exynos-iommu.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254
  1. /* linux/drivers/iommu/exynos_iommu.c
  2. *
  3. * Copyright (c) 2011 Samsung Electronics Co., Ltd.
  4. * http://www.samsung.com
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #ifdef CONFIG_EXYNOS_IOMMU_DEBUG
  11. #define DEBUG
  12. #endif
  13. #include <linux/clk.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/err.h>
  16. #include <linux/io.h>
  17. #include <linux/iommu.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/list.h>
  20. #include <linux/of.h>
  21. #include <linux/of_iommu.h>
  22. #include <linux/of_platform.h>
  23. #include <linux/platform_device.h>
  24. #include <linux/pm_runtime.h>
  25. #include <linux/slab.h>
  26. #include <asm/cacheflush.h>
  27. #include <asm/dma-iommu.h>
  28. #include <asm/pgtable.h>
  29. typedef u32 sysmmu_iova_t;
  30. typedef u32 sysmmu_pte_t;
  31. /* We do not consider super section mapping (16MB) */
  32. #define SECT_ORDER 20
  33. #define LPAGE_ORDER 16
  34. #define SPAGE_ORDER 12
  35. #define SECT_SIZE (1 << SECT_ORDER)
  36. #define LPAGE_SIZE (1 << LPAGE_ORDER)
  37. #define SPAGE_SIZE (1 << SPAGE_ORDER)
  38. #define SECT_MASK (~(SECT_SIZE - 1))
  39. #define LPAGE_MASK (~(LPAGE_SIZE - 1))
  40. #define SPAGE_MASK (~(SPAGE_SIZE - 1))
  41. #define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \
  42. ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3))
  43. #define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK)
  44. #define lv1ent_page_zero(sent) ((*(sent) & 3) == 1)
  45. #define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \
  46. ((*(sent) & 3) == 1))
  47. #define lv1ent_section(sent) ((*(sent) & 3) == 2)
  48. #define lv2ent_fault(pent) ((*(pent) & 3) == 0)
  49. #define lv2ent_small(pent) ((*(pent) & 2) == 2)
  50. #define lv2ent_large(pent) ((*(pent) & 3) == 1)
  51. static u32 sysmmu_page_offset(sysmmu_iova_t iova, u32 size)
  52. {
  53. return iova & (size - 1);
  54. }
  55. #define section_phys(sent) (*(sent) & SECT_MASK)
  56. #define section_offs(iova) sysmmu_page_offset((iova), SECT_SIZE)
  57. #define lpage_phys(pent) (*(pent) & LPAGE_MASK)
  58. #define lpage_offs(iova) sysmmu_page_offset((iova), LPAGE_SIZE)
  59. #define spage_phys(pent) (*(pent) & SPAGE_MASK)
  60. #define spage_offs(iova) sysmmu_page_offset((iova), SPAGE_SIZE)
  61. #define NUM_LV1ENTRIES 4096
  62. #define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE)
  63. static u32 lv1ent_offset(sysmmu_iova_t iova)
  64. {
  65. return iova >> SECT_ORDER;
  66. }
  67. static u32 lv2ent_offset(sysmmu_iova_t iova)
  68. {
  69. return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1);
  70. }
  71. #define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t))
  72. #define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE)
  73. #define lv2table_base(sent) (*(sent) & 0xFFFFFC00)
  74. #define mk_lv1ent_sect(pa) ((pa) | 2)
  75. #define mk_lv1ent_page(pa) ((pa) | 1)
  76. #define mk_lv2ent_lpage(pa) ((pa) | 1)
  77. #define mk_lv2ent_spage(pa) ((pa) | 2)
  78. #define CTRL_ENABLE 0x5
  79. #define CTRL_BLOCK 0x7
  80. #define CTRL_DISABLE 0x0
  81. #define CFG_LRU 0x1
  82. #define CFG_QOS(n) ((n & 0xF) << 7)
  83. #define CFG_MASK 0x0150FFFF /* Selecting bit 0-15, 20, 22 and 24 */
  84. #define CFG_ACGEN (1 << 24) /* System MMU 3.3 only */
  85. #define CFG_SYSSEL (1 << 22) /* System MMU 3.2 only */
  86. #define CFG_FLPDCACHE (1 << 20) /* System MMU 3.2+ only */
  87. #define REG_MMU_CTRL 0x000
  88. #define REG_MMU_CFG 0x004
  89. #define REG_MMU_STATUS 0x008
  90. #define REG_MMU_FLUSH 0x00C
  91. #define REG_MMU_FLUSH_ENTRY 0x010
  92. #define REG_PT_BASE_ADDR 0x014
  93. #define REG_INT_STATUS 0x018
  94. #define REG_INT_CLEAR 0x01C
  95. #define REG_PAGE_FAULT_ADDR 0x024
  96. #define REG_AW_FAULT_ADDR 0x028
  97. #define REG_AR_FAULT_ADDR 0x02C
  98. #define REG_DEFAULT_SLAVE_ADDR 0x030
  99. #define REG_MMU_VERSION 0x034
  100. #define MMU_MAJ_VER(val) ((val) >> 7)
  101. #define MMU_MIN_VER(val) ((val) & 0x7F)
  102. #define MMU_RAW_VER(reg) (((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */
  103. #define MAKE_MMU_VER(maj, min) ((((maj) & 0xF) << 7) | ((min) & 0x7F))
  104. #define REG_PB0_SADDR 0x04C
  105. #define REG_PB0_EADDR 0x050
  106. #define REG_PB1_SADDR 0x054
  107. #define REG_PB1_EADDR 0x058
  108. #define has_sysmmu(dev) (dev->archdata.iommu != NULL)
  109. static struct kmem_cache *lv2table_kmem_cache;
  110. static sysmmu_pte_t *zero_lv2_table;
  111. #define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table))
