. 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
  1703. 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
  1704. 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
  1705. 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
  1706. 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
  1707. 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
  1708. 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
  1709. 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
  1710. };
  1711. static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
  1712. unsigned v_dim)
  1713. {
  1714. unsigned int i, err_sym;
  1715. for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
  1716. u16 s = syndrome;
  1717. unsigned v_idx = err_sym * v_dim;
  1718. unsigned v_end = (err_sym + 1) * v_dim;
  1719. /* walk over all 16 bits of the syndrome */
  1720. for (i = 1; i < (1U << 16); i <<= 1) {
  1721. /* if bit is set in that eigenvector... */
  1722. if (v_idx < v_end && vectors[v_idx] & i) {
  1723. u16 ev_comp = vectors[v_idx++];
  1724. /* ... and bit set in the modified syndrome, */
  1725. if (s & i) {
  1726. /* remove it. */
  1727. s ^= ev_comp;
  1728. if (!s)
  1729. return err_sym;
  1730. }
  1731. } else if (s & i)
  1732. /* can't get to zero, move to next symbol */
  1733. break;
  1734. }
  1735. }
  1736. edac_dbg(0, "syndrome(%x) not found\n", syndrome);
  1737. return -1;
  1738. }
  1739. static int map_err_sym_to_channel(int err_sym, int sym_size)
  1740. {
  1741. if (sym_size == 4)
  1742. switch (err_sym) {
  1743. case 0x20:
  1744. case 0x21:
  1745. return 0;
  1746. break;
  1747. case 0x22:
  1748. case 0x23:
  1749. return 1;
  1750. break;
  1751. default:
  1752. return err_sym >> 4;
  1753. break;
  1754. }
  1755. /* x8 symbols */
  1756. else
  1757. switch (err_sym) {
  1758. /* imaginary bits not in a DIMM */
  1759. case 0x10:
  1760. WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
  1761. err_sym);
  1762. return -1;
  1763. break;
  1764. case 0x11:
  1765. return 0;
  1766. break;
  1767. case 0x12:
  1768. return 1;
  1769. break;
  1770. default:
  1771. return err_sym >> 3;
  1772. break;
  1773. }
  1774. return -1;
  1775. }
  1776. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
  1777. {
  1778. struct amd64_pvt *pvt = mci->pvt_info;
  1779. int err_sym = -1;
  1780. if (pvt->ecc_sym_sz == 8)
  1781. err_sym = decode_syndrome(syndrome, x8_vectors,
  1782. ARRAY_SIZE(x8_vectors),
  1783. pvt->ecc_sym_sz);
  1784. else if (pvt->ecc_sym_sz == 4)
  1785. err_sym = decode_syndrome(syndrome, x4_vectors,
  1786. ARRAY_SIZE(x4_vectors),
  1787. pvt->ecc_sym_sz);
  1788. else {
  1789. amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
  1790. return err_sym;
  1791. }
  1792. return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
  1793. }
  1794. static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err,
  1795. u8 ecc_type)
  1796. {
  1797. enum hw_event_mc_err_type err_type;
  1798. const char *string;
  1799. if (ecc_type == 2)
  1800. err_type = HW_EVENT_ERR_CORRECTED;
  1801. else if (ecc_type == 1)
  1802. err_type = HW_EVENT_ERR_UNCORRECTED;
  1803. else {
  1804. WARN(1, "Something is rotten in the state of Denmark.\n");
  1805. return;
  1806. }
  1807. switch (err->err_code) {
  1808. case DECODE_OK:
  1809. string = "";
  1810. break;
  1811. case ERR_NODE:
  1812. string = "Failed to map error addr to a node";
  1813. break;
  1814. case ERR_CSROW:
  1815. string = "Failed to map error addr to a csrow";
  1816. break;
  1817. case ERR_CHANNEL:
  1818. string = "unknown syndrome - possible error reporting race";
  1819. break;
