dm-thin-metadata.c 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986
  1. /*
  2. * Copyright (C) 2011-2012 Red Hat, Inc.
  3. *
  4. * This file is released under the GPL.
  5. */
  6. #include "dm-thin-metadata.h"
  7. #include "persistent-data/dm-btree.h"
  8. #include "persistent-data/dm-space-map.h"
  9. #include "persistent-data/dm-space-map-disk.h"
  10. #include "persistent-data/dm-transaction-manager.h"
  11. #include <linux/list.h>
  12. #include <linux/device-mapper.h>
  13. #include <linux/workqueue.h>
  14. /*--------------------------------------------------------------------------
  15. * As far as the metadata goes, there is:
  16. *
  17. * - A superblock in block zero, taking up fewer than 512 bytes for
  18. * atomic writes.
  19. *
  20. * - A space map managing the metadata blocks.
  21. *
  22. * - A space map managing the data blocks.
  23. *
  24. * - A btree mapping our internal thin dev ids onto struct disk_device_details.
  25. *
  26. * - A hierarchical btree, with 2 levels which effectively maps (thin
  27. * dev id, virtual block) -> block_time. Block time is a 64-bit
  28. * field holding the time in the low 24 bits, and block in the top 48
  29. * bits.
  30. *
  31. * BTrees consist solely of btree_nodes, that fill a block. Some are
  32. * internal nodes, as such their values are a __le64 pointing to other
  33. * nodes. Leaf nodes can store data of any reasonable size (ie. much
  34. * smaller than the block size). The nodes consist of the header,
  35. * followed by an array of keys, followed by an array of values. We have
  36. * to binary search on the keys so they're all held together to help the
  37. * cpu cache.
  38. *
  39. * Space maps have 2 btrees:
  40. *
  41. * - One maps a uint64_t onto a struct index_entry. Which points to a
  42. * bitmap block, and has some details about how many free entries there
  43. * are etc.
  44. *
  45. * - The bitmap blocks have a header (for the checksum). Then the rest
  46. * of the block is pairs of bits. With the meaning being:
  47. *
  48. * 0 - ref count is 0
  49. * 1 - ref count is 1
  50. * 2 - ref count is 2
  51. * 3 - ref count is higher than 2
  52. *
  53. * - If the count is higher than 2 then the ref count is entered in a
  54. * second btree that directly maps the block_address to a uint32_t ref
  55. * count.
  56. *
  57. * The space map metadata variant doesn't have a bitmaps btree. Instead
  58. * it has one single blocks worth of index_entries. This avoids
  59. * recursive issues with the bitmap btree needing to allocate space in
  60. * order to insert. With a small data block size such as 64k the
  61. * metadata support data devices that are hundreds of terrabytes.
  62. *
  63. * The space maps allocate space linearly from front to back. Space that
  64. * is freed in a transaction is never recycled within that transaction.
  65. * To try and avoid fragmenting _free_ space the allocator always goes
  66. * back and fills in gaps.
  67. *
  68. * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
  69. * from the block manager.
  70. *--------------------------------------------------------------------------*/
  71. #define DM_MSG_PREFIX "thin metadata"
  72. #define THIN_SUPERBLOCK_MAGIC 27022010
  73. #define THIN_SUPERBLOCK_LOCATION 0
  74. #define THIN_VERSION 2
  75. #define THIN_METADATA_CACHE_SIZE 64
  76. #define SECTOR_TO_BLOCK_SHIFT 3
  77. /*
  78. * For btree insert:
  79. * 3 for btree insert +
  80. * 2 for btree lookup used within space map
  81. * For btree remove:
  82. * 2 for shadow spine +
  83. * 4 for rebalance 3 child node
  84. */
  85. #define THIN_MAX_CONCURRENT_LOCKS 6
  86. /* This should be plenty */
  87. #define SPACE_MAP_ROOT_SIZE 128
  88. /*
  89. * Little endian on-disk superblock and device details.
  90. */
  91. struct thin_disk_superblock {
  92. __le32 csum; /* Checksum of superblock except for this field. */
  93. __le32 flags;
  94. __le64 blocknr; /* This block number, dm_block_t. */
  95. __u8 uuid[16];
  96. __le64 magic;
  97. __le32 version;
  98. __le32 time;
  99. __le64 trans_id;
  100. /*
  101. * Root held by userspace transactions.
  102. */
  103. __le64 held_root;
  104. __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
  105. __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
  106. /*
  107. * 2-level btree mapping (dev_id, (dev block, time)) -> data block
  108. */
  109. __le64 data_mapping_root;
  110. /*
  111. * Device detail root mapping dev_id -> device_details
  112. */
  113. __le64 device_details_root;
  114. __le32 data_block_size; /* In 512-byte sectors. */
  115. __le32 metadata_block_size; /* In 512-byte sectors. */
  116. __le64 metadata_nr_blocks;
  117. __le32 compat_flags;
  118. __le32 compat_ro_flags;
  119. __le32 incompat_flags;
  120. } __packed;
  121. struct disk_device_details {
  122. __le64 mapped_blocks;
  123. __le64 transaction_id; /* When created. */
  124. __le32 creation_time;
  125. __le32 snapshotted_time;
  126. } __packed;
  127. struct dm_pool_metadata {
  128. struct hlist_node hash;
  129. struct block_device *bdev;
  130. struct dm_block_manager *bm;
  131. struct dm_space_map *metadata_sm;
  132. struct dm_space_map *data_sm;
  133. struct dm_transaction_manager *tm;
  134. struct dm_transaction_manager *nb_tm;
  135. /*
  136. * Two-level btree.
  137. * First level holds thin_dev_t.
  138. * Second level holds mappings.
  139. */
  140. struct dm_btree_info info;
  141. /*
  142. * Non-blocking version of the above.
  143. */
  144. struct dm_btree_info nb_info;
  145. /*
  146. * Just the top level for deleting whole devices.
  147. */
  148. struct dm_btree_info tl_info;
  149. /*
  150. * Just the bottom level for creating new devices.
  151. */
  152. struct dm_btree_info bl_info;
  153. /*
  154. * Describes the device details btree.
  155. */
  156. struct dm_btree_info details_info;
  157. struct rw_semaphore root_lock;
  158. uint32_t time;
  159. dm_block_t root;
  160. dm_block_t details_root;
  161. struct list_head thin_devices;
  162. uint64_t trans_id;
  163. unsigned long flags;
  164. sector_t data_block_size;
  165. /*
  166. * We reserve a section of the metadata for commit overhead.
  167. * All reported space does *not* include this.
  168. */
  169. dm_block_t metadata_reserve;
  170. /*
  171. * Set if a transaction has to be aborted but the attempt to roll back
  172. * to the previous (good) transaction failed. The only pool metadata
  173. * operation possible in this state is the closing of the device.
  174. */
  175. bool fail_io:1;
  176. /*
  177. * Reading the space map roots can fail, so we read it into these
  178. * buffers before the superblock is locked and updated.