  112. static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova)
  113. {
  114. return pgtable + lv1ent_offset(iova);
  115. }
  116. static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova)
  117. {
  118. return (sysmmu_pte_t *)phys_to_virt(
  119. lv2table_base(sent)) + lv2ent_offset(iova);
  120. }
  121. enum exynos_sysmmu_inttype {
  122. SYSMMU_PAGEFAULT,
  123. SYSMMU_AR_MULTIHIT,
  124. SYSMMU_AW_MULTIHIT,
  125. SYSMMU_BUSERROR,
  126. SYSMMU_AR_SECURITY,
  127. SYSMMU_AR_ACCESS,
  128. SYSMMU_AW_SECURITY,
  129. SYSMMU_AW_PROTECTION, /* 7 */
  130. SYSMMU_FAULT_UNKNOWN,
  131. SYSMMU_FAULTS_NUM
  132. };
  133. static unsigned short fault_reg_offset[SYSMMU_FAULTS_NUM] = {
  134. REG_PAGE_FAULT_ADDR,
  135. REG_AR_FAULT_ADDR,
  136. REG_AW_FAULT_ADDR,
  137. REG_DEFAULT_SLAVE_ADDR,
  138. REG_AR_FAULT_ADDR,
  139. REG_AR_FAULT_ADDR,
  140. REG_AW_FAULT_ADDR,
  141. REG_AW_FAULT_ADDR
  142. };
  143. static char *sysmmu_fault_name[SYSMMU_FAULTS_NUM] = {
  144. "PAGE FAULT",
  145. "AR MULTI-HIT FAULT",
  146. "AW MULTI-HIT FAULT",
  147. "BUS ERROR",
  148. "AR SECURITY PROTECTION FAULT",
  149. "AR ACCESS PROTECTION FAULT",
  150. "AW SECURITY PROTECTION FAULT",
  151. "AW ACCESS PROTECTION FAULT",
  152. "UNKNOWN FAULT"
  153. };
  154. /*
  155. * This structure is attached to dev.archdata.iommu of the master device
  156. * on device add, contains a list of SYSMMU controllers defined by device tree,
  157. * which are bound to given master device. It is usually referenced by 'owner'
  158. * pointer.
  159. */
  160. struct exynos_iommu_owner {
  161. struct list_head controllers; /* list of sysmmu_drvdata.owner_node */
  162. };
  163. /*
  164. * This structure exynos specific generalization of struct iommu_domain.
  165. * It contains list of SYSMMU controllers from all master devices, which has
  166. * been attached to this domain and page tables of IO address space defined by
  167. * it. It is usually referenced by 'domain' pointer.
  168. */
  169. struct exynos_iommu_domain {
  170. struct list_head clients; /* list of sysmmu_drvdata.domain_node */
  171. sysmmu_pte_t *pgtable; /* lv1 page table, 16KB */
  172. short *lv2entcnt; /* free lv2 entry counter for each section */
  173. spinlock_t lock; /* lock for modyfying list of clients */
  174. spinlock_t pgtablelock; /* lock for modifying page table @ pgtable */
  175. struct iommu_domain domain; /* generic domain data structure */
  176. };
  177. /*
  178. * This structure hold all data of a single SYSMMU controller, this includes
  179. * hw resources like registers and clocks, pointers and list nodes to connect
  180. * it to all other structures, internal state and parameters read from device
  181. * tree. It is usually referenced by 'data' pointer.
  182. */
  183. struct sysmmu_drvdata {
  184. struct device *sysmmu; /* SYSMMU controller device */
  185. struct device *master; /* master device (owner) */
  186. void __iomem *sfrbase; /* our registers */
  187. struct clk *clk; /* SYSMMU's clock */
  188. struct clk *clk_master; /* master's device clock */
  189. int activations; /* number of calls to sysmmu_enable */
  190. spinlock_t lock; /* lock for modyfying state */
  191. struct exynos_iommu_domain *domain; /* domain we belong to */
  192. struct list_head domain_node; /* node for domain clients list */
  193. struct list_head owner_node; /* node for owner controllers list */
  194. phys_addr_t pgtable; /* assigned page table structure */
  195. unsigned int version; /* our version */
  196. };
  197. static struct exynos_iommu_domain *to_exynos_domain(struct iommu_domain *dom)
  198. {
  199. return container_of(dom, struct exynos_iommu_domain, domain);
  200. }
  201. static bool set_sysmmu_active(struct sysmmu_drvdata *data)
  202. {
  203. /* return true if the System MMU was not active previously
  204. and it needs to be initialized */
  205. return ++data->activations == 1;
  206. }
  207. static bool set_sysmmu_inactive(struct sysmmu_drvdata *data)
  208. {
  209. /* return true if the System MMU is needed to be disabled */
  210. BUG_ON(data->activations < 1);
  211. return --data->activations == 0;
  212. }
  213. static bool is_sysmmu_active(struct sysmmu_drvdata *data)
  214. {
  215. return data->activations > 0;
  216. }
  217. static void sysmmu_unblock(void __iomem *sfrbase)
  218. {
  219. __raw_writel(CTRL_ENABLE, sfrbase + REG_MMU_CTRL);
  220. }
  221. static bool sysmmu_block(void __iomem *sfrbase)
  222. {
  223. int i = 120;
  224. __raw_writel(CTRL_BLOCK, sfrbase + REG_MMU_CTRL);