  1820. default:
  1821. string = "WTF error";
  1822. break;
  1823. }
  1824. edac_mc_handle_error(err_type, mci, 1,
  1825. err->page, err->offset, err->syndrome,
  1826. err->csrow, err->channel, -1,
  1827. string, "");
  1828. }
  1829. static inline void decode_bus_error(int node_id, struct mce *m)
  1830. {
  1831. struct mem_ctl_info *mci;
  1832. struct amd64_pvt *pvt;
  1833. u8 ecc_type = (m->status >> 45) & 0x3;
  1834. u8 xec = XEC(m->status, 0x1f);
  1835. u16 ec = EC(m->status);
  1836. u64 sys_addr;
  1837. struct err_info err;
  1838. mci = edac_mc_find(node_id);
  1839. if (!mci)
  1840. return;
  1841. pvt = mci->pvt_info;
  1842. /* Bail out early if this was an 'observed' error */
  1843. if (PP(ec) == NBSL_PP_OBS)
  1844. return;
  1845. /* Do only ECC errors */
  1846. if (xec && xec != F10_NBSL_EXT_ERR_ECC)
  1847. return;
  1848. memset(&err, 0, sizeof(err));
  1849. sys_addr = get_error_address(pvt, m);
  1850. if (ecc_type == 2)
  1851. err.syndrome = extract_syndrome(m->status);
  1852. pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
  1853. __log_bus_error(mci, &err, ecc_type);
  1854. }
  1855. /*
  1856. * Use pvt->F2 which contains the F2 CPU PCI device to get the related
  1857. * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
  1858. */
  1859. static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
  1860. {
  1861. /* Reserve the ADDRESS MAP Device */
  1862. pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
  1863. if (!pvt->F1) {
  1864. amd64_err("error address map device not found: "
  1865. "vendor %x device 0x%x (broken BIOS?)\n",
  1866. PCI_VENDOR_ID_AMD, f1_id);
  1867. return -ENODEV;
  1868. }
  1869. /* Reserve the MISC Device */
  1870. pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
  1871. if (!pvt->F3) {
  1872. pci_dev_put(pvt->F1);
  1873. pvt->F1 = NULL;
  1874. amd64_err("error F3 device not found: "
  1875. "vendor %x device 0x%x (broken BIOS?)\n",
  1876. PCI_VENDOR_ID_AMD, f3_id);
  1877. return -ENODEV;
  1878. }
  1879. edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
  1880. edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
  1881. edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
  1882. return 0;
  1883. }
  1884. static void free_mc_sibling_devs(struct amd64_pvt *pvt)
  1885. {
  1886. pci_dev_put(pvt->F1);
  1887. pci_dev_put(pvt->F3);
  1888. }
  1889. /*
  1890. * Retrieve the hardware registers of the memory controller (this includes the
  1891. * 'Address Map' and 'Misc' device regs)
  1892. */
  1893. static void read_mc_regs(struct amd64_pvt *pvt)
  1894. {
  1895. unsigned range;
  1896. u64 msr_val;
  1897. u32 tmp;
  1898. /*
  1899. * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
  1900. * those are Read-As-Zero
  1901. */
  1902. rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
  1903. edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
  1904. /* check first whether TOP_MEM2 is enabled */
  1905. rdmsrl(MSR_K8_SYSCFG, msr_val);
  1906. if (msr_val & (1U << 21)) {
  1907. rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
  1908. edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
  1909. } else
  1910. edac_dbg(0, " TOP_MEM2 disabled\n");
  1911. amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
  1912. read_dram_ctl_register(pvt);
  1913. for (range = 0; range < DRAM_RANGES; range++) {
  1914. u8 rw;
  1915. /* read settings for this DRAM range */
  1916. read_dram_base_limit_regs(pvt, range);
  1917. rw = dram_rw(pvt, range);
  1918. if (!rw)
  1919. continue;
  1920. edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
  1921. range,
  1922. get_dram_base(pvt, range),