  179. */
  180. __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
  181. __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
  182. };
  183. struct dm_thin_device {
  184. struct list_head list;
  185. struct dm_pool_metadata *pmd;
  186. dm_thin_id id;
  187. int open_count;
  188. bool changed:1;
  189. bool aborted_with_changes:1;
  190. uint64_t mapped_blocks;
  191. uint64_t transaction_id;
  192. uint32_t creation_time;
  193. uint32_t snapshotted_time;
  194. };
  195. /*----------------------------------------------------------------
  196. * superblock validator
  197. *--------------------------------------------------------------*/
  198. #define SUPERBLOCK_CSUM_XOR 160774
  199. static void sb_prepare_for_write(struct dm_block_validator *v,
  200. struct dm_block *b,
  201. size_t block_size)
  202. {
  203. struct thin_disk_superblock *disk_super = dm_block_data(b);
  204. disk_super->blocknr = cpu_to_le64(dm_block_location(b));
  205. disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
  206. block_size - sizeof(__le32),
  207. SUPERBLOCK_CSUM_XOR));
  208. }
  209. static int sb_check(struct dm_block_validator *v,
  210. struct dm_block *b,
  211. size_t block_size)
  212. {
  213. struct thin_disk_superblock *disk_super = dm_block_data(b);
  214. __le32 csum_le;
  215. if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
  216. DMERR("sb_check failed: blocknr %llu: "
  217. "wanted %llu", le64_to_cpu(disk_super->blocknr),
  218. (unsigned long long)dm_block_location(b));
  219. return -ENOTBLK;
  220. }
  221. if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
  222. DMERR("sb_check failed: magic %llu: "
  223. "wanted %llu", le64_to_cpu(disk_super->magic),
  224. (unsigned long long)THIN_SUPERBLOCK_MAGIC);
  225. return -EILSEQ;
  226. }
  227. csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
  228. block_size - sizeof(__le32),
  229. SUPERBLOCK_CSUM_XOR));
  230. if (csum_le != disk_super->csum) {
  231. DMERR("sb_check failed: csum %u: wanted %u",
  232. le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
  233. return -EILSEQ;
  234. }
  235. return 0;
  236. }
  237. static struct dm_block_validator sb_validator = {
  238. .name = "superblock",
  239. .prepare_for_write = sb_prepare_for_write,
  240. .check = sb_check
  241. };
  242. /*----------------------------------------------------------------
  243. * Methods for the btree value types
  244. *--------------------------------------------------------------*/
  245. static uint64_t pack_block_time(dm_block_t b, uint32_t t)
  246. {
  247. return (b << 24) | t;
  248. }
  249. static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
  250. {
  251. *b = v >> 24;
  252. *t = v & ((1 << 24) - 1);
  253. }
  254. static void data_block_inc(void *context, const void *value_le)
  255. {
  256. struct dm_space_map *sm = context;
  257. __le64 v_le;
  258. uint64_t b;
  259. uint32_t t;
  260. memcpy(&v_le, value_le, sizeof(v_le));
  261. unpack_block_time(le64_to_cpu(v_le), &b, &t);
  262. dm_sm_inc_block(sm, b);
  263. }
  264. static void data_block_dec(void *context, const void *value_le)
  265. {
  266. struct dm_space_map *sm = context;
  267. __le64 v_le;
  268. uint64_t b;
  269. uint32_t t;
  270. memcpy(&v_le, value_le, sizeof(v_le));
  271. unpack_block_time(le64_to_cpu(v_le), &b, &t);
  272. dm_sm_dec_block(sm, b);
  273. }
  274. static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
  275. {
  276. __le64 v1_le, v2_le;
  277. uint64_t b1, b2;
  278. uint32_t t;
  279. memcpy(&v1_le, value1_le, sizeof(v1_le));
  280. memcpy(&v2_le, value2_le, sizeof(v2_le));
  281. unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
  282. unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
  283. return b1 == b2;
  284. }
  285. static void subtree_inc(void *context, const void *value)
  286. {
  287. struct dm_btree_info *info = context;
  288. __le64 root_le;
  289. uint64_t root;
  290. memcpy(&root_le, value, sizeof(root_le));
  291. root = le64_to_cpu(root_le);
  292. dm_tm_inc(info->tm, root);
  293. }
  294. static void subtree_dec(void *context, const void *value)
  295. {
  296. struct dm_btree_info *info = context;
  297. __le64 root_le;
  298. uint64_t root;
  299. memcpy(&root_le, value, sizeof(root_le));
  300. root = le64_to_cpu(root_le);
  301. if (dm_btree_del(info, root))
  302. DMERR("btree delete failed\n");
  303. }
  304. static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
  305. {
  306. __le64 v1_le, v2_le;
  307. memcpy(&v1_le, value1_le, sizeof(v1_le));
  308. memcpy(&v2_le, value2_le, sizeof(v2_le));
  309. return v1_le == v2_le;
  310. }
  311. /*----------------------------------------------------------------*/
  312. static int superblock_lock_zero(struct dm_pool_metadata *pmd,
  313. struct dm_block **sblock)
  314. {
  315. return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  316. &sb_validator, sblock);
  317. }
  318. static int superblock_lock(struct dm_pool_metadata *pmd,
  319. struct dm_block **sblock)
  320. {
  321. return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  322. &sb_validator, sblock);
  323. }
  324. static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
  325. {
  326. int r;
  327. unsigned i;
  328. struct dm_block *b;
  329. __le64 *data_le, zero = cpu_to_le64(0);
  330. unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
  331. /*
  332. * We can't use a validator here - it may be all zeroes.
