md.c 240 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/fs.h>
  31. #include <linux/poll.h>
  32. #include <linux/ctype.h>
  33. #include <linux/string.h>
  34. #include <linux/hdreg.h>
  35. #include <linux/proc_fs.h>
  36. #include <linux/random.h>
  37. #include <linux/module.h>
  38. #include <linux/reboot.h>
  39. #include <linux/file.h>
  40. #include <linux/compat.h>
  41. #include <linux/delay.h>
  42. #include <linux/raid/md_p.h>
  43. #include <linux/raid/md_u.h>
  44. #include <linux/slab.h>
  45. #include "md.h"
  46. #include "bitmap.h"
  47. #include "md-cluster.h"
  48. #ifndef MODULE
  49. static void autostart_arrays(int part);
  50. #endif
  51. /* pers_list is a list of registered personalities protected
  52. * by pers_lock.
  53. * pers_lock does extra service to protect accesses to
  54. * mddev->thread when the mutex cannot be held.
  55. */
  56. static LIST_HEAD(pers_list);
  57. static DEFINE_SPINLOCK(pers_lock);
  58. struct md_cluster_operations *md_cluster_ops;
  59. EXPORT_SYMBOL(md_cluster_ops);
  60. struct module *md_cluster_mod;
  61. EXPORT_SYMBOL(md_cluster_mod);
  62. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  63. static struct workqueue_struct *md_wq;
  64. static struct workqueue_struct *md_misc_wq;
  65. static int remove_and_add_spares(struct mddev *mddev,
  66. struct md_rdev *this);
  67. static void mddev_detach(struct mddev *mddev);
  68. /*
  69. * Default number of read corrections we'll attempt on an rdev
  70. * before ejecting it from the array. We divide the read error
  71. * count by 2 for every hour elapsed between read errors.
  72. */
  73. #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
  74. /*
  75. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  76. * is 1000 KB/sec, so the extra system load does not show up that much.
  77. * Increase it if you want to have more _guaranteed_ speed. Note that
  78. * the RAID driver will use the maximum available bandwidth if the IO
  79. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  80. * speed limit - in case reconstruction slows down your system despite
  81. * idle IO detection.
  82. *
  83. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  84. * or /sys/block/mdX/md/sync_speed_{min,max}
  85. */
  86. static int sysctl_speed_limit_min = 1000;
  87. static int sysctl_speed_limit_max = 200000;
  88. static inline int speed_min(struct mddev *mddev)
  89. {
  90. return mddev->sync_speed_min ?
  91. mddev->sync_speed_min : sysctl_speed_limit_min;
  92. }
  93. static inline int speed_max(struct mddev *mddev)
  94. {
  95. return mddev->sync_speed_max ?
  96. mddev->sync_speed_max : sysctl_speed_limit_max;
  97. }
  98. static struct ctl_table_header *raid_table_header;
  99. static struct ctl_table raid_table[] = {
  100. {
  101. .procname = "speed_limit_min",
  102. .data = &sysctl_speed_limit_min,
  103. .maxlen = sizeof(int),
  104. .mode = S_IRUGO|S_IWUSR,
  105. .proc_handler = proc_dointvec,
  106. },
  107. {
  108. .procname = "speed_limit_max",
  109. .data = &sysctl_speed_limit_max,
  110. .maxlen = sizeof(int),
  111. .mode = S_IRUGO|S_IWUSR,
  112. .proc_handler = proc_dointvec,
  113. },
  114. { }
  115. };
  116. static struct ctl_table raid_dir_table[] = {
  117. {
  118. .procname = "raid",
  119. .maxlen = 0,
  120. .mode = S_IRUGO|S_IXUGO,
  121. .child = raid_table,
  122. },
  123. { }
  124. };
  125. static struct ctl_table raid_root_table[] = {
  126. {
  127. .procname = "dev",
  128. .maxlen = 0,
  129. .mode = 0555,
  130. .child = raid_dir_table,
  131. },
  132. { }
  133. };
  134. static const struct block_device_operations md_fops;
  135. static int start_readonly;
  136. /* bio_clone_mddev
  137. * like bio_clone, but with a local bio set
  138. */
  139. struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
  140. struct mddev *mddev)
  141. {
  142. struct bio *b;
  143. if (!mddev || !mddev->bio_set)
  144. return bio_alloc(gfp_mask, nr_iovecs);
  145. b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
  146. if (!b)
  147. return NULL;
  148. return b;
  149. }
  150. EXPORT_SYMBOL_GPL(bio_alloc_mddev);
  151. struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
  152. struct mddev *mddev)
  153. {
  154. if (!mddev || !mddev->bio_set)
  155. return bio_clone(bio, gfp_mask);
  156. return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
  157. }
  158. EXPORT_SYMBOL_GPL(bio_clone_mddev);
  159. /*
  160. * We have a system wide 'event count' that is incremented
  161. * on any 'interesting' event, and readers of /proc/mdstat
  162. * can use 'poll' or 'select' to find out when the event
  163. * count increases.
  164. *
  165. * Events are:
  166. * start array, stop array, error, add device, remove device,
  167. * start build, activate spare
  168. */
  169. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  170. static atomic_t md_event_count;
  171. void md_new_event(struct mddev *mddev)
  172. {
  173. atomic_inc(&md_event_count);
  174. wake_up(&md_event_waiters);
  175. }
  176. EXPORT_SYMBOL_GPL(md_new_event);
  177. /* Alternate version that can be called from interrupts
  178. * when calling sysfs_notify isn't needed.
  179. */
  180. static void md_new_event_inintr(struct mddev *mddev)
  181. {
  182. atomic_inc(&md_event_count);
  183. wake_up(&md_event_waiters);
  184. }
  185. /*
  186. * Enables to iterate over all existing md arrays
  187. * all_mddevs_lock protects this list.
  188. */
  189. static LIST_HEAD(all_mddevs);
  190. static DEFINE_SPINLOCK(all_mddevs_lock);
  191. /*
  192. * iterates through all used mddevs in the system.
  193. * We take care to grab the all_mddevs_lock whenever navigating
  194. * the list, and to always hold a refcount when unlocked.
  195. * Any code which breaks out of this loop while own
  196. * a reference to the current mddev and must mddev_put it.
  197. */
  198. #define for_each_mddev(_mddev,_tmp) \
  199. \
  200. for (({ spin_lock(&all_mddevs_lock); \
  201. _tmp = all_mddevs.next; \
  202. _mddev = NULL;}); \
  203. ({ if (_tmp != &all_mddevs) \
  204. mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
  205. spin_unlock(&all_mddevs_lock); \
  206. if (_mddev) mddev_put(_mddev); \
  207. _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
  208. _tmp != &all_mddevs;}); \
  209. ({ spin_lock(&all_mddevs_lock); \
  210. _tmp = _tmp->next;}) \
  211. )
  212. /* Rather than calling directly into the personality make_request function,
  213. * IO requests come here first so that we can check if the device is
  214. * being suspended pending a reconfiguration.
  215. * We hold a refcount over the call to ->make_request. By the time that
  216. * call has finished, the bio has been linked into some internal structure
  217. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  218. */
  219. static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio)
  220. {
  221. const int rw = bio_data_dir(bio);
  222. struct mddev *mddev = q->queuedata;
  223. unsigned int sectors;
  224. int cpu;
  225. blk_queue_split(q, &bio, q->bio_split);
  226. if (mddev == NULL || mddev->pers == NULL
  227. || !mddev->ready) {
  228. bio_io_error(bio);
  229. return BLK_QC_T_NONE;
  230. }
  231. if (mddev->ro == 1 && unlikely(rw == WRITE)) {
  232. if (bio_sectors(bio) != 0)
  233. bio->bi_error = -EROFS;
  234. bio_endio(bio);
  235. return BLK_QC_T_NONE;
  236. }
  237. smp_rmb(); /* Ensure implications of 'active' are visible */
  238. rcu_read_lock();
  239. if (mddev->suspended) {
  240. DEFINE_WAIT(__wait);
  241. for (;;) {
  242. prepare_to_wait(&mddev->sb_wait, &__wait,
  243. TASK_UNINTERRUPTIBLE);
  244. if (!mddev->suspended)
  245. break;
  246. rcu_read_unlock();
  247. schedule();
  248. rcu_read_lock();
  249. }
  250. finish_wait(&mddev->sb_wait, &__wait);
  251. }
  252. atomic_inc(&mddev->active_io);
  253. rcu_read_unlock();
  254. /*
  255. * save the sectors now since our bio can
  256. * go away inside make_request
  257. */
  258. sectors = bio_sectors(bio);
  259. /* bio could be mergeable after passing to underlayer */
  260. bio->bi_rw &= ~REQ_NOMERGE;
  261. mddev->pers->make_request(mddev, bio);
  262. cpu = part_stat_lock();
  263. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  264. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
  265. part_stat_unlock();
  266. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  267. wake_up(&mddev->sb_wait);
  268. return BLK_QC_T_NONE;
  269. }
  270. /* mddev_suspend makes sure no new requests are submitted
  271. * to the device, and that any requests that have been submitted
  272. * are completely handled.
  273. * Once mddev_detach() is called and completes, the module will be
  274. * completely unused.
  275. */
  276. void mddev_suspend(struct mddev *mddev)
  277. {
  278. if (mddev->suspended++)
  279. return;
  280. synchronize_rcu();
  281. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  282. mddev->pers->quiesce(mddev, 1);
  283. del_timer_sync(&mddev->safemode_timer);
  284. }
  285. EXPORT_SYMBOL_GPL(mddev_suspend);
  286. void mddev_resume(struct mddev *mddev)
  287. {
  288. if (--mddev->suspended)
  289. return;
  290. wake_up(&mddev->sb_wait);
  291. mddev->pers->quiesce(mddev, 0);
  292. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  293. md_wakeup_thread(mddev->thread);
  294. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  295. }
  296. EXPORT_SYMBOL_GPL(mddev_resume);
  297. int mddev_congested(struct mddev *mddev, int bits)
  298. {
  299. struct md_personality *pers = mddev->pers;
  300. int ret = 0;
  301. rcu_read_lock();
  302. if (mddev->suspended)
  303. ret = 1;
  304. else if (pers && pers->congested)
  305. ret = pers->congested(mddev, bits);
  306. rcu_read_unlock();
  307. return ret;
  308. }
  309. EXPORT_SYMBOL_GPL(mddev_congested);
  310. static int md_congested(void *data, int bits)
  311. {
  312. struct mddev *mddev = data;
  313. return mddev_congested(mddev, bits);
  314. }
  315. /*
  316. * Generic flush handling for md
  317. */
  318. static void md_end_flush(struct bio *bio)
  319. {
  320. struct md_rdev *rdev = bio->bi_private;
  321. struct mddev *mddev = rdev->mddev;
  322. rdev_dec_pending(rdev, mddev);
  323. if (atomic_dec_and_test(&mddev->flush_pending)) {
  324. /* The pre-request flush has finished */
  325. queue_work(md_wq, &mddev->flush_work);
  326. }
  327. bio_put(bio);
  328. }
  329. static void md_submit_flush_data(struct work_struct *ws);
  330. static void submit_flushes(struct work_struct *ws)
  331. {
  332. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  333. struct md_rdev *rdev;
  334. INIT_WORK(&mddev->flush_work, md_submit_flush_data);
  335. atomic_set(&mddev->flush_pending, 1);
  336. rcu_read_lock();
  337. rdev_for_each_rcu(rdev, mddev)
  338. if (rdev->raid_disk >= 0 &&
  339. !test_bit(Faulty, &rdev->flags)) {
  340. /* Take two references, one is dropped
  341. * when request finishes, one after
  342. * we reclaim rcu_read_lock
  343. */
  344. struct bio *bi;
  345. atomic_inc(&rdev->nr_pending);
  346. atomic_inc(&rdev->nr_pending);
  347. rcu_read_unlock();
  348. bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
  349. bi->bi_end_io = md_end_flush;
  350. bi->bi_private = rdev;
  351. bi->bi_bdev = rdev->bdev;
  352. atomic_inc(&mddev->flush_pending);
  353. submit_bio(WRITE_FLUSH, bi);
  354. rcu_read_lock();
  355. rdev_dec_pending(rdev, mddev);
  356. }
  357. rcu_read_unlock();
  358. if (atomic_dec_and_test(&mddev->flush_pending))
  359. queue_work(md_wq, &mddev->flush_work);
  360. }
  361. static void md_submit_flush_data(struct work_struct *ws)
  362. {
  363. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  364. struct bio *bio = mddev->flush_bio;
  365. if (bio->bi_iter.bi_size == 0)
  366. /* an empty barrier - all done */
  367. bio_endio(bio);
  368. else {
  369. bio->bi_rw &= ~REQ_FLUSH;
  370. mddev->pers->make_request(mddev, bio);
  371. }
  372. mddev->flush_bio = NULL;
  373. wake_up(&mddev->sb_wait);
  374. }
  375. void md_flush_request(struct mddev *mddev, struct bio *bio)
  376. {
  377. spin_lock_irq(&mddev->lock);
  378. wait_event_lock_irq(mddev->sb_wait,
  379. !mddev->flush_bio,
  380. mddev->lock);
  381. mddev->flush_bio = bio;
  382. spin_unlock_irq(&mddev->lock);
  383. INIT_WORK(&mddev->flush_work, submit_flushes);
  384. queue_work(md_wq, &mddev->flush_work);
  385. }
  386. EXPORT_SYMBOL(md_flush_request);
  387. void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
  388. {
  389. struct mddev *mddev = cb->data;
  390. md_wakeup_thread(mddev->thread);
  391. kfree(cb);
  392. }
  393. EXPORT_SYMBOL(md_unplug);
  394. static inline struct mddev *mddev_get(struct mddev *mddev)
  395. {
  396. atomic_inc(&mddev->active);
  397. return mddev;
  398. }
  399. static void mddev_delayed_delete(struct work_struct *ws);
  400. static void mddev_put(struct mddev *mddev)
  401. {
  402. struct bio_set *bs = NULL;
  403. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  404. return;
  405. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  406. mddev->ctime == 0 && !mddev->hold_active) {
  407. /* Array is not configured at all, and not held active,
  408. * so destroy it */
  409. list_del_init(&mddev->all_mddevs);
  410. bs = mddev->bio_set;
  411. mddev->bio_set = NULL;
  412. if (mddev->gendisk) {
  413. /* We did a probe so need to clean up. Call
  414. * queue_work inside the spinlock so that
  415. * flush_workqueue() after mddev_find will
  416. * succeed in waiting for the work to be done.
  417. */
  418. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  419. queue_work(md_misc_wq, &mddev->del_work);
  420. } else
  421. kfree(mddev);
  422. }
  423. spin_unlock(&all_mddevs_lock);
  424. if (bs)
  425. bioset_free(bs);
  426. }
  427. static void md_safemode_timeout(unsigned long data);
  428. void mddev_init(struct mddev *mddev)
  429. {
  430. mutex_init(&mddev->open_mutex);
  431. mutex_init(&mddev->reconfig_mutex);
  432. mutex_init(&mddev->bitmap_info.mutex);
  433. INIT_LIST_HEAD(&mddev->disks);
  434. INIT_LIST_HEAD(&mddev->all_mddevs);
  435. setup_timer(&mddev->safemode_timer, md_safemode_timeout,
  436. (unsigned long) mddev);
  437. atomic_set(&mddev->active, 1);
  438. atomic_set(&mddev->openers, 0);
  439. atomic_set(&mddev->active_io, 0);
  440. spin_lock_init(&mddev->lock);
  441. atomic_set(&mddev->flush_pending, 0);
  442. init_waitqueue_head(&mddev->sb_wait);
  443. init_waitqueue_head(&mddev->recovery_wait);
  444. mddev->reshape_position = MaxSector;
  445. mddev->reshape_backwards = 0;
  446. mddev->last_sync_action = "none";
  447. mddev->resync_min = 0;
  448. mddev->resync_max = MaxSector;
  449. mddev->level = LEVEL_NONE;
  450. }
  451. EXPORT_SYMBOL_GPL(mddev_init);
  452. static struct mddev *mddev_find(dev_t unit)
  453. {
  454. struct mddev *mddev, *new = NULL;
  455. if (unit && MAJOR(unit) != MD_MAJOR)
  456. unit &= ~((1<<MdpMinorShift)-1);
  457. retry:
  458. spin_lock(&all_mddevs_lock);
  459. if (unit) {
  460. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  461. if (mddev->unit == unit) {
  462. mddev_get(mddev);
  463. spin_unlock(&all_mddevs_lock);
  464. kfree(new);
  465. return mddev;
  466. }
  467. if (new) {
  468. list_add(&new->all_mddevs, &all_mddevs);
  469. spin_unlock(&all_mddevs_lock);
  470. new->hold_active = UNTIL_IOCTL;
  471. return new;
  472. }
  473. } else if (new) {
  474. /* find an unused unit number */
  475. static int next_minor = 512;
  476. int start = next_minor;
  477. int is_free = 0;
  478. int dev = 0;
  479. while (!is_free) {
  480. dev = MKDEV(MD_MAJOR, next_minor);
  481. next_minor++;
  482. if (next_minor > MINORMASK)
  483. next_minor = 0;
  484. if (next_minor == start) {
  485. /* Oh dear, all in use. */
  486. spin_unlock(&all_mddevs_lock);
  487. kfree(new);
  488. return NULL;
  489. }
  490. is_free = 1;
  491. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  492. if (mddev->unit == dev) {
  493. is_free = 0;
  494. break;
  495. }
  496. }
  497. new->unit = dev;
  498. new->md_minor = MINOR(dev);
  499. new->hold_active = UNTIL_STOP;
  500. list_add(&new->all_mddevs, &all_mddevs);
  501. spin_unlock(&all_mddevs_lock);
  502. return new;
  503. }
  504. spin_unlock(&all_mddevs_lock);
  505. new = kzalloc(sizeof(*new), GFP_KERNEL);
  506. if (!new)
  507. return NULL;
  508. new->unit = unit;
  509. if (MAJOR(unit) == MD_MAJOR)
  510. new->md_minor = MINOR(unit);
  511. else
  512. new->md_minor = MINOR(unit) >> MdpMinorShift;
  513. mddev_init(new);
  514. goto retry;
  515. }
  516. static struct attribute_group md_redundancy_group;
  517. void mddev_unlock(struct mddev *mddev)
  518. {
  519. if (mddev->to_remove) {
  520. /* These cannot be removed under reconfig_mutex as
  521. * an access to the files will try to take reconfig_mutex
  522. * while holding the file unremovable, which leads to
  523. * a deadlock.
  524. * So hold set sysfs_active while the remove in happeing,
  525. * and anything else which might set ->to_remove or my
  526. * otherwise change the sysfs namespace will fail with
  527. * -EBUSY if sysfs_active is still set.
  528. * We set sysfs_active under reconfig_mutex and elsewhere
  529. * test it under the same mutex to ensure its correct value
  530. * is seen.
  531. */
  532. struct attribute_group *to_remove = mddev->to_remove;
  533. mddev->to_remove = NULL;
  534. mddev->sysfs_active = 1;
  535. mutex_unlock(&mddev->reconfig_mutex);
  536. if (mddev->kobj.sd) {
  537. if (to_remove != &md_redundancy_group)
  538. sysfs_remove_group(&mddev->kobj, to_remove);
  539. if (mddev->pers == NULL ||
  540. mddev->pers->sync_request == NULL) {
  541. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  542. if (mddev->sysfs_action)
  543. sysfs_put(mddev->sysfs_action);
  544. mddev->sysfs_action = NULL;
  545. }
  546. }
  547. mddev->sysfs_active = 0;
  548. } else
  549. mutex_unlock(&mddev->reconfig_mutex);
  550. /* As we've dropped the mutex we need a spinlock to
  551. * make sure the thread doesn't disappear
  552. */
  553. spin_lock(&pers_lock);
  554. md_wakeup_thread(mddev->thread);
  555. spin_unlock(&pers_lock);
  556. }
  557. EXPORT_SYMBOL_GPL(mddev_unlock);
  558. struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
  559. {
  560. struct md_rdev *rdev;
  561. rdev_for_each_rcu(rdev, mddev)
  562. if (rdev->desc_nr == nr)
  563. return rdev;
  564. return NULL;
  565. }
  566. EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
  567. static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
  568. {
  569. struct md_rdev *rdev;
  570. rdev_for_each(rdev, mddev)
  571. if (rdev->bdev->bd_dev == dev)
  572. return rdev;
  573. return NULL;
  574. }
  575. static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
  576. {
  577. struct md_rdev *rdev;
  578. rdev_for_each_rcu(rdev, mddev)
  579. if (rdev->bdev->bd_dev == dev)
  580. return rdev;
  581. return NULL;
  582. }
  583. static struct md_personality *find_pers(int level, char *clevel)
  584. {
  585. struct md_personality *pers;
  586. list_for_each_entry(pers, &pers_list, list) {
  587. if (level != LEVEL_NONE && pers->level == level)
  588. return pers;
  589. if (strcmp(pers->name, clevel)==0)
  590. return pers;
  591. }
  592. return NULL;
  593. }
  594. /* return the offset of the super block in 512byte sectors */
  595. static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
  596. {
  597. sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
  598. return MD_NEW_SIZE_SECTORS(num_sectors);
  599. }
  600. static int alloc_disk_sb(struct md_rdev *rdev)
  601. {
  602. rdev->sb_page = alloc_page(GFP_KERNEL);
  603. if (!rdev->sb_page) {
  604. printk(KERN_ALERT "md: out of memory.\n");
  605. return -ENOMEM;
  606. }
  607. return 0;
  608. }
  609. void md_rdev_clear(struct md_rdev *rdev)
  610. {
  611. if (rdev->sb_page) {
  612. put_page(rdev->sb_page);
  613. rdev->sb_loaded = 0;
  614. rdev->sb_page = NULL;
  615. rdev->sb_start = 0;
  616. rdev->sectors = 0;
  617. }
  618. if (rdev->bb_page) {
  619. put_page(rdev->bb_page);
  620. rdev->bb_page = NULL;
  621. }
  622. kfree(rdev->badblocks.page);
  623. rdev->badblocks.page = NULL;
  624. }
  625. EXPORT_SYMBOL_GPL(md_rdev_clear);
  626. static void super_written(struct bio *bio)
  627. {
  628. struct md_rdev *rdev = bio->bi_private;
  629. struct mddev *mddev = rdev->mddev;
  630. if (bio->bi_error) {
  631. printk("md: super_written gets error=%d\n", bio->bi_error);
  632. md_error(mddev, rdev);
  633. }
  634. if (atomic_dec_and_test(&mddev->pending_writes))
  635. wake_up(&mddev->sb_wait);
  636. bio_put(bio);
  637. }
  638. void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
  639. sector_t sector, int size, struct page *page)
  640. {
  641. /* write first size bytes of page to sector of rdev
  642. * Increment mddev->pending_writes before returning
  643. * and decrement it on completion, waking up sb_wait
  644. * if zero is reached.
  645. * If an error occurred, call md_error
  646. */
  647. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
  648. bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
  649. bio->bi_iter.bi_sector = sector;
  650. bio_add_page(bio, page, size, 0);
  651. bio->bi_private = rdev;
  652. bio->bi_end_io = super_written;
  653. atomic_inc(&mddev->pending_writes);
  654. submit_bio(WRITE_FLUSH_FUA, bio);
  655. }
  656. void md_super_wait(struct mddev *mddev)
  657. {
  658. /* wait for all superblock writes that were scheduled to complete */
  659. wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
  660. }
  661. int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
  662. struct page *page, int rw, bool metadata_op)
  663. {
  664. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
  665. int ret;
  666. bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
  667. rdev->meta_bdev : rdev->bdev;
  668. if (metadata_op)
  669. bio->bi_iter.bi_sector = sector + rdev->sb_start;
  670. else if (rdev->mddev->reshape_position != MaxSector &&
  671. (rdev->mddev->reshape_backwards ==
  672. (sector >= rdev->mddev->reshape_position)))
  673. bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
  674. else
  675. bio->bi_iter.bi_sector = sector + rdev->data_offset;
  676. bio_add_page(bio, page, size, 0);
  677. submit_bio_wait(rw, bio);
  678. ret = !bio->bi_error;
  679. bio_put(bio);
  680. return ret;
  681. }
  682. EXPORT_SYMBOL_GPL(sync_page_io);
  683. static int read_disk_sb(struct md_rdev *rdev, int size)
  684. {
  685. char b[BDEVNAME_SIZE];
  686. if (rdev->sb_loaded)
  687. return 0;
  688. if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
  689. goto fail;
  690. rdev->sb_loaded = 1;
  691. return 0;
  692. fail:
  693. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  694. bdevname(rdev->bdev,b));
  695. return -EINVAL;
  696. }
  697. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  698. {
  699. return sb1->set_uuid0 == sb2->set_uuid0 &&
  700. sb1->set_uuid1 == sb2->set_uuid1 &&
  701. sb1->set_uuid2 == sb2->set_uuid2 &&
  702. sb1->set_uuid3 == sb2->set_uuid3;
  703. }
  704. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  705. {
  706. int ret;
  707. mdp_super_t *tmp1, *tmp2;
  708. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  709. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  710. if (!tmp1 || !tmp2) {
  711. ret = 0;
  712. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  713. goto abort;
  714. }
  715. *tmp1 = *sb1;
  716. *tmp2 = *sb2;
  717. /*
  718. * nr_disks is not constant
  719. */
  720. tmp1->nr_disks = 0;
  721. tmp2->nr_disks = 0;
  722. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  723. abort:
  724. kfree(tmp1);
  725. kfree(tmp2);
  726. return ret;
  727. }
  728. static u32 md_csum_fold(u32 csum)
  729. {
  730. csum = (csum & 0xffff) + (csum >> 16);
  731. return (csum & 0xffff) + (csum >> 16);
  732. }
  733. static unsigned int calc_sb_csum(mdp_super_t *sb)
  734. {
  735. u64 newcsum = 0;
  736. u32 *sb32 = (u32*)sb;
  737. int i;
  738. unsigned int disk_csum, csum;
  739. disk_csum = sb->sb_csum;
  740. sb->sb_csum = 0;
  741. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  742. newcsum += sb32[i];
  743. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  744. #ifdef CONFIG_ALPHA
  745. /* This used to use csum_partial, which was wrong for several
  746. * reasons including that different results are returned on
  747. * different architectures. It isn't critical that we get exactly
  748. * the same return value as before (we always csum_fold before
  749. * testing, and that removes any differences). However as we
  750. * know that csum_partial always returned a 16bit value on
  751. * alphas, do a fold to maximise conformity to previous behaviour.
  752. */
  753. sb->sb_csum = md_csum_fold(disk_csum);
  754. #else
  755. sb->sb_csum = disk_csum;
  756. #endif
  757. return csum;
  758. }
  759. /*
  760. * Handle superblock details.
  761. * We want to be able to handle multiple superblock formats
  762. * so we have a common interface to them all, and an array of
  763. * different handlers.
  764. * We rely on user-space to write the initial superblock, and support
  765. * reading and updating of superblocks.
  766. * Interface methods are:
  767. * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
  768. * loads and validates a superblock on dev.
  769. * if refdev != NULL, compare superblocks on both devices
  770. * Return:
  771. * 0 - dev has a superblock that is compatible with refdev
  772. * 1 - dev has a superblock that is compatible and newer than refdev
  773. * so dev should be used as the refdev in future
  774. * -EINVAL superblock incompatible or invalid
  775. * -othererror e.g. -EIO
  776. *
  777. * int validate_super(struct mddev *mddev, struct md_rdev *dev)
  778. * Verify that dev is acceptable into mddev.
  779. * The first time, mddev->raid_disks will be 0, and data from
  780. * dev should be merged in. Subsequent calls check that dev
  781. * is new enough. Return 0 or -EINVAL
  782. *
  783. * void sync_super(struct mddev *mddev, struct md_rdev *dev)
  784. * Update the superblock for rdev with data in mddev
  785. * This does not write to disc.
  786. *
  787. */
  788. struct super_type {
  789. char *name;
  790. struct module *owner;
  791. int (*load_super)(struct md_rdev *rdev,
  792. struct md_rdev *refdev,
  793. int minor_version);
  794. int (*validate_super)(struct mddev *mddev,
  795. struct md_rdev *rdev);
  796. void (*sync_super)(struct mddev *mddev,
  797. struct md_rdev *rdev);
  798. unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
  799. sector_t num_sectors);
  800. int (*allow_new_offset)(struct md_rdev *rdev,
  801. unsigned long long new_offset);
  802. };
  803. /*
  804. * Check that the given mddev has no bitmap.
  805. *
  806. * This function is called from the run method of all personalities that do not
  807. * support bitmaps. It prints an error message and returns non-zero if mddev
  808. * has a bitmap. Otherwise, it returns 0.
  809. *
  810. */
  811. int md_check_no_bitmap(struct mddev *mddev)
  812. {
  813. if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
  814. return 0;
  815. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  816. mdname(mddev), mddev->pers->name);
  817. return 1;
  818. }
  819. EXPORT_SYMBOL(md_check_no_bitmap);
  820. /*
  821. * load_super for 0.90.0
  822. */
  823. static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  824. {
  825. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  826. mdp_super_t *sb;
  827. int ret;
  828. /*
  829. * Calculate the position of the superblock (512byte sectors),
  830. * it's at the end of the disk.
  831. *
  832. * It also happens to be a multiple of 4Kb.
  833. */
  834. rdev->sb_start = calc_dev_sboffset(rdev);
  835. ret = read_disk_sb(rdev, MD_SB_BYTES);
  836. if (ret) return ret;
  837. ret = -EINVAL;
  838. bdevname(rdev->bdev, b);
  839. sb = page_address(rdev->sb_page);
  840. if (sb->md_magic != MD_SB_MAGIC) {
  841. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  842. b);
  843. goto abort;
  844. }
  845. if (sb->major_version != 0 ||
  846. sb->minor_version < 90 ||
  847. sb->minor_version > 91) {
  848. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  849. sb->major_version, sb->minor_version,
  850. b);
  851. goto abort;
  852. }
  853. if (sb->raid_disks <= 0)
  854. goto abort;
  855. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  856. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  857. b);
  858. goto abort;
  859. }
  860. rdev->preferred_minor = sb->md_minor;
  861. rdev->data_offset = 0;
  862. rdev->new_data_offset = 0;
  863. rdev->sb_size = MD_SB_BYTES;
  864. rdev->badblocks.shift = -1;
  865. if (sb->level == LEVEL_MULTIPATH)
  866. rdev->desc_nr = -1;
  867. else
  868. rdev->desc_nr = sb->this_disk.number;
  869. if (!refdev) {
  870. ret = 1;
  871. } else {
  872. __u64 ev1, ev2;
  873. mdp_super_t *refsb = page_address(refdev->sb_page);
  874. if (!uuid_equal(refsb, sb)) {
  875. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  876. b, bdevname(refdev->bdev,b2));
  877. goto abort;
  878. }
  879. if (!sb_equal(refsb, sb)) {
  880. printk(KERN_WARNING "md: %s has same UUID"
  881. " but different superblock to %s\n",
  882. b, bdevname(refdev->bdev, b2));
  883. goto abort;
  884. }
  885. ev1 = md_event(sb);
  886. ev2 = md_event(refsb);
  887. if (ev1 > ev2)
  888. ret = 1;
  889. else
  890. ret = 0;
  891. }
  892. rdev->sectors = rdev->sb_start;
  893. /* Limit to 4TB as metadata cannot record more than that.
  894. * (not needed for Linear and RAID0 as metadata doesn't
  895. * record this size)
  896. */
  897. if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) &&
  898. sb->level >= 1)
  899. rdev->sectors = (sector_t)(2ULL << 32) - 2;
  900. if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
  901. /* "this cannot possibly happen" ... */
  902. ret = -EINVAL;
  903. abort:
  904. return ret;
  905. }
  906. /*
  907. * validate_super for 0.90.0
  908. */
  909. static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
  910. {
  911. mdp_disk_t *desc;
  912. mdp_super_t *sb = page_address(rdev->sb_page);
  913. __u64 ev1 = md_event(sb);
  914. rdev->raid_disk = -1;
  915. clear_bit(Faulty, &rdev->flags);
  916. clear_bit(In_sync, &rdev->flags);
  917. clear_bit(Bitmap_sync, &rdev->flags);
  918. clear_bit(WriteMostly, &rdev->flags);
  919. if (mddev->raid_disks == 0) {
  920. mddev->major_version = 0;
  921. mddev->minor_version = sb->minor_version;
  922. mddev->patch_version = sb->patch_version;
  923. mddev->external = 0;
  924. mddev->chunk_sectors = sb->chunk_size >> 9;
  925. mddev->ctime = sb->ctime;
  926. mddev->utime = sb->utime;
  927. mddev->level = sb->level;
  928. mddev->clevel[0] = 0;
  929. mddev->layout = sb->layout;
  930. mddev->raid_disks = sb->raid_disks;
  931. mddev->dev_sectors = ((sector_t)sb->size) * 2;
  932. mddev->events = ev1;
  933. mddev->bitmap_info.offset = 0;
  934. mddev->bitmap_info.space = 0;
  935. /* bitmap can use 60 K after the 4K superblocks */
  936. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  937. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  938. mddev->reshape_backwards = 0;
  939. if (mddev->minor_version >= 91) {
  940. mddev->reshape_position = sb->reshape_position;
  941. mddev->delta_disks = sb->delta_disks;
  942. mddev->new_level = sb->new_level;
  943. mddev->new_layout = sb->new_layout;
  944. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  945. if (mddev->delta_disks < 0)
  946. mddev->reshape_backwards = 1;
  947. } else {
  948. mddev->reshape_position = MaxSector;
  949. mddev->delta_disks = 0;
  950. mddev->new_level = mddev->level;
  951. mddev->new_layout = mddev->layout;
  952. mddev->new_chunk_sectors = mddev->chunk_sectors;
  953. }
  954. if (sb->state & (1<<MD_SB_CLEAN))
  955. mddev->recovery_cp = MaxSector;
  956. else {
  957. if (sb->events_hi == sb->cp_events_hi &&
  958. sb->events_lo == sb->cp_events_lo) {
  959. mddev->recovery_cp = sb->recovery_cp;
  960. } else
  961. mddev->recovery_cp = 0;
  962. }
  963. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  964. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  965. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  966. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  967. mddev->max_disks = MD_SB_DISKS;
  968. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  969. mddev->bitmap_info.file == NULL) {
  970. mddev->bitmap_info.offset =
  971. mddev->bitmap_info.default_offset;
  972. mddev->bitmap_info.space =
  973. mddev->bitmap_info.default_space;
  974. }
  975. } else if (mddev->pers == NULL) {
  976. /* Insist on good event counter while assembling, except
  977. * for spares (which don't need an event count) */
  978. ++ev1;
  979. if (sb->disks[rdev->desc_nr].state & (
  980. (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
  981. if (ev1 < mddev->events)
  982. return -EINVAL;
  983. } else if (mddev->bitmap) {
  984. /* if adding to array with a bitmap, then we can accept an
  985. * older device ... but not too old.