  1923. get_dram_limit(pvt, range));
  1924. edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
  1925. dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
  1926. (rw & 0x1) ? "R" : "-",
  1927. (rw & 0x2) ? "W" : "-",
  1928. dram_intlv_sel(pvt, range),
  1929. dram_dst_node(pvt, range));
  1930. }
  1931. read_dct_base_mask(pvt);
  1932. amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
  1933. amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
  1934. amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
  1935. amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
  1936. amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
  1937. if (!dct_ganging_enabled(pvt)) {
  1938. amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
  1939. amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
  1940. }
  1941. pvt->ecc_sym_sz = 4;
  1942. determine_memory_type(pvt);
  1943. edac_dbg(1, " DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
  1944. if (pvt->fam >= 0x10) {
  1945. amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
  1946. /* F16h has only DCT0, so no need to read dbam1 */
  1947. if (pvt->fam != 0x16)
  1948. amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);
  1949. /* F10h, revD and later can do x8 ECC too */
  1950. if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
  1951. pvt->ecc_sym_sz = 8;
  1952. }
  1953. dump_misc_regs(pvt);
  1954. }
  1955. /*
  1956. * NOTE: CPU Revision Dependent code
  1957. *
  1958. * Input:
  1959. * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
  1960. * k8 private pointer to -->
  1961. * DRAM Bank Address mapping register
  1962. * node_id
  1963. * DCL register where dual_channel_active is
  1964. *
  1965. * The DBAM register consists of 4 sets of 4 bits each definitions:
  1966. *
  1967. * Bits: CSROWs
  1968. * 0-3 CSROWs 0 and 1
  1969. * 4-7 CSROWs 2 and 3
  1970. * 8-11 CSROWs 4 and 5
  1971. * 12-15 CSROWs 6 and 7
  1972. *
  1973. * Values range from: 0 to 15
  1974. * The meaning of the values depends on CPU revision and dual-channel state,
  1975. * see relevant BKDG more info.
  1976. *
  1977. * The memory controller provides for total of only 8 CSROWs in its current
  1978. * architecture. Each "pair" of CSROWs normally represents just one DIMM in
  1979. * single channel or two (2) DIMMs in dual channel mode.
  1980. *
  1981. * The following code logic collapses the various tables for CSROW based on CPU
  1982. * revision.
  1983. *
  1984. * Returns:
  1985. * The number of PAGE_SIZE pages on the specified CSROW number it
  1986. * encompasses
  1987. *
  1988. */
  1989. static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
  1990. {
  1991. u32 cs_mode, nr_pages;
  1992. u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
  1993. /*
  1994. * The math on this doesn't look right on the surface because x/2*4 can
  1995. * be simplified to x*2 but this expression makes use of the fact that
  1996. * it is integral math where 1/2=0. This intermediate value becomes the
  1997. * number of bits to shift the DBAM register to extract the proper CSROW
  1998. * field.
  1999. */
  2000. cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
  2001. nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, (csrow_nr / 2))
  2002. << (20 - PAGE_SHIFT);
  2003. edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
  2004. csrow_nr, dct, cs_mode);
  2005. edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
  2006. return nr_pages;
  2007. }
  2008. /*
  2009. * Initialize the array of csrow attribute instances, based on the values
  2010. * from pci config hardware registers.