  333. */
  334. r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
  335. if (r)
  336. return r;
  337. data_le = dm_block_data(b);
  338. *result = 1;
  339. for (i = 0; i < block_size; i++) {
  340. if (data_le[i] != zero) {
  341. *result = 0;
  342. break;
  343. }
  344. }
  345. dm_bm_unlock(b);
  346. return 0;
  347. }
  348. static void __setup_btree_details(struct dm_pool_metadata *pmd)
  349. {
  350. pmd->info.tm = pmd->tm;
  351. pmd->info.levels = 2;
  352. pmd->info.value_type.context = pmd->data_sm;
  353. pmd->info.value_type.size = sizeof(__le64);
  354. pmd->info.value_type.inc = data_block_inc;
  355. pmd->info.value_type.dec = data_block_dec;
  356. pmd->info.value_type.equal = data_block_equal;
  357. memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
  358. pmd->nb_info.tm = pmd->nb_tm;
  359. pmd->tl_info.tm = pmd->tm;
  360. pmd->tl_info.levels = 1;
  361. pmd->tl_info.value_type.context = &pmd->bl_info;
  362. pmd->tl_info.value_type.size = sizeof(__le64);
  363. pmd->tl_info.value_type.inc = subtree_inc;
  364. pmd->tl_info.value_type.dec = subtree_dec;
  365. pmd->tl_info.value_type.equal = subtree_equal;
  366. pmd->bl_info.tm = pmd->tm;
  367. pmd->bl_info.levels = 1;
  368. pmd->bl_info.value_type.context = pmd->data_sm;
  369. pmd->bl_info.value_type.size = sizeof(__le64);
  370. pmd->bl_info.value_type.inc = data_block_inc;
  371. pmd->bl_info.value_type.dec = data_block_dec;
  372. pmd->bl_info.value_type.equal = data_block_equal;
  373. pmd->details_info.tm = pmd->tm;
  374. pmd->details_info.levels = 1;
  375. pmd->details_info.value_type.context = NULL;
  376. pmd->details_info.value_type.size = sizeof(struct disk_device_details);
  377. pmd->details_info.value_type.inc = NULL;
  378. pmd->details_info.value_type.dec = NULL;
  379. pmd->details_info.value_type.equal = NULL;
  380. }
  381. static int save_sm_roots(struct dm_pool_metadata *pmd)
  382. {
  383. int r;
  384. size_t len;
  385. r = dm_sm_root_size(pmd->metadata_sm, &len);
  386. if (r < 0)
  387. return r;
  388. r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
  389. if (r < 0)
  390. return r;
  391. r = dm_sm_root_size(pmd->data_sm, &len);
  392. if (r < 0)
  393. return r;
  394. return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
  395. }
  396. static void copy_sm_roots(struct dm_pool_metadata *pmd,
  397. struct thin_disk_superblock *disk)
  398. {
  399. memcpy(&disk->metadata_space_map_root,
  400. &pmd->metadata_space_map_root,
  401. sizeof(pmd->metadata_space_map_root));
  402. memcpy(&disk->data_space_map_root,
  403. &pmd->data_space_map_root,
  404. sizeof(pmd->data_space_map_root));
  405. }
  406. static int __write_initial_superblock(struct dm_pool_metadata *pmd)
  407. {
  408. int r;
  409. struct dm_block *sblock;
  410. struct thin_disk_superblock *disk_super;
  411. sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
  412. if (bdev_size > THIN_METADATA_MAX_SECTORS)
  413. bdev_size = THIN_METADATA_MAX_SECTORS;
  414. r = dm_sm_commit(pmd->data_sm);
  415. if (r < 0)
  416. return r;
  417. r = dm_tm_pre_commit(pmd->tm);
  418. if (r < 0)
  419. return r;
  420. r = save_sm_roots(pmd);
  421. if (r < 0)
  422. return r;
  423. r = superblock_lock_zero(pmd, &sblock);
  424. if (r)
  425. return r;
  426. disk_super = dm_block_data(sblock);
  427. disk_super->flags = 0;
  428. memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
  429. disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
  430. disk_super->version = cpu_to_le32(THIN_VERSION);
  431. disk_super->time = 0;
  432. disk_super->trans_id = 0;
  433. disk_super->held_root = 0;
  434. copy_sm_roots(pmd, disk_super);
  435. disk_super->data_mapping_root = cpu_to_le64(pmd->root);
  436. disk_super->device_details_root = cpu_to_le64(pmd->details_root);
  437. disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
  438. disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
  439. disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
  440. return dm_tm_commit(pmd->tm, sblock);
  441. }
  442. static int __format_metadata(struct dm_pool_metadata *pmd)
  443. {
  444. int r;
  445. r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  446. &pmd->tm, &pmd->metadata_sm);
  447. if (r < 0) {
  448. DMERR("tm_create_with_sm failed");
  449. return r;
  450. }
  451. pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
  452. if (IS_ERR(pmd->data_sm)) {
  453. DMERR("sm_disk_create failed");
  454. r = PTR_ERR(pmd->data_sm);
  455. goto bad_cleanup_tm;
  456. }
  457. pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
  458. if (!pmd->nb_tm) {
  459. DMERR("could not create non-blocking clone tm");
  460. r = -ENOMEM;
  461. goto bad_cleanup_data_sm;
  462. }
  463. __setup_btree_details(pmd);
  464. r = dm_btree_empty(&pmd->info, &pmd->root);
  465. if (r < 0)
  466. goto bad_cleanup_nb_tm;
  467. r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
  468. if (r < 0) {
  469. DMERR("couldn't create devices root");
  470. goto bad_cleanup_nb_tm;
  471. }
  472. r = __write_initial_superblock(pmd);
  473. if (r)
  474. goto bad_cleanup_nb_tm;
  475. return 0;
  476. bad_cleanup_nb_tm:
  477. dm_tm_destroy(pmd->nb_tm);
  478. bad_cleanup_data_sm:
  479. dm_sm_destroy(pmd->data_sm);
  480. bad_cleanup_tm:
  481. dm_tm_destroy(pmd->tm);
  482. dm_sm_destroy(pmd->metadata_sm);
  483. return r;
  484. }
  485. static int __check_incompat_features(struct thin_disk_superblock *disk_super,
  486. struct dm_pool_metadata *pmd)
  487. {
  488. uint32_t features;
  489. features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
  490. if (features) {
  491. DMERR("could not access metadata due to unsupported optional features (%lx).",
  492. (unsigned long)features);
  493. return -EINVAL;
  494. }
  495. /*
  496. * Check for read-only metadata to skip the following RDWR checks.
  497. */
  498. if (get_disk_ro(pmd->bdev->bd_disk))
  499. return 0;
  500. features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
  501. if (features) {
  502. DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
  503. (unsigned long)features);
  504. return -EINVAL;
  505. }
  506. return 0;
  507. }
  508. static int __open_metadata(struct dm_pool_metadata *pmd)
  509. {
  510. int r;
  511. struct dm_block *sblock;
  512. struct thin_disk_superblock *disk_super;
  513. r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  514. &sb_validator, &sblock);
  515. if (r < 0) {
  516. DMERR("couldn't read superblock");
  517. return r;
  518. }
  519. disk_super = dm_block_data(sblock);
  520. /* Verify the data block size hasn't changed */
  521. if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
  522. DMERR("changing the data block size (from %u to %llu) is not supported",
  523. le32_to_cpu(disk_super->data_block_size),
  524. (unsigned long long)pmd->data_block_size);
  525. r = -EINVAL;
  526. goto bad_unlock_sblock;
  527. }
  528. r = __check_incompat_features(disk_super, pmd);
  529. if (r < 0)
  530. goto bad_unlock_sblock;
  531. r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  532. disk_super->metadata_space_map_root,
  533. sizeof(disk_super->metadata_space_map_root),
  534. &pmd->tm, &pmd->metadata_sm);
  535. if (r < 0) {
  536. DMERR("tm_open_with_sm failed");
  537. goto bad_unlock_sblock;
  538. }
  539. pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
  540. sizeof(disk_super->data_space_map_root));
  541. if (IS_ERR(pmd->data_sm)) {
  542. DMERR("sm_disk_open failed");
  543. r = PTR_ERR(pmd->data_sm);
  544. goto bad_cleanup_tm;
  545. }
  546. pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
  547. if (!pmd->nb_tm) {
  548. DMERR("could not create non-blocking clone tm");
  549. r = -ENOMEM;
  550. goto bad_cleanup_data_sm;
  551. }
  552. __setup_btree_details(pmd);
  553. dm_bm_unlock(sblock);
  554. return 0;
  555. bad_cleanup_data_sm:
  556. dm_sm_destroy(pmd->data_sm);
  557. bad_cleanup_tm:
  558. dm_tm_destroy(pmd->tm);
  559. dm_sm_destroy(pmd->metadata_sm);
  560. bad_unlock_sblock:
  561. dm_bm_unlock(sblock);
  562. return r;
  563. }
  564. static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
  565. {
  566. int r, unformatted;
  567. r = __superblock_all_zeroes(pmd->bm, &unformatted);
  568. if (r)
  569. return r;
  570. if (unformatted)
  571. return format_device ? __format_metadata(pmd) : -EPERM;
  572. return __open_metadata(pmd);
  573. }
  574. static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
  575. {
  576. int r;
  577. pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
  578. THIN_METADATA_CACHE_SIZE,
  579. THIN_MAX_CONCURRENT_LOCKS);
  580. if (IS_ERR(pmd->bm)) {
  581. DMERR("could not create block manager");
  582. return PTR_ERR(pmd->bm);
  583. }
  584. r = __open_or_format_metadata(pmd, format_device);
  585. if (r)
  586. dm_block_manager_destroy(pmd->bm);
  587. return r;
  588. }
  589. static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
  590. {
  591. dm_sm_destroy(pmd->data_sm);
  592. dm_sm_destroy(pmd->metadata_sm);
  593. dm_tm_destroy(pmd->nb_tm);
  594. dm_tm_destroy(pmd->tm);
  595. dm_block_manager_destroy(pmd->bm);
  596. }
  597. static int __begin_transaction(struct dm_pool_metadata *pmd)
  598. {
  599. int r;
  600. struct thin_disk_superblock *disk_super;
  601. struct dm_block *sblock;
  602. /*
  603. * We re-read the superblock every time. Shouldn't need to do this
  604. * really.