  986. */
  987. if (ev1 < mddev->bitmap->events_cleared)
  988. return 0;
  989. if (ev1 < mddev->events)
  990. set_bit(Bitmap_sync, &rdev->flags);
  991. } else {
  992. if (ev1 < mddev->events)
  993. /* just a hot-add of a new device, leave raid_disk at -1 */
  994. return 0;
  995. }
  996. if (mddev->level != LEVEL_MULTIPATH) {
  997. desc = sb->disks + rdev->desc_nr;
  998. if (desc->state & (1<<MD_DISK_FAULTY))
  999. set_bit(Faulty, &rdev->flags);
  1000. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  1001. desc->raid_disk < mddev->raid_disks */) {
  1002. set_bit(In_sync, &rdev->flags);
  1003. rdev->raid_disk = desc->raid_disk;
  1004. rdev->saved_raid_disk = desc->raid_disk;
  1005. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  1006. /* active but not in sync implies recovery up to
  1007. * reshape position. We don't know exactly where
  1008. * that is, so set to zero for now */
  1009. if (mddev->minor_version >= 91) {
  1010. rdev->recovery_offset = 0;
  1011. rdev->raid_disk = desc->raid_disk;
  1012. }
  1013. }
  1014. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  1015. set_bit(WriteMostly, &rdev->flags);
  1016. } else /* MULTIPATH are always insync */
  1017. set_bit(In_sync, &rdev->flags);
  1018. return 0;
  1019. }
  1020. /*
  1021. * sync_super for 0.90.0
  1022. */
  1023. static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
  1024. {
  1025. mdp_super_t *sb;
  1026. struct md_rdev *rdev2;
  1027. int next_spare = mddev->raid_disks;
  1028. /* make rdev->sb match mddev data..
  1029. *
  1030. * 1/ zero out disks
  1031. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  1032. * 3/ any empty disks < next_spare become removed
  1033. *
  1034. * disks[0] gets initialised to REMOVED because
  1035. * we cannot be sure from other fields if it has
  1036. * been initialised or not.
  1037. */
  1038. int i;
  1039. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  1040. rdev->sb_size = MD_SB_BYTES;
  1041. sb = page_address(rdev->sb_page);
  1042. memset(sb, 0, sizeof(*sb));
  1043. sb->md_magic = MD_SB_MAGIC;
  1044. sb->major_version = mddev->major_version;
  1045. sb->patch_version = mddev->patch_version;
  1046. sb->gvalid_words = 0; /* ignored */
  1047. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  1048. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  1049. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  1050. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  1051. sb->ctime = mddev->ctime;
  1052. sb->level = mddev->level;
  1053. sb->size = mddev->dev_sectors / 2;
  1054. sb->raid_disks = mddev->raid_disks;
  1055. sb->md_minor = mddev->md_minor;
  1056. sb->not_persistent = 0;
  1057. sb->utime = mddev->utime;
  1058. sb->state = 0;
  1059. sb->events_hi = (mddev->events>>32);
  1060. sb->events_lo = (u32)mddev->events;
  1061. if (mddev->reshape_position == MaxSector)
  1062. sb->minor_version = 90;
  1063. else {
  1064. sb->minor_version = 91;
  1065. sb->reshape_position = mddev->reshape_position;
  1066. sb->new_level = mddev->new_level;
  1067. sb->delta_disks = mddev->delta_disks;
  1068. sb->new_layout = mddev->new_layout;
  1069. sb->new_chunk = mddev->new_chunk_sectors << 9;
  1070. }
  1071. mddev->minor_version = sb->minor_version;
  1072. if (mddev->in_sync)
  1073. {
  1074. sb->recovery_cp = mddev->recovery_cp;
  1075. sb->cp_events_hi = (mddev->events>>32);
  1076. sb->cp_events_lo = (u32)mddev->events;
  1077. if (mddev->recovery_cp == MaxSector)
  1078. sb->state = (1<< MD_SB_CLEAN);
  1079. } else
  1080. sb->recovery_cp = 0;
  1081. sb->layout = mddev->layout;
  1082. sb->chunk_size = mddev->chunk_sectors << 9;
  1083. if (mddev->bitmap && mddev->bitmap_info.file == NULL)
  1084. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  1085. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  1086. rdev_for_each(rdev2, mddev) {
  1087. mdp_disk_t *d;
  1088. int desc_nr;
  1089. int is_active = test_bit(In_sync, &rdev2->flags);
  1090. if (rdev2->raid_disk >= 0 &&
  1091. sb->minor_version >= 91)
  1092. /* we have nowhere to store the recovery_offset,
  1093. * but if it is not below the reshape_position,
  1094. * we can piggy-back on that.
  1095. */
  1096. is_active = 1;
  1097. if (rdev2->raid_disk < 0 ||
  1098. test_bit(Faulty, &rdev2->flags))
  1099. is_active = 0;
  1100. if (is_active)
  1101. desc_nr = rdev2->raid_disk;
  1102. else
  1103. desc_nr = next_spare++;
  1104. rdev2->desc_nr = desc_nr;
  1105. d = &sb->disks[rdev2->desc_nr];
  1106. nr_disks++;
  1107. d->number = rdev2->desc_nr;
  1108. d->major = MAJOR(rdev2->bdev->bd_dev);
  1109. d->minor = MINOR(rdev2->bdev->bd_dev);
  1110. if (is_active)
  1111. d->raid_disk = rdev2->raid_disk;
  1112. else
  1113. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1114. if (test_bit(Faulty, &rdev2->flags))
  1115. d->state = (1<<MD_DISK_FAULTY);
  1116. else if (is_active) {
  1117. d->state = (1<<MD_DISK_ACTIVE);
  1118. if (test_bit(In_sync, &rdev2->flags))
  1119. d->state |= (1<<MD_DISK_SYNC);
  1120. active++;
  1121. working++;
  1122. } else {
  1123. d->state = 0;
  1124. spare++;
  1125. working++;
  1126. }
  1127. if (test_bit(WriteMostly, &rdev2->flags))
  1128. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1129. }
  1130. /* now set the "removed" and "faulty" bits on any missing devices */
  1131. for (i=0 ; i < mddev->raid_disks ; i++) {
  1132. mdp_disk_t *d = &sb->disks[i];
  1133. if (d->state == 0 && d->number == 0) {
  1134. d->number = i;
  1135. d->raid_disk = i;
  1136. d->state = (1<<MD_DISK_REMOVED);
  1137. d->state |= (1<<MD_DISK_FAULTY);
  1138. failed++;
  1139. }
  1140. }
  1141. sb->nr_disks = nr_disks;
  1142. sb->active_disks = active;
  1143. sb->working_disks = working;
  1144. sb->failed_disks = failed;
  1145. sb->spare_disks = spare;
  1146. sb->this_disk = sb->disks[rdev->desc_nr];
  1147. sb->sb_csum = calc_sb_csum(sb);
  1148. }
  1149. /*
  1150. * rdev_size_change for 0.90.0
  1151. */
  1152. static unsigned long long
  1153. super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1154. {
  1155. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1156. return 0; /* component must fit device */
  1157. if (rdev->mddev->bitmap_info.offset)
  1158. return 0; /* can't move bitmap */
  1159. rdev->sb_start = calc_dev_sboffset(rdev);
  1160. if (!num_sectors || num_sectors > rdev->sb_start)
  1161. num_sectors = rdev->sb_start;
  1162. /* Limit to 4TB as metadata cannot record more than that.
  1163. * 4TB == 2^32 KB, or 2*2^32 sectors.
  1164. */
  1165. if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) &&
  1166. rdev->mddev->level >= 1)
  1167. num_sectors = (sector_t)(2ULL << 32) - 2;
  1168. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1169. rdev->sb_page);
  1170. md_super_wait(rdev->mddev);
  1171. return num_sectors;
  1172. }
  1173. static int
  1174. super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
  1175. {
  1176. /* non-zero offset changes not possible with v0.90 */
  1177. return new_offset == 0;
  1178. }
  1179. /*
  1180. * version 1 superblock
  1181. */
  1182. static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
  1183. {
  1184. __le32 disk_csum;
  1185. u32 csum;
  1186. unsigned long long newcsum;
  1187. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1188. __le32 *isuper = (__le32*)sb;
  1189. disk_csum = sb->sb_csum;
  1190. sb->sb_csum = 0;
  1191. newcsum = 0;
  1192. for (; size >= 4; size -= 4)
  1193. newcsum += le32_to_cpu(*isuper++);
  1194. if (size == 2)
  1195. newcsum += le16_to_cpu(*(__le16*) isuper);
  1196. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1197. sb->sb_csum = disk_csum;
  1198. return cpu_to_le32(csum);
  1199. }
  1200. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  1201. int acknowledged);
  1202. static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  1203. {
  1204. struct mdp_superblock_1 *sb;
  1205. int ret;
  1206. sector_t sb_start;
  1207. sector_t sectors;
  1208. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1209. int bmask;
  1210. /*
  1211. * Calculate the position of the superblock in 512byte sectors.
  1212. * It is always aligned to a 4K boundary and
  1213. * depeding on minor_version, it can be:
  1214. * 0: At least 8K, but less than 12K, from end of device
  1215. * 1: At start of device
  1216. * 2: 4K from start of device.
  1217. */
  1218. switch(minor_version) {
  1219. case 0:
  1220. sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
  1221. sb_start -= 8*2;
  1222. sb_start &= ~(sector_t)(4*2-1);
  1223. break;
  1224. case 1:
  1225. sb_start = 0;
  1226. break;
  1227. case 2:
  1228. sb_start = 8;
  1229. break;
  1230. default:
  1231. return -EINVAL;
  1232. }
  1233. rdev->sb_start = sb_start;
  1234. /* superblock is rarely larger than 1K, but it can be larger,
  1235. * and it is safe to read 4k, so we do that
  1236. */
  1237. ret = read_disk_sb(rdev, 4096);
  1238. if (ret) return ret;
  1239. sb = page_address(rdev->sb_page);
  1240. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1241. sb->major_version != cpu_to_le32(1) ||
  1242. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1243. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1244. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1245. return -EINVAL;
  1246. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1247. printk("md: invalid superblock checksum on %s\n",
  1248. bdevname(rdev->bdev,b));
  1249. return -EINVAL;
  1250. }
  1251. if (le64_to_cpu(sb->data_size) < 10) {
  1252. printk("md: data_size too small on %s\n",
  1253. bdevname(rdev->bdev,b));
  1254. return -EINVAL;
  1255. }
  1256. if (sb->pad0 ||
  1257. sb->pad3[0] ||
  1258. memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
  1259. /* Some padding is non-zero, might be a new feature */
  1260. return -EINVAL;
  1261. rdev->preferred_minor = 0xffff;
  1262. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1263. rdev->new_data_offset = rdev->data_offset;
  1264. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
  1265. (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
  1266. rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
  1267. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1268. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1269. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1270. if (rdev->sb_size & bmask)
  1271. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1272. if (minor_version
  1273. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1274. return -EINVAL;
  1275. if (minor_version
  1276. && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
  1277. return -EINVAL;
  1278. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1279. rdev->desc_nr = -1;
  1280. else
  1281. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1282. if (!rdev->bb_page) {
  1283. rdev->bb_page = alloc_page(GFP_KERNEL);
  1284. if (!rdev->bb_page)
  1285. return -ENOMEM;
  1286. }
  1287. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
  1288. rdev->badblocks.count == 0) {
  1289. /* need to load the bad block list.
  1290. * Currently we limit it to one page.
  1291. */
  1292. s32 offset;
  1293. sector_t bb_sector;
  1294. u64 *bbp;
  1295. int i;
  1296. int sectors = le16_to_cpu(sb->bblog_size);
  1297. if (sectors > (PAGE_SIZE / 512))
  1298. return -EINVAL;
  1299. offset = le32_to_cpu(sb->bblog_offset);
  1300. if (offset == 0)
  1301. return -EINVAL;
  1302. bb_sector = (long long)offset;
  1303. if (!sync_page_io(rdev, bb_sector, sectors << 9,
  1304. rdev->bb_page, READ, true))
  1305. return -EIO;
  1306. bbp = (u64 *)page_address(rdev->bb_page);
  1307. rdev->badblocks.shift = sb->bblog_shift;
  1308. for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
  1309. u64 bb = le64_to_cpu(*bbp);
  1310. int count = bb & (0x3ff);
  1311. u64 sector = bb >> 10;
  1312. sector <<= sb->bblog_shift;
  1313. count <<= sb->bblog_shift;
  1314. if (bb + 1 == 0)
  1315. break;
  1316. if (md_set_badblocks(&rdev->badblocks,
  1317. sector, count, 1) == 0)
  1318. return -EINVAL;
  1319. }
  1320. } else if (sb->bblog_offset != 0)
  1321. rdev->badblocks.shift = 0;
  1322. if (!refdev) {
  1323. ret = 1;
  1324. } else {
  1325. __u64 ev1, ev2;
  1326. struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
  1327. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1328. sb->level != refsb->level ||
  1329. sb->layout != refsb->layout ||
  1330. sb->chunksize != refsb->chunksize) {
  1331. printk(KERN_WARNING "md: %s has strangely different"
  1332. " superblock to %s\n",
  1333. bdevname(rdev->bdev,b),
  1334. bdevname(refdev->bdev,b2));
  1335. return -EINVAL;
  1336. }
  1337. ev1 = le64_to_cpu(sb->events);
  1338. ev2 = le64_to_cpu(refsb->events);
  1339. if (ev1 > ev2)
  1340. ret = 1;
  1341. else
  1342. ret = 0;
  1343. }
  1344. if (minor_version) {
  1345. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
  1346. sectors -= rdev->data_offset;
  1347. } else
  1348. sectors = rdev->sb_start;
  1349. if (sectors < le64_to_cpu(sb->data_size))
  1350. return -EINVAL;
  1351. rdev->sectors = le64_to_cpu(sb->data_size);
  1352. return ret;
  1353. }
  1354. static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
  1355. {
  1356. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  1357. __u64 ev1 = le64_to_cpu(sb->events);
  1358. rdev->raid_disk = -1;
  1359. clear_bit(Faulty, &rdev->flags);
  1360. clear_bit(In_sync, &rdev->flags);
  1361. clear_bit(Bitmap_sync, &rdev->flags);
  1362. clear_bit(WriteMostly, &rdev->flags);
  1363. if (mddev->raid_disks == 0) {
  1364. mddev->major_version = 1;
  1365. mddev->patch_version = 0;
  1366. mddev->external = 0;
  1367. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1368. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1369. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1370. mddev->level = le32_to_cpu(sb->level);
  1371. mddev->clevel[0] = 0;
  1372. mddev->layout = le32_to_cpu(sb->layout);
  1373. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1374. mddev->dev_sectors = le64_to_cpu(sb->size);
  1375. mddev->events = ev1;
  1376. mddev->bitmap_info.offset = 0;
  1377. mddev->bitmap_info.space = 0;
  1378. /* Default location for bitmap is 1K after superblock
  1379. * using 3K - total of 4K
  1380. */
  1381. mddev->bitmap_info.default_offset = 1024 >> 9;
  1382. mddev->bitmap_info.default_space = (4096-1024) >> 9;
  1383. mddev->reshape_backwards = 0;
  1384. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1385. memcpy(mddev->uuid, sb->set_uuid, 16);
  1386. mddev->max_disks = (4096-256)/2;
  1387. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1388. mddev->bitmap_info.file == NULL) {
  1389. mddev->bitmap_info.offset =
  1390. (__s32)le32_to_cpu(sb->bitmap_offset);
  1391. /* Metadata doesn't record how much space is available.
  1392. * For 1.0, we assume we can use up to the superblock
  1393. * if before, else to 4K beyond superblock.
  1394. * For others, assume no change is possible.
  1395. */
  1396. if (mddev->minor_version > 0)
  1397. mddev->bitmap_info.space = 0;
  1398. else if (mddev->bitmap_info.offset > 0)
  1399. mddev->bitmap_info.space =
  1400. 8 - mddev->bitmap_info.offset;
  1401. else
  1402. mddev->bitmap_info.space =
  1403. -mddev->bitmap_info.offset;
  1404. }
  1405. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1406. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1407. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1408. mddev->new_level = le32_to_cpu(sb->new_level);
  1409. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1410. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1411. if (mddev->delta_disks < 0 ||
  1412. (mddev->delta_disks == 0 &&
  1413. (le32_to_cpu(sb->feature_map)
  1414. & MD_FEATURE_RESHAPE_BACKWARDS)))
  1415. mddev->reshape_backwards = 1;
  1416. } else {
  1417. mddev->reshape_position = MaxSector;
  1418. mddev->delta_disks = 0;
  1419. mddev->new_level = mddev->level;
  1420. mddev->new_layout = mddev->layout;
  1421. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1422. }
  1423. } else if (mddev->pers == NULL) {
  1424. /* Insist of good event counter while assembling, except for
  1425. * spares (which don't need an event count) */
  1426. ++ev1;
  1427. if (rdev->desc_nr >= 0 &&
  1428. rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
  1429. (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
  1430. le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
  1431. if (ev1 < mddev->events)
  1432. return -EINVAL;
  1433. } else if (mddev->bitmap) {
  1434. /* If adding to array with a bitmap, then we can accept an
  1435. * older device, but not too old.
  1436. */
  1437. if (ev1 < mddev->bitmap->events_cleared)
  1438. return 0;
  1439. if (ev1 < mddev->events)
  1440. set_bit(Bitmap_sync, &rdev->flags);
  1441. } else {
  1442. if (ev1 < mddev->events)
  1443. /* just a hot-add of a new device, leave raid_disk at -1 */
  1444. return 0;
  1445. }
  1446. if (mddev->level != LEVEL_MULTIPATH) {
  1447. int role;
  1448. if (rdev->desc_nr < 0 ||
  1449. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1450. role = MD_DISK_ROLE_SPARE;
  1451. rdev->desc_nr = -1;
  1452. } else
  1453. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1454. switch(role) {
  1455. case MD_DISK_ROLE_SPARE: /* spare */
  1456. break;
  1457. case MD_DISK_ROLE_FAULTY: /* faulty */
  1458. set_bit(Faulty, &rdev->flags);
  1459. break;
  1460. case MD_DISK_ROLE_JOURNAL: /* journal device */
  1461. if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
  1462. /* journal device without journal feature */
  1463. printk(KERN_WARNING
  1464. "md: journal device provided without journal feature, ignoring the device\n");
  1465. return -EINVAL;
  1466. }
  1467. set_bit(Journal, &rdev->flags);
  1468. rdev->journal_tail = le64_to_cpu(sb->journal_tail);
  1469. if (mddev->recovery_cp == MaxSector)
  1470. set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
  1471. rdev->raid_disk = 0;
  1472. break;
  1473. default:
  1474. rdev->saved_raid_disk = role;
  1475. if ((le32_to_cpu(sb->feature_map) &
  1476. MD_FEATURE_RECOVERY_OFFSET)) {
  1477. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1478. if (!(le32_to_cpu(sb->feature_map) &
  1479. MD_FEATURE_RECOVERY_BITMAP))
  1480. rdev->saved_raid_disk = -1;
  1481. } else
  1482. set_bit(In_sync, &rdev->flags);
  1483. rdev->raid_disk = role;
  1484. break;
  1485. }
  1486. if (sb->devflags & WriteMostly1)
  1487. set_bit(WriteMostly, &rdev->flags);
  1488. if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
  1489. set_bit(Replacement, &rdev->flags);
  1490. if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
  1491. set_bit(MD_HAS_JOURNAL, &mddev->flags);
  1492. } else /* MULTIPATH are always insync */
  1493. set_bit(In_sync, &rdev->flags);
  1494. return 0;
  1495. }
  1496. static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
  1497. {
  1498. struct mdp_superblock_1 *sb;
  1499. struct md_rdev *rdev2;
  1500. int max_dev, i;
  1501. /* make rdev->sb match mddev and rdev data. */
  1502. sb = page_address(rdev->sb_page);
  1503. sb->feature_map = 0;
  1504. sb->pad0 = 0;
  1505. sb->recovery_offset = cpu_to_le64(0);
  1506. memset(sb->pad3, 0, sizeof(sb->pad3));
  1507. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1508. sb->events = cpu_to_le64(mddev->events);
  1509. if (mddev->in_sync)
  1510. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1511. else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
  1512. sb->resync_offset = cpu_to_le64(MaxSector);
  1513. else
  1514. sb->resync_offset = cpu_to_le64(0);
  1515. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1516. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1517. sb->size = cpu_to_le64(mddev->dev_sectors);
  1518. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1519. sb->level = cpu_to_le32(mddev->level);
  1520. sb->layout = cpu_to_le32(mddev->layout);
  1521. if (test_bit(WriteMostly, &rdev->flags))
  1522. sb->devflags |= WriteMostly1;
  1523. else
  1524. sb->devflags &= ~WriteMostly1;
  1525. sb->data_offset = cpu_to_le64(rdev->data_offset);
  1526. sb->data_size = cpu_to_le64(rdev->sectors);
  1527. if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
  1528. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
  1529. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1530. }
  1531. if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
  1532. !test_bit(In_sync, &rdev->flags)) {
  1533. sb->feature_map |=
  1534. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1535. sb->recovery_offset =
  1536. cpu_to_le64(rdev->recovery_offset);
  1537. if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
  1538. sb->feature_map |=
  1539. cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
  1540. }
  1541. /* Note: recovery_offset and journal_tail share space */
  1542. if (test_bit(Journal, &rdev->flags))
  1543. sb->journal_tail = cpu_to_le64(rdev->journal_tail);
  1544. if (test_bit(Replacement, &rdev->flags))
  1545. sb->feature_map |=
  1546. cpu_to_le32(MD_FEATURE_REPLACEMENT);
  1547. if (mddev->reshape_position != MaxSector) {
  1548. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1549. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1550. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1551. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1552. sb->new_level = cpu_to_le32(mddev->new_level);
  1553. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1554. if (mddev->delta_disks == 0 &&
  1555. mddev->reshape_backwards)
  1556. sb->feature_map
  1557. |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
  1558. if (rdev->new_data_offset != rdev->data_offset) {
  1559. sb->feature_map
  1560. |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
  1561. sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
  1562. - rdev->data_offset));
  1563. }
  1564. }
  1565. if (mddev_is_clustered(mddev))
  1566. sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
  1567. if (rdev->badblocks.count == 0)
  1568. /* Nothing to do for bad blocks*/ ;
  1569. else if (sb->bblog_offset == 0)
  1570. /* Cannot record bad blocks on this device */
  1571. md_error(mddev, rdev);
  1572. else {
  1573. struct badblocks *bb = &rdev->badblocks;
  1574. u64 *bbp = (u64 *)page_address(rdev->bb_page);
  1575. u64 *p = bb->page;
  1576. sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
  1577. if (bb->changed) {
  1578. unsigned seq;
  1579. retry:
  1580. seq = read_seqbegin(&bb->lock);
  1581. memset(bbp, 0xff, PAGE_SIZE);
  1582. for (i = 0 ; i < bb->count ; i++) {
  1583. u64 internal_bb = p[i];
  1584. u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
  1585. | BB_LEN(internal_bb));
  1586. bbp[i] = cpu_to_le64(store_bb);
  1587. }
  1588. bb->changed = 0;
  1589. if (read_seqretry(&bb->lock, seq))
  1590. goto retry;
  1591. bb->sector = (rdev->sb_start +
  1592. (int)le32_to_cpu(sb->bblog_offset));
  1593. bb->size = le16_to_cpu(sb->bblog_size);
  1594. }
  1595. }
  1596. max_dev = 0;
  1597. rdev_for_each(rdev2, mddev)
  1598. if (rdev2->desc_nr+1 > max_dev)
  1599. max_dev = rdev2->desc_nr+1;
  1600. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1601. int bmask;
  1602. sb->max_dev = cpu_to_le32(max_dev);
  1603. rdev->sb_size = max_dev * 2 + 256;
  1604. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1605. if (rdev->sb_size & bmask)
  1606. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1607. } else
  1608. max_dev = le32_to_cpu(sb->max_dev);
  1609. for (i=0; i<max_dev;i++)
  1610. sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
  1611. if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
  1612. sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
  1613. rdev_for_each(rdev2, mddev) {
  1614. i = rdev2->desc_nr;
  1615. if (test_bit(Faulty, &rdev2->flags))
  1616. sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
  1617. else if (test_bit(In_sync, &rdev2->flags))
  1618. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1619. else if (test_bit(Journal, &rdev2->flags))
  1620. sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
  1621. else if (rdev2->raid_disk >= 0)
  1622. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1623. else
  1624. sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
  1625. }
  1626. sb->sb_csum = calc_sb_1_csum(sb);
  1627. }
  1628. static unsigned long long
  1629. super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1630. {
  1631. struct mdp_superblock_1 *sb;
  1632. sector_t max_sectors;
  1633. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1634. return 0; /* component must fit device */
  1635. if (rdev->data_offset != rdev->new_data_offset)
  1636. return 0; /* too confusing */
  1637. if (rdev->sb_start < rdev->data_offset) {
  1638. /* minor versions 1 and 2; superblock before data */
  1639. max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
  1640. max_sectors -= rdev->data_offset;
  1641. if (!num_sectors || num_sectors > max_sectors)
  1642. num_sectors = max_sectors;
  1643. } else if (rdev->mddev->bitmap_info.offset) {
  1644. /* minor version 0 with bitmap we can't move */
  1645. return 0;
  1646. } else {
  1647. /* minor version 0; superblock after data */
  1648. sector_t sb_start;
  1649. sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
  1650. sb_start &= ~(sector_t)(4*2 - 1);
  1651. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1652. if (!num_sectors || num_sectors > max_sectors)
  1653. num_sectors = max_sectors;
  1654. rdev->sb_start = sb_start;
  1655. }
  1656. sb = page_address(rdev->sb_page);
  1657. sb->data_size = cpu_to_le64(num_sectors);
  1658. sb->super_offset = cpu_to_le64(rdev->sb_start);
  1659. sb->sb_csum = calc_sb_1_csum(sb);
  1660. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1661. rdev->sb_page);
  1662. md_super_wait(rdev->mddev);
  1663. return num_sectors;
  1664. }
  1665. static int
  1666. super_1_allow_new_offset(struct md_rdev *rdev,
  1667. unsigned long long new_offset)
  1668. {
  1669. /* All necessary checks on new >= old have been done */
  1670. struct bitmap *bitmap;
  1671. if (new_offset >= rdev->data_offset)
  1672. return 1;
  1673. /* with 1.0 metadata, there is no metadata to tread on
  1674. * so we can always move back */
  1675. if (rdev->mddev->minor_version == 0)
  1676. return 1;
  1677. /* otherwise we must be sure not to step on
  1678. * any metadata, so stay:
  1679. * 36K beyond start of superblock
  1680. * beyond end of badblocks
  1681. * beyond write-intent bitmap
  1682. */
  1683. if (rdev->sb_start + (32+4)*2 > new_offset)
  1684. return 0;
  1685. bitmap = rdev->mddev->bitmap;
  1686. if (bitmap && !rdev->mddev->bitmap_info.file &&
  1687. rdev->sb_start + rdev->mddev->bitmap_info.offset +
  1688. bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
  1689. return 0;
  1690. if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
  1691. return 0;
  1692. return 1;
  1693. }
  1694. static struct super_type super_types[] = {
  1695. [0] = {
  1696. .name = "0.90.0",
  1697. .owner = THIS_MODULE,
  1698. .load_super = super_90_load,
  1699. .validate_super = super_90_validate,
  1700. .sync_super = super_90_sync,
  1701. .rdev_size_change = super_90_rdev_size_change,
  1702. .allow_new_offset = super_90_allow_new_offset,
  1703. },
  1704. [1] = {
  1705. .name = "md-1",
  1706. .owner = THIS_MODULE,
  1707. .load_super = super_1_load,
  1708. .validate_super = super_1_validate,
  1709. .sync_super = super_1_sync,
  1710. .rdev_size_change = super_1_rdev_size_change,
  1711. .allow_new_offset = super_1_allow_new_offset,
  1712. },
  1713. };
  1714. static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
  1715. {
  1716. if (mddev->sync_super) {
  1717. mddev->sync_super(mddev, rdev);
  1718. return;
  1719. }
  1720. BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
  1721. super_types[mddev->major_version].sync_super(mddev, rdev);
  1722. }
  1723. static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
  1724. {
  1725. struct md_rdev *rdev, *rdev2;
  1726. rcu_read_lock();
  1727. rdev_for_each_rcu(rdev, mddev1) {
  1728. if (test_bit(Faulty, &rdev->flags) ||
  1729. test_bit(Journal, &rdev->flags) ||
  1730. rdev->raid_disk == -1)
  1731. continue;
  1732. rdev_for_each_rcu(rdev2, mddev2) {
  1733. if (test_bit(Faulty, &rdev2->flags) ||
  1734. test_bit(Journal, &rdev2->flags) ||
  1735. rdev2->raid_disk == -1)
  1736. continue;
  1737. if (rdev->bdev->bd_contains ==
  1738. rdev2->bdev->bd_contains) {
  1739. rcu_read_unlock();
  1740. return 1;
  1741. }
  1742. }
  1743. }
  1744. rcu_read_unlock();
  1745. return 0;
  1746. }
  1747. static LIST_HEAD(pending_raid_disks);
  1748. /*
  1749. * Try to register data integrity profile for an mddev
  1750. *
  1751. * This is called when an array is started and after a disk has been kicked
  1752. * from the array. It only succeeds if all working and active component devices
  1753. * are integrity capable with matching profiles.
  1754. */
  1755. int md_integrity_register(struct mddev *mddev)
  1756. {
  1757. struct md_rdev *rdev, *reference = NULL;
  1758. if (list_empty(&mddev->disks))
  1759. return 0; /* nothing to do */
  1760. if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
  1761. return 0; /* shouldn't register, or already is */
  1762. rdev_for_each(rdev, mddev) {
  1763. /* skip spares and non-functional disks */
  1764. if (test_bit(Faulty, &rdev->flags))
  1765. continue;
  1766. if (rdev->raid_disk < 0)
  1767. continue;
  1768. if (!reference) {
  1769. /* Use the first rdev as the reference */
  1770. reference = rdev;
  1771. continue;
  1772. }
  1773. /* does this rdev's profile match the reference profile? */
  1774. if (blk_integrity_compare(reference->bdev->bd_disk,
  1775. rdev->bdev->bd_disk) < 0)
  1776. return -EINVAL;
  1777. }
  1778. if (!reference || !bdev_get_integrity(reference->bdev))
  1779. return 0;
  1780. /*
  1781. * All component devices are integrity capable and have matching
  1782. * profiles, register the common profile for the md device.
  1783. */
  1784. blk_integrity_register(mddev->gendisk,
  1785. bdev_get_integrity(reference->bdev));
  1786. printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
  1787. if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
  1788. printk(KERN_ERR "md: failed to create integrity pool for %s\n",
  1789. mdname(mddev));
  1790. return -EINVAL;
  1791. }
  1792. return 0;
  1793. }
  1794. EXPORT_SYMBOL(md_integrity_register);
  1795. /*
  1796. * Attempt to add an rdev, but only if it is consistent with the current
  1797. * integrity profile
  1798. */
  1799. int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
  1800. {
  1801. struct blk_integrity *bi_rdev;
  1802. struct blk_integrity *bi_mddev;
  1803. char name[BDEVNAME_SIZE];
  1804. if (!mddev->gendisk)
  1805. return 0;
  1806. bi_rdev = bdev_get_integrity(rdev->bdev);
  1807. bi_mddev = blk_get_integrity(mddev->gendisk);
  1808. if (!bi_mddev) /* nothing to do */
  1809. return 0;
  1810. if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
  1811. printk(KERN_NOTICE "%s: incompatible integrity profile for %s\n",
  1812. mdname(mddev), bdevname(rdev->bdev, name));
  1813. return -ENXIO;
  1814. }
  1815. return 0;
  1816. }
  1817. EXPORT_SYMBOL(md_integrity_add_rdev);
  1818. static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
  1819. {
  1820. char b[BDEVNAME_SIZE];
  1821. struct kobject *ko;
  1822. int err;
  1823. /* prevent duplicates */
  1824. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1825. return -EEXIST;
  1826. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1827. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1828. rdev->sectors < mddev->dev_sectors)) {
  1829. if (mddev->pers) {
  1830. /* Cannot change size, so fail
  1831. * If mddev->level <= 0, then we don't care
  1832. * about aligning sizes (e.g. linear)
  1833. */
  1834. if (mddev->level > 0)
  1835. return -ENOSPC;
  1836. } else
  1837. mddev->dev_sectors = rdev->sectors;
  1838. }
  1839. /* Verify rdev->desc_nr is unique.