  2011. */
  2012. static int init_csrows(struct mem_ctl_info *mci)
  2013. {
  2014. struct amd64_pvt *pvt = mci->pvt_info;
  2015. struct csrow_info *csrow;
  2016. struct dimm_info *dimm;
  2017. enum edac_type edac_mode;
  2018. int i, j, empty = 1;
  2019. int nr_pages = 0;
  2020. u32 val;
  2021. amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
  2022. pvt->nbcfg = val;
  2023. edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
  2024. pvt->mc_node_id, val,
  2025. !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
  2026. /*
  2027. * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
  2028. */
  2029. for_each_chip_select(i, 0, pvt) {
  2030. bool row_dct0 = !!csrow_enabled(i, 0, pvt);
  2031. bool row_dct1 = false;
  2032. if (pvt->fam != 0xf)
  2033. row_dct1 = !!csrow_enabled(i, 1, pvt);
  2034. if (!row_dct0 && !row_dct1)
  2035. continue;
  2036. csrow = mci->csrows[i];
  2037. empty = 0;
  2038. edac_dbg(1, "MC node: %d, csrow: %d\n",
  2039. pvt->mc_node_id, i);
  2040. if (row_dct0) {
  2041. nr_pages = get_csrow_nr_pages(pvt, 0, i);
  2042. csrow->channels[0]->dimm->nr_pages = nr_pages;
  2043. }
  2044. /* K8 has only one DCT */
  2045. if (pvt->fam != 0xf && row_dct1) {
  2046. int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
  2047. csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
  2048. nr_pages += row_dct1_pages;
  2049. }
  2050. edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
  2051. /*
  2052. * determine whether CHIPKILL or JUST ECC or NO ECC is operating
  2053. */
  2054. if (pvt->nbcfg & NBCFG_ECC_ENABLE)
  2055. edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
  2056. EDAC_S4ECD4ED : EDAC_SECDED;
  2057. else
  2058. edac_mode = EDAC_NONE;
  2059. for (j = 0; j < pvt->channel_count; j++) {
  2060. dimm = csrow->channels[j]->dimm;
  2061. dimm->mtype = pvt->dram_type;
  2062. dimm->edac_mode = edac_mode;
  2063. }
  2064. }
  2065. return empty;
  2066. }
  2067. /* get all cores on this DCT */
  2068. static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
  2069. {
  2070. int cpu;
  2071. for_each_online_cpu(cpu)
  2072. if (amd_get_nb_id(cpu) == nid)
  2073. cpumask_set_cpu(cpu, mask);
  2074. }
  2075. /* check MCG_CTL on all the cpus on this node */
  2076. static bool nb_mce_bank_enabled_on_node(u16 nid)
  2077. {
  2078. cpumask_var_t mask;
  2079. int cpu, nbe;
  2080. bool ret = false;
  2081. if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
  2082. amd64_warn("%s: Error allocating mask\n", __func__);
  2083. return false;
  2084. }
  2085. get_cpus_on_this_dct_cpumask(mask, nid);
  2086. rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
  2087. for_each_cpu(cpu, mask) {
  2088. struct msr *reg = per_cpu_ptr(msrs, cpu);
  2089. nbe = reg->l & MSR_MCGCTL_NBE;
  2090. edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
  2091. cpu, reg->q,
  2092. (nbe ? "enabled" : "disabled"));
  2093. if (!nbe)
  2094. goto out;
  2095. }
  2096. ret = true;
  2097. out:
  2098. free_cpumask_var(mask);
  2099. return ret;
  2100. }
  2101. static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
  2102. {
  2103. cpumask_var_t cmask;
  2104. int cpu;
  2105. if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
  2106. amd64_warn("%s: error allocating mask\n", __func__);
  2107. return false;
  2108. }
  2109. get_cpus_on_this_dct_cpumask(cmask, nid);
  2110. rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  2111. for_each_cpu(cpu, cmask) {
  2112. struct msr *reg = per_cpu_ptr(msrs, cpu);
  2113. if (on) {
  2114. if (reg->l & MSR_MCGCTL_NBE)
  2115. s->flags.nb_mce_enable = 1;
  2116. reg->l |= MSR_MCGCTL_NBE;
  2117. } else {
  2118. /*
  2119. * Turn off NB MCE reporting only when it was off before
  2120. */
  2121. if (!s->flags.nb_mce_enable)
  2122. reg->l &= ~MSR_MCGCTL_NBE;
  2123. }
  2124. }
  2125. wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  2126. free_cpumask_var(cmask);
  2127. return 0;
  2128. }
  2129. static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
  2130. struct pci_dev *F3)
  2131. {
  2132. bool ret = true;
  2133. u32 value, mask = 0x3; /* UECC/CECC enable */