  605. */
  606. r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  607. &sb_validator, &sblock);
  608. if (r)
  609. return r;
  610. disk_super = dm_block_data(sblock);
  611. pmd->time = le32_to_cpu(disk_super->time);
  612. pmd->root = le64_to_cpu(disk_super->data_mapping_root);
  613. pmd->details_root = le64_to_cpu(disk_super->device_details_root);
  614. pmd->trans_id = le64_to_cpu(disk_super->trans_id);
  615. pmd->flags = le32_to_cpu(disk_super->flags);
  616. pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
  617. dm_bm_unlock(sblock);
  618. return 0;
  619. }
  620. static int __write_changed_details(struct dm_pool_metadata *pmd)
  621. {
  622. int r;
  623. struct dm_thin_device *td, *tmp;
  624. struct disk_device_details details;
  625. uint64_t key;
  626. list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
  627. if (!td->changed)
  628. continue;
  629. key = td->id;
  630. details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
  631. details.transaction_id = cpu_to_le64(td->transaction_id);
  632. details.creation_time = cpu_to_le32(td->creation_time);
  633. details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
  634. __dm_bless_for_disk(&details);
  635. r = dm_btree_insert(&pmd->details_info, pmd->details_root,
  636. &key, &details, &pmd->details_root);
  637. if (r)
  638. return r;
  639. if (td->open_count)
  640. td->changed = 0;
  641. else {
  642. list_del(&td->list);
  643. kfree(td);
  644. }
  645. }
  646. return 0;
  647. }
  648. static int __commit_transaction(struct dm_pool_metadata *pmd)
  649. {
  650. int r;
  651. size_t metadata_len, data_len;
  652. struct thin_disk_superblock *disk_super;
  653. struct dm_block *sblock;
  654. /*
  655. * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
  656. */
  657. BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
  658. r = __write_changed_details(pmd);
  659. if (r < 0)
  660. return r;
  661. r = dm_sm_commit(pmd->data_sm);
  662. if (r < 0)
  663. return r;
  664. r = dm_tm_pre_commit(pmd->tm);
  665. if (r < 0)
  666. return r;
  667. r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
  668. if (r < 0)
  669. return r;
  670. r = dm_sm_root_size(pmd->data_sm, &data_len);
  671. if (r < 0)
  672. return r;
  673. r = save_sm_roots(pmd);
  674. if (r < 0)
  675. return r;
  676. r = superblock_lock(pmd, &sblock);
  677. if (r)
  678. return r;
  679. disk_super = dm_block_data(sblock);
  680. disk_super->time = cpu_to_le32(pmd->time);
  681. disk_super->data_mapping_root = cpu_to_le64(pmd->root);
  682. disk_super->device_details_root = cpu_to_le64(pmd->details_root);
  683. disk_super->trans_id = cpu_to_le64(pmd->trans_id);
  684. disk_super->flags = cpu_to_le32(pmd->flags);
  685. copy_sm_roots(pmd, disk_super);
  686. return dm_tm_commit(pmd->tm, sblock);
  687. }
  688. static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
  689. {
  690. int r;
  691. dm_block_t total;
  692. dm_block_t max_blocks = 4096; /* 16M */
  693. r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
  694. if (r) {
  695. DMERR("could not get size of metadata device");
  696. pmd->metadata_reserve = max_blocks;
  697. } else
  698. pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
  699. }
  700. struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
  701. sector_t data_block_size,
  702. bool format_device)
  703. {
  704. int r;
  705. struct dm_pool_metadata *pmd;
  706. pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
  707. if (!pmd) {
  708. DMERR("could not allocate metadata struct");
  709. return ERR_PTR(-ENOMEM);
  710. }
  711. init_rwsem(&pmd->root_lock);
  712. pmd->time = 0;
  713. INIT_LIST_HEAD(&pmd->thin_devices);
  714. pmd->fail_io = false;
  715. pmd->bdev = bdev;
  716. pmd->data_block_size = data_block_size;
  717. r = __create_persistent_data_objects(pmd, format_device);
  718. if (r) {
  719. kfree(pmd);
  720. return ERR_PTR(r);
  721. }
  722. r = __begin_transaction(pmd);
  723. if (r < 0) {
  724. if (dm_pool_metadata_close(pmd) < 0)
  725. DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
  726. return ERR_PTR(r);
  727. }
  728. __set_metadata_reserve(pmd);
  729. return pmd;
  730. }
  731. int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
  732. {
  733. int r;
  734. unsigned open_devices = 0;
  735. struct dm_thin_device *td, *tmp;
  736. down_read(&pmd->root_lock);
  737. list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
  738. if (td->open_count)
  739. open_devices++;
  740. else {
  741. list_del(&td->list);
  742. kfree(td);
  743. }
  744. }
  745. up_read(&pmd->root_lock);
  746. if (open_devices) {
  747. DMERR("attempt to close pmd when %u device(s) are still open",
  748. open_devices);
  749. return -EBUSY;
  750. }
  751. if (!dm_bm_is_read_only(pmd->bm) && !pmd->fail_io) {
  752. r = __commit_transaction(pmd);
  753. if (r < 0)
  754. DMWARN("%s: __commit_transaction() failed, error = %d",
  755. __func__, r);
  756. }
  757. if (!pmd->fail_io)
  758. __destroy_persistent_data_objects(pmd);
  759. kfree(pmd);
  760. return 0;
  761. }
  762. /*
  763. * __open_device: Returns @td corresponding to device with id @dev,
  764. * creating it if @create is set and incrementing @td->open_count.