  1840. * If it is -1, assign a free number, else
  1841. * check number is not in use
  1842. */
  1843. rcu_read_lock();
  1844. if (rdev->desc_nr < 0) {
  1845. int choice = 0;
  1846. if (mddev->pers)
  1847. choice = mddev->raid_disks;
  1848. while (md_find_rdev_nr_rcu(mddev, choice))
  1849. choice++;
  1850. rdev->desc_nr = choice;
  1851. } else {
  1852. if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
  1853. rcu_read_unlock();
  1854. return -EBUSY;
  1855. }
  1856. }
  1857. rcu_read_unlock();
  1858. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1859. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1860. mdname(mddev), mddev->max_disks);
  1861. return -EBUSY;
  1862. }
  1863. bdevname(rdev->bdev,b);
  1864. strreplace(b, '/', '!');
  1865. rdev->mddev = mddev;
  1866. printk(KERN_INFO "md: bind<%s>\n", b);
  1867. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1868. goto fail;
  1869. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1870. if (sysfs_create_link(&rdev->kobj, ko, "block"))
  1871. /* failure here is OK */;
  1872. rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
  1873. list_add_rcu(&rdev->same_set, &mddev->disks);
  1874. bd_link_disk_holder(rdev->bdev, mddev->gendisk);
  1875. /* May as well allow recovery to be retried once */
  1876. mddev->recovery_disabled++;
  1877. return 0;
  1878. fail:
  1879. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1880. b, mdname(mddev));
  1881. return err;
  1882. }
  1883. static void md_delayed_delete(struct work_struct *ws)
  1884. {
  1885. struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
  1886. kobject_del(&rdev->kobj);
  1887. kobject_put(&rdev->kobj);
  1888. }
  1889. static void unbind_rdev_from_array(struct md_rdev *rdev)
  1890. {
  1891. char b[BDEVNAME_SIZE];
  1892. bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
  1893. list_del_rcu(&rdev->same_set);
  1894. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1895. rdev->mddev = NULL;
  1896. sysfs_remove_link(&rdev->kobj, "block");
  1897. sysfs_put(rdev->sysfs_state);
  1898. rdev->sysfs_state = NULL;
  1899. rdev->badblocks.count = 0;
  1900. /* We need to delay this, otherwise we can deadlock when
  1901. * writing to 'remove' to "dev/state". We also need
  1902. * to delay it due to rcu usage.
  1903. */
  1904. synchronize_rcu();
  1905. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1906. kobject_get(&rdev->kobj);
  1907. queue_work(md_misc_wq, &rdev->del_work);
  1908. }
  1909. /*
  1910. * prevent the device from being mounted, repartitioned or
  1911. * otherwise reused by a RAID array (or any other kernel
  1912. * subsystem), by bd_claiming the device.
  1913. */
  1914. static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
  1915. {
  1916. int err = 0;
  1917. struct block_device *bdev;
  1918. char b[BDEVNAME_SIZE];
  1919. bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1920. shared ? (struct md_rdev *)lock_rdev : rdev);
  1921. if (IS_ERR(bdev)) {
  1922. printk(KERN_ERR "md: could not open %s.\n",
  1923. __bdevname(dev, b));
  1924. return PTR_ERR(bdev);
  1925. }
  1926. rdev->bdev = bdev;
  1927. return err;
  1928. }
  1929. static void unlock_rdev(struct md_rdev *rdev)
  1930. {
  1931. struct block_device *bdev = rdev->bdev;
  1932. rdev->bdev = NULL;
  1933. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1934. }
  1935. void md_autodetect_dev(dev_t dev);
  1936. static void export_rdev(struct md_rdev *rdev)
  1937. {
  1938. char b[BDEVNAME_SIZE];
  1939. printk(KERN_INFO "md: export_rdev(%s)\n",
  1940. bdevname(rdev->bdev,b));
  1941. md_rdev_clear(rdev);
  1942. #ifndef MODULE
  1943. if (test_bit(AutoDetected, &rdev->flags))
  1944. md_autodetect_dev(rdev->bdev->bd_dev);
  1945. #endif
  1946. unlock_rdev(rdev);
  1947. kobject_put(&rdev->kobj);
  1948. }
  1949. void md_kick_rdev_from_array(struct md_rdev *rdev)
  1950. {
  1951. unbind_rdev_from_array(rdev);
  1952. export_rdev(rdev);
  1953. }
  1954. EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
  1955. static void export_array(struct mddev *mddev)
  1956. {
  1957. struct md_rdev *rdev;
  1958. while (!list_empty(&mddev->disks)) {
  1959. rdev = list_first_entry(&mddev->disks, struct md_rdev,
  1960. same_set);
  1961. md_kick_rdev_from_array(rdev);
  1962. }
  1963. mddev->raid_disks = 0;
  1964. mddev->major_version = 0;
  1965. }
  1966. static void sync_sbs(struct mddev *mddev, int nospares)
  1967. {
  1968. /* Update each superblock (in-memory image), but
  1969. * if we are allowed to, skip spares which already
  1970. * have the right event counter, or have one earlier
  1971. * (which would mean they aren't being marked as dirty
  1972. * with the rest of the array)
  1973. */
  1974. struct md_rdev *rdev;
  1975. rdev_for_each(rdev, mddev) {
  1976. if (rdev->sb_events == mddev->events ||
  1977. (nospares &&
  1978. rdev->raid_disk < 0 &&
  1979. rdev->sb_events+1 == mddev->events)) {
  1980. /* Don't update this superblock */
  1981. rdev->sb_loaded = 2;
  1982. } else {
  1983. sync_super(mddev, rdev);
  1984. rdev->sb_loaded = 1;
  1985. }
  1986. }
  1987. }
  1988. static bool does_sb_need_changing(struct mddev *mddev)
  1989. {
  1990. struct md_rdev *rdev;
  1991. struct mdp_superblock_1 *sb;
  1992. int role;
  1993. /* Find a good rdev */
  1994. rdev_for_each(rdev, mddev)
  1995. if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
  1996. break;
  1997. /* No good device found. */
  1998. if (!rdev)
  1999. return false;
  2000. sb = page_address(rdev->sb_page);
  2001. /* Check if a device has become faulty or a spare become active */
  2002. rdev_for_each(rdev, mddev) {
  2003. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  2004. /* Device activated? */
  2005. if (role == 0xffff && rdev->raid_disk >=0 &&
  2006. !test_bit(Faulty, &rdev->flags))
  2007. return true;
  2008. /* Device turned faulty? */
  2009. if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
  2010. return true;
  2011. }
  2012. /* Check if any mddev parameters have changed */
  2013. if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
  2014. (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
  2015. (mddev->layout != le32_to_cpu(sb->layout)) ||
  2016. (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
  2017. (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
  2018. return true;
  2019. return false;
  2020. }
  2021. void md_update_sb(struct mddev *mddev, int force_change)
  2022. {
  2023. struct md_rdev *rdev;
  2024. int sync_req;
  2025. int nospares = 0;
  2026. int any_badblocks_changed = 0;
  2027. int ret = -1;
  2028. if (mddev->ro) {
  2029. if (force_change)
  2030. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  2031. return;
  2032. }
  2033. if (mddev_is_clustered(mddev)) {
  2034. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  2035. force_change = 1;
  2036. ret = md_cluster_ops->metadata_update_start(mddev);
  2037. /* Has someone else has updated the sb */
  2038. if (!does_sb_need_changing(mddev)) {
  2039. if (ret == 0)
  2040. md_cluster_ops->metadata_update_cancel(mddev);
  2041. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2042. return;
  2043. }
  2044. }
  2045. repeat:
  2046. /* First make sure individual recovery_offsets are correct */
  2047. rdev_for_each(rdev, mddev) {
  2048. if (rdev->raid_disk >= 0 &&
  2049. mddev->delta_disks >= 0 &&
  2050. !test_bit(Journal, &rdev->flags) &&
  2051. !test_bit(In_sync, &rdev->flags) &&
  2052. mddev->curr_resync_completed > rdev->recovery_offset)
  2053. rdev->recovery_offset = mddev->curr_resync_completed;
  2054. }
  2055. if (!mddev->persistent) {
  2056. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2057. clear_bit(MD_CHANGE_DEVS, &mddev->flags);
  2058. if (!mddev->external) {
  2059. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2060. rdev_for_each(rdev, mddev) {
  2061. if (rdev->badblocks.changed) {
  2062. rdev->badblocks.changed = 0;
  2063. md_ack_all_badblocks(&rdev->badblocks);
  2064. md_error(mddev, rdev);
  2065. }
  2066. clear_bit(Blocked, &rdev->flags);
  2067. clear_bit(BlockedBadBlocks, &rdev->flags);
  2068. wake_up(&rdev->blocked_wait);
  2069. }
  2070. }
  2071. wake_up(&mddev->sb_wait);
  2072. return;
  2073. }
  2074. spin_lock(&mddev->lock);
  2075. mddev->utime = get_seconds();
  2076. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  2077. force_change = 1;
  2078. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2079. /* just a clean<-> dirty transition, possibly leave spares alone,
  2080. * though if events isn't the right even/odd, we will have to do
  2081. * spares after all
  2082. */
  2083. nospares = 1;
  2084. if (force_change)
  2085. nospares = 0;
  2086. if (mddev->degraded)
  2087. /* If the array is degraded, then skipping spares is both
  2088. * dangerous and fairly pointless.
  2089. * Dangerous because a device that was removed from the array
  2090. * might have a event_count that still looks up-to-date,
  2091. * so it can be re-added without a resync.
  2092. * Pointless because if there are any spares to skip,
  2093. * then a recovery will happen and soon that array won't
  2094. * be degraded any more and the spare can go back to sleep then.
  2095. */
  2096. nospares = 0;
  2097. sync_req = mddev->in_sync;
  2098. /* If this is just a dirty<->clean transition, and the array is clean
  2099. * and 'events' is odd, we can roll back to the previous clean state */
  2100. if (nospares
  2101. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  2102. && mddev->can_decrease_events
  2103. && mddev->events != 1) {
  2104. mddev->events--;
  2105. mddev->can_decrease_events = 0;
  2106. } else {
  2107. /* otherwise we have to go forward and ... */
  2108. mddev->events ++;
  2109. mddev->can_decrease_events = nospares;
  2110. }
  2111. /*
  2112. * This 64-bit counter should never wrap.
  2113. * Either we are in around ~1 trillion A.C., assuming
  2114. * 1 reboot per second, or we have a bug...
  2115. */
  2116. WARN_ON(mddev->events == 0);
  2117. rdev_for_each(rdev, mddev) {
  2118. if (rdev->badblocks.changed)
  2119. any_badblocks_changed++;
  2120. if (test_bit(Faulty, &rdev->flags))
  2121. set_bit(FaultRecorded, &rdev->flags);
  2122. }
  2123. sync_sbs(mddev, nospares);
  2124. spin_unlock(&mddev->lock);
  2125. pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
  2126. mdname(mddev), mddev->in_sync);
  2127. bitmap_update_sb(mddev->bitmap);
  2128. rdev_for_each(rdev, mddev) {
  2129. char b[BDEVNAME_SIZE];
  2130. if (rdev->sb_loaded != 1)
  2131. continue; /* no noise on spare devices */
  2132. if (!test_bit(Faulty, &rdev->flags)) {
  2133. md_super_write(mddev,rdev,
  2134. rdev->sb_start, rdev->sb_size,
  2135. rdev->sb_page);
  2136. pr_debug("md: (write) %s's sb offset: %llu\n",
  2137. bdevname(rdev->bdev, b),
  2138. (unsigned long long)rdev->sb_start);
  2139. rdev->sb_events = mddev->events;
  2140. if (rdev->badblocks.size) {
  2141. md_super_write(mddev, rdev,
  2142. rdev->badblocks.sector,
  2143. rdev->badblocks.size << 9,
  2144. rdev->bb_page);
  2145. rdev->badblocks.size = 0;
  2146. }
  2147. } else
  2148. pr_debug("md: %s (skipping faulty)\n",
  2149. bdevname(rdev->bdev, b));
  2150. if (mddev->level == LEVEL_MULTIPATH)
  2151. /* only need to write one superblock... */
  2152. break;
  2153. }
  2154. md_super_wait(mddev);
  2155. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  2156. spin_lock(&mddev->lock);
  2157. if (mddev->in_sync != sync_req ||
  2158. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  2159. /* have to write it out again */
  2160. spin_unlock(&mddev->lock);
  2161. goto repeat;
  2162. }
  2163. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2164. spin_unlock(&mddev->lock);
  2165. wake_up(&mddev->sb_wait);
  2166. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2167. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  2168. rdev_for_each(rdev, mddev) {
  2169. if (test_and_clear_bit(FaultRecorded, &rdev->flags))
  2170. clear_bit(Blocked, &rdev->flags);
  2171. if (any_badblocks_changed)
  2172. md_ack_all_badblocks(&rdev->badblocks);
  2173. clear_bit(BlockedBadBlocks, &rdev->flags);
  2174. wake_up(&rdev->blocked_wait);
  2175. }
  2176. if (mddev_is_clustered(mddev) && ret == 0)
  2177. md_cluster_ops->metadata_update_finish(mddev);
  2178. }
  2179. EXPORT_SYMBOL(md_update_sb);
  2180. static int add_bound_rdev(struct md_rdev *rdev)
  2181. {
  2182. struct mddev *mddev = rdev->mddev;
  2183. int err = 0;
  2184. if (!mddev->pers->hot_remove_disk) {
  2185. /* If there is hot_add_disk but no hot_remove_disk
  2186. * then added disks for geometry changes,
  2187. * and should be added immediately.
  2188. */
  2189. super_types[mddev->major_version].
  2190. validate_super(mddev, rdev);
  2191. err = mddev->pers->hot_add_disk(mddev, rdev);
  2192. if (err) {
  2193. unbind_rdev_from_array(rdev);
  2194. export_rdev(rdev);
  2195. return err;
  2196. }
  2197. }
  2198. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2199. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  2200. if (mddev->degraded)
  2201. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  2202. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2203. md_new_event(mddev);
  2204. md_wakeup_thread(mddev->thread);
  2205. return 0;
  2206. }
  2207. /* words written to sysfs files may, or may not, be \n terminated.
  2208. * We want to accept with case. For this we use cmd_match.
  2209. */
  2210. static int cmd_match(const char *cmd, const char *str)
  2211. {
  2212. /* See if cmd, written into a sysfs file, matches
  2213. * str. They must either be the same, or cmd can
  2214. * have a trailing newline
  2215. */
  2216. while (*cmd && *str && *cmd == *str) {
  2217. cmd++;
  2218. str++;
  2219. }
  2220. if (*cmd == '\n')
  2221. cmd++;
  2222. if (*str || *cmd)
  2223. return 0;
  2224. return 1;
  2225. }
  2226. struct rdev_sysfs_entry {
  2227. struct attribute attr;
  2228. ssize_t (*show)(struct md_rdev *, char *);
  2229. ssize_t (*store)(struct md_rdev *, const char *, size_t);
  2230. };
  2231. static ssize_t
  2232. state_show(struct md_rdev *rdev, char *page)
  2233. {
  2234. char *sep = "";
  2235. size_t len = 0;
  2236. unsigned long flags = ACCESS_ONCE(rdev->flags);
  2237. if (test_bit(Faulty, &flags) ||
  2238. rdev->badblocks.unacked_exist) {
  2239. len+= sprintf(page+len, "%sfaulty",sep);
  2240. sep = ",";
  2241. }
  2242. if (test_bit(In_sync, &flags)) {
  2243. len += sprintf(page+len, "%sin_sync",sep);
  2244. sep = ",";
  2245. }
  2246. if (test_bit(Journal, &flags)) {
  2247. len += sprintf(page+len, "%sjournal",sep);
  2248. sep = ",";
  2249. }
  2250. if (test_bit(WriteMostly, &flags)) {
  2251. len += sprintf(page+len, "%swrite_mostly",sep);
  2252. sep = ",";
  2253. }
  2254. if (test_bit(Blocked, &flags) ||
  2255. (rdev->badblocks.unacked_exist
  2256. && !test_bit(Faulty, &flags))) {
  2257. len += sprintf(page+len, "%sblocked", sep);
  2258. sep = ",";
  2259. }
  2260. if (!test_bit(Faulty, &flags) &&
  2261. !test_bit(Journal, &flags) &&
  2262. !test_bit(In_sync, &flags)) {
  2263. len += sprintf(page+len, "%sspare", sep);
  2264. sep = ",";
  2265. }
  2266. if (test_bit(WriteErrorSeen, &flags)) {
  2267. len += sprintf(page+len, "%swrite_error", sep);
  2268. sep = ",";
  2269. }
  2270. if (test_bit(WantReplacement, &flags)) {
  2271. len += sprintf(page+len, "%swant_replacement", sep);
  2272. sep = ",";
  2273. }
  2274. if (test_bit(Replacement, &flags)) {
  2275. len += sprintf(page+len, "%sreplacement", sep);
  2276. sep = ",";
  2277. }
  2278. return len+sprintf(page+len, "\n");
  2279. }
  2280. static ssize_t
  2281. state_store(struct md_rdev *rdev, const char *buf, size_t len)
  2282. {
  2283. /* can write
  2284. * faulty - simulates an error
  2285. * remove - disconnects the device
  2286. * writemostly - sets write_mostly
  2287. * -writemostly - clears write_mostly
  2288. * blocked - sets the Blocked flags
  2289. * -blocked - clears the Blocked and possibly simulates an error
  2290. * insync - sets Insync providing device isn't active
  2291. * -insync - clear Insync for a device with a slot assigned,
  2292. * so that it gets rebuilt based on bitmap
  2293. * write_error - sets WriteErrorSeen
  2294. * -write_error - clears WriteErrorSeen
  2295. */
  2296. int err = -EINVAL;
  2297. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  2298. md_error(rdev->mddev, rdev);
  2299. if (test_bit(Faulty, &rdev->flags))
  2300. err = 0;
  2301. else
  2302. err = -EBUSY;
  2303. } else if (cmd_match(buf, "remove")) {
  2304. if (rdev->raid_disk >= 0)
  2305. err = -EBUSY;
  2306. else {
  2307. struct mddev *mddev = rdev->mddev;
  2308. err = 0;
  2309. if (mddev_is_clustered(mddev))
  2310. err = md_cluster_ops->remove_disk(mddev, rdev);
  2311. if (err == 0) {
  2312. md_kick_rdev_from_array(rdev);
  2313. if (mddev->pers)
  2314. md_update_sb(mddev, 1);
  2315. md_new_event(mddev);
  2316. }
  2317. }
  2318. } else if (cmd_match(buf, "writemostly")) {
  2319. set_bit(WriteMostly, &rdev->flags);
  2320. err = 0;
  2321. } else if (cmd_match(buf, "-writemostly")) {
  2322. clear_bit(WriteMostly, &rdev->flags);
  2323. err = 0;
  2324. } else if (cmd_match(buf, "blocked")) {
  2325. set_bit(Blocked, &rdev->flags);
  2326. err = 0;
  2327. } else if (cmd_match(buf, "-blocked")) {
  2328. if (!test_bit(Faulty, &rdev->flags) &&
  2329. rdev->badblocks.unacked_exist) {
  2330. /* metadata handler doesn't understand badblocks,
  2331. * so we need to fail the device
  2332. */
  2333. md_error(rdev->mddev, rdev);
  2334. }
  2335. clear_bit(Blocked, &rdev->flags);
  2336. clear_bit(BlockedBadBlocks, &rdev->flags);
  2337. wake_up(&rdev->blocked_wait);
  2338. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2339. md_wakeup_thread(rdev->mddev->thread);
  2340. err = 0;
  2341. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2342. set_bit(In_sync, &rdev->flags);
  2343. err = 0;
  2344. } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
  2345. !test_bit(Journal, &rdev->flags)) {
  2346. if (rdev->mddev->pers == NULL) {
  2347. clear_bit(In_sync, &rdev->flags);
  2348. rdev->saved_raid_disk = rdev->raid_disk;
  2349. rdev->raid_disk = -1;
  2350. err = 0;
  2351. }
  2352. } else if (cmd_match(buf, "write_error")) {
  2353. set_bit(WriteErrorSeen, &rdev->flags);
  2354. err = 0;
  2355. } else if (cmd_match(buf, "-write_error")) {
  2356. clear_bit(WriteErrorSeen, &rdev->flags);
  2357. err = 0;
  2358. } else if (cmd_match(buf, "want_replacement")) {
  2359. /* Any non-spare device that is not a replacement can
  2360. * become want_replacement at any time, but we then need to
  2361. * check if recovery is needed.
  2362. */
  2363. if (rdev->raid_disk >= 0 &&
  2364. !test_bit(Journal, &rdev->flags) &&
  2365. !test_bit(Replacement, &rdev->flags))
  2366. set_bit(WantReplacement, &rdev->flags);
  2367. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2368. md_wakeup_thread(rdev->mddev->thread);
  2369. err = 0;
  2370. } else if (cmd_match(buf, "-want_replacement")) {
  2371. /* Clearing 'want_replacement' is always allowed.
  2372. * Once replacements starts it is too late though.
  2373. */
  2374. err = 0;
  2375. clear_bit(WantReplacement, &rdev->flags);
  2376. } else if (cmd_match(buf, "replacement")) {
  2377. /* Can only set a device as a replacement when array has not
  2378. * yet been started. Once running, replacement is automatic
  2379. * from spares, or by assigning 'slot'.
  2380. */
  2381. if (rdev->mddev->pers)
  2382. err = -EBUSY;
  2383. else {
  2384. set_bit(Replacement, &rdev->flags);
  2385. err = 0;
  2386. }
  2387. } else if (cmd_match(buf, "-replacement")) {
  2388. /* Similarly, can only clear Replacement before start */
  2389. if (rdev->mddev->pers)
  2390. err = -EBUSY;
  2391. else {
  2392. clear_bit(Replacement, &rdev->flags);
  2393. err = 0;
  2394. }
  2395. } else if (cmd_match(buf, "re-add")) {
  2396. if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) &&
  2397. rdev->saved_raid_disk >= 0) {
  2398. /* clear_bit is performed _after_ all the devices
  2399. * have their local Faulty bit cleared. If any writes
  2400. * happen in the meantime in the local node, they
  2401. * will land in the local bitmap, which will be synced
  2402. * by this node eventually
  2403. */
  2404. if (!mddev_is_clustered(rdev->mddev) ||
  2405. (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
  2406. clear_bit(Faulty, &rdev->flags);
  2407. err = add_bound_rdev(rdev);
  2408. }
  2409. } else
  2410. err = -EBUSY;
  2411. }
  2412. if (!err)
  2413. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2414. return err ? err : len;
  2415. }
  2416. static struct rdev_sysfs_entry rdev_state =
  2417. __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2418. static ssize_t
  2419. errors_show(struct md_rdev *rdev, char *page)
  2420. {
  2421. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2422. }
  2423. static ssize_t
  2424. errors_store(struct md_rdev *rdev, const char *buf, size_t len)
  2425. {
  2426. unsigned int n;
  2427. int rv;
  2428. rv = kstrtouint(buf, 10, &n);
  2429. if (rv < 0)
  2430. return rv;
  2431. atomic_set(&rdev->corrected_errors, n);
  2432. return len;
  2433. }
  2434. static struct rdev_sysfs_entry rdev_errors =
  2435. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2436. static ssize_t
  2437. slot_show(struct md_rdev *rdev, char *page)
  2438. {
  2439. if (test_bit(Journal, &rdev->flags))
  2440. return sprintf(page, "journal\n");
  2441. else if (rdev->raid_disk < 0)
  2442. return sprintf(page, "none\n");
  2443. else
  2444. return sprintf(page, "%d\n", rdev->raid_disk);
  2445. }
  2446. static ssize_t
  2447. slot_store(struct md_rdev *rdev, const char *buf, size_t len)
  2448. {
  2449. int slot;
  2450. int err;
  2451. if (test_bit(Journal, &rdev->flags))
  2452. return -EBUSY;
  2453. if (strncmp(buf, "none", 4)==0)
  2454. slot = -1;
  2455. else {
  2456. err = kstrtouint(buf, 10, (unsigned int *)&slot);
  2457. if (err < 0)
  2458. return err;
  2459. }
  2460. if (rdev->mddev->pers && slot == -1) {
  2461. /* Setting 'slot' on an active array requires also
  2462. * updating the 'rd%d' link, and communicating
  2463. * with the personality with ->hot_*_disk.
  2464. * For now we only support removing
  2465. * failed/spare devices. This normally happens automatically,
  2466. * but not when the metadata is externally managed.
  2467. */
  2468. if (rdev->raid_disk == -1)
  2469. return -EEXIST;
  2470. /* personality does all needed checks */
  2471. if (rdev->mddev->pers->hot_remove_disk == NULL)
  2472. return -EINVAL;
  2473. clear_bit(Blocked, &rdev->flags);
  2474. remove_and_add_spares(rdev->mddev, rdev);
  2475. if (rdev->raid_disk >= 0)
  2476. return -EBUSY;
  2477. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2478. md_wakeup_thread(rdev->mddev->thread);
  2479. } else if (rdev->mddev->pers) {
  2480. /* Activating a spare .. or possibly reactivating
  2481. * if we ever get bitmaps working here.
  2482. */
  2483. int err;
  2484. if (rdev->raid_disk != -1)
  2485. return -EBUSY;
  2486. if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
  2487. return -EBUSY;
  2488. if (rdev->mddev->pers->hot_add_disk == NULL)
  2489. return -EINVAL;
  2490. if (slot >= rdev->mddev->raid_disks &&
  2491. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2492. return -ENOSPC;
  2493. rdev->raid_disk = slot;
  2494. if (test_bit(In_sync, &rdev->flags))
  2495. rdev->saved_raid_disk = slot;
  2496. else
  2497. rdev->saved_raid_disk = -1;
  2498. clear_bit(In_sync, &rdev->flags);
  2499. clear_bit(Bitmap_sync, &rdev->flags);
  2500. err = rdev->mddev->pers->
  2501. hot_add_disk(rdev->mddev, rdev);
  2502. if (err) {
  2503. rdev->raid_disk = -1;
  2504. return err;
  2505. } else
  2506. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2507. if (sysfs_link_rdev(rdev->mddev, rdev))
  2508. /* failure here is OK */;
  2509. /* don't wakeup anyone, leave that to userspace. */
  2510. } else {
  2511. if (slot >= rdev->mddev->raid_disks &&
  2512. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2513. return -ENOSPC;
  2514. rdev->raid_disk = slot;
  2515. /* assume it is working */
  2516. clear_bit(Faulty, &rdev->flags);
  2517. clear_bit(WriteMostly, &rdev->flags);
  2518. set_bit(In_sync, &rdev->flags);
  2519. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2520. }
  2521. return len;
  2522. }
  2523. static struct rdev_sysfs_entry rdev_slot =
  2524. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2525. static ssize_t
  2526. offset_show(struct md_rdev *rdev, char *page)
  2527. {
  2528. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2529. }
  2530. static ssize_t
  2531. offset_store(struct md_rdev *rdev, const char *buf, size_t len)
  2532. {
  2533. unsigned long long offset;
  2534. if (kstrtoull(buf, 10, &offset) < 0)
  2535. return -EINVAL;
  2536. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2537. return -EBUSY;
  2538. if (rdev->sectors && rdev->mddev->external)
  2539. /* Must set offset before size, so overlap checks
  2540. * can be sane */
  2541. return -EBUSY;
  2542. rdev->data_offset = offset;
  2543. rdev->new_data_offset = offset;
  2544. return len;
  2545. }
  2546. static struct rdev_sysfs_entry rdev_offset =
  2547. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2548. static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
  2549. {
  2550. return sprintf(page, "%llu\n",
  2551. (unsigned long long)rdev->new_data_offset);
  2552. }
  2553. static ssize_t new_offset_store(struct md_rdev *rdev,
  2554. const char *buf, size_t len)
  2555. {
  2556. unsigned long long new_offset;
  2557. struct mddev *mddev = rdev->mddev;
  2558. if (kstrtoull(buf, 10, &new_offset) < 0)
  2559. return -EINVAL;
  2560. if (mddev->sync_thread ||
  2561. test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
  2562. return -EBUSY;
  2563. if (new_offset == rdev->data_offset)
  2564. /* reset is always permitted */
  2565. ;
  2566. else if (new_offset > rdev->data_offset) {
  2567. /* must not push array size beyond rdev_sectors */
  2568. if (new_offset - rdev->data_offset
  2569. + mddev->dev_sectors > rdev->sectors)
  2570. return -E2BIG;
  2571. }
  2572. /* Metadata worries about other space details. */
  2573. /* decreasing the offset is inconsistent with a backwards
  2574. * reshape.
  2575. */
  2576. if (new_offset < rdev->data_offset &&
  2577. mddev->reshape_backwards)
  2578. return -EINVAL;
  2579. /* Increasing offset is inconsistent with forwards
  2580. * reshape. reshape_direction should be set to
  2581. * 'backwards' first.
  2582. */
  2583. if (new_offset > rdev->data_offset &&
  2584. !mddev->reshape_backwards)
  2585. return -EINVAL;
  2586. if (mddev->pers && mddev->persistent &&
  2587. !super_types[mddev->major_version]
  2588. .allow_new_offset(rdev, new_offset))
  2589. return -E2BIG;
  2590. rdev->new_data_offset = new_offset;
  2591. if (new_offset > rdev->data_offset)
  2592. mddev->reshape_backwards = 1;
  2593. else if (new_offset < rdev->data_offset)
  2594. mddev->reshape_backwards = 0;
  2595. return len;
  2596. }
  2597. static struct rdev_sysfs_entry rdev_new_offset =
  2598. __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
  2599. static ssize_t
  2600. rdev_size_show(struct md_rdev *rdev, char *page)
  2601. {
  2602. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2603. }
  2604. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2605. {
  2606. /* check if two start/length pairs overlap */
  2607. if (s1+l1 <= s2)
  2608. return 0;
  2609. if (s2+l2 <= s1)
  2610. return 0;
  2611. return 1;
  2612. }
  2613. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2614. {
  2615. unsigned long long blocks;
  2616. sector_t new;
  2617. if (kstrtoull(buf, 10, &blocks) < 0)
  2618. return -EINVAL;
  2619. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2620. return -EINVAL; /* sector conversion overflow */
  2621. new = blocks * 2;
  2622. if (new != blocks * 2)
  2623. return -EINVAL; /* unsigned long long to sector_t overflow */
  2624. *sectors = new;
  2625. return 0;
  2626. }
  2627. static ssize_t
  2628. rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
  2629. {
  2630. struct mddev *my_mddev = rdev->mddev;
  2631. sector_t oldsectors = rdev->sectors;
  2632. sector_t sectors;
  2633. if (test_bit(Journal, &rdev->flags))
  2634. return -EBUSY;
  2635. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2636. return -EINVAL;
  2637. if (rdev->data_offset != rdev->new_data_offset)
  2638. return -EINVAL; /* too confusing */
  2639. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2640. if (my_mddev->persistent) {
  2641. sectors = super_types[my_mddev->major_version].
  2642. rdev_size_change(rdev, sectors);
  2643. if (!sectors)
  2644. return -EBUSY;
  2645. } else if (!sectors)
  2646. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  2647. rdev->data_offset;
  2648. if (!my_mddev->pers->resize)
  2649. /* Cannot change size for RAID0 or Linear etc */
  2650. return -EINVAL;
  2651. }
  2652. if (sectors < my_mddev->dev_sectors)
  2653. return -EINVAL; /* component must fit device */
  2654. rdev->sectors = sectors;
  2655. if (sectors > oldsectors && my_mddev->external) {
  2656. /* Need to check that all other rdevs with the same
  2657. * ->bdev do not overlap. 'rcu' is sufficient to walk
  2658. * the rdev lists safely.
  2659. * This check does not provide a hard guarantee, it
  2660. * just helps avoid dangerous mistakes.
  2661. */
  2662. struct mddev *mddev;
  2663. int overlap = 0;
  2664. struct list_head *tmp;
  2665. rcu_read_lock();
  2666. for_each_mddev(mddev, tmp) {
  2667. struct md_rdev *rdev2;
  2668. rdev_for_each(rdev2, mddev)
  2669. if (rdev->bdev == rdev2->bdev &&
  2670. rdev != rdev2 &&
  2671. overlaps(rdev->data_offset, rdev->sectors,
  2672. rdev2->data_offset,
  2673. rdev2->sectors)) {
  2674. overlap = 1;
  2675. break;
  2676. }
  2677. if (overlap) {
  2678. mddev_put(mddev);
  2679. break;
  2680. }
  2681. }
  2682. rcu_read_unlock();
  2683. if (overlap) {
  2684. /* Someone else could have slipped in a size
  2685. * change here, but doing so is just silly.
