amdgpu_amdkfd_gfx_v8.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. */
  22. #include <linux/module.h>
  23. #include <linux/fdtable.h>
  24. #include <linux/uaccess.h>
  25. #include <linux/firmware.h>
  26. #include <drm/drmP.h>
  27. #include "amdgpu.h"
  28. #include "amdgpu_amdkfd.h"
  29. #include "amdgpu_ucode.h"
  30. #include "gca/gfx_8_0_sh_mask.h"
  31. #include "gca/gfx_8_0_d.h"
  32. #include "gca/gfx_8_0_enum.h"
  33. #include "oss/oss_3_0_sh_mask.h"
  34. #include "oss/oss_3_0_d.h"
  35. #include "gmc/gmc_8_1_sh_mask.h"
  36. #include "gmc/gmc_8_1_d.h"
  37. #include "vi_structs.h"
  38. #include "vid.h"
  39. #define VI_PIPE_PER_MEC (4)
  40. struct cik_sdma_rlc_registers;
  41. /*
  42. * Register access functions
  43. */
  44. static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  45. uint32_t sh_mem_config,
  46. uint32_t sh_mem_ape1_base, uint32_t sh_mem_ape1_limit,
  47. uint32_t sh_mem_bases);
  48. static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
  49. unsigned int vmid);
  50. static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
  51. uint32_t hpd_size, uint64_t hpd_gpu_addr);
  52. static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
  53. static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
  54. uint32_t queue_id, uint32_t __user *wptr);
  55. static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd);
  56. static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
  57. uint32_t pipe_id, uint32_t queue_id);
  58. static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
  59. static int kgd_hqd_destroy(struct kgd_dev *kgd, uint32_t reset_type,
  60. unsigned int timeout, uint32_t pipe_id,
  61. uint32_t queue_id);
  62. static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
  63. unsigned int timeout);
  64. static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid);
  65. static int kgd_address_watch_disable(struct kgd_dev *kgd);
  66. static int kgd_address_watch_execute(struct kgd_dev *kgd,
  67. unsigned int watch_point_id,
  68. uint32_t cntl_val,
  69. uint32_t addr_hi,
  70. uint32_t addr_lo);
  71. static int kgd_wave_control_execute(struct kgd_dev *kgd,
  72. uint32_t gfx_index_val,
  73. uint32_t sq_cmd);
  74. static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
  75. unsigned int watch_point_id,
  76. unsigned int reg_offset);
  77. static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
  78. uint8_t vmid);
  79. static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
  80. uint8_t vmid);
  81. static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid);
  82. static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
  83. static const struct kfd2kgd_calls kfd2kgd = {
  84. .init_gtt_mem_allocation = alloc_gtt_mem,
  85. .free_gtt_mem = free_gtt_mem,
  86. .get_vmem_size = get_vmem_size,
  87. .get_gpu_clock_counter = get_gpu_clock_counter,
  88. .get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
  89. .program_sh_mem_settings = kgd_program_sh_mem_settings,
  90. .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
  91. .init_pipeline = kgd_init_pipeline,
  92. .init_interrupts = kgd_init_interrupts,
  93. .hqd_load = kgd_hqd_load,
  94. .hqd_sdma_load = kgd_hqd_sdma_load,
  95. .hqd_is_occupied = kgd_hqd_is_occupied,
  96. .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
  97. .hqd_destroy = kgd_hqd_destroy,
  98. .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
  99. .address_watch_disable = kgd_address_watch_disable,
  100. .address_watch_execute = kgd_address_watch_execute,
  101. .wave_control_execute = kgd_wave_control_execute,
  102. .address_watch_get_offset = kgd_address_watch_get_offset,
  103. .get_atc_vmid_pasid_mapping_pasid =
  104. get_atc_vmid_pasid_mapping_pasid,
  105. .get_atc_vmid_pasid_mapping_valid =
  106. get_atc_vmid_pasid_mapping_valid,
  107. .write_vmid_invalidate_request = write_vmid_invalidate_request,
  108. .get_fw_version = get_fw_version
  109. };
  110. struct kfd2kgd_calls *amdgpu_amdkfd_gfx_8_0_get_functions()
  111. {
  112. return (struct kfd2kgd_calls *)&kfd2kgd;
  113. }
  114. static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