  765. * On failure, @td is undefined.
  766. */
  767. static int __open_device(struct dm_pool_metadata *pmd,
  768. dm_thin_id dev, int create,
  769. struct dm_thin_device **td)
  770. {
  771. int r, changed = 0;
  772. struct dm_thin_device *td2;
  773. uint64_t key = dev;
  774. struct disk_device_details details_le;
  775. /*
  776. * If the device is already open, return it.
  777. */
  778. list_for_each_entry(td2, &pmd->thin_devices, list)
  779. if (td2->id == dev) {
  780. /*
  781. * May not create an already-open device.
  782. */
  783. if (create)
  784. return -EEXIST;
  785. td2->open_count++;
  786. *td = td2;
  787. return 0;
  788. }
  789. /*
  790. * Check the device exists.
  791. */
  792. r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
  793. &key, &details_le);
  794. if (r) {
  795. if (r != -ENODATA || !create)
  796. return r;
  797. /*
  798. * Create new device.
  799. */
  800. changed = 1;
  801. details_le.mapped_blocks = 0;
  802. details_le.transaction_id = cpu_to_le64(pmd->trans_id);
  803. details_le.creation_time = cpu_to_le32(pmd->time);
  804. details_le.snapshotted_time = cpu_to_le32(pmd->time);
  805. }
  806. *td = kmalloc(sizeof(**td), GFP_NOIO);
  807. if (!*td)
  808. return -ENOMEM;
  809. (*td)->pmd = pmd;
  810. (*td)->id = dev;
  811. (*td)->open_count = 1;
  812. (*td)->changed = changed;
  813. (*td)->aborted_with_changes = false;
  814. (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
  815. (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
  816. (*td)->creation_time = le32_to_cpu(details_le.creation_time);
  817. (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
  818. list_add(&(*td)->list, &pmd->thin_devices);
  819. return 0;
  820. }
  821. static void __close_device(struct dm_thin_device *td)
  822. {
  823. --td->open_count;
  824. }
  825. static int __create_thin(struct dm_pool_metadata *pmd,
  826. dm_thin_id dev)
  827. {
  828. int r;
  829. dm_block_t dev_root;
  830. uint64_t key = dev;
  831. struct disk_device_details details_le;
  832. struct dm_thin_device *td;
  833. __le64 value;
  834. r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
  835. &key, &details_le);
  836. if (!r)
  837. return -EEXIST;
  838. /*
  839. * Create an empty btree for the mappings.
  840. */
  841. r = dm_btree_empty(&pmd->bl_info, &dev_root);
  842. if (r)
  843. return r;
  844. /*
  845. * Insert it into the main mapping tree.
  846. */
  847. value = cpu_to_le64(dev_root);
  848. __dm_bless_for_disk(&value);
  849. r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
  850. if (r) {
  851. dm_btree_del(&pmd->bl_info, dev_root);
  852. return r;
  853. }
  854. r = __open_device(pmd, dev, 1, &td);
  855. if (r) {
  856. dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
  857. dm_btree_del(&pmd->bl_info, dev_root);
  858. return r;
  859. }
  860. __close_device(td);
  861. return r;
  862. }
  863. int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
  864. {
  865. int r = -EINVAL;
  866. down_write(&pmd->root_lock);
  867. if (!pmd->fail_io)
  868. r = __create_thin(pmd, dev);
  869. up_write(&pmd->root_lock);
  870. return r;
  871. }
  872. static int __set_snapshot_details(struct dm_pool_metadata *pmd,
  873. struct dm_thin_device *snap,
  874. dm_thin_id origin, uint32_t time)
  875. {
  876. int r;
  877. struct dm_thin_device *td;
  878. r = __open_device(pmd, origin, 0, &td);
  879. if (r)
  880. return r;
  881. td->changed = 1;
  882. td->snapshotted_time = time;
  883. snap->mapped_blocks = td->mapped_blocks;
  884. snap->snapshotted_time = time;
  885. __close_device(td);
  886. return 0;
  887. }
  888. static int __create_snap(struct dm_pool_metadata *pmd,
  889. dm_thin_id dev, dm_thin_id origin)
  890. {
  891. int r;
  892. dm_block_t origin_root;
  893. uint64_t key = origin, dev_key = dev;
  894. struct dm_thin_device *td;
  895. struct disk_device_details details_le;
  896. __le64 value;
  897. /* check this device is unused */
  898. r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
  899. &dev_key, &details_le);
  900. if (!r)
  901. return -EEXIST;
  902. /* find the mapping tree for the origin */
  903. r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
  904. if (r)
  905. return r;
  906. origin_root = le64_to_cpu(value);
  907. /* clone the origin, an inc will do */
  908. dm_tm_inc(pmd->tm, origin_root);
  909. /* insert into the main mapping tree */
  910. value = cpu_to_le64(origin_root);
  911. __dm_bless_for_disk(&value);
  912. key = dev;
  913. r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
  914. if (r) {
  915. dm_tm_dec(pmd->tm, origin_root);
  916. return r;
  917. }
  918. pmd->time++;
  919. r = __open_device(pmd, dev, 1, &td);
  920. if (r)
  921. goto bad;
  922. r = __set_snapshot_details(pmd, td, origin, pmd->time);
  923. __close_device(td);
  924. if (r)
  925. goto bad;
  926. return 0;
  927. bad:
  928. dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
  929. dm_btree_remove(&pmd->details_info, pmd->details_root,
  930. &key, &pmd->details_root);
  931. return r;
  932. }
  933. int dm_pool_create_snap(struct dm_pool_metadata *pmd,
  934. dm_thin_id dev,
  935. dm_thin_id origin)
  936. {
  937. int r = -EINVAL;
  938. down_write(&pmd->root_lock);
  939. if (!pmd->fail_io)
  940. r = __create_snap(pmd, dev, origin);
  941. up_write(&pmd->root_lock);
  942. return r;
  943. }
  944. static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
  945. {
  946. int r;
  947. uint64_t key = dev;
  948. struct dm_thin_device *td;
  949. /* TODO: failure should mark the transaction invalid */
  950. r = __open_device(pmd, dev, 0, &td);
  951. if (r)
  952. return r;
  953. if (td->open_count > 1) {
  954. __close_device(td);
  955. return -EBUSY;
  956. }
  957. list_del(&td->list);
  958. kfree(td);
  959. r = dm_btree_remove(&pmd->details_info, pmd->details_root,
  960. &key, &pmd->details_root);
  961. if (r)
  962. return r;
  963. r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
  964. if (r)
  965. return r;
  966. return 0;
  967. }
  968. int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
  969. dm_thin_id dev)
  970. {
  971. int r = -EINVAL;
  972. down_write(&pmd->root_lock);
  973. if (!pmd->fail_io)
  974. r = __delete_device(pmd, dev);
  975. up_write(&pmd->root_lock);
  976. return r;
  977. }
  978. int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
  979. uint64_t current_id,
  980. uint64_t new_id)
  981. {
  982. int r = -EINVAL;
  983. down_write(&pmd->root_lock);
  984. if (pmd->fail_io)
  985. goto out;
  986. if (pmd->trans_id != current_id) {
  987. DMERR("mismatched transaction id");
  988. goto out;
  989. }
  990. pmd->trans_id = new_id;
  991. r = 0;
  992. out:
  993. up_write(&pmd->root_lock);
  994. return r;
  995. }
  996. int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
  997. uint64_t *result)
  998. {
  999. int r = -EINVAL;
  1000. down_read(&pmd->root_lock);
  1001. if (!pmd->fail_io) {
  1002. *result = pmd->trans_id;
  1003. r = 0;
  1004. }
  1005. up_read(&pmd->root_lock);
  1006. return r;
  1007. }
  1008. static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
  1009. {
  1010. int r, inc;
  1011. struct thin_disk_superblock *disk_super;
  1012. struct dm_block *copy, *sblock;
  1013. dm_block_t held_root;
  1014. /*
  1015. * We commit to ensure the btree roots which we increment in a
  1016. * moment are up to date.