  2686. * We put oldsectors back because we *know* it is
  2687. * safe, and trust userspace not to race with
  2688. * itself
  2689. */
  2690. rdev->sectors = oldsectors;
  2691. return -EBUSY;
  2692. }
  2693. }
  2694. return len;
  2695. }
  2696. static struct rdev_sysfs_entry rdev_size =
  2697. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2698. static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
  2699. {
  2700. unsigned long long recovery_start = rdev->recovery_offset;
  2701. if (test_bit(In_sync, &rdev->flags) ||
  2702. recovery_start == MaxSector)
  2703. return sprintf(page, "none\n");
  2704. return sprintf(page, "%llu\n", recovery_start);
  2705. }
  2706. static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
  2707. {
  2708. unsigned long long recovery_start;
  2709. if (cmd_match(buf, "none"))
  2710. recovery_start = MaxSector;
  2711. else if (kstrtoull(buf, 10, &recovery_start))
  2712. return -EINVAL;
  2713. if (rdev->mddev->pers &&
  2714. rdev->raid_disk >= 0)
  2715. return -EBUSY;
  2716. rdev->recovery_offset = recovery_start;
  2717. if (recovery_start == MaxSector)
  2718. set_bit(In_sync, &rdev->flags);
  2719. else
  2720. clear_bit(In_sync, &rdev->flags);
  2721. return len;
  2722. }
  2723. static struct rdev_sysfs_entry rdev_recovery_start =
  2724. __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
  2725. static ssize_t
  2726. badblocks_show(struct badblocks *bb, char *page, int unack);
  2727. static ssize_t
  2728. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
  2729. static ssize_t bb_show(struct md_rdev *rdev, char *page)
  2730. {
  2731. return badblocks_show(&rdev->badblocks, page, 0);
  2732. }
  2733. static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
  2734. {
  2735. int rv = badblocks_store(&rdev->badblocks, page, len, 0);
  2736. /* Maybe that ack was all we needed */
  2737. if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
  2738. wake_up(&rdev->blocked_wait);
  2739. return rv;
  2740. }
  2741. static struct rdev_sysfs_entry rdev_bad_blocks =
  2742. __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
  2743. static ssize_t ubb_show(struct md_rdev *rdev, char *page)
  2744. {
  2745. return badblocks_show(&rdev->badblocks, page, 1);
  2746. }
  2747. static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
  2748. {
  2749. return badblocks_store(&rdev->badblocks, page, len, 1);
  2750. }
  2751. static struct rdev_sysfs_entry rdev_unack_bad_blocks =
  2752. __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
  2753. static struct attribute *rdev_default_attrs[] = {
  2754. &rdev_state.attr,
  2755. &rdev_errors.attr,
  2756. &rdev_slot.attr,
  2757. &rdev_offset.attr,
  2758. &rdev_new_offset.attr,
  2759. &rdev_size.attr,
  2760. &rdev_recovery_start.attr,
  2761. &rdev_bad_blocks.attr,
  2762. &rdev_unack_bad_blocks.attr,
  2763. NULL,
  2764. };
  2765. static ssize_t
  2766. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2767. {
  2768. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2769. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2770. if (!entry->show)
  2771. return -EIO;
  2772. if (!rdev->mddev)
  2773. return -EBUSY;
  2774. return entry->show(rdev, page);
  2775. }
  2776. static ssize_t
  2777. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2778. const char *page, size_t length)
  2779. {
  2780. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2781. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2782. ssize_t rv;
  2783. struct mddev *mddev = rdev->mddev;
  2784. if (!entry->store)
  2785. return -EIO;
  2786. if (!capable(CAP_SYS_ADMIN))
  2787. return -EACCES;
  2788. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2789. if (!rv) {
  2790. if (rdev->mddev == NULL)
  2791. rv = -EBUSY;
  2792. else
  2793. rv = entry->store(rdev, page, length);
  2794. mddev_unlock(mddev);
  2795. }
  2796. return rv;
  2797. }
  2798. static void rdev_free(struct kobject *ko)
  2799. {
  2800. struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
  2801. kfree(rdev);
  2802. }
  2803. static const struct sysfs_ops rdev_sysfs_ops = {
  2804. .show = rdev_attr_show,
  2805. .store = rdev_attr_store,
  2806. };
  2807. static struct kobj_type rdev_ktype = {
  2808. .release = rdev_free,
  2809. .sysfs_ops = &rdev_sysfs_ops,
  2810. .default_attrs = rdev_default_attrs,
  2811. };
  2812. int md_rdev_init(struct md_rdev *rdev)
  2813. {
  2814. rdev->desc_nr = -1;
  2815. rdev->saved_raid_disk = -1;
  2816. rdev->raid_disk = -1;
  2817. rdev->flags = 0;
  2818. rdev->data_offset = 0;
  2819. rdev->new_data_offset = 0;
  2820. rdev->sb_events = 0;
  2821. rdev->last_read_error.tv_sec = 0;
  2822. rdev->last_read_error.tv_nsec = 0;
  2823. rdev->sb_loaded = 0;
  2824. rdev->bb_page = NULL;
  2825. atomic_set(&rdev->nr_pending, 0);
  2826. atomic_set(&rdev->read_errors, 0);
  2827. atomic_set(&rdev->corrected_errors, 0);
  2828. INIT_LIST_HEAD(&rdev->same_set);
  2829. init_waitqueue_head(&rdev->blocked_wait);
  2830. /* Add space to store bad block list.
  2831. * This reserves the space even on arrays where it cannot
  2832. * be used - I wonder if that matters
  2833. */
  2834. rdev->badblocks.count = 0;
  2835. rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
  2836. rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2837. seqlock_init(&rdev->badblocks.lock);
  2838. if (rdev->badblocks.page == NULL)
  2839. return -ENOMEM;
  2840. return 0;
  2841. }
  2842. EXPORT_SYMBOL_GPL(md_rdev_init);
  2843. /*
  2844. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2845. *
  2846. * mark the device faulty if:
  2847. *
  2848. * - the device is nonexistent (zero size)
  2849. * - the device has no valid superblock
  2850. *
  2851. * a faulty rdev _never_ has rdev->sb set.
  2852. */
  2853. static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
  2854. {
  2855. char b[BDEVNAME_SIZE];
  2856. int err;
  2857. struct md_rdev *rdev;
  2858. sector_t size;
  2859. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2860. if (!rdev) {
  2861. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2862. return ERR_PTR(-ENOMEM);
  2863. }
  2864. err = md_rdev_init(rdev);
  2865. if (err)
  2866. goto abort_free;
  2867. err = alloc_disk_sb(rdev);
  2868. if (err)
  2869. goto abort_free;
  2870. err = lock_rdev(rdev, newdev, super_format == -2);
  2871. if (err)
  2872. goto abort_free;
  2873. kobject_init(&rdev->kobj, &rdev_ktype);
  2874. size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
  2875. if (!size) {
  2876. printk(KERN_WARNING
  2877. "md: %s has zero or unknown size, marking faulty!\n",
  2878. bdevname(rdev->bdev,b));
  2879. err = -EINVAL;
  2880. goto abort_free;
  2881. }
  2882. if (super_format >= 0) {
  2883. err = super_types[super_format].
  2884. load_super(rdev, NULL, super_minor);
  2885. if (err == -EINVAL) {
  2886. printk(KERN_WARNING
  2887. "md: %s does not have a valid v%d.%d "
  2888. "superblock, not importing!\n",
  2889. bdevname(rdev->bdev,b),
  2890. super_format, super_minor);
  2891. goto abort_free;
  2892. }
  2893. if (err < 0) {
  2894. printk(KERN_WARNING
  2895. "md: could not read %s's sb, not importing!\n",
  2896. bdevname(rdev->bdev,b));
  2897. goto abort_free;
  2898. }
  2899. }
  2900. return rdev;
  2901. abort_free:
  2902. if (rdev->bdev)
  2903. unlock_rdev(rdev);
  2904. md_rdev_clear(rdev);
  2905. kfree(rdev);
  2906. return ERR_PTR(err);
  2907. }
  2908. /*
  2909. * Check a full RAID array for plausibility
  2910. */
  2911. static void analyze_sbs(struct mddev *mddev)
  2912. {
  2913. int i;
  2914. struct md_rdev *rdev, *freshest, *tmp;
  2915. char b[BDEVNAME_SIZE];
  2916. freshest = NULL;
  2917. rdev_for_each_safe(rdev, tmp, mddev)
  2918. switch (super_types[mddev->major_version].
  2919. load_super(rdev, freshest, mddev->minor_version)) {
  2920. case 1:
  2921. freshest = rdev;
  2922. break;
  2923. case 0:
  2924. break;
  2925. default:
  2926. printk( KERN_ERR \
  2927. "md: fatal superblock inconsistency in %s"
  2928. " -- removing from array\n",
  2929. bdevname(rdev->bdev,b));
  2930. md_kick_rdev_from_array(rdev);
  2931. }
  2932. super_types[mddev->major_version].
  2933. validate_super(mddev, freshest);
  2934. i = 0;
  2935. rdev_for_each_safe(rdev, tmp, mddev) {
  2936. if (mddev->max_disks &&
  2937. (rdev->desc_nr >= mddev->max_disks ||
  2938. i > mddev->max_disks)) {
  2939. printk(KERN_WARNING
  2940. "md: %s: %s: only %d devices permitted\n",
  2941. mdname(mddev), bdevname(rdev->bdev, b),
  2942. mddev->max_disks);
  2943. md_kick_rdev_from_array(rdev);
  2944. continue;
  2945. }
  2946. if (rdev != freshest) {
  2947. if (super_types[mddev->major_version].
  2948. validate_super(mddev, rdev)) {
  2949. printk(KERN_WARNING "md: kicking non-fresh %s"
  2950. " from array!\n",
  2951. bdevname(rdev->bdev,b));
  2952. md_kick_rdev_from_array(rdev);
  2953. continue;
  2954. }
  2955. }
  2956. if (mddev->level == LEVEL_MULTIPATH) {
  2957. rdev->desc_nr = i++;
  2958. rdev->raid_disk = rdev->desc_nr;
  2959. set_bit(In_sync, &rdev->flags);
  2960. } else if (rdev->raid_disk >=
  2961. (mddev->raid_disks - min(0, mddev->delta_disks)) &&
  2962. !test_bit(Journal, &rdev->flags)) {
  2963. rdev->raid_disk = -1;
  2964. clear_bit(In_sync, &rdev->flags);
  2965. }
  2966. }
  2967. }
  2968. /* Read a fixed-point number.
  2969. * Numbers in sysfs attributes should be in "standard" units where
  2970. * possible, so time should be in seconds.
  2971. * However we internally use a a much smaller unit such as
  2972. * milliseconds or jiffies.
  2973. * This function takes a decimal number with a possible fractional
  2974. * component, and produces an integer which is the result of
  2975. * multiplying that number by 10^'scale'.
  2976. * all without any floating-point arithmetic.
  2977. */
  2978. int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
  2979. {
  2980. unsigned long result = 0;
  2981. long decimals = -1;
  2982. while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
  2983. if (*cp == '.')
  2984. decimals = 0;
  2985. else if (decimals < scale) {
  2986. unsigned int value;
  2987. value = *cp - '0';
  2988. result = result * 10 + value;
  2989. if (decimals >= 0)
  2990. decimals++;
  2991. }
  2992. cp++;
  2993. }
  2994. if (*cp == '\n')
  2995. cp++;
  2996. if (*cp)
  2997. return -EINVAL;
  2998. if (decimals < 0)
  2999. decimals = 0;
  3000. while (decimals < scale) {
  3001. result *= 10;
  3002. decimals ++;
  3003. }
  3004. *res = result;
  3005. return 0;
  3006. }
  3007. static ssize_t
  3008. safe_delay_show(struct mddev *mddev, char *page)
  3009. {
  3010. int msec = (mddev->safemode_delay*1000)/HZ;
  3011. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  3012. }
  3013. static ssize_t
  3014. safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
  3015. {
  3016. unsigned long msec;
  3017. if (mddev_is_clustered(mddev)) {
  3018. pr_info("md: Safemode is disabled for clustered mode\n");
  3019. return -EINVAL;
  3020. }
  3021. if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
  3022. return -EINVAL;
  3023. if (msec == 0)
  3024. mddev->safemode_delay = 0;
  3025. else {
  3026. unsigned long old_delay = mddev->safemode_delay;
  3027. unsigned long new_delay = (msec*HZ)/1000;
  3028. if (new_delay == 0)
  3029. new_delay = 1;
  3030. mddev->safemode_delay = new_delay;
  3031. if (new_delay < old_delay || old_delay == 0)
  3032. mod_timer(&mddev->safemode_timer, jiffies+1);
  3033. }
  3034. return len;
  3035. }
  3036. static struct md_sysfs_entry md_safe_delay =
  3037. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  3038. static ssize_t
  3039. level_show(struct mddev *mddev, char *page)
  3040. {
  3041. struct md_personality *p;
  3042. int ret;
  3043. spin_lock(&mddev->lock);
  3044. p = mddev->pers;
  3045. if (p)
  3046. ret = sprintf(page, "%s\n", p->name);
  3047. else if (mddev->clevel[0])
  3048. ret = sprintf(page, "%s\n", mddev->clevel);
  3049. else if (mddev->level != LEVEL_NONE)
  3050. ret = sprintf(page, "%d\n", mddev->level);
  3051. else
  3052. ret = 0;
  3053. spin_unlock(&mddev->lock);
  3054. return ret;
  3055. }
  3056. static ssize_t
  3057. level_store(struct mddev *mddev, const char *buf, size_t len)
  3058. {
  3059. char clevel[16];
  3060. ssize_t rv;
  3061. size_t slen = len;
  3062. struct md_personality *pers, *oldpers;
  3063. long level;
  3064. void *priv, *oldpriv;
  3065. struct md_rdev *rdev;
  3066. if (slen == 0 || slen >= sizeof(clevel))
  3067. return -EINVAL;
  3068. rv = mddev_lock(mddev);
  3069. if (rv)
  3070. return rv;
  3071. if (mddev->pers == NULL) {
  3072. strncpy(mddev->clevel, buf, slen);
  3073. if (mddev->clevel[slen-1] == '\n')
  3074. slen--;
  3075. mddev->clevel[slen] = 0;
  3076. mddev->level = LEVEL_NONE;
  3077. rv = len;
  3078. goto out_unlock;
  3079. }
  3080. rv = -EROFS;
  3081. if (mddev->ro)
  3082. goto out_unlock;
  3083. /* request to change the personality. Need to ensure:
  3084. * - array is not engaged in resync/recovery/reshape
  3085. * - old personality can be suspended
  3086. * - new personality will access other array.
  3087. */
  3088. rv = -EBUSY;
  3089. if (mddev->sync_thread ||
  3090. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3091. mddev->reshape_position != MaxSector ||
  3092. mddev->sysfs_active)
  3093. goto out_unlock;
  3094. rv = -EINVAL;
  3095. if (!mddev->pers->quiesce) {
  3096. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  3097. mdname(mddev), mddev->pers->name);
  3098. goto out_unlock;
  3099. }
  3100. /* Now find the new personality */
  3101. strncpy(clevel, buf, slen);
  3102. if (clevel[slen-1] == '\n')
  3103. slen--;
  3104. clevel[slen] = 0;
  3105. if (kstrtol(clevel, 10, &level))
  3106. level = LEVEL_NONE;
  3107. if (request_module("md-%s", clevel) != 0)
  3108. request_module("md-level-%s", clevel);
  3109. spin_lock(&pers_lock);
  3110. pers = find_pers(level, clevel);
  3111. if (!pers || !try_module_get(pers->owner)) {
  3112. spin_unlock(&pers_lock);
  3113. printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
  3114. rv = -EINVAL;
  3115. goto out_unlock;
  3116. }
  3117. spin_unlock(&pers_lock);
  3118. if (pers == mddev->pers) {
  3119. /* Nothing to do! */
  3120. module_put(pers->owner);
  3121. rv = len;
  3122. goto out_unlock;
  3123. }
  3124. if (!pers->takeover) {
  3125. module_put(pers->owner);
  3126. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  3127. mdname(mddev), clevel);
  3128. rv = -EINVAL;
  3129. goto out_unlock;
  3130. }
  3131. rdev_for_each(rdev, mddev)
  3132. rdev->new_raid_disk = rdev->raid_disk;
  3133. /* ->takeover must set new_* and/or delta_disks
  3134. * if it succeeds, and may set them when it fails.
  3135. */
  3136. priv = pers->takeover(mddev);
  3137. if (IS_ERR(priv)) {
  3138. mddev->new_level = mddev->level;
  3139. mddev->new_layout = mddev->layout;
  3140. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3141. mddev->raid_disks -= mddev->delta_disks;
  3142. mddev->delta_disks = 0;
  3143. mddev->reshape_backwards = 0;
  3144. module_put(pers->owner);
  3145. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  3146. mdname(mddev), clevel);
  3147. rv = PTR_ERR(priv);
  3148. goto out_unlock;
  3149. }
  3150. /* Looks like we have a winner */
  3151. mddev_suspend(mddev);
  3152. mddev_detach(mddev);
  3153. spin_lock(&mddev->lock);
  3154. oldpers = mddev->pers;
  3155. oldpriv = mddev->private;
  3156. mddev->pers = pers;
  3157. mddev->private = priv;
  3158. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3159. mddev->level = mddev->new_level;
  3160. mddev->layout = mddev->new_layout;
  3161. mddev->chunk_sectors = mddev->new_chunk_sectors;
  3162. mddev->delta_disks = 0;
  3163. mddev->reshape_backwards = 0;
  3164. mddev->degraded = 0;
  3165. spin_unlock(&mddev->lock);
  3166. if (oldpers->sync_request == NULL &&
  3167. mddev->external) {
  3168. /* We are converting from a no-redundancy array
  3169. * to a redundancy array and metadata is managed
  3170. * externally so we need to be sure that writes
  3171. * won't block due to a need to transition
  3172. * clean->dirty
  3173. * until external management is started.
  3174. */
  3175. mddev->in_sync = 0;
  3176. mddev->safemode_delay = 0;
  3177. mddev->safemode = 0;
  3178. }
  3179. oldpers->free(mddev, oldpriv);
  3180. if (oldpers->sync_request == NULL &&
  3181. pers->sync_request != NULL) {
  3182. /* need to add the md_redundancy_group */
  3183. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  3184. printk(KERN_WARNING
  3185. "md: cannot register extra attributes for %s\n",
  3186. mdname(mddev));
  3187. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
  3188. }
  3189. if (oldpers->sync_request != NULL &&
  3190. pers->sync_request == NULL) {
  3191. /* need to remove the md_redundancy_group */
  3192. if (mddev->to_remove == NULL)
  3193. mddev->to_remove = &md_redundancy_group;
  3194. }
  3195. rdev_for_each(rdev, mddev) {
  3196. if (rdev->raid_disk < 0)
  3197. continue;
  3198. if (rdev->new_raid_disk >= mddev->raid_disks)
  3199. rdev->new_raid_disk = -1;
  3200. if (rdev->new_raid_disk == rdev->raid_disk)
  3201. continue;
  3202. sysfs_unlink_rdev(mddev, rdev);
  3203. }
  3204. rdev_for_each(rdev, mddev) {
  3205. if (rdev->raid_disk < 0)
  3206. continue;
  3207. if (rdev->new_raid_disk == rdev->raid_disk)
  3208. continue;
  3209. rdev->raid_disk = rdev->new_raid_disk;
  3210. if (rdev->raid_disk < 0)
  3211. clear_bit(In_sync, &rdev->flags);
  3212. else {
  3213. if (sysfs_link_rdev(mddev, rdev))
  3214. printk(KERN_WARNING "md: cannot register rd%d"
  3215. " for %s after level change\n",
  3216. rdev->raid_disk, mdname(mddev));
  3217. }
  3218. }
  3219. if (pers->sync_request == NULL) {
  3220. /* this is now an array without redundancy, so
  3221. * it must always be in_sync
  3222. */
  3223. mddev->in_sync = 1;
  3224. del_timer_sync(&mddev->safemode_timer);
  3225. }
  3226. blk_set_stacking_limits(&mddev->queue->limits);
  3227. pers->run(mddev);
  3228. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3229. mddev_resume(mddev);
  3230. if (!mddev->thread)
  3231. md_update_sb(mddev, 1);
  3232. sysfs_notify(&mddev->kobj, NULL, "level");
  3233. md_new_event(mddev);
  3234. rv = len;
  3235. out_unlock:
  3236. mddev_unlock(mddev);
  3237. return rv;
  3238. }
  3239. static struct md_sysfs_entry md_level =
  3240. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  3241. static ssize_t
  3242. layout_show(struct mddev *mddev, char *page)
  3243. {
  3244. /* just a number, not meaningful for all levels */
  3245. if (mddev->reshape_position != MaxSector &&
  3246. mddev->layout != mddev->new_layout)
  3247. return sprintf(page, "%d (%d)\n",
  3248. mddev->new_layout, mddev->layout);
  3249. return sprintf(page, "%d\n", mddev->layout);
  3250. }
  3251. static ssize_t
  3252. layout_store(struct mddev *mddev, const char *buf, size_t len)
  3253. {
  3254. unsigned int n;
  3255. int err;
  3256. err = kstrtouint(buf, 10, &n);
  3257. if (err < 0)
  3258. return err;
  3259. err = mddev_lock(mddev);
  3260. if (err)
  3261. return err;
  3262. if (mddev->pers) {
  3263. if (mddev->pers->check_reshape == NULL)
  3264. err = -EBUSY;
  3265. else if (mddev->ro)
  3266. err = -EROFS;
  3267. else {
  3268. mddev->new_layout = n;
  3269. err = mddev->pers->check_reshape(mddev);
  3270. if (err)
  3271. mddev->new_layout = mddev->layout;
  3272. }
  3273. } else {
  3274. mddev->new_layout = n;
  3275. if (mddev->reshape_position == MaxSector)
  3276. mddev->layout = n;
  3277. }
  3278. mddev_unlock(mddev);
  3279. return err ?: len;
  3280. }
  3281. static struct md_sysfs_entry md_layout =
  3282. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  3283. static ssize_t
  3284. raid_disks_show(struct mddev *mddev, char *page)
  3285. {
  3286. if (mddev->raid_disks == 0)
  3287. return 0;
  3288. if (mddev->reshape_position != MaxSector &&
  3289. mddev->delta_disks != 0)
  3290. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  3291. mddev->raid_disks - mddev->delta_disks);
  3292. return sprintf(page, "%d\n", mddev->raid_disks);
  3293. }
  3294. static int update_raid_disks(struct mddev *mddev, int raid_disks);
  3295. static ssize_t
  3296. raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
  3297. {
  3298. unsigned int n;
  3299. int err;
  3300. err = kstrtouint(buf, 10, &n);
  3301. if (err < 0)
  3302. return err;
  3303. err = mddev_lock(mddev);
  3304. if (err)
  3305. return err;
  3306. if (mddev->pers)
  3307. err = update_raid_disks(mddev, n);
  3308. else if (mddev->reshape_position != MaxSector) {
  3309. struct md_rdev *rdev;
  3310. int olddisks = mddev->raid_disks - mddev->delta_disks;
  3311. err = -EINVAL;
  3312. rdev_for_each(rdev, mddev) {
  3313. if (olddisks < n &&
  3314. rdev->data_offset < rdev->new_data_offset)
  3315. goto out_unlock;
  3316. if (olddisks > n &&
  3317. rdev->data_offset > rdev->new_data_offset)
  3318. goto out_unlock;
  3319. }
  3320. err = 0;
  3321. mddev->delta_disks = n - olddisks;
  3322. mddev->raid_disks = n;
  3323. mddev->reshape_backwards = (mddev->delta_disks < 0);
  3324. } else
  3325. mddev->raid_disks = n;
  3326. out_unlock:
  3327. mddev_unlock(mddev);
  3328. return err ? err : len;
  3329. }
  3330. static struct md_sysfs_entry md_raid_disks =
  3331. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  3332. static ssize_t
  3333. chunk_size_show(struct mddev *mddev, char *page)
  3334. {
  3335. if (mddev->reshape_position != MaxSector &&
  3336. mddev->chunk_sectors != mddev->new_chunk_sectors)
  3337. return sprintf(page, "%d (%d)\n",
  3338. mddev->new_chunk_sectors << 9,
  3339. mddev->chunk_sectors << 9);
  3340. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  3341. }
  3342. static ssize_t
  3343. chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
  3344. {
  3345. unsigned long n;
  3346. int err;
  3347. err = kstrtoul(buf, 10, &n);
  3348. if (err < 0)
  3349. return err;
  3350. err = mddev_lock(mddev);
  3351. if (err)
  3352. return err;
  3353. if (mddev->pers) {
  3354. if (mddev->pers->check_reshape == NULL)
  3355. err = -EBUSY;
  3356. else if (mddev->ro)
  3357. err = -EROFS;
  3358. else {
  3359. mddev->new_chunk_sectors = n >> 9;
  3360. err = mddev->pers->check_reshape(mddev);
  3361. if (err)
  3362. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3363. }
  3364. } else {
  3365. mddev->new_chunk_sectors = n >> 9;
  3366. if (mddev->reshape_position == MaxSector)
  3367. mddev->chunk_sectors = n >> 9;
  3368. }
  3369. mddev_unlock(mddev);
  3370. return err ?: len;
  3371. }
  3372. static struct md_sysfs_entry md_chunk_size =
  3373. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  3374. static ssize_t
  3375. resync_start_show(struct mddev *mddev, char *page)
  3376. {
  3377. if (mddev->recovery_cp == MaxSector)
  3378. return sprintf(page, "none\n");
  3379. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  3380. }
  3381. static ssize_t
  3382. resync_start_store(struct mddev *mddev, const char *buf, size_t len)
  3383. {
  3384. unsigned long long n;
  3385. int err;
  3386. if (cmd_match(buf, "none"))
  3387. n = MaxSector;
  3388. else {
  3389. err = kstrtoull(buf, 10, &n);
  3390. if (err < 0)
  3391. return err;
  3392. if (n != (sector_t)n)
  3393. return -EINVAL;
  3394. }
  3395. err = mddev_lock(mddev);
  3396. if (err)
  3397. return err;
  3398. if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3399. err = -EBUSY;
  3400. if (!err) {
  3401. mddev->recovery_cp = n;
  3402. if (mddev->pers)
  3403. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3404. }
  3405. mddev_unlock(mddev);
  3406. return err ?: len;
  3407. }
  3408. static struct md_sysfs_entry md_resync_start =
  3409. __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
  3410. resync_start_show, resync_start_store);
  3411. /*
  3412. * The array state can be:
  3413. *
  3414. * clear
  3415. * No devices, no size, no level
  3416. * Equivalent to STOP_ARRAY ioctl
  3417. * inactive
  3418. * May have some settings, but array is not active
  3419. * all IO results in error
  3420. * When written, doesn't tear down array, but just stops it
  3421. * suspended (not supported yet)
  3422. * All IO requests will block. The array can be reconfigured.
  3423. * Writing this, if accepted, will block until array is quiescent
  3424. * readonly
  3425. * no resync can happen. no superblocks get written.
  3426. * write requests fail
  3427. * read-auto
  3428. * like readonly, but behaves like 'clean' on a write request.
  3429. *
  3430. * clean - no pending writes, but otherwise active.
  3431. * When written to inactive array, starts without resync
  3432. * If a write request arrives then
  3433. * if metadata is known, mark 'dirty' and switch to 'active'.
  3434. * if not known, block and switch to write-pending
  3435. * If written to an active array that has pending writes, then fails.
  3436. * active
  3437. * fully active: IO and resync can be happening.
  3438. * When written to inactive array, starts with resync
  3439. *
  3440. * write-pending
  3441. * clean, but writes are blocked waiting for 'active' to be written.
  3442. *
  3443. * active-idle
  3444. * like active, but no writes have been seen for a while (100msec).
  3445. *
  3446. */
  3447. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  3448. write_pending, active_idle, bad_word};
  3449. static char *array_states[] = {
  3450. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  3451. "write-pending", "active-idle", NULL };
  3452. static int match_word(const char *word, char **list)
  3453. {
  3454. int n;
  3455. for (n=0; list[n]; n++)
  3456. if (cmd_match(word, list[n]))
  3457. break;
  3458. return n;
  3459. }
  3460. static ssize_t
  3461. array_state_show(struct mddev *mddev, char *page)
  3462. {
  3463. enum array_state st = inactive;
  3464. if (mddev->pers)
  3465. switch(mddev->ro) {
  3466. case 1:
  3467. st = readonly;
  3468. break;
  3469. case 2:
  3470. st = read_auto;
  3471. break;
  3472. case 0:
  3473. if (mddev->in_sync)
  3474. st = clean;
  3475. else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  3476. st = write_pending;
  3477. else if (mddev->safemode)
  3478. st = active_idle;
  3479. else
  3480. st = active;
  3481. }
  3482. else {
  3483. if (list_empty(&mddev->disks) &&
  3484. mddev->raid_disks == 0 &&
  3485. mddev->dev_sectors == 0)
  3486. st = clear;
  3487. else
  3488. st = inactive;
  3489. }
  3490. return sprintf(page, "%s\n", array_states[st]);
  3491. }
  3492. static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
  3493. static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
  3494. static int do_md_run(struct mddev *mddev);
  3495. static int restart_array(struct mddev *mddev);
  3496. static ssize_t
  3497. array_state_store(struct mddev *mddev, const char *buf, size_t len)
  3498. {
  3499. int err;
  3500. enum array_state st = match_word(buf, array_states);
  3501. if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
  3502. /* don't take reconfig_mutex when toggling between
  3503. * clean and active
  3504. */
  3505. spin_lock(&mddev->lock);
  3506. if (st == active) {
  3507. restart_array(mddev);
  3508. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3509. wake_up(&mddev->sb_wait);
  3510. err = 0;
  3511. } else /* st == clean */ {
  3512. restart_array(mddev);
  3513. if (atomic_read(&mddev->writes_pending) == 0) {
  3514. if (mddev->in_sync == 0) {
  3515. mddev->in_sync = 1;
  3516. if (mddev->safemode == 1)
  3517. mddev->safemode = 0;
  3518. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3519. }
  3520. err = 0;
  3521. } else
  3522. err = -EBUSY;
  3523. }
  3524. spin_unlock(&mddev->lock);
  3525. return err ?: len;
  3526. }
  3527. err = mddev_lock(mddev);
  3528. if (err)
  3529. return err;
  3530. err = -EINVAL;
  3531. switch(st) {
  3532. case bad_word:
  3533. break;
  3534. case clear:
  3535. /* stopping an active array */
  3536. err = do_md_stop(mddev, 0, NULL);
  3537. break;
  3538. case inactive:
  3539. /* stopping an active array */
  3540. if (mddev->pers)
  3541. err = do_md_stop(mddev, 2, NULL);
  3542. else
  3543. err = 0; /* already inactive */
  3544. break;
  3545. case suspended:
  3546. break; /* not supported yet */
  3547. case readonly:
  3548. if (mddev->pers)
  3549. err = md_set_readonly(mddev, NULL);
  3550. else {
  3551. mddev->ro = 1;
  3552. set_disk_ro(mddev->gendisk, 1);
  3553. err = do_md_run(mddev);
  3554. }
  3555. break;
  3556. case read_auto:
  3557. if (mddev->pers) {
  3558. if (mddev->ro == 0)
  3559. err = md_set_readonly(mddev, NULL);
  3560. else if (mddev->ro == 1)
  3561. err = restart_array(mddev);
  3562. if (err == 0) {
  3563. mddev->ro = 2;
  3564. set_disk_ro(mddev->gendisk, 0);
  3565. }
  3566. } else {
  3567. mddev->ro = 2;
  3568. err = do_md_run(mddev);
  3569. }
  3570. break;
  3571. case clean:
  3572. if (mddev->pers) {
  3573. err = restart_array(mddev);
  3574. if (err)
  3575. break;
  3576. spin_lock(&mddev->lock);
  3577. if (atomic_read(&mddev->writes_pending) == 0) {
  3578. if (mddev->in_sync == 0) {
  3579. mddev->in_sync = 1;
  3580. if (mddev->safemode == 1)
  3581. mddev->safemode = 0;
  3582. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3583. }
  3584. err = 0;
  3585. } else
  3586. err = -EBUSY;
  3587. spin_unlock(&mddev->lock);
  3588. } else
  3589. err = -EINVAL;
  3590. break;
  3591. case active:
  3592. if (mddev->pers) {
  3593. err = restart_array(mddev);
  3594. if (err)
  3595. break;
  3596. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3597. wake_up(&mddev->sb_wait);
  3598. err = 0;
  3599. } else {
  3600. mddev->ro = 0;
  3601. set_disk_ro(mddev->gendisk, 0);
  3602. err = do_md_run(mddev);
  3603. }
  3604. break;
  3605. case write_pending:
  3606. case active_idle:
  3607. /* these cannot be set */
  3608. break;
  3609. }
  3610. if (!err) {
  3611. if (mddev->hold_active == UNTIL_IOCTL)
  3612. mddev->hold_active = 0;
  3613. sysfs_notify_dirent_safe(mddev->sysfs_state);
  3614. }
  3615. mddev_unlock(mddev);
  3616. return err ?: len;
  3617. }
  3618. static struct md_sysfs_entry md_array_state =
  3619. __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  3620. static ssize_t
  3621. max_corrected_read_errors_show(struct mddev *mddev, char *page) {
  3622. return sprintf(page, "%d\n",
  3623. atomic_read(&mddev->max_corr_read_errors));
  3624. }
  3625. static ssize_t
  3626. max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
  3627. {
  3628. unsigned int n;
  3629. int rv;
  3630. rv = kstrtouint(buf, 10, &n);
  3631. if (rv < 0)
  3632. return rv;
  3633. atomic_set(&mddev->max_corr_read_errors, n);
  3634. return len;
  3635. }
  3636. static struct md_sysfs_entry max_corr_read_errors =
  3637. __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
  3638. max_corrected_read_errors_store);
  3639. static ssize_t
  3640. null_show(struct mddev *mddev, char *page)
  3641. {
  3642. return -EINVAL;
  3643. }
  3644. static ssize_t
  3645. new_dev_store(struct mddev *mddev, const char *buf, size_t len)
  3646. {
  3647. /* buf must be %d:%d\n? giving major and minor numbers */
  3648. /* The new device is added to the array.