  115. {
  116. return (struct amdgpu_device *)kgd;
  117. }
  118. static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
  119. uint32_t queue, uint32_t vmid)
  120. {
  121. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  122. uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
  123. mutex_lock(&adev->srbm_mutex);
  124. WREG32(mmSRBM_GFX_CNTL, value);
  125. }
  126. static void unlock_srbm(struct kgd_dev *kgd)
  127. {
  128. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  129. WREG32(mmSRBM_GFX_CNTL, 0);
  130. mutex_unlock(&adev->srbm_mutex);
  131. }
  132. static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
  133. uint32_t queue_id)
  134. {
  135. uint32_t mec = (++pipe_id / VI_PIPE_PER_MEC) + 1;
  136. uint32_t pipe = (pipe_id % VI_PIPE_PER_MEC);
  137. lock_srbm(kgd, mec, pipe, queue_id, 0);
  138. }
  139. static void release_queue(struct kgd_dev *kgd)
  140. {
  141. unlock_srbm(kgd);
  142. }
  143. static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  144. uint32_t sh_mem_config,
  145. uint32_t sh_mem_ape1_base,
  146. uint32_t sh_mem_ape1_limit,
  147. uint32_t sh_mem_bases)
  148. {
  149. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  150. lock_srbm(kgd, 0, 0, 0, vmid);
  151. WREG32(mmSH_MEM_CONFIG, sh_mem_config);
  152. WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
  153. WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
  154. WREG32(mmSH_MEM_BASES, sh_mem_bases);
  155. unlock_srbm(kgd);
  156. }
  157. static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
  158. unsigned int vmid)
  159. {
  160. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  161. /*
  162. * We have to assume that there is no outstanding mapping.
  163. * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
  164. * a mapping is in progress or because a mapping finished
  165. * and the SW cleared it.
  166. * So the protocol is to always wait & clear.
  167. */
  168. uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
  169. ATC_VMID0_PASID_MAPPING__VALID_MASK;
  170. WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
  171. while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
  172. cpu_relax();
  173. WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
  174. /* Mapping vmid to pasid also for IH block */
  175. WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
  176. return 0;
  177. }
  178. static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
  179. uint32_t hpd_size, uint64_t hpd_gpu_addr)
  180. {
  181. return 0;
  182. }
  183. static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
  184. {
  185. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  186. uint32_t mec;
  187. uint32_t pipe;
  188. mec = (++pipe_id / VI_PIPE_PER_MEC) + 1;
  189. pipe = (pipe_id % VI_PIPE_PER_MEC);
  190. lock_srbm(kgd, mec, pipe, 0, 0);
  191. WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK);
  192. unlock_srbm(kgd);
  193. return 0;
  194. }
  195. static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
  196. {
  197. return 0;
  198. }
  199. static inline struct vi_mqd *get_mqd(void *mqd)
  200. {
  201. return (struct vi_mqd *)mqd;
  202. }
  203. static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
  204. {
  205. return (struct cik_sdma_rlc_registers *)mqd;
  206. }
  207. static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
  208. uint32_t queue_id, uint32_t __user *wptr)
  209. {
  210. struct vi_mqd *m;
  211. uint32_t shadow_wptr, valid_wptr;
  212. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  213. m = get_mqd(mqd);
  214. valid_wptr = copy_from_user(&shadow_wptr, wptr, sizeof(shadow_wptr));
  215. acquire_queue(kgd, pipe_id, queue_id);
  216. WREG32(mmCP_MQD_CONTROL, m->cp_mqd_control);
  217. WREG32(mmCP_MQD_BASE_ADDR, m->cp_mqd_base_addr_lo);
  218. WREG32(mmCP_MQD_BASE_ADDR_HI, m->cp_mqd_base_addr_hi);
  219. WREG32(mmCP_HQD_VMID, m->cp_hqd_vmid);
  220. WREG32(mmCP_HQD_PERSISTENT_STATE, m->cp_hqd_persistent_state);
  221. WREG32(mmCP_HQD_PIPE_PRIORITY, m->cp_hqd_pipe_priority);
  222. WREG32(mmCP_HQD_QUEUE_PRIORITY, m->cp_hqd_queue_priority);