  225. while ((i > 0) && !(__raw_readl(sfrbase + REG_MMU_STATUS) & 1))
  226. --i;
  227. if (!(__raw_readl(sfrbase + REG_MMU_STATUS) & 1)) {
  228. sysmmu_unblock(sfrbase);
  229. return false;
  230. }
  231. return true;
  232. }
  233. static void __sysmmu_tlb_invalidate(void __iomem *sfrbase)
  234. {
  235. __raw_writel(0x1, sfrbase + REG_MMU_FLUSH);
  236. }
  237. static void __sysmmu_tlb_invalidate_entry(void __iomem *sfrbase,
  238. sysmmu_iova_t iova, unsigned int num_inv)
  239. {
  240. unsigned int i;
  241. for (i = 0; i < num_inv; i++) {
  242. __raw_writel((iova & SPAGE_MASK) | 1,
  243. sfrbase + REG_MMU_FLUSH_ENTRY);
  244. iova += SPAGE_SIZE;
  245. }
  246. }
  247. static void __sysmmu_set_ptbase(void __iomem *sfrbase,
  248. phys_addr_t pgd)
  249. {
  250. __raw_writel(pgd, sfrbase + REG_PT_BASE_ADDR);
  251. __sysmmu_tlb_invalidate(sfrbase);
  252. }
  253. static void show_fault_information(const char *name,
  254. enum exynos_sysmmu_inttype itype,
  255. phys_addr_t pgtable_base, sysmmu_iova_t fault_addr)
  256. {
  257. sysmmu_pte_t *ent;
  258. if ((itype >= SYSMMU_FAULTS_NUM) || (itype < SYSMMU_PAGEFAULT))
  259. itype = SYSMMU_FAULT_UNKNOWN;
  260. pr_err("%s occurred at %#x by %s(Page table base: %pa)\n",
  261. sysmmu_fault_name[itype], fault_addr, name, &pgtable_base);
  262. ent = section_entry(phys_to_virt(pgtable_base), fault_addr);
  263. pr_err("\tLv1 entry: %#x\n", *ent);
  264. if (lv1ent_page(ent)) {
  265. ent = page_entry(ent, fault_addr);
  266. pr_err("\t Lv2 entry: %#x\n", *ent);
  267. }
  268. }
  269. static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id)
  270. {
  271. /* SYSMMU is in blocked state when interrupt occurred. */
  272. struct sysmmu_drvdata *data = dev_id;
  273. enum exynos_sysmmu_inttype itype;
  274. sysmmu_iova_t addr = -1;
  275. int ret = -ENOSYS;
  276. WARN_ON(!is_sysmmu_active(data));
  277. spin_lock(&data->lock);
  278. if (!IS_ERR(data->clk_master))
  279. clk_enable(data->clk_master);
  280. itype = (enum exynos_sysmmu_inttype)
  281. __ffs(__raw_readl(data->sfrbase + REG_INT_STATUS));
  282. if (WARN_ON(!((itype >= 0) && (itype < SYSMMU_FAULT_UNKNOWN))))
  283. itype = SYSMMU_FAULT_UNKNOWN;
  284. else
  285. addr = __raw_readl(data->sfrbase + fault_reg_offset[itype]);
  286. if (itype == SYSMMU_FAULT_UNKNOWN) {
  287. pr_err("%s: Fault is not occurred by System MMU '%s'!\n",
  288. __func__, dev_name(data->sysmmu));
  289. pr_err("%s: Please check if IRQ is correctly configured.\n",
  290. __func__);
  291. BUG();
  292. } else {
  293. unsigned int base =
  294. __raw_readl(data->sfrbase + REG_PT_BASE_ADDR);
  295. show_fault_information(dev_name(data->sysmmu),
  296. itype, base, addr);
  297. if (data->domain)
  298. ret = report_iommu_fault(&data->domain->domain,
  299. data->master, addr, itype);
  300. }
  301. /* fault is not recovered by fault handler */
  302. BUG_ON(ret != 0);
  303. __raw_writel(1 << itype, data->sfrbase + REG_INT_CLEAR);
  304. sysmmu_unblock(data->sfrbase);
  305. if (!IS_ERR(data->clk_master))
  306. clk_disable(data->clk_master);
  307. spin_unlock(&data->lock);
  308. return IRQ_HANDLED;
  309. }
  310. static void __sysmmu_disable_nocount(struct sysmmu_drvdata *data)
  311. {
  312. if (!IS_ERR(data->clk_master))
  313. clk_enable(data->clk_master);
  314. __raw_writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL);
  315. __raw_writel(0, data->sfrbase + REG_MMU_CFG);
  316. clk_disable(data->clk);
  317. if (!IS_ERR(data->clk_master))
  318. clk_disable(data->clk_master);
  319. }
  320. static bool __sysmmu_disable(struct sysmmu_drvdata *data)
  321. {
  322. bool disabled;
  323. unsigned long flags;
  324. spin_lock_irqsave(&data->lock, flags);
  325. disabled = set_sysmmu_inactive(data);
  326. if (disabled) {
  327. data->pgtable = 0;
  328. data->domain = NULL;
  329. __sysmmu_disable_nocount(data);
  330. dev_dbg(data->sysmmu, "Disabled\n");
  331. } else {
  332. dev_dbg(data->sysmmu, "%d times left to disable\n",
  333. data->activations);
  334. }
  335. spin_unlock_irqrestore(&data->lock, flags);
  336. return disabled;
  337. }
  338. static void __sysmmu_init_config(struct sysmmu_drvdata *data)
  339. {
  340. unsigned int cfg = CFG_LRU | CFG_QOS(15);
  341. unsigned int ver;
  342. ver = MMU_RAW_VER(__raw_readl(data->sfrbase + REG_MMU_VERSION));
  343. if (MMU_MAJ_VER(ver) == 3) {
  344. if (MMU_MIN_VER(ver) >= 2) {
  345. cfg |= CFG_FLPDCACHE;
  346. if (MMU_MIN_VER(ver) == 3) {
  347. cfg |= CFG_ACGEN;
  348. cfg &= ~CFG_LRU;
  349. } else {
  350. cfg |= CFG_SYSSEL;
  351. }