  3649. * If the array has a persistent superblock, we read the
  3650. * superblock to initialise info and check validity.
  3651. * Otherwise, only checking done is that in bind_rdev_to_array,
  3652. * which mainly checks size.
  3653. */
  3654. char *e;
  3655. int major = simple_strtoul(buf, &e, 10);
  3656. int minor;
  3657. dev_t dev;
  3658. struct md_rdev *rdev;
  3659. int err;
  3660. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  3661. return -EINVAL;
  3662. minor = simple_strtoul(e+1, &e, 10);
  3663. if (*e && *e != '\n')
  3664. return -EINVAL;
  3665. dev = MKDEV(major, minor);
  3666. if (major != MAJOR(dev) ||
  3667. minor != MINOR(dev))
  3668. return -EOVERFLOW;
  3669. flush_workqueue(md_misc_wq);
  3670. err = mddev_lock(mddev);
  3671. if (err)
  3672. return err;
  3673. if (mddev->persistent) {
  3674. rdev = md_import_device(dev, mddev->major_version,
  3675. mddev->minor_version);
  3676. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  3677. struct md_rdev *rdev0
  3678. = list_entry(mddev->disks.next,
  3679. struct md_rdev, same_set);
  3680. err = super_types[mddev->major_version]
  3681. .load_super(rdev, rdev0, mddev->minor_version);
  3682. if (err < 0)
  3683. goto out;
  3684. }
  3685. } else if (mddev->external)
  3686. rdev = md_import_device(dev, -2, -1);
  3687. else
  3688. rdev = md_import_device(dev, -1, -1);
  3689. if (IS_ERR(rdev)) {
  3690. mddev_unlock(mddev);
  3691. return PTR_ERR(rdev);
  3692. }
  3693. err = bind_rdev_to_array(rdev, mddev);
  3694. out:
  3695. if (err)
  3696. export_rdev(rdev);
  3697. mddev_unlock(mddev);
  3698. return err ? err : len;
  3699. }
  3700. static struct md_sysfs_entry md_new_device =
  3701. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  3702. static ssize_t
  3703. bitmap_store(struct mddev *mddev, const char *buf, size_t len)
  3704. {
  3705. char *end;
  3706. unsigned long chunk, end_chunk;
  3707. int err;
  3708. err = mddev_lock(mddev);
  3709. if (err)
  3710. return err;
  3711. if (!mddev->bitmap)
  3712. goto out;
  3713. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  3714. while (*buf) {
  3715. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  3716. if (buf == end) break;
  3717. if (*end == '-') { /* range */
  3718. buf = end + 1;
  3719. end_chunk = simple_strtoul(buf, &end, 0);
  3720. if (buf == end) break;
  3721. }
  3722. if (*end && !isspace(*end)) break;
  3723. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  3724. buf = skip_spaces(end);
  3725. }
  3726. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  3727. out:
  3728. mddev_unlock(mddev);
  3729. return len;
  3730. }
  3731. static struct md_sysfs_entry md_bitmap =
  3732. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  3733. static ssize_t
  3734. size_show(struct mddev *mddev, char *page)
  3735. {
  3736. return sprintf(page, "%llu\n",
  3737. (unsigned long long)mddev->dev_sectors / 2);
  3738. }
  3739. static int update_size(struct mddev *mddev, sector_t num_sectors);
  3740. static ssize_t
  3741. size_store(struct mddev *mddev, const char *buf, size_t len)
  3742. {
  3743. /* If array is inactive, we can reduce the component size, but
  3744. * not increase it (except from 0).
  3745. * If array is active, we can try an on-line resize
  3746. */
  3747. sector_t sectors;
  3748. int err = strict_blocks_to_sectors(buf, &sectors);
  3749. if (err < 0)
  3750. return err;
  3751. err = mddev_lock(mddev);
  3752. if (err)
  3753. return err;
  3754. if (mddev->pers) {
  3755. err = update_size(mddev, sectors);
  3756. md_update_sb(mddev, 1);
  3757. } else {
  3758. if (mddev->dev_sectors == 0 ||
  3759. mddev->dev_sectors > sectors)
  3760. mddev->dev_sectors = sectors;
  3761. else
  3762. err = -ENOSPC;
  3763. }
  3764. mddev_unlock(mddev);
  3765. return err ? err : len;
  3766. }
  3767. static struct md_sysfs_entry md_size =
  3768. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3769. /* Metadata version.
  3770. * This is one of
  3771. * 'none' for arrays with no metadata (good luck...)
  3772. * 'external' for arrays with externally managed metadata,
  3773. * or N.M for internally known formats
  3774. */
  3775. static ssize_t
  3776. metadata_show(struct mddev *mddev, char *page)
  3777. {
  3778. if (mddev->persistent)
  3779. return sprintf(page, "%d.%d\n",
  3780. mddev->major_version, mddev->minor_version);
  3781. else if (mddev->external)
  3782. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3783. else
  3784. return sprintf(page, "none\n");
  3785. }
  3786. static ssize_t
  3787. metadata_store(struct mddev *mddev, const char *buf, size_t len)
  3788. {
  3789. int major, minor;
  3790. char *e;
  3791. int err;
  3792. /* Changing the details of 'external' metadata is
  3793. * always permitted. Otherwise there must be
  3794. * no devices attached to the array.
  3795. */
  3796. err = mddev_lock(mddev);
  3797. if (err)
  3798. return err;
  3799. err = -EBUSY;
  3800. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3801. ;
  3802. else if (!list_empty(&mddev->disks))
  3803. goto out_unlock;
  3804. err = 0;
  3805. if (cmd_match(buf, "none")) {
  3806. mddev->persistent = 0;
  3807. mddev->external = 0;
  3808. mddev->major_version = 0;
  3809. mddev->minor_version = 90;
  3810. goto out_unlock;
  3811. }
  3812. if (strncmp(buf, "external:", 9) == 0) {
  3813. size_t namelen = len-9;
  3814. if (namelen >= sizeof(mddev->metadata_type))
  3815. namelen = sizeof(mddev->metadata_type)-1;
  3816. strncpy(mddev->metadata_type, buf+9, namelen);
  3817. mddev->metadata_type[namelen] = 0;
  3818. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3819. mddev->metadata_type[--namelen] = 0;
  3820. mddev->persistent = 0;
  3821. mddev->external = 1;
  3822. mddev->major_version = 0;
  3823. mddev->minor_version = 90;
  3824. goto out_unlock;
  3825. }
  3826. major = simple_strtoul(buf, &e, 10);
  3827. err = -EINVAL;
  3828. if (e==buf || *e != '.')
  3829. goto out_unlock;
  3830. buf = e+1;
  3831. minor = simple_strtoul(buf, &e, 10);
  3832. if (e==buf || (*e && *e != '\n') )
  3833. goto out_unlock;
  3834. err = -ENOENT;
  3835. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3836. goto out_unlock;
  3837. mddev->major_version = major;
  3838. mddev->minor_version = minor;
  3839. mddev->persistent = 1;
  3840. mddev->external = 0;
  3841. err = 0;
  3842. out_unlock:
  3843. mddev_unlock(mddev);
  3844. return err ?: len;
  3845. }
  3846. static struct md_sysfs_entry md_metadata =
  3847. __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3848. static ssize_t
  3849. action_show(struct mddev *mddev, char *page)
  3850. {
  3851. char *type = "idle";
  3852. unsigned long recovery = mddev->recovery;
  3853. if (test_bit(MD_RECOVERY_FROZEN, &recovery))
  3854. type = "frozen";
  3855. else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
  3856. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
  3857. if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
  3858. type = "reshape";
  3859. else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
  3860. if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
  3861. type = "resync";
  3862. else if (test_bit(MD_RECOVERY_CHECK, &recovery))
  3863. type = "check";
  3864. else
  3865. type = "repair";
  3866. } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
  3867. type = "recover";
  3868. else if (mddev->reshape_position != MaxSector)
  3869. type = "reshape";
  3870. }
  3871. return sprintf(page, "%s\n", type);
  3872. }
  3873. static ssize_t
  3874. action_store(struct mddev *mddev, const char *page, size_t len)
  3875. {
  3876. if (!mddev->pers || !mddev->pers->sync_request)
  3877. return -EINVAL;
  3878. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3879. if (cmd_match(page, "frozen"))
  3880. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3881. else
  3882. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3883. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  3884. mddev_lock(mddev) == 0) {
  3885. flush_workqueue(md_misc_wq);
  3886. if (mddev->sync_thread) {
  3887. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3888. md_reap_sync_thread(mddev);
  3889. }
  3890. mddev_unlock(mddev);
  3891. }
  3892. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3893. return -EBUSY;
  3894. else if (cmd_match(page, "resync"))
  3895. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3896. else if (cmd_match(page, "recover")) {
  3897. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3898. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3899. } else if (cmd_match(page, "reshape")) {
  3900. int err;
  3901. if (mddev->pers->start_reshape == NULL)
  3902. return -EINVAL;
  3903. err = mddev_lock(mddev);
  3904. if (!err) {
  3905. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3906. err = -EBUSY;
  3907. else {
  3908. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3909. err = mddev->pers->start_reshape(mddev);
  3910. }
  3911. mddev_unlock(mddev);
  3912. }
  3913. if (err)
  3914. return err;
  3915. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3916. } else {
  3917. if (cmd_match(page, "check"))
  3918. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3919. else if (!cmd_match(page, "repair"))
  3920. return -EINVAL;
  3921. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3922. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3923. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3924. }
  3925. if (mddev->ro == 2) {
  3926. /* A write to sync_action is enough to justify
  3927. * canceling read-auto mode
  3928. */
  3929. mddev->ro = 0;
  3930. md_wakeup_thread(mddev->sync_thread);
  3931. }
  3932. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3933. md_wakeup_thread(mddev->thread);
  3934. sysfs_notify_dirent_safe(mddev->sysfs_action);
  3935. return len;
  3936. }
  3937. static struct md_sysfs_entry md_scan_mode =
  3938. __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3939. static ssize_t
  3940. last_sync_action_show(struct mddev *mddev, char *page)
  3941. {
  3942. return sprintf(page, "%s\n", mddev->last_sync_action);
  3943. }
  3944. static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
  3945. static ssize_t
  3946. mismatch_cnt_show(struct mddev *mddev, char *page)
  3947. {
  3948. return sprintf(page, "%llu\n",
  3949. (unsigned long long)
  3950. atomic64_read(&mddev->resync_mismatches));
  3951. }
  3952. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3953. static ssize_t
  3954. sync_min_show(struct mddev *mddev, char *page)
  3955. {
  3956. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3957. mddev->sync_speed_min ? "local": "system");
  3958. }
  3959. static ssize_t
  3960. sync_min_store(struct mddev *mddev, const char *buf, size_t len)
  3961. {
  3962. unsigned int min;
  3963. int rv;
  3964. if (strncmp(buf, "system", 6)==0) {
  3965. min = 0;
  3966. } else {
  3967. rv = kstrtouint(buf, 10, &min);
  3968. if (rv < 0)
  3969. return rv;
  3970. if (min == 0)
  3971. return -EINVAL;
  3972. }
  3973. mddev->sync_speed_min = min;
  3974. return len;
  3975. }
  3976. static struct md_sysfs_entry md_sync_min =
  3977. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3978. static ssize_t
  3979. sync_max_show(struct mddev *mddev, char *page)
  3980. {
  3981. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3982. mddev->sync_speed_max ? "local": "system");
  3983. }
  3984. static ssize_t
  3985. sync_max_store(struct mddev *mddev, const char *buf, size_t len)
  3986. {
  3987. unsigned int max;
  3988. int rv;
  3989. if (strncmp(buf, "system", 6)==0) {
  3990. max = 0;
  3991. } else {
  3992. rv = kstrtouint(buf, 10, &max);
  3993. if (rv < 0)
  3994. return rv;
  3995. if (max == 0)
  3996. return -EINVAL;
  3997. }
  3998. mddev->sync_speed_max = max;
  3999. return len;
  4000. }
  4001. static struct md_sysfs_entry md_sync_max =
  4002. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  4003. static ssize_t
  4004. degraded_show(struct mddev *mddev, char *page)
  4005. {
  4006. return sprintf(page, "%d\n", mddev->degraded);
  4007. }
  4008. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  4009. static ssize_t
  4010. sync_force_parallel_show(struct mddev *mddev, char *page)
  4011. {
  4012. return sprintf(page, "%d\n", mddev->parallel_resync);
  4013. }
  4014. static ssize_t
  4015. sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
  4016. {
  4017. long n;
  4018. if (kstrtol(buf, 10, &n))
  4019. return -EINVAL;
  4020. if (n != 0 && n != 1)
  4021. return -EINVAL;
  4022. mddev->parallel_resync = n;
  4023. if (mddev->sync_thread)
  4024. wake_up(&resync_wait);
  4025. return len;
  4026. }
  4027. /* force parallel resync, even with shared block devices */
  4028. static struct md_sysfs_entry md_sync_force_parallel =
  4029. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  4030. sync_force_parallel_show, sync_force_parallel_store);
  4031. static ssize_t
  4032. sync_speed_show(struct mddev *mddev, char *page)
  4033. {
  4034. unsigned long resync, dt, db;
  4035. if (mddev->curr_resync == 0)
  4036. return sprintf(page, "none\n");
  4037. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  4038. dt = (jiffies - mddev->resync_mark) / HZ;
  4039. if (!dt) dt++;
  4040. db = resync - mddev->resync_mark_cnt;
  4041. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  4042. }
  4043. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  4044. static ssize_t
  4045. sync_completed_show(struct mddev *mddev, char *page)
  4046. {
  4047. unsigned long long max_sectors, resync;
  4048. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  4049. return sprintf(page, "none\n");
  4050. if (mddev->curr_resync == 1 ||
  4051. mddev->curr_resync == 2)
  4052. return sprintf(page, "delayed\n");
  4053. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  4054. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  4055. max_sectors = mddev->resync_max_sectors;
  4056. else
  4057. max_sectors = mddev->dev_sectors;
  4058. resync = mddev->curr_resync_completed;
  4059. return sprintf(page, "%llu / %llu\n", resync, max_sectors);
  4060. }
  4061. static struct md_sysfs_entry md_sync_completed =
  4062. __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
  4063. static ssize_t
  4064. min_sync_show(struct mddev *mddev, char *page)
  4065. {
  4066. return sprintf(page, "%llu\n",
  4067. (unsigned long long)mddev->resync_min);
  4068. }
  4069. static ssize_t
  4070. min_sync_store(struct mddev *mddev, const char *buf, size_t len)
  4071. {
  4072. unsigned long long min;
  4073. int err;
  4074. if (kstrtoull(buf, 10, &min))
  4075. return -EINVAL;
  4076. spin_lock(&mddev->lock);
  4077. err = -EINVAL;
  4078. if (min > mddev->resync_max)
  4079. goto out_unlock;
  4080. err = -EBUSY;
  4081. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  4082. goto out_unlock;
  4083. /* Round down to multiple of 4K for safety */
  4084. mddev->resync_min = round_down(min, 8);
  4085. err = 0;
  4086. out_unlock:
  4087. spin_unlock(&mddev->lock);
  4088. return err ?: len;
  4089. }
  4090. static struct md_sysfs_entry md_min_sync =
  4091. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  4092. static ssize_t
  4093. max_sync_show(struct mddev *mddev, char *page)
  4094. {
  4095. if (mddev->resync_max == MaxSector)
  4096. return sprintf(page, "max\n");
  4097. else
  4098. return sprintf(page, "%llu\n",
  4099. (unsigned long long)mddev->resync_max);
  4100. }
  4101. static ssize_t
  4102. max_sync_store(struct mddev *mddev, const char *buf, size_t len)
  4103. {
  4104. int err;
  4105. spin_lock(&mddev->lock);
  4106. if (strncmp(buf, "max", 3) == 0)
  4107. mddev->resync_max = MaxSector;
  4108. else {
  4109. unsigned long long max;
  4110. int chunk;
  4111. err = -EINVAL;
  4112. if (kstrtoull(buf, 10, &max))
  4113. goto out_unlock;
  4114. if (max < mddev->resync_min)
  4115. goto out_unlock;
  4116. err = -EBUSY;
  4117. if (max < mddev->resync_max &&
  4118. mddev->ro == 0 &&
  4119. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  4120. goto out_unlock;
  4121. /* Must be a multiple of chunk_size */
  4122. chunk = mddev->chunk_sectors;
  4123. if (chunk) {
  4124. sector_t temp = max;
  4125. err = -EINVAL;
  4126. if (sector_div(temp, chunk))
  4127. goto out_unlock;
  4128. }
  4129. mddev->resync_max = max;
  4130. }
  4131. wake_up(&mddev->recovery_wait);
  4132. err = 0;
  4133. out_unlock:
  4134. spin_unlock(&mddev->lock);
  4135. return err ?: len;
  4136. }
  4137. static struct md_sysfs_entry md_max_sync =
  4138. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  4139. static ssize_t
  4140. suspend_lo_show(struct mddev *mddev, char *page)
  4141. {
  4142. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  4143. }
  4144. static ssize_t
  4145. suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
  4146. {
  4147. unsigned long long old, new;
  4148. int err;
  4149. err = kstrtoull(buf, 10, &new);
  4150. if (err < 0)
  4151. return err;
  4152. if (new != (sector_t)new)
  4153. return -EINVAL;
  4154. err = mddev_lock(mddev);
  4155. if (err)
  4156. return err;
  4157. err = -EINVAL;
  4158. if (mddev->pers == NULL ||
  4159. mddev->pers->quiesce == NULL)
  4160. goto unlock;
  4161. old = mddev->suspend_lo;
  4162. mddev->suspend_lo = new;
  4163. if (new >= old)
  4164. /* Shrinking suspended region */
  4165. mddev->pers->quiesce(mddev, 2);
  4166. else {
  4167. /* Expanding suspended region - need to wait */
  4168. mddev->pers->quiesce(mddev, 1);
  4169. mddev->pers->quiesce(mddev, 0);
  4170. }
  4171. err = 0;
  4172. unlock:
  4173. mddev_unlock(mddev);
  4174. return err ?: len;
  4175. }
  4176. static struct md_sysfs_entry md_suspend_lo =
  4177. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  4178. static ssize_t
  4179. suspend_hi_show(struct mddev *mddev, char *page)
  4180. {
  4181. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  4182. }
  4183. static ssize_t
  4184. suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
  4185. {
  4186. unsigned long long old, new;
  4187. int err;
  4188. err = kstrtoull(buf, 10, &new);
  4189. if (err < 0)
  4190. return err;
  4191. if (new != (sector_t)new)
  4192. return -EINVAL;
  4193. err = mddev_lock(mddev);
  4194. if (err)
  4195. return err;
  4196. err = -EINVAL;
  4197. if (mddev->pers == NULL ||
  4198. mddev->pers->quiesce == NULL)
  4199. goto unlock;
  4200. old = mddev->suspend_hi;
  4201. mddev->suspend_hi = new;
  4202. if (new <= old)
  4203. /* Shrinking suspended region */
  4204. mddev->pers->quiesce(mddev, 2);
  4205. else {
  4206. /* Expanding suspended region - need to wait */
  4207. mddev->pers->quiesce(mddev, 1);
  4208. mddev->pers->quiesce(mddev, 0);
  4209. }
  4210. err = 0;
  4211. unlock:
  4212. mddev_unlock(mddev);
  4213. return err ?: len;
  4214. }
  4215. static struct md_sysfs_entry md_suspend_hi =
  4216. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  4217. static ssize_t
  4218. reshape_position_show(struct mddev *mddev, char *page)
  4219. {
  4220. if (mddev->reshape_position != MaxSector)
  4221. return sprintf(page, "%llu\n",
  4222. (unsigned long long)mddev->reshape_position);
  4223. strcpy(page, "none\n");
  4224. return 5;
  4225. }
  4226. static ssize_t
  4227. reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
  4228. {
  4229. struct md_rdev *rdev;
  4230. unsigned long long new;
  4231. int err;
  4232. err = kstrtoull(buf, 10, &new);
  4233. if (err < 0)
  4234. return err;
  4235. if (new != (sector_t)new)
  4236. return -EINVAL;
  4237. err = mddev_lock(mddev);
  4238. if (err)
  4239. return err;
  4240. err = -EBUSY;
  4241. if (mddev->pers)
  4242. goto unlock;
  4243. mddev->reshape_position = new;
  4244. mddev->delta_disks = 0;
  4245. mddev->reshape_backwards = 0;
  4246. mddev->new_level = mddev->level;
  4247. mddev->new_layout = mddev->layout;
  4248. mddev->new_chunk_sectors = mddev->chunk_sectors;
  4249. rdev_for_each(rdev, mddev)
  4250. rdev->new_data_offset = rdev->data_offset;
  4251. err = 0;
  4252. unlock:
  4253. mddev_unlock(mddev);
  4254. return err ?: len;
  4255. }
  4256. static struct md_sysfs_entry md_reshape_position =
  4257. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  4258. reshape_position_store);
  4259. static ssize_t
  4260. reshape_direction_show(struct mddev *mddev, char *page)
  4261. {
  4262. return sprintf(page, "%s\n",
  4263. mddev->reshape_backwards ? "backwards" : "forwards");
  4264. }
  4265. static ssize_t
  4266. reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
  4267. {
  4268. int backwards = 0;
  4269. int err;
  4270. if (cmd_match(buf, "forwards"))
  4271. backwards = 0;
  4272. else if (cmd_match(buf, "backwards"))
  4273. backwards = 1;
  4274. else
  4275. return -EINVAL;
  4276. if (mddev->reshape_backwards == backwards)
  4277. return len;
  4278. err = mddev_lock(mddev);
  4279. if (err)
  4280. return err;
  4281. /* check if we are allowed to change */
  4282. if (mddev->delta_disks)
  4283. err = -EBUSY;
  4284. else if (mddev->persistent &&
  4285. mddev->major_version == 0)
  4286. err = -EINVAL;
  4287. else
  4288. mddev->reshape_backwards = backwards;
  4289. mddev_unlock(mddev);
  4290. return err ?: len;
  4291. }
  4292. static struct md_sysfs_entry md_reshape_direction =
  4293. __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
  4294. reshape_direction_store);
  4295. static ssize_t
  4296. array_size_show(struct mddev *mddev, char *page)
  4297. {
  4298. if (mddev->external_size)
  4299. return sprintf(page, "%llu\n",
  4300. (unsigned long long)mddev->array_sectors/2);
  4301. else
  4302. return sprintf(page, "default\n");
  4303. }
  4304. static ssize_t
  4305. array_size_store(struct mddev *mddev, const char *buf, size_t len)
  4306. {
  4307. sector_t sectors;
  4308. int err;
  4309. err = mddev_lock(mddev);
  4310. if (err)
  4311. return err;
  4312. if (strncmp(buf, "default", 7) == 0) {
  4313. if (mddev->pers)
  4314. sectors = mddev->pers->size(mddev, 0, 0);
  4315. else
  4316. sectors = mddev->array_sectors;
  4317. mddev->external_size = 0;
  4318. } else {
  4319. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  4320. err = -EINVAL;
  4321. else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  4322. err = -E2BIG;
  4323. else
  4324. mddev->external_size = 1;
  4325. }
  4326. if (!err) {
  4327. mddev->array_sectors = sectors;
  4328. if (mddev->pers) {
  4329. set_capacity(mddev->gendisk, mddev->array_sectors);
  4330. revalidate_disk(mddev->gendisk);
  4331. }
  4332. }
  4333. mddev_unlock(mddev);
  4334. return err ?: len;
  4335. }
  4336. static struct md_sysfs_entry md_array_size =
  4337. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  4338. array_size_store);
  4339. static struct attribute *md_default_attrs[] = {
  4340. &md_level.attr,
  4341. &md_layout.attr,
  4342. &md_raid_disks.attr,
  4343. &md_chunk_size.attr,
  4344. &md_size.attr,
  4345. &md_resync_start.attr,
  4346. &md_metadata.attr,
  4347. &md_new_device.attr,
  4348. &md_safe_delay.attr,
  4349. &md_array_state.attr,
  4350. &md_reshape_position.attr,
  4351. &md_reshape_direction.attr,
  4352. &md_array_size.attr,
  4353. &max_corr_read_errors.attr,
  4354. NULL,
  4355. };
  4356. static struct attribute *md_redundancy_attrs[] = {
  4357. &md_scan_mode.attr,
  4358. &md_last_scan_mode.attr,
  4359. &md_mismatches.attr,
  4360. &md_sync_min.attr,
  4361. &md_sync_max.attr,
  4362. &md_sync_speed.attr,
  4363. &md_sync_force_parallel.attr,
  4364. &md_sync_completed.attr,
  4365. &md_min_sync.attr,
  4366. &md_max_sync.attr,
  4367. &md_suspend_lo.attr,
  4368. &md_suspend_hi.attr,
  4369. &md_bitmap.attr,
  4370. &md_degraded.attr,
  4371. NULL,
  4372. };
  4373. static struct attribute_group md_redundancy_group = {
  4374. .name = NULL,
  4375. .attrs = md_redundancy_attrs,
  4376. };
  4377. static ssize_t
  4378. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  4379. {
  4380. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4381. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4382. ssize_t rv;
  4383. if (!entry->show)
  4384. return -EIO;
  4385. spin_lock(&all_mddevs_lock);
  4386. if (list_empty(&mddev->all_mddevs)) {
  4387. spin_unlock(&all_mddevs_lock);
  4388. return -EBUSY;
  4389. }
  4390. mddev_get(mddev);
  4391. spin_unlock(&all_mddevs_lock);
  4392. rv = entry->show(mddev, page);
  4393. mddev_put(mddev);
  4394. return rv;
  4395. }
  4396. static ssize_t
  4397. md_attr_store(struct kobject *kobj, struct attribute *attr,
  4398. const char *page, size_t length)
  4399. {
  4400. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4401. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4402. ssize_t rv;
  4403. if (!entry->store)
  4404. return -EIO;
  4405. if (!capable(CAP_SYS_ADMIN))
  4406. return -EACCES;
  4407. spin_lock(&all_mddevs_lock);
  4408. if (list_empty(&mddev->all_mddevs)) {
  4409. spin_unlock(&all_mddevs_lock);
  4410. return -EBUSY;
  4411. }
  4412. mddev_get(mddev);
  4413. spin_unlock(&all_mddevs_lock);
  4414. rv = entry->store(mddev, page, length);
  4415. mddev_put(mddev);
  4416. return rv;
  4417. }
  4418. static void md_free(struct kobject *ko)
  4419. {
  4420. struct mddev *mddev = container_of(ko, struct mddev, kobj);
  4421. if (mddev->sysfs_state)
  4422. sysfs_put(mddev->sysfs_state);
  4423. if (mddev->queue)
  4424. blk_cleanup_queue(mddev->queue);
  4425. if (mddev->gendisk) {
  4426. del_gendisk(mddev->gendisk);
  4427. put_disk(mddev->gendisk);
  4428. }
  4429. kfree(mddev);
  4430. }
  4431. static const struct sysfs_ops md_sysfs_ops = {
  4432. .show = md_attr_show,
  4433. .store = md_attr_store,
  4434. };
  4435. static struct kobj_type md_ktype = {
  4436. .release = md_free,
  4437. .sysfs_ops = &md_sysfs_ops,
  4438. .default_attrs = md_default_attrs,
  4439. };
  4440. int mdp_major = 0;
  4441. static void mddev_delayed_delete(struct work_struct *ws)
  4442. {
  4443. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  4444. sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
  4445. kobject_del(&mddev->kobj);
  4446. kobject_put(&mddev->kobj);
  4447. }
  4448. static int md_alloc(dev_t dev, char *name)
  4449. {
  4450. static DEFINE_MUTEX(disks_mutex);
  4451. struct mddev *mddev = mddev_find(dev);
  4452. struct gendisk *disk;
  4453. int partitioned;
  4454. int shift;
  4455. int unit;
  4456. int error;
  4457. if (!mddev)
  4458. return -ENODEV;
  4459. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  4460. shift = partitioned ? MdpMinorShift : 0;
  4461. unit = MINOR(mddev->unit) >> shift;
  4462. /* wait for any previous instance of this device to be
  4463. * completely removed (mddev_delayed_delete).
  4464. */
  4465. flush_workqueue(md_misc_wq);
  4466. mutex_lock(&disks_mutex);
  4467. error = -EEXIST;
  4468. if (mddev->gendisk)
  4469. goto abort;
  4470. if (name) {
  4471. /* Need to ensure that 'name' is not a duplicate.
  4472. */
  4473. struct mddev *mddev2;
  4474. spin_lock(&all_mddevs_lock);
  4475. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  4476. if (mddev2->gendisk &&
  4477. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  4478. spin_unlock(&all_mddevs_lock);
  4479. goto abort;
  4480. }
  4481. spin_unlock(&all_mddevs_lock);
  4482. }
  4483. error = -ENOMEM;
  4484. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  4485. if (!mddev->queue)
  4486. goto abort;
  4487. mddev->queue->queuedata = mddev;
  4488. blk_queue_make_request(mddev->queue, md_make_request);
  4489. blk_set_stacking_limits(&mddev->queue->limits);
  4490. disk = alloc_disk(1 << shift);
  4491. if (!disk) {
  4492. blk_cleanup_queue(mddev->queue);
  4493. mddev->queue = NULL;
  4494. goto abort;
  4495. }
  4496. disk->major = MAJOR(mddev->unit);
  4497. disk->first_minor = unit << shift;
  4498. if (name)
  4499. strcpy(disk->disk_name, name);
  4500. else if (partitioned)
  4501. sprintf(disk->disk_name, "md_d%d", unit);
  4502. else
  4503. sprintf(disk->disk_name, "md%d", unit);
  4504. disk->fops = &md_fops;
  4505. disk->private_data = mddev;
  4506. disk->queue = mddev->queue;
  4507. blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
  4508. /* Allow extended partitions. This makes the
  4509. * 'mdp' device redundant, but we can't really
  4510. * remove it now.
  4511. */
  4512. disk->flags |= GENHD_FL_EXT_DEVT;
  4513. mddev->gendisk = disk;
  4514. /* As soon as we call add_disk(), another thread could get
  4515. * through to md_open, so make sure it doesn't get too far
  4516. */
  4517. mutex_lock(&mddev->open_mutex);
  4518. add_disk(disk);
  4519. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  4520. &disk_to_dev(disk)->kobj, "%s", "md");
  4521. if (error) {
  4522. /* This isn't possible, but as kobject_init_and_add is marked
  4523. * __must_check, we must do something with the result
  4524. */
  4525. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  4526. disk->disk_name);
  4527. error = 0;
  4528. }
  4529. if (mddev->kobj.sd &&
  4530. sysfs_create_group(&mddev->kobj, &md_bitmap_group))
  4531. printk(KERN_DEBUG "pointless warning\n");
  4532. mutex_unlock(&mddev->open_mutex);
  4533. abort:
  4534. mutex_unlock(&disks_mutex);
  4535. if (!error && mddev->kobj.sd) {
  4536. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  4537. mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
  4538. }
  4539. mddev_put(mddev);
  4540. return error;
  4541. }
  4542. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  4543. {
  4544. md_alloc(dev, NULL);
  4545. return NULL;
  4546. }
  4547. static int add_named_array(const char *val, struct kernel_param *kp)
  4548. {
  4549. /* val must be "md_*" where * is not all digits.
  4550. * We allocate an array with a large free minor number, and
  4551. * set the name to val. val must not already be an active name.