  223. WREG32(mmCP_HQD_QUANTUM, m->cp_hqd_quantum);
  224. WREG32(mmCP_HQD_PQ_BASE, m->cp_hqd_pq_base_lo);
  225. WREG32(mmCP_HQD_PQ_BASE_HI, m->cp_hqd_pq_base_hi);
  226. WREG32(mmCP_HQD_PQ_RPTR_REPORT_ADDR, m->cp_hqd_pq_rptr_report_addr_lo);
  227. WREG32(mmCP_HQD_PQ_RPTR_REPORT_ADDR_HI,
  228. m->cp_hqd_pq_rptr_report_addr_hi);
  229. if (valid_wptr > 0)
  230. WREG32(mmCP_HQD_PQ_WPTR, shadow_wptr);
  231. WREG32(mmCP_HQD_PQ_CONTROL, m->cp_hqd_pq_control);
  232. WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, m->cp_hqd_pq_doorbell_control);
  233. WREG32(mmCP_HQD_EOP_BASE_ADDR, m->cp_hqd_eop_base_addr_lo);
  234. WREG32(mmCP_HQD_EOP_BASE_ADDR_HI, m->cp_hqd_eop_base_addr_hi);
  235. WREG32(mmCP_HQD_EOP_CONTROL, m->cp_hqd_eop_control);
  236. WREG32(mmCP_HQD_EOP_RPTR, m->cp_hqd_eop_rptr);
  237. WREG32(mmCP_HQD_EOP_WPTR, m->cp_hqd_eop_wptr);
  238. WREG32(mmCP_HQD_EOP_EVENTS, m->cp_hqd_eop_done_events);
  239. WREG32(mmCP_HQD_CTX_SAVE_BASE_ADDR_LO, m->cp_hqd_ctx_save_base_addr_lo);
  240. WREG32(mmCP_HQD_CTX_SAVE_BASE_ADDR_HI, m->cp_hqd_ctx_save_base_addr_hi);
  241. WREG32(mmCP_HQD_CTX_SAVE_CONTROL, m->cp_hqd_ctx_save_control);
  242. WREG32(mmCP_HQD_CNTL_STACK_OFFSET, m->cp_hqd_cntl_stack_offset);
  243. WREG32(mmCP_HQD_CNTL_STACK_SIZE, m->cp_hqd_cntl_stack_size);
  244. WREG32(mmCP_HQD_WG_STATE_OFFSET, m->cp_hqd_wg_state_offset);
  245. WREG32(mmCP_HQD_CTX_SAVE_SIZE, m->cp_hqd_ctx_save_size);
  246. WREG32(mmCP_HQD_IB_CONTROL, m->cp_hqd_ib_control);
  247. WREG32(mmCP_HQD_DEQUEUE_REQUEST, m->cp_hqd_dequeue_request);
  248. WREG32(mmCP_HQD_ERROR, m->cp_hqd_error);
  249. WREG32(mmCP_HQD_EOP_WPTR_MEM, m->cp_hqd_eop_wptr_mem);
  250. WREG32(mmCP_HQD_EOP_DONES, m->cp_hqd_eop_dones);
  251. WREG32(mmCP_HQD_ACTIVE, m->cp_hqd_active);
  252. release_queue(kgd);
  253. return 0;
  254. }
  255. static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd)
  256. {
  257. return 0;
  258. }
  259. static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
  260. uint32_t pipe_id, uint32_t queue_id)
  261. {
  262. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  263. uint32_t act;
  264. bool retval = false;
  265. uint32_t low, high;
  266. acquire_queue(kgd, pipe_id, queue_id);
  267. act = RREG32(mmCP_HQD_ACTIVE);
  268. if (act) {
  269. low = lower_32_bits(queue_address >> 8);
  270. high = upper_32_bits(queue_address >> 8);
  271. if (low == RREG32(mmCP_HQD_PQ_BASE) &&
  272. high == RREG32(mmCP_HQD_PQ_BASE_HI))
  273. retval = true;
  274. }
  275. release_queue(kgd);
  276. return retval;
  277. }
  278. static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
  279. {
  280. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  281. struct cik_sdma_rlc_registers *m;
  282. uint32_t sdma_base_addr;
  283. uint32_t sdma_rlc_rb_cntl;
  284. m = get_sdma_mqd(mqd);
  285. sdma_base_addr = get_sdma_base_addr(m);
  286. sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
  287. if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
  288. return true;
  289. return false;
  290. }
  291. static int kgd_hqd_destroy(struct kgd_dev *kgd, uint32_t reset_type,
  292. unsigned int timeout, uint32_t pipe_id,
  293. uint32_t queue_id)
  294. {
  295. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  296. uint32_t temp;
  297. acquire_queue(kgd, pipe_id, queue_id);
  298. WREG32(mmCP_HQD_DEQUEUE_REQUEST, reset_type);
  299. while (true) {
  300. temp = RREG32(mmCP_HQD_ACTIVE);
  301. if (temp & CP_HQD_ACTIVE__ACTIVE_MASK)
  302. break;
  303. if (timeout == 0) {
  304. pr_err("kfd: cp queue preemption time out (%dms)\n",
  305. temp);
  306. release_queue(kgd);
  307. return -ETIME;
  308. }
  309. msleep(20);
  310. timeout -= 20;
  311. }
  312. release_queue(kgd);
  313. return 0;
  314. }
  315. static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
  316. unsigned int timeout)
  317. {
  318. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  319. struct cik_sdma_rlc_registers *m;
  320. uint32_t sdma_base_addr;
  321. uint32_t temp;
  322. m = get_sdma_mqd(mqd);
  323. sdma_base_addr = get_sdma_base_addr(m);
  324. temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