  2134. if (toggle_ecc_err_reporting(s, nid, ON)) {
  2135. amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
  2136. return false;
  2137. }
  2138. amd64_read_pci_cfg(F3, NBCTL, &value);
  2139. s->old_nbctl = value & mask;
  2140. s->nbctl_valid = true;
  2141. value |= mask;
  2142. amd64_write_pci_cfg(F3, NBCTL, value);
  2143. amd64_read_pci_cfg(F3, NBCFG, &value);
  2144. edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
  2145. nid, value, !!(value & NBCFG_ECC_ENABLE));
  2146. if (!(value & NBCFG_ECC_ENABLE)) {
  2147. amd64_warn("DRAM ECC disabled on this node, enabling...\n");
  2148. s->flags.nb_ecc_prev = 0;
  2149. /* Attempt to turn on DRAM ECC Enable */
  2150. value |= NBCFG_ECC_ENABLE;
  2151. amd64_write_pci_cfg(F3, NBCFG, value);
  2152. amd64_read_pci_cfg(F3, NBCFG, &value);
  2153. if (!(value & NBCFG_ECC_ENABLE)) {
  2154. amd64_warn("Hardware rejected DRAM ECC enable,"
  2155. "check memory DIMM configuration.\n");
  2156. ret = false;
  2157. } else {
  2158. amd64_info("Hardware accepted DRAM ECC Enable\n");
  2159. }
  2160. } else {
  2161. s->flags.nb_ecc_prev = 1;
  2162. }
  2163. edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
  2164. nid, value, !!(value & NBCFG_ECC_ENABLE));
  2165. return ret;
  2166. }
  2167. static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
  2168. struct pci_dev *F3)
  2169. {
  2170. u32 value, mask = 0x3; /* UECC/CECC enable */
  2171. if (!s->nbctl_valid)
  2172. return;
  2173. amd64_read_pci_cfg(F3, NBCTL, &value);
  2174. value &= ~mask;
  2175. value |= s->old_nbctl;
  2176. amd64_write_pci_cfg(F3, NBCTL, value);
  2177. /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
  2178. if (!s->flags.nb_ecc_prev) {
  2179. amd64_read_pci_cfg(F3, NBCFG, &value);
  2180. value &= ~NBCFG_ECC_ENABLE;
  2181. amd64_write_pci_cfg(F3, NBCFG, value);
  2182. }
  2183. /* restore the NB Enable MCGCTL bit */
  2184. if (toggle_ecc_err_reporting(s, nid, OFF))
  2185. amd64_warn("Error restoring NB MCGCTL settings!\n");
  2186. }
  2187. /*
  2188. * EDAC requires that the BIOS have ECC enabled before
  2189. * taking over the processing of ECC errors. A command line
  2190. * option allows to force-enable hardware ECC later in
  2191. * enable_ecc_error_reporting().
  2192. */
  2193. static const char *ecc_msg =
  2194. "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
  2195. " Either enable ECC checking or force module loading by setting "
  2196. "'ecc_enable_override'.\n"
  2197. " (Note that use of the override may cause unknown side effects.)\n";
  2198. static bool ecc_enabled(struct pci_dev *F3, u16 nid)
  2199. {
  2200. u32 value;
  2201. u8 ecc_en = 0;
  2202. bool nb_mce_en = false;
  2203. amd64_read_pci_cfg(F3, NBCFG, &value);
  2204. ecc_en = !!(value & NBCFG_ECC_ENABLE);
  2205. amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
  2206. nb_mce_en = nb_mce_bank_enabled_on_node(nid);
  2207. if (!nb_mce_en)
  2208. amd64_notice("NB MCE bank disabled, set MSR "
  2209. "0x%08x[4] on node %d to enable.\n",
  2210. MSR_IA32_MCG_CTL, nid);
  2211. if (!ecc_en || !nb_mce_en) {
  2212. amd64_notice("%s", ecc_msg);
  2213. return false;
  2214. }
  2215. return true;
  2216. }
  2217. static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
  2218. struct amd64_family_type *fam)
  2219. {
  2220. struct amd64_pvt *pvt = mci->pvt_info;
  2221. mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
  2222. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  2223. if (pvt->nbcap & NBCAP_SECDED)
  2224. mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
  2225. if (pvt->nbcap & NBCAP_CHIPKILL)
  2226. mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
  2227. mci->edac_cap = determine_edac_cap(pvt);
  2228. mci->mod_name = EDAC_MOD_STR;
  2229. mci->mod_ver = EDAC_AMD64_VERSION;
  2230. mci->ctl_name = fam->ctl_name;
  2231. mci->dev_name = pci_name(pvt->F2);
  2232. mci->ctl_page_to_phys = NULL;
  2233. /* memory scrubber interface */
  2234. mci->set_sdram_scrub_rate = set_scrub_rate;
  2235. mci->get_sdram_scrub_rate = get_scrub_rate;
  2236. }
  2237. /*
  2238. * returns a pointer to the family descriptor on success, NULL otherwise.