  4552. */
  4553. int len = strlen(val);
  4554. char buf[DISK_NAME_LEN];
  4555. while (len && val[len-1] == '\n')
  4556. len--;
  4557. if (len >= DISK_NAME_LEN)
  4558. return -E2BIG;
  4559. strlcpy(buf, val, len+1);
  4560. if (strncmp(buf, "md_", 3) != 0)
  4561. return -EINVAL;
  4562. return md_alloc(0, buf);
  4563. }
  4564. static void md_safemode_timeout(unsigned long data)
  4565. {
  4566. struct mddev *mddev = (struct mddev *) data;
  4567. if (!atomic_read(&mddev->writes_pending)) {
  4568. mddev->safemode = 1;
  4569. if (mddev->external)
  4570. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4571. }
  4572. md_wakeup_thread(mddev->thread);
  4573. }
  4574. static int start_dirty_degraded;
  4575. int md_run(struct mddev *mddev)
  4576. {
  4577. int err;
  4578. struct md_rdev *rdev;
  4579. struct md_personality *pers;
  4580. if (list_empty(&mddev->disks))
  4581. /* cannot run an array with no devices.. */
  4582. return -EINVAL;
  4583. if (mddev->pers)
  4584. return -EBUSY;
  4585. /* Cannot run until previous stop completes properly */
  4586. if (mddev->sysfs_active)
  4587. return -EBUSY;
  4588. /*
  4589. * Analyze all RAID superblock(s)
  4590. */
  4591. if (!mddev->raid_disks) {
  4592. if (!mddev->persistent)
  4593. return -EINVAL;
  4594. analyze_sbs(mddev);
  4595. }
  4596. if (mddev->level != LEVEL_NONE)
  4597. request_module("md-level-%d", mddev->level);
  4598. else if (mddev->clevel[0])
  4599. request_module("md-%s", mddev->clevel);
  4600. /*
  4601. * Drop all container device buffers, from now on
  4602. * the only valid external interface is through the md
  4603. * device.
  4604. */
  4605. rdev_for_each(rdev, mddev) {
  4606. if (test_bit(Faulty, &rdev->flags))
  4607. continue;
  4608. sync_blockdev(rdev->bdev);
  4609. invalidate_bdev(rdev->bdev);
  4610. /* perform some consistency tests on the device.
  4611. * We don't want the data to overlap the metadata,
  4612. * Internal Bitmap issues have been handled elsewhere.
  4613. */
  4614. if (rdev->meta_bdev) {
  4615. /* Nothing to check */;
  4616. } else if (rdev->data_offset < rdev->sb_start) {
  4617. if (mddev->dev_sectors &&
  4618. rdev->data_offset + mddev->dev_sectors
  4619. > rdev->sb_start) {
  4620. printk("md: %s: data overlaps metadata\n",
  4621. mdname(mddev));
  4622. return -EINVAL;
  4623. }
  4624. } else {
  4625. if (rdev->sb_start + rdev->sb_size/512
  4626. > rdev->data_offset) {
  4627. printk("md: %s: metadata overlaps data\n",
  4628. mdname(mddev));
  4629. return -EINVAL;
  4630. }
  4631. }
  4632. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4633. }
  4634. if (mddev->bio_set == NULL)
  4635. mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
  4636. spin_lock(&pers_lock);
  4637. pers = find_pers(mddev->level, mddev->clevel);
  4638. if (!pers || !try_module_get(pers->owner)) {
  4639. spin_unlock(&pers_lock);
  4640. if (mddev->level != LEVEL_NONE)
  4641. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  4642. mddev->level);
  4643. else
  4644. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  4645. mddev->clevel);
  4646. return -EINVAL;
  4647. }
  4648. spin_unlock(&pers_lock);
  4649. if (mddev->level != pers->level) {
  4650. mddev->level = pers->level;
  4651. mddev->new_level = pers->level;
  4652. }
  4653. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  4654. if (mddev->reshape_position != MaxSector &&
  4655. pers->start_reshape == NULL) {
  4656. /* This personality cannot handle reshaping... */
  4657. module_put(pers->owner);
  4658. return -EINVAL;
  4659. }
  4660. if (pers->sync_request) {
  4661. /* Warn if this is a potentially silly
  4662. * configuration.
  4663. */
  4664. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4665. struct md_rdev *rdev2;
  4666. int warned = 0;
  4667. rdev_for_each(rdev, mddev)
  4668. rdev_for_each(rdev2, mddev) {
  4669. if (rdev < rdev2 &&
  4670. rdev->bdev->bd_contains ==
  4671. rdev2->bdev->bd_contains) {
  4672. printk(KERN_WARNING
  4673. "%s: WARNING: %s appears to be"
  4674. " on the same physical disk as"
  4675. " %s.\n",
  4676. mdname(mddev),
  4677. bdevname(rdev->bdev,b),
  4678. bdevname(rdev2->bdev,b2));
  4679. warned = 1;
  4680. }
  4681. }
  4682. if (warned)
  4683. printk(KERN_WARNING
  4684. "True protection against single-disk"
  4685. " failure might be compromised.\n");
  4686. }
  4687. mddev->recovery = 0;
  4688. /* may be over-ridden by personality */
  4689. mddev->resync_max_sectors = mddev->dev_sectors;
  4690. mddev->ok_start_degraded = start_dirty_degraded;
  4691. if (start_readonly && mddev->ro == 0)
  4692. mddev->ro = 2; /* read-only, but switch on first write */
  4693. err = pers->run(mddev);
  4694. if (err)
  4695. printk(KERN_ERR "md: pers->run() failed ...\n");
  4696. else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
  4697. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  4698. " but 'external_size' not in effect?\n", __func__);
  4699. printk(KERN_ERR
  4700. "md: invalid array_size %llu > default size %llu\n",
  4701. (unsigned long long)mddev->array_sectors / 2,
  4702. (unsigned long long)pers->size(mddev, 0, 0) / 2);
  4703. err = -EINVAL;
  4704. }
  4705. if (err == 0 && pers->sync_request &&
  4706. (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
  4707. struct bitmap *bitmap;
  4708. bitmap = bitmap_create(mddev, -1);
  4709. if (IS_ERR(bitmap)) {
  4710. err = PTR_ERR(bitmap);
  4711. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  4712. mdname(mddev), err);
  4713. } else
  4714. mddev->bitmap = bitmap;
  4715. }
  4716. if (err) {
  4717. mddev_detach(mddev);
  4718. if (mddev->private)
  4719. pers->free(mddev, mddev->private);
  4720. mddev->private = NULL;
  4721. module_put(pers->owner);
  4722. bitmap_destroy(mddev);
  4723. return err;
  4724. }
  4725. if (mddev->queue) {
  4726. mddev->queue->backing_dev_info.congested_data = mddev;
  4727. mddev->queue->backing_dev_info.congested_fn = md_congested;
  4728. }
  4729. if (pers->sync_request) {
  4730. if (mddev->kobj.sd &&
  4731. sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  4732. printk(KERN_WARNING
  4733. "md: cannot register extra attributes for %s\n",
  4734. mdname(mddev));
  4735. mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
  4736. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  4737. mddev->ro = 0;
  4738. atomic_set(&mddev->writes_pending,0);
  4739. atomic_set(&mddev->max_corr_read_errors,
  4740. MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
  4741. mddev->safemode = 0;
  4742. if (mddev_is_clustered(mddev))
  4743. mddev->safemode_delay = 0;
  4744. else
  4745. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  4746. mddev->in_sync = 1;
  4747. smp_wmb();
  4748. spin_lock(&mddev->lock);
  4749. mddev->pers = pers;
  4750. mddev->ready = 1;
  4751. spin_unlock(&mddev->lock);
  4752. rdev_for_each(rdev, mddev)
  4753. if (rdev->raid_disk >= 0)
  4754. if (sysfs_link_rdev(mddev, rdev))
  4755. /* failure here is OK */;
  4756. if (mddev->degraded && !mddev->ro)
  4757. /* This ensures that recovering status is reported immediately
  4758. * via sysfs - until a lack of spares is confirmed.
  4759. */
  4760. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  4761. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4762. if (mddev->flags & MD_UPDATE_SB_FLAGS)
  4763. md_update_sb(mddev, 0);
  4764. md_new_event(mddev);
  4765. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4766. sysfs_notify_dirent_safe(mddev->sysfs_action);
  4767. sysfs_notify(&mddev->kobj, NULL, "degraded");
  4768. return 0;
  4769. }
  4770. EXPORT_SYMBOL_GPL(md_run);
  4771. static int do_md_run(struct mddev *mddev)
  4772. {
  4773. int err;
  4774. err = md_run(mddev);
  4775. if (err)
  4776. goto out;
  4777. err = bitmap_load(mddev);
  4778. if (err) {
  4779. bitmap_destroy(mddev);
  4780. goto out;
  4781. }
  4782. if (mddev_is_clustered(mddev))
  4783. md_allow_write(mddev);
  4784. md_wakeup_thread(mddev->thread);
  4785. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  4786. set_capacity(mddev->gendisk, mddev->array_sectors);
  4787. revalidate_disk(mddev->gendisk);
  4788. mddev->changed = 1;
  4789. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4790. out:
  4791. return err;
  4792. }
  4793. static int restart_array(struct mddev *mddev)
  4794. {
  4795. struct gendisk *disk = mddev->gendisk;
  4796. /* Complain if it has no devices */
  4797. if (list_empty(&mddev->disks))
  4798. return -ENXIO;
  4799. if (!mddev->pers)
  4800. return -EINVAL;
  4801. if (!mddev->ro)
  4802. return -EBUSY;
  4803. if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
  4804. struct md_rdev *rdev;
  4805. bool has_journal = false;
  4806. rcu_read_lock();
  4807. rdev_for_each_rcu(rdev, mddev) {
  4808. if (test_bit(Journal, &rdev->flags) &&
  4809. !test_bit(Faulty, &rdev->flags)) {
  4810. has_journal = true;
  4811. break;
  4812. }
  4813. }
  4814. rcu_read_unlock();
  4815. /* Don't restart rw with journal missing/faulty */
  4816. if (!has_journal)
  4817. return -EINVAL;
  4818. }
  4819. mddev->safemode = 0;
  4820. mddev->ro = 0;
  4821. set_disk_ro(disk, 0);
  4822. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  4823. mdname(mddev));
  4824. /* Kick recovery or resync if necessary */
  4825. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4826. md_wakeup_thread(mddev->thread);
  4827. md_wakeup_thread(mddev->sync_thread);
  4828. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4829. return 0;
  4830. }
  4831. static void md_clean(struct mddev *mddev)
  4832. {
  4833. mddev->array_sectors = 0;
  4834. mddev->external_size = 0;
  4835. mddev->dev_sectors = 0;
  4836. mddev->raid_disks = 0;
  4837. mddev->recovery_cp = 0;
  4838. mddev->resync_min = 0;
  4839. mddev->resync_max = MaxSector;
  4840. mddev->reshape_position = MaxSector;
  4841. mddev->external = 0;
  4842. mddev->persistent = 0;
  4843. mddev->level = LEVEL_NONE;
  4844. mddev->clevel[0] = 0;
  4845. mddev->flags = 0;
  4846. mddev->ro = 0;
  4847. mddev->metadata_type[0] = 0;
  4848. mddev->chunk_sectors = 0;
  4849. mddev->ctime = mddev->utime = 0;
  4850. mddev->layout = 0;
  4851. mddev->max_disks = 0;
  4852. mddev->events = 0;
  4853. mddev->can_decrease_events = 0;
  4854. mddev->delta_disks = 0;
  4855. mddev->reshape_backwards = 0;
  4856. mddev->new_level = LEVEL_NONE;
  4857. mddev->new_layout = 0;
  4858. mddev->new_chunk_sectors = 0;
  4859. mddev->curr_resync = 0;
  4860. atomic64_set(&mddev->resync_mismatches, 0);
  4861. mddev->suspend_lo = mddev->suspend_hi = 0;
  4862. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4863. mddev->recovery = 0;
  4864. mddev->in_sync = 0;
  4865. mddev->changed = 0;
  4866. mddev->degraded = 0;
  4867. mddev->safemode = 0;
  4868. mddev->private = NULL;
  4869. mddev->bitmap_info.offset = 0;
  4870. mddev->bitmap_info.default_offset = 0;
  4871. mddev->bitmap_info.default_space = 0;
  4872. mddev->bitmap_info.chunksize = 0;
  4873. mddev->bitmap_info.daemon_sleep = 0;
  4874. mddev->bitmap_info.max_write_behind = 0;
  4875. }
  4876. static void __md_stop_writes(struct mddev *mddev)
  4877. {
  4878. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4879. flush_workqueue(md_misc_wq);
  4880. if (mddev->sync_thread) {
  4881. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4882. md_reap_sync_thread(mddev);
  4883. }
  4884. del_timer_sync(&mddev->safemode_timer);
  4885. bitmap_flush(mddev);
  4886. md_super_wait(mddev);
  4887. if (mddev->ro == 0 &&
  4888. ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
  4889. (mddev->flags & MD_UPDATE_SB_FLAGS))) {
  4890. /* mark array as shutdown cleanly */
  4891. if (!mddev_is_clustered(mddev))
  4892. mddev->in_sync = 1;
  4893. md_update_sb(mddev, 1);
  4894. }
  4895. }
  4896. void md_stop_writes(struct mddev *mddev)
  4897. {
  4898. mddev_lock_nointr(mddev);
  4899. __md_stop_writes(mddev);
  4900. mddev_unlock(mddev);
  4901. }
  4902. EXPORT_SYMBOL_GPL(md_stop_writes);
  4903. static void mddev_detach(struct mddev *mddev)
  4904. {
  4905. struct bitmap *bitmap = mddev->bitmap;
  4906. /* wait for behind writes to complete */
  4907. if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
  4908. printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
  4909. mdname(mddev));
  4910. /* need to kick something here to make sure I/O goes? */
  4911. wait_event(bitmap->behind_wait,
  4912. atomic_read(&bitmap->behind_writes) == 0);
  4913. }
  4914. if (mddev->pers && mddev->pers->quiesce) {
  4915. mddev->pers->quiesce(mddev, 1);
  4916. mddev->pers->quiesce(mddev, 0);
  4917. }
  4918. md_unregister_thread(&mddev->thread);
  4919. if (mddev->queue)
  4920. blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
  4921. }
  4922. static void __md_stop(struct mddev *mddev)
  4923. {
  4924. struct md_personality *pers = mddev->pers;
  4925. mddev_detach(mddev);
  4926. /* Ensure ->event_work is done */
  4927. flush_workqueue(md_misc_wq);
  4928. spin_lock(&mddev->lock);
  4929. mddev->ready = 0;
  4930. mddev->pers = NULL;
  4931. spin_unlock(&mddev->lock);
  4932. pers->free(mddev, mddev->private);
  4933. mddev->private = NULL;
  4934. if (pers->sync_request && mddev->to_remove == NULL)
  4935. mddev->to_remove = &md_redundancy_group;
  4936. module_put(pers->owner);
  4937. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4938. }
  4939. void md_stop(struct mddev *mddev)
  4940. {
  4941. /* stop the array and free an attached data structures.
  4942. * This is called from dm-raid
  4943. */
  4944. __md_stop(mddev);
  4945. bitmap_destroy(mddev);
  4946. if (mddev->bio_set)
  4947. bioset_free(mddev->bio_set);
  4948. }
  4949. EXPORT_SYMBOL_GPL(md_stop);
  4950. static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
  4951. {
  4952. int err = 0;
  4953. int did_freeze = 0;
  4954. if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
  4955. did_freeze = 1;
  4956. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4957. md_wakeup_thread(mddev->thread);
  4958. }
  4959. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  4960. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4961. if (mddev->sync_thread)
  4962. /* Thread might be blocked waiting for metadata update
  4963. * which will now never happen */
  4964. wake_up_process(mddev->sync_thread->tsk);
  4965. if (mddev->external && test_bit(MD_CHANGE_PENDING, &mddev->flags))
  4966. return -EBUSY;
  4967. mddev_unlock(mddev);
  4968. wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
  4969. &mddev->recovery));
  4970. wait_event(mddev->sb_wait,
  4971. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  4972. mddev_lock_nointr(mddev);
  4973. mutex_lock(&mddev->open_mutex);
  4974. if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
  4975. mddev->sync_thread ||
  4976. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  4977. (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
  4978. printk("md: %s still in use.\n",mdname(mddev));
  4979. if (did_freeze) {
  4980. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4981. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4982. md_wakeup_thread(mddev->thread);
  4983. }
  4984. err = -EBUSY;
  4985. goto out;
  4986. }
  4987. if (mddev->pers) {
  4988. __md_stop_writes(mddev);
  4989. err = -ENXIO;
  4990. if (mddev->ro==1)
  4991. goto out;
  4992. mddev->ro = 1;
  4993. set_disk_ro(mddev->gendisk, 1);
  4994. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4995. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4996. md_wakeup_thread(mddev->thread);
  4997. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4998. err = 0;
  4999. }
  5000. out:
  5001. mutex_unlock(&mddev->open_mutex);
  5002. return err;
  5003. }
  5004. /* mode:
  5005. * 0 - completely stop and dis-assemble array
  5006. * 2 - stop but do not disassemble array
  5007. */
  5008. static int do_md_stop(struct mddev *mddev, int mode,
  5009. struct block_device *bdev)
  5010. {
  5011. struct gendisk *disk = mddev->gendisk;
  5012. struct md_rdev *rdev;
  5013. int did_freeze = 0;
  5014. if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
  5015. did_freeze = 1;
  5016. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  5017. md_wakeup_thread(mddev->thread);
  5018. }
  5019. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  5020. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5021. if (mddev->sync_thread)
  5022. /* Thread might be blocked waiting for metadata update
  5023. * which will now never happen */
  5024. wake_up_process(mddev->sync_thread->tsk);
  5025. mddev_unlock(mddev);
  5026. wait_event(resync_wait, (mddev->sync_thread == NULL &&
  5027. !test_bit(MD_RECOVERY_RUNNING,
  5028. &mddev->recovery)));
  5029. mddev_lock_nointr(mddev);
  5030. mutex_lock(&mddev->open_mutex);
  5031. if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
  5032. mddev->sysfs_active ||
  5033. mddev->sync_thread ||
  5034. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  5035. (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
  5036. printk("md: %s still in use.\n",mdname(mddev));
  5037. mutex_unlock(&mddev->open_mutex);
  5038. if (did_freeze) {
  5039. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  5040. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5041. md_wakeup_thread(mddev->thread);
  5042. }
  5043. return -EBUSY;
  5044. }
  5045. if (mddev->pers) {
  5046. if (mddev->ro)
  5047. set_disk_ro(disk, 0);
  5048. __md_stop_writes(mddev);
  5049. __md_stop(mddev);
  5050. mddev->queue->backing_dev_info.congested_fn = NULL;
  5051. /* tell userspace to handle 'inactive' */
  5052. sysfs_notify_dirent_safe(mddev->sysfs_state);
  5053. rdev_for_each(rdev, mddev)
  5054. if (rdev->raid_disk >= 0)
  5055. sysfs_unlink_rdev(mddev, rdev);
  5056. set_capacity(disk, 0);
  5057. mutex_unlock(&mddev->open_mutex);
  5058. mddev->changed = 1;
  5059. revalidate_disk(disk);
  5060. if (mddev->ro)
  5061. mddev->ro = 0;
  5062. } else
  5063. mutex_unlock(&mddev->open_mutex);
  5064. /*
  5065. * Free resources if final stop
  5066. */
  5067. if (mode == 0) {
  5068. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  5069. bitmap_destroy(mddev);
  5070. if (mddev->bitmap_info.file) {
  5071. struct file *f = mddev->bitmap_info.file;
  5072. spin_lock(&mddev->lock);
  5073. mddev->bitmap_info.file = NULL;
  5074. spin_unlock(&mddev->lock);
  5075. fput(f);
  5076. }
  5077. mddev->bitmap_info.offset = 0;
  5078. export_array(mddev);
  5079. md_clean(mddev);
  5080. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  5081. if (mddev->hold_active == UNTIL_STOP)
  5082. mddev->hold_active = 0;
  5083. }
  5084. md_new_event(mddev);
  5085. sysfs_notify_dirent_safe(mddev->sysfs_state);
  5086. return 0;
  5087. }
  5088. #ifndef MODULE
  5089. static void autorun_array(struct mddev *mddev)
  5090. {
  5091. struct md_rdev *rdev;
  5092. int err;
  5093. if (list_empty(&mddev->disks))
  5094. return;
  5095. printk(KERN_INFO "md: running: ");
  5096. rdev_for_each(rdev, mddev) {
  5097. char b[BDEVNAME_SIZE];
  5098. printk("<%s>", bdevname(rdev->bdev,b));
  5099. }
  5100. printk("\n");
  5101. err = do_md_run(mddev);
  5102. if (err) {
  5103. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  5104. do_md_stop(mddev, 0, NULL);
  5105. }
  5106. }
  5107. /*
  5108. * lets try to run arrays based on all disks that have arrived
  5109. * until now. (those are in pending_raid_disks)
  5110. *
  5111. * the method: pick the first pending disk, collect all disks with
  5112. * the same UUID, remove all from the pending list and put them into
  5113. * the 'same_array' list. Then order this list based on superblock
  5114. * update time (freshest comes first), kick out 'old' disks and
  5115. * compare superblocks. If everything's fine then run it.
  5116. *
  5117. * If "unit" is allocated, then bump its reference count
  5118. */
  5119. static void autorun_devices(int part)
  5120. {
  5121. struct md_rdev *rdev0, *rdev, *tmp;
  5122. struct mddev *mddev;
  5123. char b[BDEVNAME_SIZE];
  5124. printk(KERN_INFO "md: autorun ...\n");
  5125. while (!list_empty(&pending_raid_disks)) {
  5126. int unit;
  5127. dev_t dev;
  5128. LIST_HEAD(candidates);
  5129. rdev0 = list_entry(pending_raid_disks.next,
  5130. struct md_rdev, same_set);
  5131. printk(KERN_INFO "md: considering %s ...\n",
  5132. bdevname(rdev0->bdev,b));
  5133. INIT_LIST_HEAD(&candidates);
  5134. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  5135. if (super_90_load(rdev, rdev0, 0) >= 0) {
  5136. printk(KERN_INFO "md: adding %s ...\n",
  5137. bdevname(rdev->bdev,b));
  5138. list_move(&rdev->same_set, &candidates);
  5139. }
  5140. /*
  5141. * now we have a set of devices, with all of them having
  5142. * mostly sane superblocks. It's time to allocate the
  5143. * mddev.
  5144. */
  5145. if (part) {
  5146. dev = MKDEV(mdp_major,
  5147. rdev0->preferred_minor << MdpMinorShift);
  5148. unit = MINOR(dev) >> MdpMinorShift;
  5149. } else {
  5150. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  5151. unit = MINOR(dev);
  5152. }
  5153. if (rdev0->preferred_minor != unit) {
  5154. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  5155. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  5156. break;
  5157. }
  5158. md_probe(dev, NULL, NULL);
  5159. mddev = mddev_find(dev);
  5160. if (!mddev || !mddev->gendisk) {
  5161. if (mddev)
  5162. mddev_put(mddev);
  5163. printk(KERN_ERR
  5164. "md: cannot allocate memory for md drive.\n");
  5165. break;
  5166. }
  5167. if (mddev_lock(mddev))
  5168. printk(KERN_WARNING "md: %s locked, cannot run\n",
  5169. mdname(mddev));
  5170. else if (mddev->raid_disks || mddev->major_version
  5171. || !list_empty(&mddev->disks)) {
  5172. printk(KERN_WARNING
  5173. "md: %s already running, cannot run %s\n",
  5174. mdname(mddev), bdevname(rdev0->bdev,b));
  5175. mddev_unlock(mddev);
  5176. } else {
  5177. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  5178. mddev->persistent = 1;
  5179. rdev_for_each_list(rdev, tmp, &candidates) {
  5180. list_del_init(&rdev->same_set);
  5181. if (bind_rdev_to_array(rdev, mddev))
  5182. export_rdev(rdev);
  5183. }
  5184. autorun_array(mddev);
  5185. mddev_unlock(mddev);
  5186. }
  5187. /* on success, candidates will be empty, on error
  5188. * it won't...
  5189. */
  5190. rdev_for_each_list(rdev, tmp, &candidates) {
  5191. list_del_init(&rdev->same_set);
  5192. export_rdev(rdev);
  5193. }
  5194. mddev_put(mddev);
  5195. }
  5196. printk(KERN_INFO "md: ... autorun DONE.\n");
  5197. }
  5198. #endif /* !MODULE */
  5199. static int get_version(void __user *arg)
  5200. {
  5201. mdu_version_t ver;
  5202. ver.major = MD_MAJOR_VERSION;
  5203. ver.minor = MD_MINOR_VERSION;
  5204. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  5205. if (copy_to_user(arg, &ver, sizeof(ver)))
  5206. return -EFAULT;
  5207. return 0;
  5208. }
  5209. static int get_array_info(struct mddev *mddev, void __user *arg)
  5210. {
  5211. mdu_array_info_t info;
  5212. int nr,working,insync,failed,spare;
  5213. struct md_rdev *rdev;
  5214. nr = working = insync = failed = spare = 0;
  5215. rcu_read_lock();
  5216. rdev_for_each_rcu(rdev, mddev) {
  5217. nr++;
  5218. if (test_bit(Faulty, &rdev->flags))
  5219. failed++;
  5220. else {
  5221. working++;
  5222. if (test_bit(In_sync, &rdev->flags))
  5223. insync++;
  5224. else
  5225. spare++;
  5226. }
  5227. }
  5228. rcu_read_unlock();
  5229. info.major_version = mddev->major_version;
  5230. info.minor_version = mddev->minor_version;
  5231. info.patch_version = MD_PATCHLEVEL_VERSION;
  5232. info.ctime = mddev->ctime;
  5233. info.level = mddev->level;
  5234. info.size = mddev->dev_sectors / 2;
  5235. if (info.size != mddev->dev_sectors / 2) /* overflow */
  5236. info.size = -1;
  5237. info.nr_disks = nr;
  5238. info.raid_disks = mddev->raid_disks;
  5239. info.md_minor = mddev->md_minor;
  5240. info.not_persistent= !mddev->persistent;
  5241. info.utime = mddev->utime;
  5242. info.state = 0;
  5243. if (mddev->in_sync)
  5244. info.state = (1<<MD_SB_CLEAN);
  5245. if (mddev->bitmap && mddev->bitmap_info.offset)
  5246. info.state |= (1<<MD_SB_BITMAP_PRESENT);
  5247. if (mddev_is_clustered(mddev))
  5248. info.state |= (1<<MD_SB_CLUSTERED);
  5249. info.active_disks = insync;
  5250. info.working_disks = working;
  5251. info.failed_disks = failed;
  5252. info.spare_disks = spare;
  5253. info.layout = mddev->layout;
  5254. info.chunk_size = mddev->chunk_sectors << 9;
  5255. if (copy_to_user(arg, &info, sizeof(info)))
  5256. return -EFAULT;
  5257. return 0;
  5258. }
  5259. static int get_bitmap_file(struct mddev *mddev, void __user * arg)
  5260. {
  5261. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  5262. char *ptr;
  5263. int err;
  5264. file = kzalloc(sizeof(*file), GFP_NOIO);
  5265. if (!file)
  5266. return -ENOMEM;
  5267. err = 0;
  5268. spin_lock(&mddev->lock);
  5269. /* bitmap enabled */
  5270. if (mddev->bitmap_info.file) {
  5271. ptr = file_path(mddev->bitmap_info.file, file->pathname,
  5272. sizeof(file->pathname));
  5273. if (IS_ERR(ptr))
  5274. err = PTR_ERR(ptr);
  5275. else
  5276. memmove(file->pathname, ptr,
  5277. sizeof(file->pathname)-(ptr-file->pathname));
  5278. }
  5279. spin_unlock(&mddev->lock);
  5280. if (err == 0 &&
  5281. copy_to_user(arg, file, sizeof(*file)))
  5282. err = -EFAULT;
  5283. kfree(file);
  5284. return err;
  5285. }
  5286. static int get_disk_info(struct mddev *mddev, void __user * arg)
  5287. {
  5288. mdu_disk_info_t info;
  5289. struct md_rdev *rdev;
  5290. if (copy_from_user(&info, arg, sizeof(info)))
  5291. return -EFAULT;
  5292. rcu_read_lock();
  5293. rdev = md_find_rdev_nr_rcu(mddev, info.number);
  5294. if (rdev) {
  5295. info.major = MAJOR(rdev->bdev->bd_dev);
  5296. info.minor = MINOR(rdev->bdev->bd_dev);
  5297. info.raid_disk = rdev->raid_disk;
  5298. info.state = 0;
  5299. if (test_bit(Faulty, &rdev->flags))
  5300. info.state |= (1<<MD_DISK_FAULTY);
  5301. else if (test_bit(In_sync, &rdev->flags)) {
  5302. info.state |= (1<<MD_DISK_ACTIVE);
  5303. info.state |= (1<<MD_DISK_SYNC);
  5304. }
  5305. if (test_bit(Journal, &rdev->flags))
  5306. info.state |= (1<<MD_DISK_JOURNAL);
  5307. if (test_bit(WriteMostly, &rdev->flags))
  5308. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  5309. } else {
  5310. info.major = info.minor = 0;
  5311. info.raid_disk = -1;
  5312. info.state = (1<<MD_DISK_REMOVED);
  5313. }
  5314. rcu_read_unlock();
  5315. if (copy_to_user(arg, &info, sizeof(info)))
  5316. return -EFAULT;
  5317. return 0;
  5318. }
  5319. static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
  5320. {
  5321. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  5322. struct md_rdev *rdev;
  5323. dev_t dev = MKDEV(info->major,info->minor);
  5324. if (mddev_is_clustered(mddev) &&
  5325. !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
  5326. pr_err("%s: Cannot add to clustered mddev.\n",
  5327. mdname(mddev));
  5328. return -EINVAL;
  5329. }
  5330. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  5331. return -EOVERFLOW;
  5332. if (!mddev->raid_disks) {
  5333. int err;
  5334. /* expecting a device which has a superblock */
  5335. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  5336. if (IS_ERR(rdev)) {
  5337. printk(KERN_WARNING
  5338. "md: md_import_device returned %ld\n",
  5339. PTR_ERR(rdev));
  5340. return PTR_ERR(rdev);
  5341. }
  5342. if (!list_empty(&mddev->disks)) {
  5343. struct md_rdev *rdev0
  5344. = list_entry(mddev->disks.next,
  5345. struct md_rdev, same_set);
  5346. err = super_types[mddev->major_version]
  5347. .load_super(rdev, rdev0, mddev->minor_version);
  5348. if (err < 0) {
  5349. printk(KERN_WARNING
  5350. "md: %s has different UUID to %s\n",
  5351. bdevname(rdev->bdev,b),
  5352. bdevname(rdev0->bdev,b2));
  5353. export_rdev(rdev);
  5354. return -EINVAL;
  5355. }
  5356. }
  5357. err = bind_rdev_to_array(rdev, mddev);
  5358. if (err)
  5359. export_rdev(rdev);
  5360. return err;
  5361. }
  5362. /*
  5363. * add_new_disk can be used once the array is assembled
  5364. * to add "hot spares". They must already have a superblock
  5365. * written
  5366. */
  5367. if (mddev->pers) {
  5368. int err;
  5369. if (!mddev->pers->hot_add_disk) {
  5370. printk(KERN_WARNING
  5371. "%s: personality does not support diskops!\n",
  5372. mdname(mddev));
  5373. return -EINVAL;
  5374. }
  5375. if (mddev->persistent)
  5376. rdev = md_import_device(dev, mddev->major_version,
  5377. mddev->minor_version);
  5378. else
  5379. rdev = md_import_device(dev, -1, -1);
  5380. if (IS_ERR(rdev)) {
  5381. printk(KERN_WARNING
  5382. "md: md_import_device returned %ld\n",
  5383. PTR_ERR(rdev));
  5384. return PTR_ERR(rdev);
  5385. }
  5386. /* set saved_raid_disk if appropriate */
  5387. if (!mddev->persistent) {
  5388. if (info->state & (1<<MD_DISK_SYNC) &&
  5389. info->raid_disk < mddev->raid_disks) {
  5390. rdev->raid_disk = info->raid_disk;
  5391. set_bit(In_sync, &rdev->flags);
  5392. clear_bit(Bitmap_sync, &rdev->flags);
  5393. } else
  5394. rdev->raid_disk = -1;
  5395. rdev->saved_raid_disk = rdev->raid_disk;
  5396. } else
  5397. super_types[mddev->major_version].
  5398. validate_super(mddev, rdev);
  5399. if ((info->state & (1<<MD_DISK_SYNC)) &&
  5400. rdev->raid_disk != info->raid_disk) {
  5401. /* This was a hot-add request, but events doesn't
  5402. * match, so reject it.