  1017. */
  1018. __commit_transaction(pmd);
  1019. /*
  1020. * Copy the superblock.
  1021. */
  1022. dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
  1023. r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
  1024. &sb_validator, &copy, &inc);
  1025. if (r)
  1026. return r;
  1027. BUG_ON(!inc);
  1028. held_root = dm_block_location(copy);
  1029. disk_super = dm_block_data(copy);
  1030. if (le64_to_cpu(disk_super->held_root)) {
  1031. DMWARN("Pool metadata snapshot already exists: release this before taking another.");
  1032. dm_tm_dec(pmd->tm, held_root);
  1033. dm_tm_unlock(pmd->tm, copy);
  1034. return -EBUSY;
  1035. }
  1036. /*
  1037. * Wipe the spacemap since we're not publishing this.
  1038. */
  1039. memset(&disk_super->data_space_map_root, 0,
  1040. sizeof(disk_super->data_space_map_root));
  1041. memset(&disk_super->metadata_space_map_root, 0,
  1042. sizeof(disk_super->metadata_space_map_root));
  1043. /*
  1044. * Increment the data structures that need to be preserved.
  1045. */
  1046. dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
  1047. dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
  1048. dm_tm_unlock(pmd->tm, copy);
  1049. /*
  1050. * Write the held root into the superblock.
  1051. */
  1052. r = superblock_lock(pmd, &sblock);
  1053. if (r) {
  1054. dm_tm_dec(pmd->tm, held_root);
  1055. return r;
  1056. }
  1057. disk_super = dm_block_data(sblock);
  1058. disk_super->held_root = cpu_to_le64(held_root);
  1059. dm_bm_unlock(sblock);
  1060. return 0;
  1061. }
  1062. int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
  1063. {
  1064. int r = -EINVAL;
  1065. down_write(&pmd->root_lock);
  1066. if (!pmd->fail_io)
  1067. r = __reserve_metadata_snap(pmd);
  1068. up_write(&pmd->root_lock);
  1069. return r;
  1070. }
  1071. static int __release_metadata_snap(struct dm_pool_metadata *pmd)
  1072. {
  1073. int r;
  1074. struct thin_disk_superblock *disk_super;
  1075. struct dm_block *sblock, *copy;
  1076. dm_block_t held_root;
  1077. r = superblock_lock(pmd, &sblock);
  1078. if (r)
  1079. return r;
  1080. disk_super = dm_block_data(sblock);
  1081. held_root = le64_to_cpu(disk_super->held_root);
  1082. disk_super->held_root = cpu_to_le64(0);
  1083. dm_bm_unlock(sblock);
  1084. if (!held_root) {
  1085. DMWARN("No pool metadata snapshot found: nothing to release.");
  1086. return -EINVAL;
  1087. }
  1088. r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
  1089. if (r)
  1090. return r;
  1091. disk_super = dm_block_data(copy);
  1092. dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
  1093. dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
  1094. dm_sm_dec_block(pmd->metadata_sm, held_root);
  1095. dm_tm_unlock(pmd->tm, copy);
  1096. return 0;
  1097. }
  1098. int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
  1099. {
  1100. int r = -EINVAL;
  1101. down_write(&pmd->root_lock);
  1102. if (!pmd->fail_io)
  1103. r = __release_metadata_snap(pmd);
  1104. up_write(&pmd->root_lock);
  1105. return r;
  1106. }
  1107. static int __get_metadata_snap(struct dm_pool_metadata *pmd,
  1108. dm_block_t *result)
  1109. {
  1110. int r;
  1111. struct thin_disk_superblock *disk_super;
  1112. struct dm_block *sblock;
  1113. r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
  1114. &sb_validator, &sblock);
  1115. if (r)
  1116. return r;
  1117. disk_super = dm_block_data(sblock);
  1118. *result = le64_to_cpu(disk_super->held_root);
  1119. dm_bm_unlock(sblock);
  1120. return 0;
  1121. }
  1122. int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
  1123. dm_block_t *result)
  1124. {
  1125. int r = -EINVAL;
  1126. down_read(&pmd->root_lock);
  1127. if (!pmd->fail_io)
  1128. r = __get_metadata_snap(pmd, result);
  1129. up_read(&pmd->root_lock);
  1130. return r;
  1131. }
  1132. int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
  1133. struct dm_thin_device **td)
  1134. {
  1135. int r = -EINVAL;
  1136. down_write(&pmd->root_lock);
  1137. if (!pmd->fail_io)
  1138. r = __open_device(pmd, dev, 0, td);
  1139. up_write(&pmd->root_lock);
  1140. return r;
  1141. }
  1142. int dm_pool_close_thin_device(struct dm_thin_device *td)
  1143. {
  1144. down_write(&td->pmd->root_lock);
  1145. __close_device(td);
  1146. up_write(&td->pmd->root_lock);
  1147. return 0;
  1148. }
  1149. dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
  1150. {
  1151. return td->id;
  1152. }
  1153. /*
  1154. * Check whether @time (of block creation) is older than @td's last snapshot.
  1155. * If so then the associated block is shared with the last snapshot device.
  1156. * Any block on a device created *after* the device last got snapshotted is
  1157. * necessarily not shared.