  2239. */
  2240. static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
  2241. {
  2242. struct amd64_family_type *fam_type = NULL;
  2243. pvt->ext_model = boot_cpu_data.x86_model >> 4;
  2244. pvt->stepping = boot_cpu_data.x86_mask;
  2245. pvt->model = boot_cpu_data.x86_model;
  2246. pvt->fam = boot_cpu_data.x86;
  2247. switch (pvt->fam) {
  2248. case 0xf:
  2249. fam_type = &family_types[K8_CPUS];
  2250. pvt->ops = &family_types[K8_CPUS].ops;
  2251. break;
  2252. case 0x10:
  2253. fam_type = &family_types[F10_CPUS];
  2254. pvt->ops = &family_types[F10_CPUS].ops;
  2255. break;
  2256. case 0x15:
  2257. if (pvt->model == 0x30) {
  2258. fam_type = &family_types[F15_M30H_CPUS];
  2259. pvt->ops = &family_types[F15_M30H_CPUS].ops;
  2260. break;
  2261. } else if (pvt->model == 0x60) {
  2262. fam_type = &family_types[F15_M60H_CPUS];
  2263. pvt->ops = &family_types[F15_M60H_CPUS].ops;
  2264. break;
  2265. }
  2266. fam_type = &family_types[F15_CPUS];
  2267. pvt->ops = &family_types[F15_CPUS].ops;
  2268. break;
  2269. case 0x16:
  2270. if (pvt->model == 0x30) {
  2271. fam_type = &family_types[F16_M30H_CPUS];
  2272. pvt->ops = &family_types[F16_M30H_CPUS].ops;
  2273. break;
  2274. }
  2275. fam_type = &family_types[F16_CPUS];
  2276. pvt->ops = &family_types[F16_CPUS].ops;
  2277. break;
  2278. default:
  2279. amd64_err("Unsupported family!\n");
  2280. return NULL;
  2281. }
  2282. amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
  2283. (pvt->fam == 0xf ?
  2284. (pvt->ext_model >= K8_REV_F ? "revF or later "
  2285. : "revE or earlier ")
  2286. : ""), pvt->mc_node_id);
  2287. return fam_type;
  2288. }
  2289. static const struct attribute_group *amd64_edac_attr_groups[] = {
  2290. #ifdef CONFIG_EDAC_DEBUG
  2291. &amd64_edac_dbg_group,
  2292. #endif
  2293. #ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
  2294. &amd64_edac_inj_group,
  2295. #endif
  2296. NULL
  2297. };
  2298. static int init_one_instance(struct pci_dev *F2)
  2299. {
  2300. struct amd64_pvt *pvt = NULL;
  2301. struct amd64_family_type *fam_type = NULL;
  2302. struct mem_ctl_info *mci = NULL;
  2303. struct edac_mc_layer layers[2];
  2304. int err = 0, ret;
  2305. u16 nid = amd_pci_dev_to_node_id(F2);
  2306. ret = -ENOMEM;
  2307. pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
  2308. if (!pvt)
  2309. goto err_ret;
  2310. pvt->mc_node_id = nid;
  2311. pvt->F2 = F2;
  2312. ret = -EINVAL;
  2313. fam_type = per_family_init(pvt);
  2314. if (!fam_type)
  2315. goto err_free;
  2316. ret = -ENODEV;
  2317. err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
  2318. if (err)
  2319. goto err_free;
  2320. read_mc_regs(pvt);
  2321. /*
  2322. * We need to determine how many memory channels there are. Then use
  2323. * that information for calculating the size of the dynamic instance
  2324. * tables in the 'mci' structure.