  352. }
  353. }
  354. __raw_writel(cfg, data->sfrbase + REG_MMU_CFG);
  355. data->version = ver;
  356. }
  357. static void __sysmmu_enable_nocount(struct sysmmu_drvdata *data)
  358. {
  359. if (!IS_ERR(data->clk_master))
  360. clk_enable(data->clk_master);
  361. clk_enable(data->clk);
  362. __raw_writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
  363. __sysmmu_init_config(data);
  364. __sysmmu_set_ptbase(data->sfrbase, data->pgtable);
  365. __raw_writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
  366. if (!IS_ERR(data->clk_master))
  367. clk_disable(data->clk_master);
  368. }
  369. static int __sysmmu_enable(struct sysmmu_drvdata *data, phys_addr_t pgtable,
  370. struct exynos_iommu_domain *domain)
  371. {
  372. int ret = 0;
  373. unsigned long flags;
  374. spin_lock_irqsave(&data->lock, flags);
  375. if (set_sysmmu_active(data)) {
  376. data->pgtable = pgtable;
  377. data->domain = domain;
  378. __sysmmu_enable_nocount(data);
  379. dev_dbg(data->sysmmu, "Enabled\n");
  380. } else {
  381. ret = (pgtable == data->pgtable) ? 1 : -EBUSY;
  382. dev_dbg(data->sysmmu, "already enabled\n");
  383. }
  384. if (WARN_ON(ret < 0))
  385. set_sysmmu_inactive(data); /* decrement count */
  386. spin_unlock_irqrestore(&data->lock, flags);
  387. return ret;
  388. }
  389. static void __sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
  390. sysmmu_iova_t iova)
  391. {
  392. if (data->version == MAKE_MMU_VER(3, 3))
  393. __raw_writel(iova | 0x1, data->sfrbase + REG_MMU_FLUSH_ENTRY);
  394. }
  395. static void sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
  396. sysmmu_iova_t iova)
  397. {
  398. unsigned long flags;
  399. if (!IS_ERR(data->clk_master))
  400. clk_enable(data->clk_master);
  401. spin_lock_irqsave(&data->lock, flags);
  402. if (is_sysmmu_active(data))
  403. __sysmmu_tlb_invalidate_flpdcache(data, iova);
  404. spin_unlock_irqrestore(&data->lock, flags);
  405. if (!IS_ERR(data->clk_master))
  406. clk_disable(data->clk_master);
  407. }
  408. static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
  409. sysmmu_iova_t iova, size_t size)
  410. {
  411. unsigned long flags;
  412. spin_lock_irqsave(&data->lock, flags);
  413. if (is_sysmmu_active(data)) {
  414. unsigned int num_inv = 1;
  415. if (!IS_ERR(data->clk_master))
  416. clk_enable(data->clk_master);
  417. /*
  418. * L2TLB invalidation required
  419. * 4KB page: 1 invalidation
  420. * 64KB page: 16 invalidations
  421. * 1MB page: 64 invalidations
  422. * because it is set-associative TLB
  423. * with 8-way and 64 sets.
  424. * 1MB page can be cached in one of all sets.
  425. * 64KB page can be one of 16 consecutive sets.
  426. */
  427. if (MMU_MAJ_VER(data->version) == 2)
  428. num_inv = min_t(unsigned int, size / PAGE_SIZE, 64);
  429. if (sysmmu_block(data->sfrbase)) {
  430. __sysmmu_tlb_invalidate_entry(
  431. data->sfrbase, iova, num_inv);
  432. sysmmu_unblock(data->sfrbase);
  433. }
  434. if (!IS_ERR(data->clk_master))
  435. clk_disable(data->clk_master);
  436. } else {
  437. dev_dbg(data->master,
  438. "disabled. Skipping TLB invalidation @ %#x\n", iova);
  439. }
  440. spin_unlock_irqrestore(&data->lock, flags);
  441. }
  442. static int __init exynos_sysmmu_probe(struct platform_device *pdev)
  443. {
  444. int irq, ret;
  445. struct device *dev = &pdev->dev;
  446. struct sysmmu_drvdata *data;
  447. struct resource *res;
  448. data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
  449. if (!data)
  450. return -ENOMEM;
  451. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  452. data->sfrbase = devm_ioremap_resource(dev, res);
  453. if (IS_ERR(data->sfrbase))
  454. return PTR_ERR(data->sfrbase);
  455. irq = platform_get_irq(pdev, 0);
  456. if (irq <= 0) {
  457. dev_err(dev, "Unable to find IRQ resource\n");
  458. return irq;
  459. }
  460. ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0,
  461. dev_name(dev), data);
  462. if (ret) {
  463. dev_err(dev, "Unabled to register handler of irq %d\n", irq);
  464. return ret;
  465. }
  466. data->clk = devm_clk_get(dev, "sysmmu");
  467. if (IS_ERR(data->clk)) {
  468. dev_err(dev, "Failed to get clock!\n");
  469. return PTR_ERR(data->clk);
  470. } else {
  471. ret = clk_prepare(data->clk);
  472. if (ret) {
  473. dev_err(dev, "Failed to prepare clk\n");
  474. return ret;
  475. }
  476. }
  477. data->clk_master = devm_clk_get(dev, "master");
  478. if (!IS_ERR(data->clk_master)) {
  479. ret = clk_prepare(data->clk_master);
  480. if (ret) {
  481. clk_unprepare(data->clk);