  1158. */
  1159. static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
  1160. {
  1161. return td->snapshotted_time > time;
  1162. }
  1163. int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
  1164. int can_issue_io, struct dm_thin_lookup_result *result)
  1165. {
  1166. int r;
  1167. __le64 value;
  1168. struct dm_pool_metadata *pmd = td->pmd;
  1169. dm_block_t keys[2] = { td->id, block };
  1170. struct dm_btree_info *info;
  1171. down_read(&pmd->root_lock);
  1172. if (pmd->fail_io) {
  1173. up_read(&pmd->root_lock);
  1174. return -EINVAL;
  1175. }
  1176. if (can_issue_io) {
  1177. info = &pmd->info;
  1178. } else
  1179. info = &pmd->nb_info;
  1180. r = dm_btree_lookup(info, pmd->root, keys, &value);
  1181. if (!r) {
  1182. uint64_t block_time = 0;
  1183. dm_block_t exception_block;
  1184. uint32_t exception_time;
  1185. block_time = le64_to_cpu(value);
  1186. unpack_block_time(block_time, &exception_block,
  1187. &exception_time);
  1188. result->block = exception_block;
  1189. result->shared = __snapshotted_since(td, exception_time);
  1190. }
  1191. up_read(&pmd->root_lock);
  1192. return r;
  1193. }
  1194. /* FIXME: write a more efficient one in btree */
  1195. int dm_thin_find_mapped_range(struct dm_thin_device *td,
  1196. dm_block_t begin, dm_block_t end,
  1197. dm_block_t *thin_begin, dm_block_t *thin_end,
  1198. dm_block_t *pool_begin, bool *maybe_shared)
  1199. {
  1200. int r;
  1201. dm_block_t pool_end;
  1202. struct dm_thin_lookup_result lookup;
  1203. if (end < begin)
  1204. return -ENODATA;
  1205. /*
  1206. * Find first mapped block.
  1207. */
  1208. while (begin < end) {
  1209. r = dm_thin_find_block(td, begin, true, &lookup);
  1210. if (r) {
  1211. if (r != -ENODATA)
  1212. return r;
  1213. } else
  1214. break;
  1215. begin++;
  1216. }
  1217. if (begin == end)
  1218. return -ENODATA;
  1219. *thin_begin = begin;
  1220. *pool_begin = lookup.block;
  1221. *maybe_shared = lookup.shared;
  1222. begin++;
  1223. pool_end = *pool_begin + 1;
  1224. while (begin != end) {
  1225. r = dm_thin_find_block(td, begin, true, &lookup);
  1226. if (r) {
  1227. if (r == -ENODATA)
  1228. break;
  1229. else
  1230. return r;
  1231. }
  1232. if ((lookup.block != pool_end) ||
  1233. (lookup.shared != *maybe_shared))
  1234. break;
  1235. pool_end++;
  1236. begin++;
  1237. }
  1238. *thin_end = begin;
  1239. return 0;
  1240. }
  1241. static int __insert(struct dm_thin_device *td, dm_block_t block,
  1242. dm_block_t data_block)
  1243. {
  1244. int r, inserted;
  1245. __le64 value;
  1246. struct dm_pool_metadata *pmd = td->pmd;
  1247. dm_block_t keys[2] = { td->id, block };
  1248. value = cpu_to_le64(pack_block_time(data_block, pmd->time));
  1249. __dm_bless_for_disk(&value);
  1250. r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
  1251. &pmd->root, &inserted);
  1252. if (r)
  1253. return r;
  1254. td->changed = 1;
  1255. if (inserted)
  1256. td->mapped_blocks++;
  1257. return 0;
  1258. }
  1259. int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
  1260. dm_block_t data_block)
  1261. {
  1262. int r = -EINVAL;
  1263. down_write(&td->pmd->root_lock);
  1264. if (!td->pmd->fail_io)
  1265. r = __insert(td, block, data_block);
  1266. up_write(&td->pmd->root_lock);
  1267. return r;
  1268. }
  1269. static int __remove(struct dm_thin_device *td, dm_block_t block)
  1270. {
  1271. int r;
  1272. struct dm_pool_metadata *pmd = td->pmd;
  1273. dm_block_t keys[2] = { td->id, block };
  1274. r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
  1275. if (r)
  1276. return r;
  1277. td->mapped_blocks--;
  1278. td->changed = 1;
  1279. return 0;
  1280. }
  1281. static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
  1282. {
  1283. int r;
  1284. unsigned count, total_count = 0;
  1285. struct dm_pool_metadata *pmd = td->pmd;
  1286. dm_block_t keys[1] = { td->id };
  1287. __le64 value;
  1288. dm_block_t mapping_root;
  1289. /*
  1290. * Find the mapping tree
  1291. */
  1292. r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
  1293. if (r)
  1294. return r;
  1295. /*
  1296. * Remove from the mapping tree, taking care to inc the
  1297. * ref count so it doesn't get deleted.
  1298. */
  1299. mapping_root = le64_to_cpu(value);
  1300. dm_tm_inc(pmd->tm, mapping_root);
  1301. r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
  1302. if (r)
  1303. return r;
  1304. /*
  1305. * Remove leaves stops at the first unmapped entry, so we have to
  1306. * loop round finding mapped ranges.
  1307. */
  1308. while (begin < end) {
  1309. r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
  1310. if (r == -ENODATA)
  1311. break;
  1312. if (r)
  1313. return r;
  1314. if (begin >= end)
  1315. break;
  1316. r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
  1317. if (r)
  1318. return r;
  1319. total_count += count;
  1320. }
  1321. td->mapped_blocks -= total_count;
  1322. td->changed = 1;
  1323. /*
  1324. * Reinsert the mapping tree.
  1325. */
  1326. value = cpu_to_le64(mapping_root);
  1327. __dm_bless_for_disk(&value);
  1328. return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
  1329. }
  1330. int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
  1331. {
  1332. int r = -EINVAL;
  1333. down_write(&td->pmd->root_lock);
  1334. if (!td->pmd->fail_io)
  1335. r = __remove(td, block);
  1336. up_write(&td->pmd->root_lock);
  1337. return r;
  1338. }
  1339. int dm_thin_remove_range(struct dm_thin_device *td,
  1340. dm_block_t begin, dm_block_t end)
  1341. {
  1342. int r = -EINVAL;
  1343. down_write(&td->pmd->root_lock);
  1344. if (!td->pmd->fail_io)
  1345. r = __remove_range(td, begin, end);
  1346. up_write(&td->pmd->root_lock);
  1347. return r;
  1348. }
  1349. int dm_pool_block_is_used(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
  1350. {
  1351. int r;
  1352. uint32_t ref_count;
  1353. down_read(&pmd->root_lock);
  1354. r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
  1355. if (!r)
  1356. *result = (ref_count != 0);
  1357. up_read(&pmd->root_lock);
  1358. return r;
  1359. }
  1360. bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
  1361. {
  1362. int r;
  1363. down_read(&td->pmd->root_lock);
  1364. r = td->changed;
  1365. up_read(&td->pmd->root_lock);
  1366. return r;
  1367. }
  1368. bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
  1369. {
  1370. bool r = false;
  1371. struct dm_thin_device *td, *tmp;
  1372. down_read(&pmd->root_lock);
  1373. list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
  1374. if (td->changed) {
  1375. r = td->changed;
  1376. break;
  1377. }
  1378. }
  1379. up_read(&pmd->root_lock);
  1380. return r;
  1381. }
  1382. bool dm_thin_aborted_changes(struct dm_thin_device *td)
  1383. {
  1384. bool r;
  1385. down_read(&td->pmd->root_lock);
  1386. r = td->aborted_with_changes;
  1387. up_read(&td->pmd->root_lock);
  1388. return r;
  1389. }
  1390. int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
  1391. {
  1392. int r = -EINVAL;
  1393. down_write(&pmd->root_lock);
  1394. if (!pmd->fail_io)
  1395. r = dm_sm_new_block(pmd->data_sm, result);
  1396. up_write(&pmd->root_lock);
  1397. return r;
  1398. }
  1399. int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
  1400. {
  1401. int r = -EINVAL;
  1402. down_write(&pmd->root_lock);
  1403. if (pmd->fail_io)
  1404. goto out;
  1405. r = __commit_transaction(pmd);
  1406. if (r <= 0)
  1407. goto out;
  1408. /*
  1409. * Open the next transaction.