  2325. */
  2326. ret = -EINVAL;
  2327. pvt->channel_count = pvt->ops->early_channel_count(pvt);
  2328. if (pvt->channel_count < 0)
  2329. goto err_siblings;
  2330. ret = -ENOMEM;
  2331. layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
  2332. layers[0].size = pvt->csels[0].b_cnt;
  2333. layers[0].is_virt_csrow = true;
  2334. layers[1].type = EDAC_MC_LAYER_CHANNEL;
  2335. /*
  2336. * Always allocate two channels since we can have setups with DIMMs on
  2337. * only one channel. Also, this simplifies handling later for the price
  2338. * of a couple of KBs tops.
  2339. */
  2340. layers[1].size = 2;
  2341. layers[1].is_virt_csrow = false;
  2342. mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
  2343. if (!mci)
  2344. goto err_siblings;
  2345. mci->pvt_info = pvt;
  2346. mci->pdev = &pvt->F2->dev;
  2347. setup_mci_misc_attrs(mci, fam_type);
  2348. if (init_csrows(mci))
  2349. mci->edac_cap = EDAC_FLAG_NONE;
  2350. ret = -ENODEV;
  2351. if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) {
  2352. edac_dbg(1, "failed edac_mc_add_mc()\n");
  2353. goto err_add_mc;
  2354. }
  2355. /* register stuff with EDAC MCE */
  2356. if (report_gart_errors)
  2357. amd_report_gart_errors(true);
  2358. amd_register_ecc_decoder(decode_bus_error);
  2359. atomic_inc(&drv_instances);
  2360. return 0;
  2361. err_add_mc:
  2362. edac_mc_free(mci);
  2363. err_siblings:
  2364. free_mc_sibling_devs(pvt);
  2365. err_free:
  2366. kfree(pvt);
  2367. err_ret:
  2368. return ret;
  2369. }
  2370. static int probe_one_instance(struct pci_dev *pdev,
  2371. const struct pci_device_id *mc_type)
  2372. {
  2373. u16 nid = amd_pci_dev_to_node_id(pdev);
  2374. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2375. struct ecc_settings *s;
  2376. int ret = 0;
  2377. ret = pci_enable_device(pdev);
  2378. if (ret < 0) {
  2379. edac_dbg(0, "ret=%d\n", ret);
  2380. return -EIO;
  2381. }
  2382. ret = -ENOMEM;
  2383. s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
  2384. if (!s)
  2385. goto err_out;
  2386. ecc_stngs[nid] = s;
  2387. if (!ecc_enabled(F3, nid)) {
  2388. ret = -ENODEV;
  2389. if (!ecc_enable_override)
  2390. goto err_enable;
  2391. amd64_warn("Forcing ECC on!\n");
  2392. if (!enable_ecc_error_reporting(s, nid, F3))
  2393. goto err_enable;
  2394. }
  2395. ret = init_one_instance(pdev);
  2396. if (ret < 0) {
  2397. amd64_err("Error probing instance: %d\n", nid);
  2398. restore_ecc_error_reporting(s, nid, F3);
  2399. }
  2400. return ret;
  2401. err_enable:
  2402. kfree(s);
  2403. ecc_stngs[nid] = NULL;
  2404. err_out:
  2405. return ret;
  2406. }
  2407. static void remove_one_instance(struct pci_dev *pdev)
  2408. {
  2409. struct mem_ctl_info *mci;
  2410. struct amd64_pvt *pvt;
  2411. u16 nid = amd_pci_dev_to_node_id(pdev);
  2412. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2413. struct ecc_settings *s = ecc_stngs[nid];
  2414. mci = find_mci_by_dev(&pdev->dev);
  2415. WARN_ON(!mci);
  2416. /* Remove from EDAC CORE tracking list */
  2417. mci = edac_mc_del_mc(&pdev->dev);
  2418. if (!mci)
  2419. return;
  2420. pvt = mci->pvt_info;
  2421. restore_ecc_error_reporting(s, nid, F3);
  2422. free_mc_sibling_devs(pvt);
  2423. /* unregister from EDAC MCE */
  2424. amd_report_gart_errors(false);
  2425. amd_unregister_ecc_decoder(decode_bus_error);
  2426. kfree(ecc_stngs[nid]);
  2427. ecc_stngs[nid] = NULL;
  2428. /* Free the EDAC CORE resources */
  2429. mci->pvt_info = NULL;
  2430. kfree(pvt);
  2431. edac_mc_free(mci);
  2432. }
  2433. /*
  2434. * This table is part of the interface for loading drivers for PCI devices. The
  2435. * PCI core identifies what devices are on a system during boot, and then
  2436. * inquiry this table to see if this driver is for a given device found.