  482. dev_err(dev, "Failed to prepare master's clk\n");
  483. return ret;
  484. }
  485. }
  486. data->sysmmu = dev;
  487. spin_lock_init(&data->lock);
  488. platform_set_drvdata(pdev, data);
  489. pm_runtime_enable(dev);
  490. return 0;
  491. }
  492. #ifdef CONFIG_PM_SLEEP
  493. static int exynos_sysmmu_suspend(struct device *dev)
  494. {
  495. struct sysmmu_drvdata *data = dev_get_drvdata(dev);
  496. dev_dbg(dev, "suspend\n");
  497. if (is_sysmmu_active(data)) {
  498. __sysmmu_disable_nocount(data);
  499. pm_runtime_put(dev);
  500. }
  501. return 0;
  502. }
  503. static int exynos_sysmmu_resume(struct device *dev)
  504. {
  505. struct sysmmu_drvdata *data = dev_get_drvdata(dev);
  506. dev_dbg(dev, "resume\n");
  507. if (is_sysmmu_active(data)) {
  508. pm_runtime_get_sync(dev);
  509. __sysmmu_enable_nocount(data);
  510. }
  511. return 0;
  512. }
  513. #endif
  514. static const struct dev_pm_ops sysmmu_pm_ops = {
  515. SET_LATE_SYSTEM_SLEEP_PM_OPS(exynos_sysmmu_suspend, exynos_sysmmu_resume)
  516. };
  517. static const struct of_device_id sysmmu_of_match[] __initconst = {
  518. { .compatible = "samsung,exynos-sysmmu", },
  519. { },
  520. };
  521. static struct platform_driver exynos_sysmmu_driver __refdata = {
  522. .probe = exynos_sysmmu_probe,
  523. .driver = {
  524. .name = "exynos-sysmmu",
  525. .of_match_table = sysmmu_of_match,
  526. .pm = &sysmmu_pm_ops,
  527. .suppress_bind_attrs = true,
  528. }
  529. };
  530. static inline void pgtable_flush(void *vastart, void *vaend)
  531. {
  532. dmac_flush_range(vastart, vaend);
  533. outer_flush_range(virt_to_phys(vastart),
  534. virt_to_phys(vaend));
  535. }
  536. static struct iommu_domain *exynos_iommu_domain_alloc(unsigned type)
  537. {
  538. struct exynos_iommu_domain *domain;
  539. int i;
  540. if (type != IOMMU_DOMAIN_UNMANAGED)
  541. return NULL;
  542. domain = kzalloc(sizeof(*domain), GFP_KERNEL);
  543. if (!domain)
  544. return NULL;
  545. domain->pgtable = (sysmmu_pte_t *)__get_free_pages(GFP_KERNEL, 2);
  546. if (!domain->pgtable)
  547. goto err_pgtable;
  548. domain->lv2entcnt = (short *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
  549. if (!domain->lv2entcnt)
  550. goto err_counter;
  551. /* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */
  552. for (i = 0; i < NUM_LV1ENTRIES; i += 8) {
  553. domain->pgtable[i + 0] = ZERO_LV2LINK;
  554. domain->pgtable[i + 1] = ZERO_LV2LINK;
  555. domain->pgtable[i + 2] = ZERO_LV2LINK;
  556. domain->pgtable[i + 3] = ZERO_LV2LINK;
  557. domain->pgtable[i + 4] = ZERO_LV2LINK;
  558. domain->pgtable[i + 5] = ZERO_LV2LINK;
  559. domain->pgtable[i + 6] = ZERO_LV2LINK;
  560. domain->pgtable[i + 7] = ZERO_LV2LINK;
  561. }
  562. pgtable_flush(domain->pgtable, domain->pgtable + NUM_LV1ENTRIES);
  563. spin_lock_init(&domain->lock);
  564. spin_lock_init(&domain->pgtablelock);
  565. INIT_LIST_HEAD(&domain->clients);
  566. domain->domain.geometry.aperture_start = 0;
  567. domain->domain.geometry.aperture_end = ~0UL;
  568. domain->domain.geometry.force_aperture = true;
  569. return &domain->domain;
  570. err_counter:
  571. free_pages((unsigned long)domain->pgtable, 2);
  572. err_pgtable:
  573. kfree(domain);
  574. return NULL;
  575. }
  576. static void exynos_iommu_domain_free(struct iommu_domain *iommu_domain)
  577. {
  578. struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
  579. struct sysmmu_drvdata *data, *next;
  580. unsigned long flags;
  581. int i;
  582. WARN_ON(!list_empty(&domain->clients));
  583. spin_lock_irqsave(&domain->lock, flags);
  584. list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
  585. if (__sysmmu_disable(data))
  586. data->master = NULL;
  587. list_del_init(&data->domain_node);
  588. }
  589. spin_unlock_irqrestore(&domain->lock, flags);
  590. for (i = 0; i < NUM_LV1ENTRIES; i++)
  591. if (lv1ent_page(domain->pgtable + i))
  592. kmem_cache_free(lv2table_kmem_cache,
  593. phys_to_virt(lv2table_base(domain->pgtable + i)));
  594. free_pages((unsigned long)domain->pgtable, 2);
  595. free_pages((unsigned long)domain->lv2entcnt, 1);
  596. kfree(domain);
  597. }
  598. static int exynos_iommu_attach_device(struct iommu_domain *iommu_domain,
  599. struct device *dev)
  600. {
  601. struct exynos_iommu_owner *owner = dev->archdata.iommu;
  602. struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
  603. struct sysmmu_drvdata *data;
  604. phys_addr_t pagetable = virt_to_phys(domain->pgtable);
  605. unsigned long flags;
  606. int ret = -ENODEV;
  607. if (!has_sysmmu(dev))