  5403. */
  5404. export_rdev(rdev);
  5405. return -EINVAL;
  5406. }
  5407. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  5408. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5409. set_bit(WriteMostly, &rdev->flags);
  5410. else
  5411. clear_bit(WriteMostly, &rdev->flags);
  5412. if (info->state & (1<<MD_DISK_JOURNAL))
  5413. set_bit(Journal, &rdev->flags);
  5414. /*
  5415. * check whether the device shows up in other nodes
  5416. */
  5417. if (mddev_is_clustered(mddev)) {
  5418. if (info->state & (1 << MD_DISK_CANDIDATE))
  5419. set_bit(Candidate, &rdev->flags);
  5420. else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
  5421. /* --add initiated by this node */
  5422. err = md_cluster_ops->add_new_disk(mddev, rdev);
  5423. if (err) {
  5424. export_rdev(rdev);
  5425. return err;
  5426. }
  5427. }
  5428. }
  5429. rdev->raid_disk = -1;
  5430. err = bind_rdev_to_array(rdev, mddev);
  5431. if (err)
  5432. export_rdev(rdev);
  5433. if (mddev_is_clustered(mddev)) {
  5434. if (info->state & (1 << MD_DISK_CANDIDATE))
  5435. md_cluster_ops->new_disk_ack(mddev, (err == 0));
  5436. else {
  5437. if (err)
  5438. md_cluster_ops->add_new_disk_cancel(mddev);
  5439. else
  5440. err = add_bound_rdev(rdev);
  5441. }
  5442. } else if (!err)
  5443. err = add_bound_rdev(rdev);
  5444. return err;
  5445. }
  5446. /* otherwise, add_new_disk is only allowed
  5447. * for major_version==0 superblocks
  5448. */
  5449. if (mddev->major_version != 0) {
  5450. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  5451. mdname(mddev));
  5452. return -EINVAL;
  5453. }
  5454. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  5455. int err;
  5456. rdev = md_import_device(dev, -1, 0);
  5457. if (IS_ERR(rdev)) {
  5458. printk(KERN_WARNING
  5459. "md: error, md_import_device() returned %ld\n",
  5460. PTR_ERR(rdev));
  5461. return PTR_ERR(rdev);
  5462. }
  5463. rdev->desc_nr = info->number;
  5464. if (info->raid_disk < mddev->raid_disks)
  5465. rdev->raid_disk = info->raid_disk;
  5466. else
  5467. rdev->raid_disk = -1;
  5468. if (rdev->raid_disk < mddev->raid_disks)
  5469. if (info->state & (1<<MD_DISK_SYNC))
  5470. set_bit(In_sync, &rdev->flags);
  5471. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5472. set_bit(WriteMostly, &rdev->flags);
  5473. if (!mddev->persistent) {
  5474. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  5475. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5476. } else
  5477. rdev->sb_start = calc_dev_sboffset(rdev);
  5478. rdev->sectors = rdev->sb_start;
  5479. err = bind_rdev_to_array(rdev, mddev);
  5480. if (err) {
  5481. export_rdev(rdev);
  5482. return err;
  5483. }
  5484. }
  5485. return 0;
  5486. }
  5487. static int hot_remove_disk(struct mddev *mddev, dev_t dev)
  5488. {
  5489. char b[BDEVNAME_SIZE];
  5490. struct md_rdev *rdev;
  5491. int ret = -1;
  5492. if (!mddev->pers)
  5493. return -ENODEV;
  5494. rdev = find_rdev(mddev, dev);
  5495. if (!rdev)
  5496. return -ENXIO;
  5497. if (mddev_is_clustered(mddev))
  5498. ret = md_cluster_ops->metadata_update_start(mddev);
  5499. if (rdev->raid_disk < 0)
  5500. goto kick_rdev;
  5501. clear_bit(Blocked, &rdev->flags);
  5502. remove_and_add_spares(mddev, rdev);
  5503. if (rdev->raid_disk >= 0)
  5504. goto busy;
  5505. kick_rdev:
  5506. if (mddev_is_clustered(mddev) && ret == 0)
  5507. md_cluster_ops->remove_disk(mddev, rdev);
  5508. md_kick_rdev_from_array(rdev);
  5509. md_update_sb(mddev, 1);
  5510. md_new_event(mddev);
  5511. return 0;
  5512. busy:
  5513. if (mddev_is_clustered(mddev) && ret == 0)
  5514. md_cluster_ops->metadata_update_cancel(mddev);
  5515. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  5516. bdevname(rdev->bdev,b), mdname(mddev));
  5517. return -EBUSY;
  5518. }
  5519. static int hot_add_disk(struct mddev *mddev, dev_t dev)
  5520. {
  5521. char b[BDEVNAME_SIZE];
  5522. int err;
  5523. struct md_rdev *rdev;
  5524. if (!mddev->pers)
  5525. return -ENODEV;
  5526. if (mddev->major_version != 0) {
  5527. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  5528. " version-0 superblocks.\n",
  5529. mdname(mddev));
  5530. return -EINVAL;
  5531. }
  5532. if (!mddev->pers->hot_add_disk) {
  5533. printk(KERN_WARNING
  5534. "%s: personality does not support diskops!\n",
  5535. mdname(mddev));
  5536. return -EINVAL;
  5537. }
  5538. rdev = md_import_device(dev, -1, 0);
  5539. if (IS_ERR(rdev)) {
  5540. printk(KERN_WARNING
  5541. "md: error, md_import_device() returned %ld\n",
  5542. PTR_ERR(rdev));
  5543. return -EINVAL;
  5544. }
  5545. if (mddev->persistent)
  5546. rdev->sb_start = calc_dev_sboffset(rdev);
  5547. else
  5548. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5549. rdev->sectors = rdev->sb_start;
  5550. if (test_bit(Faulty, &rdev->flags)) {
  5551. printk(KERN_WARNING
  5552. "md: can not hot-add faulty %s disk to %s!\n",
  5553. bdevname(rdev->bdev,b), mdname(mddev));
  5554. err = -EINVAL;
  5555. goto abort_export;
  5556. }
  5557. clear_bit(In_sync, &rdev->flags);
  5558. rdev->desc_nr = -1;
  5559. rdev->saved_raid_disk = -1;
  5560. err = bind_rdev_to_array(rdev, mddev);
  5561. if (err)
  5562. goto abort_export;
  5563. /*
  5564. * The rest should better be atomic, we can have disk failures
  5565. * noticed in interrupt contexts ...
  5566. */
  5567. rdev->raid_disk = -1;
  5568. md_update_sb(mddev, 1);
  5569. /*
  5570. * Kick recovery, maybe this spare has to be added to the
  5571. * array immediately.
  5572. */
  5573. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5574. md_wakeup_thread(mddev->thread);
  5575. md_new_event(mddev);
  5576. return 0;
  5577. abort_export:
  5578. export_rdev(rdev);
  5579. return err;
  5580. }
  5581. static int set_bitmap_file(struct mddev *mddev, int fd)
  5582. {
  5583. int err = 0;
  5584. if (mddev->pers) {
  5585. if (!mddev->pers->quiesce || !mddev->thread)
  5586. return -EBUSY;
  5587. if (mddev->recovery || mddev->sync_thread)
  5588. return -EBUSY;
  5589. /* we should be able to change the bitmap.. */
  5590. }
  5591. if (fd >= 0) {
  5592. struct inode *inode;
  5593. struct file *f;
  5594. if (mddev->bitmap || mddev->bitmap_info.file)
  5595. return -EEXIST; /* cannot add when bitmap is present */
  5596. f = fget(fd);
  5597. if (f == NULL) {
  5598. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  5599. mdname(mddev));
  5600. return -EBADF;
  5601. }
  5602. inode = f->f_mapping->host;
  5603. if (!S_ISREG(inode->i_mode)) {
  5604. printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
  5605. mdname(mddev));
  5606. err = -EBADF;
  5607. } else if (!(f->f_mode & FMODE_WRITE)) {
  5608. printk(KERN_ERR "%s: error: bitmap file must open for write\n",
  5609. mdname(mddev));
  5610. err = -EBADF;
  5611. } else if (atomic_read(&inode->i_writecount) != 1) {
  5612. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  5613. mdname(mddev));
  5614. err = -EBUSY;
  5615. }
  5616. if (err) {
  5617. fput(f);
  5618. return err;
  5619. }
  5620. mddev->bitmap_info.file = f;
  5621. mddev->bitmap_info.offset = 0; /* file overrides offset */
  5622. } else if (mddev->bitmap == NULL)
  5623. return -ENOENT; /* cannot remove what isn't there */
  5624. err = 0;
  5625. if (mddev->pers) {
  5626. mddev->pers->quiesce(mddev, 1);
  5627. if (fd >= 0) {
  5628. struct bitmap *bitmap;
  5629. bitmap = bitmap_create(mddev, -1);
  5630. if (!IS_ERR(bitmap)) {
  5631. mddev->bitmap = bitmap;
  5632. err = bitmap_load(mddev);
  5633. } else
  5634. err = PTR_ERR(bitmap);
  5635. }
  5636. if (fd < 0 || err) {
  5637. bitmap_destroy(mddev);
  5638. fd = -1; /* make sure to put the file */
  5639. }
  5640. mddev->pers->quiesce(mddev, 0);
  5641. }
  5642. if (fd < 0) {
  5643. struct file *f = mddev->bitmap_info.file;
  5644. if (f) {
  5645. spin_lock(&mddev->lock);
  5646. mddev->bitmap_info.file = NULL;
  5647. spin_unlock(&mddev->lock);
  5648. fput(f);
  5649. }
  5650. }
  5651. return err;
  5652. }
  5653. /*
  5654. * set_array_info is used two different ways
  5655. * The original usage is when creating a new array.
  5656. * In this usage, raid_disks is > 0 and it together with
  5657. * level, size, not_persistent,layout,chunksize determine the
  5658. * shape of the array.
  5659. * This will always create an array with a type-0.90.0 superblock.
  5660. * The newer usage is when assembling an array.
  5661. * In this case raid_disks will be 0, and the major_version field is
  5662. * use to determine which style super-blocks are to be found on the devices.
  5663. * The minor and patch _version numbers are also kept incase the
  5664. * super_block handler wishes to interpret them.
  5665. */
  5666. static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5667. {
  5668. if (info->raid_disks == 0) {
  5669. /* just setting version number for superblock loading */
  5670. if (info->major_version < 0 ||
  5671. info->major_version >= ARRAY_SIZE(super_types) ||
  5672. super_types[info->major_version].name == NULL) {
  5673. /* maybe try to auto-load a module? */
  5674. printk(KERN_INFO
  5675. "md: superblock version %d not known\n",
  5676. info->major_version);
  5677. return -EINVAL;
  5678. }
  5679. mddev->major_version = info->major_version;
  5680. mddev->minor_version = info->minor_version;
  5681. mddev->patch_version = info->patch_version;
  5682. mddev->persistent = !info->not_persistent;
  5683. /* ensure mddev_put doesn't delete this now that there
  5684. * is some minimal configuration.
  5685. */
  5686. mddev->ctime = get_seconds();
  5687. return 0;
  5688. }
  5689. mddev->major_version = MD_MAJOR_VERSION;
  5690. mddev->minor_version = MD_MINOR_VERSION;
  5691. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  5692. mddev->ctime = get_seconds();
  5693. mddev->level = info->level;
  5694. mddev->clevel[0] = 0;
  5695. mddev->dev_sectors = 2 * (sector_t)info->size;
  5696. mddev->raid_disks = info->raid_disks;
  5697. /* don't set md_minor, it is determined by which /dev/md* was
  5698. * openned
  5699. */
  5700. if (info->state & (1<<MD_SB_CLEAN))
  5701. mddev->recovery_cp = MaxSector;
  5702. else
  5703. mddev->recovery_cp = 0;
  5704. mddev->persistent = ! info->not_persistent;
  5705. mddev->external = 0;
  5706. mddev->layout = info->layout;
  5707. mddev->chunk_sectors = info->chunk_size >> 9;
  5708. mddev->max_disks = MD_SB_DISKS;
  5709. if (mddev->persistent)
  5710. mddev->flags = 0;
  5711. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5712. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  5713. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  5714. mddev->bitmap_info.offset = 0;
  5715. mddev->reshape_position = MaxSector;
  5716. /*
  5717. * Generate a 128 bit UUID
  5718. */
  5719. get_random_bytes(mddev->uuid, 16);
  5720. mddev->new_level = mddev->level;
  5721. mddev->new_chunk_sectors = mddev->chunk_sectors;
  5722. mddev->new_layout = mddev->layout;
  5723. mddev->delta_disks = 0;
  5724. mddev->reshape_backwards = 0;
  5725. return 0;
  5726. }
  5727. void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
  5728. {
  5729. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  5730. if (mddev->external_size)
  5731. return;
  5732. mddev->array_sectors = array_sectors;
  5733. }
  5734. EXPORT_SYMBOL(md_set_array_sectors);
  5735. static int update_size(struct mddev *mddev, sector_t num_sectors)
  5736. {
  5737. struct md_rdev *rdev;
  5738. int rv;
  5739. int fit = (num_sectors == 0);
  5740. if (mddev->pers->resize == NULL)
  5741. return -EINVAL;
  5742. /* The "num_sectors" is the number of sectors of each device that
  5743. * is used. This can only make sense for arrays with redundancy.
  5744. * linear and raid0 always use whatever space is available. We can only
  5745. * consider changing this number if no resync or reconstruction is
  5746. * happening, and if the new size is acceptable. It must fit before the
  5747. * sb_start or, if that is <data_offset, it must fit before the size
  5748. * of each device. If num_sectors is zero, we find the largest size
  5749. * that fits.
  5750. */
  5751. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  5752. mddev->sync_thread)
  5753. return -EBUSY;
  5754. if (mddev->ro)
  5755. return -EROFS;
  5756. rdev_for_each(rdev, mddev) {
  5757. sector_t avail = rdev->sectors;
  5758. if (fit && (num_sectors == 0 || num_sectors > avail))
  5759. num_sectors = avail;
  5760. if (avail < num_sectors)
  5761. return -ENOSPC;
  5762. }
  5763. rv = mddev->pers->resize(mddev, num_sectors);
  5764. if (!rv)
  5765. revalidate_disk(mddev->gendisk);
  5766. return rv;
  5767. }
  5768. static int update_raid_disks(struct mddev *mddev, int raid_disks)
  5769. {
  5770. int rv;
  5771. struct md_rdev *rdev;
  5772. /* change the number of raid disks */
  5773. if (mddev->pers->check_reshape == NULL)
  5774. return -EINVAL;
  5775. if (mddev->ro)
  5776. return -EROFS;
  5777. if (raid_disks <= 0 ||
  5778. (mddev->max_disks && raid_disks >= mddev->max_disks))
  5779. return -EINVAL;
  5780. if (mddev->sync_thread ||
  5781. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  5782. mddev->reshape_position != MaxSector)
  5783. return -EBUSY;
  5784. rdev_for_each(rdev, mddev) {
  5785. if (mddev->raid_disks < raid_disks &&
  5786. rdev->data_offset < rdev->new_data_offset)
  5787. return -EINVAL;
  5788. if (mddev->raid_disks > raid_disks &&
  5789. rdev->data_offset > rdev->new_data_offset)
  5790. return -EINVAL;
  5791. }
  5792. mddev->delta_disks = raid_disks - mddev->raid_disks;
  5793. if (mddev->delta_disks < 0)
  5794. mddev->reshape_backwards = 1;
  5795. else if (mddev->delta_disks > 0)
  5796. mddev->reshape_backwards = 0;
  5797. rv = mddev->pers->check_reshape(mddev);
  5798. if (rv < 0) {
  5799. mddev->delta_disks = 0;
  5800. mddev->reshape_backwards = 0;
  5801. }
  5802. return rv;
  5803. }
  5804. /*
  5805. * update_array_info is used to change the configuration of an
  5806. * on-line array.
  5807. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  5808. * fields in the info are checked against the array.
  5809. * Any differences that cannot be handled will cause an error.
  5810. * Normally, only one change can be managed at a time.
  5811. */
  5812. static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5813. {
  5814. int rv = 0;
  5815. int cnt = 0;
  5816. int state = 0;
  5817. /* calculate expected state,ignoring low bits */
  5818. if (mddev->bitmap && mddev->bitmap_info.offset)
  5819. state |= (1 << MD_SB_BITMAP_PRESENT);
  5820. if (mddev->major_version != info->major_version ||
  5821. mddev->minor_version != info->minor_version ||
  5822. /* mddev->patch_version != info->patch_version || */
  5823. mddev->ctime != info->ctime ||
  5824. mddev->level != info->level ||
  5825. /* mddev->layout != info->layout || */
  5826. mddev->persistent != !info->not_persistent ||
  5827. mddev->chunk_sectors != info->chunk_size >> 9 ||
  5828. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  5829. ((state^info->state) & 0xfffffe00)
  5830. )
  5831. return -EINVAL;
  5832. /* Check there is only one change */
  5833. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5834. cnt++;
  5835. if (mddev->raid_disks != info->raid_disks)
  5836. cnt++;
  5837. if (mddev->layout != info->layout)
  5838. cnt++;
  5839. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  5840. cnt++;
  5841. if (cnt == 0)
  5842. return 0;
  5843. if (cnt > 1)
  5844. return -EINVAL;
  5845. if (mddev->layout != info->layout) {
  5846. /* Change layout
  5847. * we don't need to do anything at the md level, the
  5848. * personality will take care of it all.
  5849. */
  5850. if (mddev->pers->check_reshape == NULL)
  5851. return -EINVAL;
  5852. else {
  5853. mddev->new_layout = info->layout;
  5854. rv = mddev->pers->check_reshape(mddev);
  5855. if (rv)
  5856. mddev->new_layout = mddev->layout;
  5857. return rv;
  5858. }
  5859. }
  5860. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5861. rv = update_size(mddev, (sector_t)info->size * 2);
  5862. if (mddev->raid_disks != info->raid_disks)
  5863. rv = update_raid_disks(mddev, info->raid_disks);
  5864. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  5865. if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
  5866. rv = -EINVAL;
  5867. goto err;
  5868. }
  5869. if (mddev->recovery || mddev->sync_thread) {
  5870. rv = -EBUSY;
  5871. goto err;
  5872. }
  5873. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  5874. struct bitmap *bitmap;
  5875. /* add the bitmap */
  5876. if (mddev->bitmap) {
  5877. rv = -EEXIST;
  5878. goto err;
  5879. }
  5880. if (mddev->bitmap_info.default_offset == 0) {
  5881. rv = -EINVAL;
  5882. goto err;
  5883. }
  5884. mddev->bitmap_info.offset =
  5885. mddev->bitmap_info.default_offset;
  5886. mddev->bitmap_info.space =
  5887. mddev->bitmap_info.default_space;
  5888. mddev->pers->quiesce(mddev, 1);
  5889. bitmap = bitmap_create(mddev, -1);
  5890. if (!IS_ERR(bitmap)) {
  5891. mddev->bitmap = bitmap;
  5892. rv = bitmap_load(mddev);
  5893. } else
  5894. rv = PTR_ERR(bitmap);
  5895. if (rv)
  5896. bitmap_destroy(mddev);
  5897. mddev->pers->quiesce(mddev, 0);
  5898. } else {
  5899. /* remove the bitmap */
  5900. if (!mddev->bitmap) {
  5901. rv = -ENOENT;
  5902. goto err;
  5903. }
  5904. if (mddev->bitmap->storage.file) {
  5905. rv = -EINVAL;
  5906. goto err;
  5907. }
  5908. mddev->pers->quiesce(mddev, 1);
  5909. bitmap_destroy(mddev);
  5910. mddev->pers->quiesce(mddev, 0);
  5911. mddev->bitmap_info.offset = 0;
  5912. }
  5913. }
  5914. md_update_sb(mddev, 1);
  5915. return rv;
  5916. err:
  5917. return rv;
  5918. }
  5919. static int set_disk_faulty(struct mddev *mddev, dev_t dev)
  5920. {
  5921. struct md_rdev *rdev;
  5922. int err = 0;
  5923. if (mddev->pers == NULL)
  5924. return -ENODEV;
  5925. rcu_read_lock();
  5926. rdev = find_rdev_rcu(mddev, dev);
  5927. if (!rdev)
  5928. err = -ENODEV;
  5929. else {
  5930. md_error(mddev, rdev);
  5931. if (!test_bit(Faulty, &rdev->flags))
  5932. err = -EBUSY;
  5933. }
  5934. rcu_read_unlock();
  5935. return err;
  5936. }
  5937. /*
  5938. * We have a problem here : there is no easy way to give a CHS
  5939. * virtual geometry. We currently pretend that we have a 2 heads
  5940. * 4 sectors (with a BIG number of cylinders...). This drives
  5941. * dosfs just mad... ;-)
  5942. */
  5943. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  5944. {
  5945. struct mddev *mddev = bdev->bd_disk->private_data;
  5946. geo->heads = 2;
  5947. geo->sectors = 4;
  5948. geo->cylinders = mddev->array_sectors / 8;
  5949. return 0;
  5950. }
  5951. static inline bool md_ioctl_valid(unsigned int cmd)
  5952. {
  5953. switch (cmd) {
  5954. case ADD_NEW_DISK:
  5955. case BLKROSET:
  5956. case GET_ARRAY_INFO:
  5957. case GET_BITMAP_FILE:
  5958. case GET_DISK_INFO:
  5959. case HOT_ADD_DISK:
  5960. case HOT_REMOVE_DISK:
  5961. case RAID_AUTORUN:
  5962. case RAID_VERSION:
  5963. case RESTART_ARRAY_RW:
  5964. case RUN_ARRAY:
  5965. case SET_ARRAY_INFO:
  5966. case SET_BITMAP_FILE:
  5967. case SET_DISK_FAULTY:
  5968. case STOP_ARRAY:
  5969. case STOP_ARRAY_RO:
  5970. case CLUSTERED_DISK_NACK:
  5971. return true;
  5972. default:
  5973. return false;
  5974. }
  5975. }
  5976. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  5977. unsigned int cmd, unsigned long arg)
  5978. {
  5979. int err = 0;
  5980. void __user *argp = (void __user *)arg;
  5981. struct mddev *mddev = NULL;
  5982. int ro;
  5983. if (!md_ioctl_valid(cmd))
  5984. return -ENOTTY;
  5985. switch (cmd) {
  5986. case RAID_VERSION:
  5987. case GET_ARRAY_INFO:
  5988. case GET_DISK_INFO:
  5989. break;
  5990. default:
  5991. if (!capable(CAP_SYS_ADMIN))
  5992. return -EACCES;
  5993. }
  5994. /*
  5995. * Commands dealing with the RAID driver but not any
  5996. * particular array:
  5997. */
  5998. switch (cmd) {
  5999. case RAID_VERSION:
  6000. err = get_version(argp);
  6001. goto out;
  6002. #ifndef MODULE
  6003. case RAID_AUTORUN:
  6004. err = 0;
  6005. autostart_arrays(arg);
  6006. goto out;
  6007. #endif
  6008. default:;
  6009. }
  6010. /*
  6011. * Commands creating/starting a new array:
  6012. */
  6013. mddev = bdev->bd_disk->private_data;
  6014. if (!mddev) {
  6015. BUG();
  6016. goto out;
  6017. }
  6018. /* Some actions do not requires the mutex */
  6019. switch (cmd) {
  6020. case GET_ARRAY_INFO:
  6021. if (!mddev->raid_disks && !mddev->external)
  6022. err = -ENODEV;
  6023. else
  6024. err = get_array_info(mddev, argp);
  6025. goto out;
  6026. case GET_DISK_INFO:
  6027. if (!mddev->raid_disks && !mddev->external)
  6028. err = -ENODEV;
  6029. else
  6030. err = get_disk_info(mddev, argp);
  6031. goto out;
  6032. case SET_DISK_FAULTY:
  6033. err = set_disk_faulty(mddev, new_decode_dev(arg));
  6034. goto out;
  6035. case GET_BITMAP_FILE:
  6036. err = get_bitmap_file(mddev, argp);
  6037. goto out;
  6038. }
  6039. if (cmd == ADD_NEW_DISK)
  6040. /* need to ensure md_delayed_delete() has completed */
  6041. flush_workqueue(md_misc_wq);
  6042. if (cmd == HOT_REMOVE_DISK)
  6043. /* need to ensure recovery thread has run */
  6044. wait_event_interruptible_timeout(mddev->sb_wait,
  6045. !test_bit(MD_RECOVERY_NEEDED,
  6046. &mddev->recovery),
  6047. msecs_to_jiffies(5000));
  6048. if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
  6049. /* Need to flush page cache, and ensure no-one else opens
  6050. * and writes
  6051. */
  6052. mutex_lock(&mddev->open_mutex);
  6053. if (mddev->pers && atomic_read(&mddev->openers) > 1) {
  6054. mutex_unlock(&mddev->open_mutex);
  6055. err = -EBUSY;
  6056. goto out;
  6057. }
  6058. set_bit(MD_STILL_CLOSED, &mddev->flags);
  6059. mutex_unlock(&mddev->open_mutex);
  6060. sync_blockdev(bdev);
  6061. }
  6062. err = mddev_lock(mddev);
  6063. if (err) {
  6064. printk(KERN_INFO
  6065. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  6066. err, cmd);
  6067. goto out;
  6068. }
  6069. if (cmd == SET_ARRAY_INFO) {
  6070. mdu_array_info_t info;
  6071. if (!arg)
  6072. memset(&info, 0, sizeof(info));
  6073. else if (copy_from_user(&info, argp, sizeof(info))) {
  6074. err = -EFAULT;
  6075. goto unlock;
  6076. }
  6077. if (mddev->pers) {
  6078. err = update_array_info(mddev, &info);
  6079. if (err) {
  6080. printk(KERN_WARNING "md: couldn't update"
  6081. " array info. %d\n", err);
  6082. goto unlock;
  6083. }
  6084. goto unlock;
  6085. }
  6086. if (!list_empty(&mddev->disks)) {
  6087. printk(KERN_WARNING
  6088. "md: array %s already has disks!\n",
  6089. mdname(mddev));
  6090. err = -EBUSY;
  6091. goto unlock;
  6092. }
  6093. if (mddev->raid_disks) {
  6094. printk(KERN_WARNING
  6095. "md: array %s already initialised!\n",
  6096. mdname(mddev));
  6097. err = -EBUSY;
  6098. goto unlock;
  6099. }
  6100. err = set_array_info(mddev, &info);
  6101. if (err) {
  6102. printk(KERN_WARNING "md: couldn't set"
  6103. " array info. %d\n", err);
  6104. goto unlock;
  6105. }
  6106. goto unlock;
  6107. }
  6108. /*
  6109. * Commands querying/configuring an existing array:
  6110. */
  6111. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  6112. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  6113. if ((!mddev->raid_disks && !mddev->external)
  6114. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  6115. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  6116. && cmd != GET_BITMAP_FILE) {
  6117. err = -ENODEV;
  6118. goto unlock;
  6119. }
  6120. /*
  6121. * Commands even a read-only array can execute:
  6122. */
  6123. switch (cmd) {
  6124. case RESTART_ARRAY_RW:
  6125. err = restart_array(mddev);
  6126. goto unlock;
  6127. case STOP_ARRAY:
  6128. err = do_md_stop(mddev, 0, bdev);
  6129. goto unlock;
  6130. case STOP_ARRAY_RO:
  6131. err = md_set_readonly(mddev, bdev);
  6132. goto unlock;
  6133. case HOT_REMOVE_DISK:
  6134. err = hot_remove_disk(mddev, new_decode_dev(arg));
  6135. goto unlock;
  6136. case ADD_NEW_DISK:
  6137. /* We can support ADD_NEW_DISK on read-only arrays
  6138. * on if we are re-adding a preexisting device.
  6139. * So require mddev->pers and MD_DISK_SYNC.
  6140. */
  6141. if (mddev->pers) {
  6142. mdu_disk_info_t info;
  6143. if (copy_from_user(&info, argp, sizeof(info)))
  6144. err = -EFAULT;
  6145. else if (!(info.state & (1<<MD_DISK_SYNC)))
  6146. /* Need to clear read-only for this */
  6147. break;
  6148. else
  6149. err = add_new_disk(mddev, &info);
  6150. goto unlock;
  6151. }
  6152. break;
  6153. case BLKROSET:
  6154. if (get_user(ro, (int __user *)(arg))) {
  6155. err = -EFAULT;
  6156. goto unlock;
  6157. }
  6158. err = -EINVAL;
  6159. /* if the bdev is going readonly the value of mddev->ro
  6160. * does not matter, no writes are coming
  6161. */
  6162. if (ro)
  6163. goto unlock;
  6164. /* are we are already prepared for writes? */
  6165. if (mddev->ro != 1)
  6166. goto unlock;
  6167. /* transitioning to readauto need only happen for
  6168. * arrays that call md_write_start
  6169. */
  6170. if (mddev->pers) {
  6171. err = restart_array(mddev);
  6172. if (err == 0) {
  6173. mddev->ro = 2;
  6174. set_disk_ro(mddev->gendisk, 0);
  6175. }
  6176. }
  6177. goto unlock;
  6178. }
  6179. /*
  6180. * The remaining ioctls are changing the state of the
  6181. * superblock, so we do not allow them on read-only arrays.
  6182. */
  6183. if (mddev->ro && mddev->pers) {
  6184. if (mddev->ro == 2) {
  6185. mddev->ro = 0;
  6186. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6187. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6188. /* mddev_unlock will wake thread */
  6189. /* If a device failed while we were read-only, we
  6190. * need to make sure the metadata is updated now.
  6191. */
  6192. if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  6193. mddev_unlock(mddev);
  6194. wait_event(mddev->sb_wait,
  6195. !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
  6196. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6197. mddev_lock_nointr(mddev);
  6198. }
  6199. } else {
  6200. err = -EROFS;
  6201. goto unlock;
  6202. }
  6203. }
  6204. switch (cmd) {
  6205. case ADD_NEW_DISK:
  6206. {
  6207. mdu_disk_info_t info;
  6208. if (copy_from_user(&info, argp, sizeof(info)))
  6209. err = -EFAULT;
  6210. else
  6211. err = add_new_disk(mddev, &info);
  6212. goto unlock;
  6213. }
  6214. case CLUSTERED_DISK_NACK:
  6215. if (mddev_is_clustered(mddev))
  6216. md_cluster_ops->new_disk_ack(mddev, false);
  6217. else
  6218. err = -EINVAL;
  6219. goto unlock;
  6220. case HOT_ADD_DISK:
  6221. err = hot_add_disk(mddev, new_decode_dev(arg));
  6222. goto unlock;
  6223. case RUN_ARRAY:
  6224. err = do_md_run(mddev);
  6225. goto unlock;
  6226. case SET_BITMAP_FILE:
  6227. err = set_bitmap_file(mddev, (int)arg);
  6228. goto unlock;
  6229. default:
  6230. err = -EINVAL;
  6231. goto unlock;
  6232. }
  6233. unlock:
  6234. if (mddev->hold_active == UNTIL_IOCTL &&
  6235. err != -EINVAL)
  6236. mddev->hold_active = 0;
  6237. mddev_unlock(mddev);
  6238. out:
  6239. return err;
  6240. }
  6241. #ifdef CONFIG_COMPAT
  6242. static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
  6243. unsigned int cmd, unsigned long arg)
  6244. {
  6245. switch (cmd) {
  6246. case HOT_REMOVE_DISK:
  6247. case HOT_ADD_DISK:
  6248. case SET_DISK_FAULTY:
  6249. case SET_BITMAP_FILE:
  6250. /* These take in integer arg, do not convert */
  6251. break;
  6252. default:
  6253. arg = (unsigned long)compat_ptr(arg);
  6254. break;
  6255. }
  6256. return md_ioctl(bdev, mode, cmd, arg);
  6257. }
  6258. #endif /* CONFIG_COMPAT */
  6259. static int md_open(struct block_device *bdev, fmode_t mode)
  6260. {
  6261. /*
  6262. * Succeed if we can lock the mddev, which confirms that
  6263. * it isn't being stopped right now.
  6264. */
  6265. struct mddev *mddev = mddev_find(bdev->bd_dev);
  6266. int err;
  6267. if (!mddev)
  6268. return -ENODEV;
  6269. if (mddev->gendisk != bdev->bd_disk) {
  6270. /* we are racing with mddev_put which is discarding this
  6271. * bd_disk.
  6272. */
  6273. mddev_put(mddev);
  6274. /* Wait until bdev->bd_disk is definitely gone */
  6275. flush_workqueue(md_misc_wq);
  6276. /* Then retry the open from the top */
  6277. return -ERESTARTSYS;
  6278. }
  6279. BUG_ON(mddev != bdev->bd_disk->private_data);
  6280. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  6281. goto out;
  6282. err = 0;
  6283. atomic_inc(&mddev->openers);
  6284. clear_bit(MD_STILL_CLOSED, &mddev->flags);
  6285. mutex_unlock(&mddev->open_mutex);
  6286. check_disk_change(bdev);
  6287. out:
  6288. return err;
  6289. }
  6290. static void md_release(struct gendisk *disk, fmode_t mode)
  6291. {
  6292. struct mddev *mddev = disk->private_data;
  6293. BUG_ON(!mddev);
  6294. atomic_dec(&mddev->openers);
  6295. mddev_put(mddev);
  6296. }
  6297. static int md_media_changed(struct gendisk *disk)
  6298. {
  6299. struct mddev *mddev = disk->private_data;
  6300. return mddev->changed;
  6301. }
  6302. static int md_revalidate(struct gendisk *disk)
  6303. {
  6304. struct mddev *mddev = disk->private_data;
  6305. mddev->changed = 0;
  6306. return 0;
  6307. }
  6308. static const struct block_device_operations md_fops =
  6309. {
  6310. .owner = THIS_MODULE,
  6311. .open = md_open,
  6312. .release = md_release,
  6313. .ioctl = md_ioctl,
  6314. #ifdef CONFIG_COMPAT
  6315. .compat_ioctl = md_compat_ioctl,
  6316. #endif
  6317. .getgeo = md_getgeo,
  6318. .media_changed = md_media_changed,
  6319. .revalidate_disk= md_revalidate,
  6320. };
  6321. static int md_thread(void *arg)
  6322. {
  6323. struct md_thread *thread = arg;
  6324. /*
  6325. * md_thread is a 'system-thread', it's priority should be very
  6326. * high. We avoid resource deadlocks individually in each
  6327. * raid personality. (RAID5 does preallocation) We also use RR and
  6328. * the very same RT priority as kswapd, thus we will never get
  6329. * into a priority inversion deadlock.