  2437. */
  2438. static const struct pci_device_id amd64_pci_table[] = {
  2439. { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_K8_NB_MEMCTL) },
  2440. { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_10H_NB_DRAM) },
  2441. { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_NB_F2) },
  2442. { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M30H_NB_F2) },
  2443. { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M60H_NB_F2) },
  2444. { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_16H_NB_F2) },
  2445. { PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_16H_M30H_NB_F2) },
  2446. {0, }
  2447. };
  2448. MODULE_DEVICE_TABLE(pci, amd64_pci_table);
  2449. static struct pci_driver amd64_pci_driver = {
  2450. .name = EDAC_MOD_STR,
  2451. .probe = probe_one_instance,
  2452. .remove = remove_one_instance,
  2453. .id_table = amd64_pci_table,
  2454. .driver.probe_type = PROBE_FORCE_SYNCHRONOUS,
  2455. };
  2456. static void setup_pci_device(void)
  2457. {
  2458. struct mem_ctl_info *mci;
  2459. struct amd64_pvt *pvt;
  2460. if (pci_ctl)
  2461. return;
  2462. mci = edac_mc_find(0);
  2463. if (!mci)
  2464. return;
  2465. pvt = mci->pvt_info;
  2466. pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
  2467. if (!pci_ctl) {
  2468. pr_warn("%s(): Unable to create PCI control\n", __func__);
  2469. pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
  2470. }
  2471. }
  2472. static int __init amd64_edac_init(void)
  2473. {
  2474. int err = -ENODEV;
  2475. printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
  2476. opstate_init();
  2477. if (amd_cache_northbridges() < 0)
  2478. goto err_ret;
  2479. err = -ENOMEM;
  2480. ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
  2481. if (!ecc_stngs)
  2482. goto err_free;
  2483. msrs = msrs_alloc();
  2484. if (!msrs)
  2485. goto err_free;
  2486. err = pci_register_driver(&amd64_pci_driver);
  2487. if (err)
  2488. goto err_pci;
  2489. err = -ENODEV;
  2490. if (!atomic_read(&drv_instances))
  2491. goto err_no_instances;
  2492. setup_pci_device();
  2493. #ifdef CONFIG_X86_32
  2494. amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
  2495. #endif
  2496. return 0;
  2497. err_no_instances:
  2498. pci_unregister_driver(&amd64_pci_driver);
  2499. err_pci:
  2500. msrs_free(msrs);
  2501. msrs = NULL;
  2502. err_free:
  2503. kfree(ecc_stngs);
  2504. ecc_stngs = NULL;
  2505. err_ret:
  2506. return err;
  2507. }
  2508. static void __exit amd64_edac_exit(void)
  2509. {
  2510. if (pci_ctl)
  2511. edac_pci_release_generic_ctl(pci_ctl);
  2512. pci_unregister_driver(&amd64_pci_driver);
  2513. kfree(ecc_stngs);
  2514. ecc_stngs = NULL;
  2515. msrs_free(msrs);
  2516. msrs = NULL;
  2517. }
  2518. module_init(amd64_edac_init);
  2519. module_exit(amd64_edac_exit);
  2520. MODULE_LICENSE("GPL");
  2521. MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
  2522. "Dave Peterson, Thayne Harbaugh");
  2523. MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
  2524. EDAC_AMD64_VERSION);
  2525. module_param(edac_op_state, int, 0444);
  2526. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");