  608. return -ENODEV;
  609. list_for_each_entry(data, &owner->controllers, owner_node) {
  610. pm_runtime_get_sync(data->sysmmu);
  611. ret = __sysmmu_enable(data, pagetable, domain);
  612. if (ret >= 0) {
  613. data->master = dev;
  614. spin_lock_irqsave(&domain->lock, flags);
  615. list_add_tail(&data->domain_node, &domain->clients);
  616. spin_unlock_irqrestore(&domain->lock, flags);
  617. }
  618. }
  619. if (ret < 0) {
  620. dev_err(dev, "%s: Failed to attach IOMMU with pgtable %pa\n",
  621. __func__, &pagetable);
  622. return ret;
  623. }
  624. dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa %s\n",
  625. __func__, &pagetable, (ret == 0) ? "" : ", again");
  626. return ret;
  627. }
  628. static void exynos_iommu_detach_device(struct iommu_domain *iommu_domain,
  629. struct device *dev)
  630. {
  631. struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
  632. phys_addr_t pagetable = virt_to_phys(domain->pgtable);
  633. struct sysmmu_drvdata *data, *next;
  634. unsigned long flags;
  635. bool found = false;
  636. if (!has_sysmmu(dev))
  637. return;
  638. spin_lock_irqsave(&domain->lock, flags);
  639. list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
  640. if (data->master == dev) {
  641. if (__sysmmu_disable(data)) {
  642. data->master = NULL;
  643. list_del_init(&data->domain_node);
  644. }
  645. pm_runtime_put(data->sysmmu);
  646. found = true;
  647. }
  648. }
  649. spin_unlock_irqrestore(&domain->lock, flags);
  650. if (found)
  651. dev_dbg(dev, "%s: Detached IOMMU with pgtable %pa\n",
  652. __func__, &pagetable);
  653. else
  654. dev_err(dev, "%s: No IOMMU is attached\n", __func__);
  655. }
  656. static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *domain,
  657. sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter)
  658. {
  659. if (lv1ent_section(sent)) {
  660. WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova);
  661. return ERR_PTR(-EADDRINUSE);
  662. }
  663. if (lv1ent_fault(sent)) {
  664. sysmmu_pte_t *pent;
  665. bool need_flush_flpd_cache = lv1ent_zero(sent);
  666. pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC);
  667. BUG_ON((unsigned int)pent & (LV2TABLE_SIZE - 1));
  668. if (!pent)
  669. return ERR_PTR(-ENOMEM);
  670. *sent = mk_lv1ent_page(virt_to_phys(pent));
  671. kmemleak_ignore(pent);
  672. *pgcounter = NUM_LV2ENTRIES;
  673. pgtable_flush(pent, pent + NUM_LV2ENTRIES);
  674. pgtable_flush(sent, sent + 1);
  675. /*
  676. * If pre-fetched SLPD is a faulty SLPD in zero_l2_table,
  677. * FLPD cache may cache the address of zero_l2_table. This
  678. * function replaces the zero_l2_table with new L2 page table
  679. * to write valid mappings.
  680. * Accessing the valid area may cause page fault since FLPD
  681. * cache may still cache zero_l2_table for the valid area
  682. * instead of new L2 page table that has the mapping
  683. * information of the valid area.
  684. * Thus any replacement of zero_l2_table with other valid L2
  685. * page table must involve FLPD cache invalidation for System
  686. * MMU v3.3.
  687. * FLPD cache invalidation is performed with TLB invalidation
  688. * by VPN without blocking. It is safe to invalidate TLB without
  689. * blocking because the target address of TLB invalidation is
  690. * not currently mapped.
  691. */
  692. if (need_flush_flpd_cache) {
  693. struct sysmmu_drvdata *data;
  694. spin_lock(&domain->lock);
  695. list_for_each_entry(data, &domain->clients, domain_node)
  696. sysmmu_tlb_invalidate_flpdcache(data, iova);
  697. spin_unlock(&domain->lock);
  698. }
  699. }
  700. return page_entry(sent, iova);
  701. }
  702. static int lv1set_section(struct exynos_iommu_domain *domain,
  703. sysmmu_pte_t *sent, sysmmu_iova_t iova,
  704. phys_addr_t paddr, short *pgcnt)
  705. {
  706. if (lv1ent_section(sent)) {
  707. WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
  708. iova);
  709. return -EADDRINUSE;
  710. }
  711. if (lv1ent_page(sent)) {
  712. if (*pgcnt != NUM_LV2ENTRIES) {
  713. WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
  714. iova);
  715. return -EADDRINUSE;
  716. }
  717. kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0));
  718. *pgcnt = 0;
  719. }
  720. *sent = mk_lv1ent_sect(paddr);
  721. pgtable_flush(sent, sent + 1);
  722. spin_lock(&domain->lock);
  723. if (lv1ent_page_zero(sent)) {
  724. struct sysmmu_drvdata *data;
  725. /*
  726. * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD
  727. * entry by speculative prefetch of SLPD which has no mapping.