  325. temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
  326. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
  327. while (true) {
  328. temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
  329. if (temp & SDMA0_STATUS_REG__RB_CMD_IDLE__SHIFT)
  330. break;
  331. if (timeout == 0)
  332. return -ETIME;
  333. msleep(20);
  334. timeout -= 20;
  335. }
  336. WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
  337. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, 0);
  338. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, 0);
  339. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, 0);
  340. return 0;
  341. }
  342. static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
  343. uint8_t vmid)
  344. {
  345. uint32_t reg;
  346. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  347. reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  348. return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
  349. }
  350. static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
  351. uint8_t vmid)
  352. {
  353. uint32_t reg;
  354. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  355. reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  356. return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
  357. }
  358. static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid)
  359. {
  360. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  361. WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
  362. }
  363. static int kgd_address_watch_disable(struct kgd_dev *kgd)
  364. {
  365. return 0;
  366. }
  367. static int kgd_address_watch_execute(struct kgd_dev *kgd,
  368. unsigned int watch_point_id,
  369. uint32_t cntl_val,
  370. uint32_t addr_hi,
  371. uint32_t addr_lo)
  372. {
  373. return 0;
  374. }
  375. static int kgd_wave_control_execute(struct kgd_dev *kgd,
  376. uint32_t gfx_index_val,
  377. uint32_t sq_cmd)
  378. {
  379. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  380. uint32_t data = 0;
  381. mutex_lock(&adev->grbm_idx_mutex);
  382. WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
  383. WREG32(mmSQ_CMD, sq_cmd);
  384. data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
  385. INSTANCE_BROADCAST_WRITES, 1);
  386. data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
  387. SH_BROADCAST_WRITES, 1);
  388. data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
  389. SE_BROADCAST_WRITES, 1);
  390. WREG32(mmGRBM_GFX_INDEX, data);
  391. mutex_unlock(&adev->grbm_idx_mutex);
  392. return 0;
  393. }
  394. static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
  395. unsigned int watch_point_id,
  396. unsigned int reg_offset)
  397. {
  398. return 0;
  399. }
  400. static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
  401. {
  402. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  403. const union amdgpu_firmware_header *hdr;
  404. BUG_ON(kgd == NULL);
  405. switch (type) {
  406. case KGD_ENGINE_PFP:
  407. hdr = (const union amdgpu_firmware_header *)
  408. adev->gfx.pfp_fw->data;
  409. break;
  410. case KGD_ENGINE_ME:
  411. hdr = (const union amdgpu_firmware_header *)
  412. adev->gfx.me_fw->data;
  413. break;
  414. case KGD_ENGINE_CE:
  415. hdr = (const union amdgpu_firmware_header *)
  416. adev->gfx.ce_fw->data;
  417. break;
  418. case KGD_ENGINE_MEC1:
  419. hdr = (const union amdgpu_firmware_header *)
  420. adev->gfx.mec_fw->data;
  421. break;
  422. case KGD_ENGINE_MEC2:
  423. hdr = (const union amdgpu_firmware_header *)
  424. adev->gfx.mec2_fw->data;
  425. break;
  426. case KGD_ENGINE_RLC:
  427. hdr = (const union amdgpu_firmware_header *)
  428. adev->gfx.rlc_fw->data;
  429. break;
  430. case KGD_ENGINE_SDMA1:
  431. hdr = (const union amdgpu_firmware_header *)
  432. adev->sdma.instance[0].fw->data;
  433. break;
  434. case KGD_ENGINE_SDMA2:
  435. hdr = (const union amdgpu_firmware_header *)
  436. adev->sdma.instance[1].fw->data;
  437. break;
  438. default:
  439. return 0;
  440. }
  441. if (hdr == NULL)
  442. return 0;
  443. /* Only 12 bit in use*/
  444. return hdr->common.ucode_version;
  445. }