  1410. */
  1411. r = __begin_transaction(pmd);
  1412. out:
  1413. up_write(&pmd->root_lock);
  1414. return r;
  1415. }
  1416. static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
  1417. {
  1418. struct dm_thin_device *td;
  1419. list_for_each_entry(td, &pmd->thin_devices, list)
  1420. td->aborted_with_changes = td->changed;
  1421. }
  1422. int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
  1423. {
  1424. int r = -EINVAL;
  1425. down_write(&pmd->root_lock);
  1426. if (pmd->fail_io)
  1427. goto out;
  1428. __set_abort_with_changes_flags(pmd);
  1429. __destroy_persistent_data_objects(pmd);
  1430. r = __create_persistent_data_objects(pmd, false);
  1431. if (r)
  1432. pmd->fail_io = true;
  1433. out:
  1434. up_write(&pmd->root_lock);
  1435. return r;
  1436. }
  1437. int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
  1438. {
  1439. int r = -EINVAL;
  1440. down_read(&pmd->root_lock);
  1441. if (!pmd->fail_io)
  1442. r = dm_sm_get_nr_free(pmd->data_sm, result);
  1443. up_read(&pmd->root_lock);
  1444. return r;
  1445. }
  1446. int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
  1447. dm_block_t *result)
  1448. {
  1449. int r = -EINVAL;
  1450. down_read(&pmd->root_lock);
  1451. if (!pmd->fail_io)
  1452. r = dm_sm_get_nr_free(pmd->metadata_sm, result);
  1453. if (!r) {
  1454. if (*result < pmd->metadata_reserve)
  1455. *result = 0;
  1456. else
  1457. *result -= pmd->metadata_reserve;
  1458. }
  1459. up_read(&pmd->root_lock);
  1460. return r;
  1461. }
  1462. int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
  1463. dm_block_t *result)
  1464. {
  1465. int r = -EINVAL;
  1466. down_read(&pmd->root_lock);
  1467. if (!pmd->fail_io)
  1468. r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
  1469. up_read(&pmd->root_lock);
  1470. return r;
  1471. }
  1472. int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
  1473. {
  1474. int r = -EINVAL;
  1475. down_read(&pmd->root_lock);
  1476. if (!pmd->fail_io)
  1477. r = dm_sm_get_nr_blocks(pmd->data_sm, result);
  1478. up_read(&pmd->root_lock);
  1479. return r;
  1480. }
  1481. int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
  1482. {
  1483. int r = -EINVAL;
  1484. struct dm_pool_metadata *pmd = td->pmd;
  1485. down_read(&pmd->root_lock);
  1486. if (!pmd->fail_io) {
  1487. *result = td->mapped_blocks;
  1488. r = 0;
  1489. }
  1490. up_read(&pmd->root_lock);
  1491. return r;
  1492. }
  1493. static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
  1494. {
  1495. int r;
  1496. __le64 value_le;
  1497. dm_block_t thin_root;
  1498. struct dm_pool_metadata *pmd = td->pmd;
  1499. r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
  1500. if (r)
  1501. return r;
  1502. thin_root = le64_to_cpu(value_le);
  1503. return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
  1504. }
  1505. int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
  1506. dm_block_t *result)
  1507. {
  1508. int r = -EINVAL;
  1509. struct dm_pool_metadata *pmd = td->pmd;
  1510. down_read(&pmd->root_lock);
  1511. if (!pmd->fail_io)
  1512. r = __highest_block(td, result);
  1513. up_read(&pmd->root_lock);
  1514. return r;
  1515. }
  1516. static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
  1517. {
  1518. int r;
  1519. dm_block_t old_count;
  1520. r = dm_sm_get_nr_blocks(sm, &old_count);
  1521. if (r)
  1522. return r;
  1523. if (new_count == old_count)
  1524. return 0;
  1525. if (new_count < old_count) {
  1526. DMERR("cannot reduce size of space map");
  1527. return -EINVAL;
  1528. }
  1529. return dm_sm_extend(sm, new_count - old_count);
  1530. }
  1531. int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
  1532. {
  1533. int r = -EINVAL;
  1534. down_write(&pmd->root_lock);
  1535. if (!pmd->fail_io)
  1536. r = __resize_space_map(pmd->data_sm, new_count);
  1537. up_write(&pmd->root_lock);
  1538. return r;
  1539. }
  1540. int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
  1541. {
  1542. int r = -EINVAL;
  1543. down_write(&pmd->root_lock);
  1544. if (!pmd->fail_io) {
  1545. r = __resize_space_map(pmd->metadata_sm, new_count);
  1546. if (!r)
  1547. __set_metadata_reserve(pmd);
  1548. }
  1549. up_write(&pmd->root_lock);
  1550. return r;
  1551. }
  1552. void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
  1553. {
  1554. down_write(&pmd->root_lock);
  1555. dm_bm_set_read_only(pmd->bm);
  1556. up_write(&pmd->root_lock);
  1557. }
  1558. void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
  1559. {
  1560. down_write(&pmd->root_lock);
  1561. dm_bm_set_read_write(pmd->bm);
  1562. up_write(&pmd->root_lock);
  1563. }
  1564. int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
  1565. dm_block_t threshold,
  1566. dm_sm_threshold_fn fn,
  1567. void *context)
  1568. {
  1569. int r;
  1570. down_write(&pmd->root_lock);
  1571. r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
  1572. up_write(&pmd->root_lock);
  1573. return r;
  1574. }
  1575. int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
  1576. {
  1577. int r;
  1578. struct dm_block *sblock;
  1579. struct thin_disk_superblock *disk_super;
  1580. down_write(&pmd->root_lock);
  1581. pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
  1582. r = superblock_lock(pmd, &sblock);
  1583. if (r) {
  1584. DMERR("couldn't read superblock");
  1585. goto out;
  1586. }
  1587. disk_super = dm_block_data(sblock);
  1588. disk_super->flags = cpu_to_le32(pmd->flags);
  1589. dm_bm_unlock(sblock);
  1590. out:
  1591. up_write(&pmd->root_lock);
  1592. return r;
  1593. }
  1594. bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
  1595. {
  1596. bool needs_check;
  1597. down_read(&pmd->root_lock);
  1598. needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
  1599. up_read(&pmd->root_lock);
  1600. return needs_check;
  1601. }
  1602. void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
  1603. {
  1604. down_read(&pmd->root_lock);
  1605. if (!pmd->fail_io)
  1606. dm_tm_issue_prefetches(pmd->tm);
  1607. up_read(&pmd->root_lock);
  1608. }