  728. */
  729. list_for_each_entry(data, &domain->clients, domain_node)
  730. sysmmu_tlb_invalidate_flpdcache(data, iova);
  731. }
  732. spin_unlock(&domain->lock);
  733. return 0;
  734. }
  735. static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size,
  736. short *pgcnt)
  737. {
  738. if (size == SPAGE_SIZE) {
  739. if (WARN_ON(!lv2ent_fault(pent)))
  740. return -EADDRINUSE;
  741. *pent = mk_lv2ent_spage(paddr);
  742. pgtable_flush(pent, pent + 1);
  743. *pgcnt -= 1;
  744. } else { /* size == LPAGE_SIZE */
  745. int i;
  746. for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) {
  747. if (WARN_ON(!lv2ent_fault(pent))) {
  748. if (i > 0)
  749. memset(pent - i, 0, sizeof(*pent) * i);
  750. return -EADDRINUSE;
  751. }
  752. *pent = mk_lv2ent_lpage(paddr);
  753. }
  754. pgtable_flush(pent - SPAGES_PER_LPAGE, pent);
  755. *pgcnt -= SPAGES_PER_LPAGE;
  756. }
  757. return 0;
  758. }
  759. /*
  760. * *CAUTION* to the I/O virtual memory managers that support exynos-iommu:
  761. *
  762. * System MMU v3.x has advanced logic to improve address translation
  763. * performance with caching more page table entries by a page table walk.
  764. * However, the logic has a bug that while caching faulty page table entries,
  765. * System MMU reports page fault if the cached fault entry is hit even though
  766. * the fault entry is updated to a valid entry after the entry is cached.
  767. * To prevent caching faulty page table entries which may be updated to valid
  768. * entries later, the virtual memory manager should care about the workaround
  769. * for the problem. The following describes the workaround.
  770. *
  771. * Any two consecutive I/O virtual address regions must have a hole of 128KiB
  772. * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug).
  773. *
  774. * Precisely, any start address of I/O virtual region must be aligned with
  775. * the following sizes for System MMU v3.1 and v3.2.
  776. * System MMU v3.1: 128KiB
  777. * System MMU v3.2: 256KiB
  778. *
  779. * Because System MMU v3.3 caches page table entries more aggressively, it needs
  780. * more workarounds.
  781. * - Any two consecutive I/O virtual regions must have a hole of size larger
  782. * than or equal to 128KiB.
  783. * - Start address of an I/O virtual region must be aligned by 128KiB.
  784. */
  785. static int exynos_iommu_map(struct iommu_domain *iommu_domain,
  786. unsigned long l_iova, phys_addr_t paddr, size_t size,
  787. int prot)
  788. {
  789. struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
  790. sysmmu_pte_t *entry;
  791. sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
  792. unsigned long flags;
  793. int ret = -ENOMEM;
  794. BUG_ON(domain->pgtable == NULL);
  795. spin_lock_irqsave(&domain->pgtablelock, flags);
  796. entry = section_entry(domain->pgtable, iova);
  797. if (size == SECT_SIZE) {
  798. ret = lv1set_section(domain, entry, iova, paddr,
  799. &domain->lv2entcnt[lv1ent_offset(iova)]);
  800. } else {
  801. sysmmu_pte_t *pent;
  802. pent = alloc_lv2entry(domain, entry, iova,
  803. &domain->lv2entcnt[lv1ent_offset(iova)]);
  804. if (IS_ERR(pent))
  805. ret = PTR_ERR(pent);
  806. else
  807. ret = lv2set_page(pent, paddr, size,
  808. &domain->lv2entcnt[lv1ent_offset(iova)]);
  809. }
  810. if (ret)
  811. pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n",
  812. __func__, ret, size, iova);
  813. spin_unlock_irqrestore(&domain->pgtablelock, flags);
  814. return ret;
  815. }
  816. static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *domain,
  817. sysmmu_iova_t iova, size_t size)
  818. {
  819. struct sysmmu_drvdata *data;
  820. unsigned long flags;
  821. spin_lock_irqsave(&domain->lock, flags);
  822. list_for_each_entry(data, &domain->clients, domain_node)
  823. sysmmu_tlb_invalidate_entry(data, iova, size);
  824. spin_unlock_irqrestore(&domain->lock, flags);
  825. }
  826. static size_t exynos_iommu_unmap(struct iommu_domain *iommu_domain,
  827. unsigned long l_iova, size_t size)
  828. {
  829. struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
  830. sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
  831. sysmmu_pte_t *ent;
  832. size_t err_pgsize;
  833. unsigned long flags;
  834. BUG_ON(domain->pgtable == NULL);
  835. spin_lock_irqsave(&domain->pgtablelock, flags);
  836. ent = section_entry(domain->pgtable, iova);
  837. if (lv1ent_section(ent)) {
  838. if (WARN_ON(size < SECT_SIZE)) {
  839. err_pgsize = SECT_SIZE;
  840. goto err;
  841. }
  842. /* workaround for h/w bug in System MMU v3.3 */
  843. *ent = ZERO_LV2LINK;
  844. pgtable_flush(ent, ent + 1);
  845. size = SECT_SIZE;
  846. goto done;
  847. }
  848. if (unlikely(lv1ent_fault(ent))) {
  849. if (size > SECT_SIZE)
  850. size = SECT_SIZE;
  851. goto done;
  852. }
  853. /* lv1ent_page(sent) == true here */
  854. ent = page_entry(ent, iova);
  855. if (unlikely(lv2ent_fault(ent))) {
  856. size = SPAGE_SIZE;
  857. goto done;
  858. }
  859. if (lv2ent_small(ent)) {
  860. *ent = 0;
  861. size = SPAGE_SIZE;
  862. pgtable_flush(ent, ent + 1);
  863. domain->lv2entcnt[lv1ent_offset(iova)] += 1;
  864. goto done;
  865. }
  866. /* lv1ent_large(ent) == true here */
  867. if (WARN_ON(size < LPAGE_SIZE)) {
  868. err_pgsize = LPAGE_SIZE;
  869. goto err;
  870. }
  871. memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE);
  872. pgtable_flush(ent, ent + SPAGES_PER_LPAGE);
  873. size = LPAGE_SIZE;
  874. domain->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE;
  875. done:
  876. spin_unlock_irqrestore(&domain->pgtablelock, flags);
  877. exynos_iommu_tlb_invalidate_entry(domain, iova, size);
  878. return size;
  879. err:
  880. spin_unlock_irqrestore(&domain->pgtablelock, flags);
  881. pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n",
  882. __func__, size, iova, err_pgsize);
  883. return 0;
  884. }
  885. static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *iommu_domain,
  886. dma_addr_t iova)
  887. {
  888. struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
  889. sysmmu_pte_t *entry;
  890. unsigned long flags;
  891. phys_addr_t phys = 0;
  892. spin_lock_irqsave(&domain->pgtablelock, flags);
  893. entry = section_entry(domain->pgtable, iova);
  894. if (lv1ent_section(entry)) {
  895. phys = section_phys(entry) + section_offs(iova);
  896. } else if (lv1ent_page(entry)) {
  897. entry = page_entry(entry, iova);
  898. if (lv2ent_large(entry))
  899. phys = lpage_phys(entry) + lpage_offs(iova);
  900. else if (lv2ent_small(entry))
  901. phys = spage_phys(entry) + spage_offs(iova);
  902. }
  903. spin_unlock_irqrestore(&domain->pgtablelock, flags);
  904. return phys;
  905. }
  906. static int exynos_iommu_add_device(struct device *dev)
  907. {
  908. struct iommu_group *group;
  909. int ret;
  910. if (!has_sysmmu(dev))
  911. return -ENODEV;
  912. group = iommu_group_get(dev);
  913. if (!group) {
  914. group = iommu_group_alloc();
  915. if (IS_ERR(group)) {
  916. dev_err(dev, "Failed to allocate IOMMU group\n");
  917. return PTR_ERR(group);
  918. }
  919. }
  920. ret = iommu_group_add_device(group, dev);
  921. iommu_group_put(group);
  922. return ret;
  923. }
  924. static void exynos_iommu_remove_device(struct device *dev)
  925. {
  926. if (!has_sysmmu(dev))
  927. return;
  928. iommu_group_remove_device(dev);
  929. }
  930. static int exynos_iommu_of_xlate(struct device *dev,
  931. struct of_phandle_args *spec)
  932. {
  933. struct exynos_iommu_owner *owner = dev->archdata.iommu;
  934. struct platform_device *sysmmu = of_find_device_by_node(spec->np);
  935. struct sysmmu_drvdata *data;
  936. if (!sysmmu)
  937. return -ENODEV;
  938. data = platform_get_drvdata(sysmmu);
  939. if (!data)
  940. return -ENODEV;
  941. if (!owner) {
  942. owner = kzalloc(sizeof(*owner), GFP_KERNEL);
  943. if (!owner)
  944. return -ENOMEM;
  945. INIT_LIST_HEAD(&owner->controllers);
  946. dev->archdata.iommu = owner;
  947. }
  948. list_add_tail(&data->owner_node, &owner->controllers);
  949. return 0;
  950. }
  951. static struct iommu_ops exynos_iommu_ops = {
  952. .domain_alloc = exynos_iommu_domain_alloc,
  953. .domain_free = exynos_iommu_domain_free,
  954. .attach_dev = exynos_iommu_attach_device,
  955. .detach_dev = exynos_iommu_detach_device,
  956. .map = exynos_iommu_map,
  957. .unmap = exynos_iommu_unmap,
  958. .map_sg = default_iommu_map_sg,
  959. .iova_to_phys = exynos_iommu_iova_to_phys,
  960. .add_device = exynos_iommu_add_device,
  961. .remove_device = exynos_iommu_remove_device,
  962. .pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE,
  963. .of_xlate = exynos_iommu_of_xlate,
  964. };
  965. static bool init_done;
  966. static int __init exynos_iommu_init(void)
  967. {
  968. int ret;
  969. lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table",
  970. LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL);
  971. if (!lv2table_kmem_cache) {
  972. pr_err("%s: Failed to create kmem cache\n", __func__);
  973. return -ENOMEM;
  974. }
  975. ret = platform_driver_register(&exynos_sysmmu_driver);
  976. if (ret) {
  977. pr_err("%s: Failed to register driver\n", __func__);
  978. goto err_reg_driver;
  979. }
  980. zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL);
  981. if (zero_lv2_table == NULL) {
  982. pr_err("%s: Failed to allocate zero level2 page table\n",
  983. __func__);
  984. ret = -ENOMEM;
  985. goto err_zero_lv2;
  986. }
  987. ret = bus_set_iommu(&platform_bus_type, &exynos_iommu_ops);
  988. if (ret) {
  989. pr_err("%s: Failed to register exynos-iommu driver.\n",
  990. __func__);
  991. goto err_set_iommu;
  992. }
  993. init_done = true;
  994. return 0;
  995. err_set_iommu:
  996. kmem_cache_free(lv2table_kmem_cache, zero_lv2_table);
  997. err_zero_lv2:
  998. platform_driver_unregister(&exynos_sysmmu_driver);
  999. err_reg_driver:
  1000. kmem_cache_destroy(lv2table_kmem_cache);
  1001. return ret;
  1002. }
  1003. static int __init exynos_iommu_of_setup(struct device_node *np)
  1004. {
  1005. struct platform_device *pdev;
  1006. if (!init_done)
  1007. exynos_iommu_init();
  1008. pdev = of_platform_device_create(np, NULL, platform_bus_type.dev_root);
  1009. if (IS_ERR(pdev))
  1010. return PTR_ERR(pdev);
  1011. of_iommu_set_ops(np, &exynos_iommu_ops);
  1012. return 0;
  1013. }
  1014. IOMMU_OF_DECLARE(exynos_iommu_of, "samsung,exynos-sysmmu",
  1015. exynos_iommu_of_setup);