  6330. *
  6331. * we definitely have to have equal or higher priority than
  6332. * bdflush, otherwise bdflush will deadlock if there are too
  6333. * many dirty RAID5 blocks.
  6334. */
  6335. allow_signal(SIGKILL);
  6336. while (!kthread_should_stop()) {
  6337. /* We need to wait INTERRUPTIBLE so that
  6338. * we don't add to the load-average.
  6339. * That means we need to be sure no signals are
  6340. * pending
  6341. */
  6342. if (signal_pending(current))
  6343. flush_signals(current);
  6344. wait_event_interruptible_timeout
  6345. (thread->wqueue,
  6346. test_bit(THREAD_WAKEUP, &thread->flags)
  6347. || kthread_should_stop(),
  6348. thread->timeout);
  6349. clear_bit(THREAD_WAKEUP, &thread->flags);
  6350. if (!kthread_should_stop())
  6351. thread->run(thread);
  6352. }
  6353. return 0;
  6354. }
  6355. void md_wakeup_thread(struct md_thread *thread)
  6356. {
  6357. if (thread) {
  6358. pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
  6359. set_bit(THREAD_WAKEUP, &thread->flags);
  6360. wake_up(&thread->wqueue);
  6361. }
  6362. }
  6363. EXPORT_SYMBOL(md_wakeup_thread);
  6364. struct md_thread *md_register_thread(void (*run) (struct md_thread *),
  6365. struct mddev *mddev, const char *name)
  6366. {
  6367. struct md_thread *thread;
  6368. thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
  6369. if (!thread)
  6370. return NULL;
  6371. init_waitqueue_head(&thread->wqueue);
  6372. thread->run = run;
  6373. thread->mddev = mddev;
  6374. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  6375. thread->tsk = kthread_run(md_thread, thread,
  6376. "%s_%s",
  6377. mdname(thread->mddev),
  6378. name);
  6379. if (IS_ERR(thread->tsk)) {
  6380. kfree(thread);
  6381. return NULL;
  6382. }
  6383. return thread;
  6384. }
  6385. EXPORT_SYMBOL(md_register_thread);
  6386. void md_unregister_thread(struct md_thread **threadp)
  6387. {
  6388. struct md_thread *thread = *threadp;
  6389. if (!thread)
  6390. return;
  6391. pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  6392. /* Locking ensures that mddev_unlock does not wake_up a
  6393. * non-existent thread
  6394. */
  6395. spin_lock(&pers_lock);
  6396. *threadp = NULL;
  6397. spin_unlock(&pers_lock);
  6398. kthread_stop(thread->tsk);
  6399. kfree(thread);
  6400. }
  6401. EXPORT_SYMBOL(md_unregister_thread);
  6402. void md_error(struct mddev *mddev, struct md_rdev *rdev)
  6403. {
  6404. if (!rdev || test_bit(Faulty, &rdev->flags))
  6405. return;
  6406. if (!mddev->pers || !mddev->pers->error_handler)
  6407. return;
  6408. mddev->pers->error_handler(mddev,rdev);
  6409. if (mddev->degraded)
  6410. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6411. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6412. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6413. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6414. md_wakeup_thread(mddev->thread);
  6415. if (mddev->event_work.func)
  6416. queue_work(md_misc_wq, &mddev->event_work);
  6417. md_new_event_inintr(mddev);
  6418. }
  6419. EXPORT_SYMBOL(md_error);
  6420. /* seq_file implementation /proc/mdstat */
  6421. static void status_unused(struct seq_file *seq)
  6422. {
  6423. int i = 0;
  6424. struct md_rdev *rdev;
  6425. seq_printf(seq, "unused devices: ");
  6426. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  6427. char b[BDEVNAME_SIZE];
  6428. i++;
  6429. seq_printf(seq, "%s ",
  6430. bdevname(rdev->bdev,b));
  6431. }
  6432. if (!i)
  6433. seq_printf(seq, "<none>");
  6434. seq_printf(seq, "\n");
  6435. }
  6436. static int status_resync(struct seq_file *seq, struct mddev *mddev)
  6437. {
  6438. sector_t max_sectors, resync, res;
  6439. unsigned long dt, db;
  6440. sector_t rt;
  6441. int scale;
  6442. unsigned int per_milli;
  6443. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  6444. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6445. max_sectors = mddev->resync_max_sectors;
  6446. else
  6447. max_sectors = mddev->dev_sectors;
  6448. resync = mddev->curr_resync;
  6449. if (resync <= 3) {
  6450. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6451. /* Still cleaning up */
  6452. resync = max_sectors;
  6453. } else
  6454. resync -= atomic_read(&mddev->recovery_active);
  6455. if (resync == 0) {
  6456. if (mddev->recovery_cp < MaxSector) {
  6457. seq_printf(seq, "\tresync=PENDING");
  6458. return 1;
  6459. }
  6460. return 0;
  6461. }
  6462. if (resync < 3) {
  6463. seq_printf(seq, "\tresync=DELAYED");
  6464. return 1;
  6465. }
  6466. WARN_ON(max_sectors == 0);
  6467. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  6468. * in a sector_t, and (max_sectors>>scale) will fit in a
  6469. * u32, as those are the requirements for sector_div.
  6470. * Thus 'scale' must be at least 10
  6471. */
  6472. scale = 10;
  6473. if (sizeof(sector_t) > sizeof(unsigned long)) {
  6474. while ( max_sectors/2 > (1ULL<<(scale+32)))
  6475. scale++;
  6476. }
  6477. res = (resync>>scale)*1000;
  6478. sector_div(res, (u32)((max_sectors>>scale)+1));
  6479. per_milli = res;
  6480. {
  6481. int i, x = per_milli/50, y = 20-x;
  6482. seq_printf(seq, "[");
  6483. for (i = 0; i < x; i++)
  6484. seq_printf(seq, "=");
  6485. seq_printf(seq, ">");
  6486. for (i = 0; i < y; i++)
  6487. seq_printf(seq, ".");
  6488. seq_printf(seq, "] ");
  6489. }
  6490. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  6491. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  6492. "reshape" :
  6493. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  6494. "check" :
  6495. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  6496. "resync" : "recovery"))),
  6497. per_milli/10, per_milli % 10,
  6498. (unsigned long long) resync/2,
  6499. (unsigned long long) max_sectors/2);
  6500. /*
  6501. * dt: time from mark until now
  6502. * db: blocks written from mark until now
  6503. * rt: remaining time
  6504. *
  6505. * rt is a sector_t, so could be 32bit or 64bit.
  6506. * So we divide before multiply in case it is 32bit and close
  6507. * to the limit.
  6508. * We scale the divisor (db) by 32 to avoid losing precision
  6509. * near the end of resync when the number of remaining sectors
  6510. * is close to 'db'.
  6511. * We then divide rt by 32 after multiplying by db to compensate.
  6512. * The '+1' avoids division by zero if db is very small.
  6513. */
  6514. dt = ((jiffies - mddev->resync_mark) / HZ);
  6515. if (!dt) dt++;
  6516. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  6517. - mddev->resync_mark_cnt;
  6518. rt = max_sectors - resync; /* number of remaining sectors */
  6519. sector_div(rt, db/32+1);
  6520. rt *= dt;
  6521. rt >>= 5;
  6522. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  6523. ((unsigned long)rt % 60)/6);
  6524. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  6525. return 1;
  6526. }
  6527. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  6528. {
  6529. struct list_head *tmp;
  6530. loff_t l = *pos;
  6531. struct mddev *mddev;
  6532. if (l >= 0x10000)
  6533. return NULL;
  6534. if (!l--)
  6535. /* header */
  6536. return (void*)1;
  6537. spin_lock(&all_mddevs_lock);
  6538. list_for_each(tmp,&all_mddevs)
  6539. if (!l--) {
  6540. mddev = list_entry(tmp, struct mddev, all_mddevs);
  6541. mddev_get(mddev);
  6542. spin_unlock(&all_mddevs_lock);
  6543. return mddev;
  6544. }
  6545. spin_unlock(&all_mddevs_lock);
  6546. if (!l--)
  6547. return (void*)2;/* tail */
  6548. return NULL;
  6549. }
  6550. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  6551. {
  6552. struct list_head *tmp;
  6553. struct mddev *next_mddev, *mddev = v;
  6554. ++*pos;
  6555. if (v == (void*)2)
  6556. return NULL;
  6557. spin_lock(&all_mddevs_lock);
  6558. if (v == (void*)1)
  6559. tmp = all_mddevs.next;
  6560. else
  6561. tmp = mddev->all_mddevs.next;
  6562. if (tmp != &all_mddevs)
  6563. next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
  6564. else {
  6565. next_mddev = (void*)2;
  6566. *pos = 0x10000;
  6567. }
  6568. spin_unlock(&all_mddevs_lock);
  6569. if (v != (void*)1)
  6570. mddev_put(mddev);
  6571. return next_mddev;
  6572. }
  6573. static void md_seq_stop(struct seq_file *seq, void *v)
  6574. {
  6575. struct mddev *mddev = v;
  6576. if (mddev && v != (void*)1 && v != (void*)2)
  6577. mddev_put(mddev);
  6578. }
  6579. static int md_seq_show(struct seq_file *seq, void *v)
  6580. {
  6581. struct mddev *mddev = v;
  6582. sector_t sectors;
  6583. struct md_rdev *rdev;
  6584. if (v == (void*)1) {
  6585. struct md_personality *pers;
  6586. seq_printf(seq, "Personalities : ");
  6587. spin_lock(&pers_lock);
  6588. list_for_each_entry(pers, &pers_list, list)
  6589. seq_printf(seq, "[%s] ", pers->name);
  6590. spin_unlock(&pers_lock);
  6591. seq_printf(seq, "\n");
  6592. seq->poll_event = atomic_read(&md_event_count);
  6593. return 0;
  6594. }
  6595. if (v == (void*)2) {
  6596. status_unused(seq);
  6597. return 0;
  6598. }
  6599. spin_lock(&mddev->lock);
  6600. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  6601. seq_printf(seq, "%s : %sactive", mdname(mddev),
  6602. mddev->pers ? "" : "in");
  6603. if (mddev->pers) {
  6604. if (mddev->ro==1)
  6605. seq_printf(seq, " (read-only)");
  6606. if (mddev->ro==2)
  6607. seq_printf(seq, " (auto-read-only)");
  6608. seq_printf(seq, " %s", mddev->pers->name);
  6609. }
  6610. sectors = 0;
  6611. rcu_read_lock();
  6612. rdev_for_each_rcu(rdev, mddev) {
  6613. char b[BDEVNAME_SIZE];
  6614. seq_printf(seq, " %s[%d]",
  6615. bdevname(rdev->bdev,b), rdev->desc_nr);
  6616. if (test_bit(WriteMostly, &rdev->flags))
  6617. seq_printf(seq, "(W)");
  6618. if (test_bit(Journal, &rdev->flags))
  6619. seq_printf(seq, "(J)");
  6620. if (test_bit(Faulty, &rdev->flags)) {
  6621. seq_printf(seq, "(F)");
  6622. continue;
  6623. }
  6624. if (rdev->raid_disk < 0)
  6625. seq_printf(seq, "(S)"); /* spare */
  6626. if (test_bit(Replacement, &rdev->flags))
  6627. seq_printf(seq, "(R)");
  6628. sectors += rdev->sectors;
  6629. }
  6630. rcu_read_unlock();
  6631. if (!list_empty(&mddev->disks)) {
  6632. if (mddev->pers)
  6633. seq_printf(seq, "\n %llu blocks",
  6634. (unsigned long long)
  6635. mddev->array_sectors / 2);
  6636. else
  6637. seq_printf(seq, "\n %llu blocks",
  6638. (unsigned long long)sectors / 2);
  6639. }
  6640. if (mddev->persistent) {
  6641. if (mddev->major_version != 0 ||
  6642. mddev->minor_version != 90) {
  6643. seq_printf(seq," super %d.%d",
  6644. mddev->major_version,
  6645. mddev->minor_version);
  6646. }
  6647. } else if (mddev->external)
  6648. seq_printf(seq, " super external:%s",
  6649. mddev->metadata_type);
  6650. else
  6651. seq_printf(seq, " super non-persistent");
  6652. if (mddev->pers) {
  6653. mddev->pers->status(seq, mddev);
  6654. seq_printf(seq, "\n ");
  6655. if (mddev->pers->sync_request) {
  6656. if (status_resync(seq, mddev))
  6657. seq_printf(seq, "\n ");
  6658. }
  6659. } else
  6660. seq_printf(seq, "\n ");
  6661. bitmap_status(seq, mddev->bitmap);
  6662. seq_printf(seq, "\n");
  6663. }
  6664. spin_unlock(&mddev->lock);
  6665. return 0;
  6666. }
  6667. static const struct seq_operations md_seq_ops = {
  6668. .start = md_seq_start,
  6669. .next = md_seq_next,
  6670. .stop = md_seq_stop,
  6671. .show = md_seq_show,
  6672. };
  6673. static int md_seq_open(struct inode *inode, struct file *file)
  6674. {
  6675. struct seq_file *seq;
  6676. int error;
  6677. error = seq_open(file, &md_seq_ops);
  6678. if (error)
  6679. return error;
  6680. seq = file->private_data;
  6681. seq->poll_event = atomic_read(&md_event_count);
  6682. return error;
  6683. }
  6684. static int md_unloading;
  6685. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  6686. {
  6687. struct seq_file *seq = filp->private_data;
  6688. int mask;
  6689. if (md_unloading)
  6690. return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
  6691. poll_wait(filp, &md_event_waiters, wait);
  6692. /* always allow read */
  6693. mask = POLLIN | POLLRDNORM;
  6694. if (seq->poll_event != atomic_read(&md_event_count))
  6695. mask |= POLLERR | POLLPRI;
  6696. return mask;
  6697. }
  6698. static const struct file_operations md_seq_fops = {
  6699. .owner = THIS_MODULE,
  6700. .open = md_seq_open,
  6701. .read = seq_read,
  6702. .llseek = seq_lseek,
  6703. .release = seq_release_private,
  6704. .poll = mdstat_poll,
  6705. };
  6706. int register_md_personality(struct md_personality *p)
  6707. {
  6708. printk(KERN_INFO "md: %s personality registered for level %d\n",
  6709. p->name, p->level);
  6710. spin_lock(&pers_lock);
  6711. list_add_tail(&p->list, &pers_list);
  6712. spin_unlock(&pers_lock);
  6713. return 0;
  6714. }
  6715. EXPORT_SYMBOL(register_md_personality);
  6716. int unregister_md_personality(struct md_personality *p)
  6717. {
  6718. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  6719. spin_lock(&pers_lock);
  6720. list_del_init(&p->list);
  6721. spin_unlock(&pers_lock);
  6722. return 0;
  6723. }
  6724. EXPORT_SYMBOL(unregister_md_personality);
  6725. int register_md_cluster_operations(struct md_cluster_operations *ops,
  6726. struct module *module)
  6727. {
  6728. int ret = 0;
  6729. spin_lock(&pers_lock);
  6730. if (md_cluster_ops != NULL)
  6731. ret = -EALREADY;
  6732. else {
  6733. md_cluster_ops = ops;
  6734. md_cluster_mod = module;
  6735. }
  6736. spin_unlock(&pers_lock);
  6737. return ret;
  6738. }
  6739. EXPORT_SYMBOL(register_md_cluster_operations);
  6740. int unregister_md_cluster_operations(void)
  6741. {
  6742. spin_lock(&pers_lock);
  6743. md_cluster_ops = NULL;
  6744. spin_unlock(&pers_lock);
  6745. return 0;
  6746. }
  6747. EXPORT_SYMBOL(unregister_md_cluster_operations);
  6748. int md_setup_cluster(struct mddev *mddev, int nodes)
  6749. {
  6750. if (!md_cluster_ops)
  6751. request_module("md-cluster");
  6752. spin_lock(&pers_lock);
  6753. /* ensure module won't be unloaded */
  6754. if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
  6755. pr_err("can't find md-cluster module or get it's reference.\n");
  6756. spin_unlock(&pers_lock);
  6757. return -ENOENT;
  6758. }
  6759. spin_unlock(&pers_lock);
  6760. return md_cluster_ops->join(mddev, nodes);
  6761. }
  6762. void md_cluster_stop(struct mddev *mddev)
  6763. {
  6764. if (!md_cluster_ops)
  6765. return;
  6766. md_cluster_ops->leave(mddev);
  6767. module_put(md_cluster_mod);
  6768. }
  6769. static int is_mddev_idle(struct mddev *mddev, int init)
  6770. {
  6771. struct md_rdev *rdev;
  6772. int idle;
  6773. int curr_events;
  6774. idle = 1;
  6775. rcu_read_lock();
  6776. rdev_for_each_rcu(rdev, mddev) {
  6777. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  6778. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  6779. (int)part_stat_read(&disk->part0, sectors[1]) -
  6780. atomic_read(&disk->sync_io);
  6781. /* sync IO will cause sync_io to increase before the disk_stats
  6782. * as sync_io is counted when a request starts, and
  6783. * disk_stats is counted when it completes.
  6784. * So resync activity will cause curr_events to be smaller than
  6785. * when there was no such activity.
  6786. * non-sync IO will cause disk_stat to increase without
  6787. * increasing sync_io so curr_events will (eventually)
  6788. * be larger than it was before. Once it becomes
  6789. * substantially larger, the test below will cause
  6790. * the array to appear non-idle, and resync will slow
  6791. * down.
  6792. * If there is a lot of outstanding resync activity when
  6793. * we set last_event to curr_events, then all that activity
  6794. * completing might cause the array to appear non-idle
  6795. * and resync will be slowed down even though there might
  6796. * not have been non-resync activity. This will only
  6797. * happen once though. 'last_events' will soon reflect
  6798. * the state where there is little or no outstanding
  6799. * resync requests, and further resync activity will
  6800. * always make curr_events less than last_events.
  6801. *
  6802. */
  6803. if (init || curr_events - rdev->last_events > 64) {
  6804. rdev->last_events = curr_events;
  6805. idle = 0;
  6806. }
  6807. }
  6808. rcu_read_unlock();
  6809. return idle;
  6810. }
  6811. void md_done_sync(struct mddev *mddev, int blocks, int ok)
  6812. {
  6813. /* another "blocks" (512byte) blocks have been synced */
  6814. atomic_sub(blocks, &mddev->recovery_active);
  6815. wake_up(&mddev->recovery_wait);
  6816. if (!ok) {
  6817. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6818. set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
  6819. md_wakeup_thread(mddev->thread);
  6820. // stop recovery, signal do_sync ....
  6821. }
  6822. }
  6823. EXPORT_SYMBOL(md_done_sync);
  6824. /* md_write_start(mddev, bi)
  6825. * If we need to update some array metadata (e.g. 'active' flag
  6826. * in superblock) before writing, schedule a superblock update
  6827. * and wait for it to complete.
  6828. */
  6829. void md_write_start(struct mddev *mddev, struct bio *bi)
  6830. {
  6831. int did_change = 0;
  6832. if (bio_data_dir(bi) != WRITE)
  6833. return;
  6834. BUG_ON(mddev->ro == 1);
  6835. if (mddev->ro == 2) {
  6836. /* need to switch to read/write */
  6837. mddev->ro = 0;
  6838. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6839. md_wakeup_thread(mddev->thread);
  6840. md_wakeup_thread(mddev->sync_thread);
  6841. did_change = 1;
  6842. }
  6843. atomic_inc(&mddev->writes_pending);
  6844. if (mddev->safemode == 1)
  6845. mddev->safemode = 0;
  6846. if (mddev->in_sync) {
  6847. spin_lock(&mddev->lock);
  6848. if (mddev->in_sync) {
  6849. mddev->in_sync = 0;
  6850. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6851. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6852. md_wakeup_thread(mddev->thread);
  6853. did_change = 1;
  6854. }
  6855. spin_unlock(&mddev->lock);
  6856. }
  6857. if (did_change)
  6858. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6859. wait_event(mddev->sb_wait,
  6860. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6861. }
  6862. EXPORT_SYMBOL(md_write_start);
  6863. void md_write_end(struct mddev *mddev)
  6864. {
  6865. if (atomic_dec_and_test(&mddev->writes_pending)) {
  6866. if (mddev->safemode == 2)
  6867. md_wakeup_thread(mddev->thread);
  6868. else if (mddev->safemode_delay)
  6869. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  6870. }
  6871. }
  6872. EXPORT_SYMBOL(md_write_end);
  6873. /* md_allow_write(mddev)
  6874. * Calling this ensures that the array is marked 'active' so that writes
  6875. * may proceed without blocking. It is important to call this before
  6876. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  6877. * Must be called with mddev_lock held.
  6878. *
  6879. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  6880. * is dropped, so return -EAGAIN after notifying userspace.
  6881. */
  6882. int md_allow_write(struct mddev *mddev)
  6883. {
  6884. if (!mddev->pers)
  6885. return 0;
  6886. if (mddev->ro)
  6887. return 0;
  6888. if (!mddev->pers->sync_request)
  6889. return 0;
  6890. spin_lock(&mddev->lock);
  6891. if (mddev->in_sync) {
  6892. mddev->in_sync = 0;
  6893. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6894. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6895. if (mddev->safemode_delay &&
  6896. mddev->safemode == 0)
  6897. mddev->safemode = 1;
  6898. spin_unlock(&mddev->lock);
  6899. md_update_sb(mddev, 0);
  6900. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6901. } else
  6902. spin_unlock(&mddev->lock);
  6903. if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  6904. return -EAGAIN;
  6905. else
  6906. return 0;
  6907. }
  6908. EXPORT_SYMBOL_GPL(md_allow_write);
  6909. #define SYNC_MARKS 10
  6910. #define SYNC_MARK_STEP (3*HZ)
  6911. #define UPDATE_FREQUENCY (5*60*HZ)
  6912. void md_do_sync(struct md_thread *thread)
  6913. {
  6914. struct mddev *mddev = thread->mddev;
  6915. struct mddev *mddev2;
  6916. unsigned int currspeed = 0,
  6917. window;
  6918. sector_t max_sectors,j, io_sectors, recovery_done;
  6919. unsigned long mark[SYNC_MARKS];
  6920. unsigned long update_time;
  6921. sector_t mark_cnt[SYNC_MARKS];
  6922. int last_mark,m;
  6923. struct list_head *tmp;
  6924. sector_t last_check;
  6925. int skipped = 0;
  6926. struct md_rdev *rdev;
  6927. char *desc, *action = NULL;
  6928. struct blk_plug plug;
  6929. bool cluster_resync_finished = false;
  6930. /* just incase thread restarts... */
  6931. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6932. return;
  6933. if (mddev->ro) {/* never try to sync a read-only array */
  6934. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6935. return;
  6936. }
  6937. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6938. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
  6939. desc = "data-check";
  6940. action = "check";
  6941. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6942. desc = "requested-resync";
  6943. action = "repair";
  6944. } else
  6945. desc = "resync";
  6946. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6947. desc = "reshape";
  6948. else
  6949. desc = "recovery";
  6950. mddev->last_sync_action = action ?: desc;
  6951. /* we overload curr_resync somewhat here.
  6952. * 0 == not engaged in resync at all
  6953. * 2 == checking that there is no conflict with another sync
  6954. * 1 == like 2, but have yielded to allow conflicting resync to
  6955. * commense
  6956. * other == active in resync - this many blocks
  6957. *
  6958. * Before starting a resync we must have set curr_resync to
  6959. * 2, and then checked that every "conflicting" array has curr_resync
  6960. * less than ours. When we find one that is the same or higher
  6961. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  6962. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  6963. * This will mean we have to start checking from the beginning again.
  6964. *
  6965. */
  6966. do {
  6967. mddev->curr_resync = 2;
  6968. try_again:
  6969. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6970. goto skip;
  6971. for_each_mddev(mddev2, tmp) {
  6972. if (mddev2 == mddev)
  6973. continue;
  6974. if (!mddev->parallel_resync
  6975. && mddev2->curr_resync
  6976. && match_mddev_units(mddev, mddev2)) {
  6977. DEFINE_WAIT(wq);
  6978. if (mddev < mddev2 && mddev->curr_resync == 2) {
  6979. /* arbitrarily yield */
  6980. mddev->curr_resync = 1;
  6981. wake_up(&resync_wait);
  6982. }
  6983. if (mddev > mddev2 && mddev->curr_resync == 1)
  6984. /* no need to wait here, we can wait the next
  6985. * time 'round when curr_resync == 2
  6986. */
  6987. continue;
  6988. /* We need to wait 'interruptible' so as not to
  6989. * contribute to the load average, and not to
  6990. * be caught by 'softlockup'
  6991. */
  6992. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  6993. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  6994. mddev2->curr_resync >= mddev->curr_resync) {
  6995. printk(KERN_INFO "md: delaying %s of %s"
  6996. " until %s has finished (they"
  6997. " share one or more physical units)\n",
  6998. desc, mdname(mddev), mdname(mddev2));
  6999. mddev_put(mddev2);
  7000. if (signal_pending(current))
  7001. flush_signals(current);
  7002. schedule();
  7003. finish_wait(&resync_wait, &wq);
  7004. goto try_again;
  7005. }
  7006. finish_wait(&resync_wait, &wq);
  7007. }
  7008. }
  7009. } while (mddev->curr_resync < 2);
  7010. j = 0;
  7011. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  7012. /* resync follows the size requested by the personality,
  7013. * which defaults to physical size, but can be virtual size
  7014. */
  7015. max_sectors = mddev->resync_max_sectors;
  7016. atomic64_set(&mddev->resync_mismatches, 0);
  7017. /* we don't use the checkpoint if there's a bitmap */
  7018. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  7019. j = mddev->resync_min;
  7020. else if (!mddev->bitmap)
  7021. j = mddev->recovery_cp;
  7022. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  7023. max_sectors = mddev->resync_max_sectors;
  7024. else {
  7025. /* recovery follows the physical size of devices */
  7026. max_sectors = mddev->dev_sectors;
  7027. j = MaxSector;
  7028. rcu_read_lock();
  7029. rdev_for_each_rcu(rdev, mddev)
  7030. if (rdev->raid_disk >= 0 &&
  7031. !test_bit(Journal, &rdev->flags) &&
  7032. !test_bit(Faulty, &rdev->flags) &&
  7033. !test_bit(In_sync, &rdev->flags) &&
  7034. rdev->recovery_offset < j)
  7035. j = rdev->recovery_offset;
  7036. rcu_read_unlock();
  7037. /* If there is a bitmap, we need to make sure all
  7038. * writes that started before we added a spare
  7039. * complete before we start doing a recovery.
  7040. * Otherwise the write might complete and (via
  7041. * bitmap_endwrite) set a bit in the bitmap after the
  7042. * recovery has checked that bit and skipped that
  7043. * region.
  7044. */
  7045. if (mddev->bitmap) {
  7046. mddev->pers->quiesce(mddev, 1);
  7047. mddev->pers->quiesce(mddev, 0);
  7048. }
  7049. }
  7050. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  7051. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  7052. " %d KB/sec/disk.\n", speed_min(mddev));
  7053. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  7054. "(but not more than %d KB/sec) for %s.\n",
  7055. speed_max(mddev), desc);
  7056. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  7057. io_sectors = 0;
  7058. for (m = 0; m < SYNC_MARKS; m++) {
  7059. mark[m] = jiffies;
  7060. mark_cnt[m] = io_sectors;
  7061. }
  7062. last_mark = 0;
  7063. mddev->resync_mark = mark[last_mark];
  7064. mddev->resync_mark_cnt = mark_cnt[last_mark];
  7065. /*
  7066. * Tune reconstruction:
  7067. */
  7068. window = 32*(PAGE_SIZE/512);
  7069. printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
  7070. window/2, (unsigned long long)max_sectors/2);
  7071. atomic_set(&mddev->recovery_active, 0);
  7072. last_check = 0;
  7073. if (j>2) {
  7074. printk(KERN_INFO
  7075. "md: resuming %s of %s from checkpoint.\n",
  7076. desc, mdname(mddev));
  7077. mddev->curr_resync = j;
  7078. } else
  7079. mddev->curr_resync = 3; /* no longer delayed */
  7080. mddev->curr_resync_completed = j;
  7081. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  7082. md_new_event(mddev);
  7083. update_time = jiffies;
  7084. blk_start_plug(&plug);
  7085. while (j < max_sectors) {
  7086. sector_t sectors;
  7087. skipped = 0;
  7088. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  7089. ((mddev->curr_resync > mddev->curr_resync_completed &&
  7090. (mddev->curr_resync - mddev->curr_resync_completed)
  7091. > (max_sectors >> 4)) ||
  7092. time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
  7093. (j - mddev->curr_resync_completed)*2
  7094. >= mddev->resync_max - mddev->curr_resync_completed ||
  7095. mddev->curr_resync_completed > mddev->resync_max
  7096. )) {
  7097. /* time to update curr_resync_completed */
  7098. wait_event(mddev->recovery_wait,
  7099. atomic_read(&mddev->recovery_active) == 0);
  7100. mddev->curr_resync_completed = j;
  7101. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
  7102. j > mddev->recovery_cp)
  7103. mddev->recovery_cp = j;
  7104. update_time = jiffies;
  7105. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  7106. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  7107. }
  7108. while (j >= mddev->resync_max &&
  7109. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  7110. /* As this condition is controlled by user-space,
  7111. * we can block indefinitely, so use '_interruptible'
  7112. * to avoid triggering warnings.
  7113. */
  7114. flush_signals(current); /* just in case */
  7115. wait_event_interruptible(mddev->recovery_wait,
  7116. mddev->resync_max > j
  7117. || test_bit(MD_RECOVERY_INTR,
  7118. &mddev->recovery));
  7119. }
  7120. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  7121. break;
  7122. sectors = mddev->pers->sync_request(mddev, j, &skipped);
  7123. if (sectors == 0) {
  7124. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  7125. break;
  7126. }
  7127. if (!skipped) { /* actual IO requested */
  7128. io_sectors += sectors;
  7129. atomic_add(sectors, &mddev->recovery_active);
  7130. }
  7131. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  7132. break;
  7133. j += sectors;
  7134. if (j > max_sectors)
  7135. /* when skipping, extra large numbers can be returned. */
  7136. j = max_sectors;
  7137. if (j > 2)
  7138. mddev->curr_resync = j;
  7139. mddev->curr_mark_cnt = io_sectors;
  7140. if (last_check == 0)
  7141. /* this is the earliest that rebuild will be
  7142. * visible in /proc/mdstat
  7143. */
  7144. md_new_event(mddev);
  7145. if (last_check + window > io_sectors || j == max_sectors)
  7146. continue;
  7147. last_check = io_sectors;
  7148. repeat:
  7149. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  7150. /* step marks */
  7151. int next = (last_mark+1) % SYNC_MARKS;
  7152. mddev->resync_mark = mark[next];
  7153. mddev->resync_mark_cnt = mark_cnt[next];
  7154. mark[next] = jiffies;
  7155. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  7156. last_mark = next;
  7157. }
  7158. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  7159. break;
  7160. /*
  7161. * this loop exits only if either when we are slower than
  7162. * the 'hard' speed limit, or the system was IO-idle for
  7163. * a jiffy.
  7164. * the system might be non-idle CPU-wise, but we only care
  7165. * about not overloading the IO subsystem. (things like an
  7166. * e2fsck being done on the RAID array should execute fast)
  7167. */
  7168. cond_resched();
  7169. recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
  7170. currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
  7171. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  7172. if (currspeed > speed_min(mddev)) {
  7173. if (currspeed > speed_max(mddev)) {
  7174. msleep(500);
  7175. goto repeat;
  7176. }
  7177. if (!is_mddev_idle(mddev, 0)) {
  7178. /*
  7179. * Give other IO more of a chance.
  7180. * The faster the devices, the less we wait.
  7181. */
  7182. wait_event(mddev->recovery_wait,
  7183. !atomic_read(&mddev->recovery_active));
  7184. }
  7185. }
  7186. }
  7187. printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
  7188. test_bit(MD_RECOVERY_INTR, &mddev->recovery)
  7189. ? "interrupted" : "done");
  7190. /*
  7191. * this also signals 'finished resyncing' to md_stop
  7192. */
  7193. blk_finish_plug(&plug);
  7194. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  7195. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  7196. !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  7197. mddev->curr_resync > 2) {
  7198. mddev->curr_resync_completed = mddev->curr_resync;
  7199. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  7200. }
  7201. /* tell personality and other nodes that we are finished */
  7202. if (mddev_is_clustered(mddev)) {
  7203. md_cluster_ops->resync_finish(mddev);
  7204. cluster_resync_finished = true;
  7205. }
  7206. mddev->pers->sync_request(mddev, max_sectors, &skipped);
  7207. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  7208. mddev->curr_resync > 2) {
  7209. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  7210. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  7211. if (mddev->curr_resync >= mddev->recovery_cp) {
  7212. printk(KERN_INFO
  7213. "md: checkpointing %s of %s.\n",
  7214. desc, mdname(mddev));
  7215. if (test_bit(MD_RECOVERY_ERROR,
  7216. &mddev->recovery))
  7217. mddev->recovery_cp =
  7218. mddev->curr_resync_completed;
  7219. else
  7220. mddev->recovery_cp =
  7221. mddev->curr_resync;
  7222. }
  7223. } else
  7224. mddev->recovery_cp = MaxSector;
  7225. } else {
  7226. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  7227. mddev->curr_resync = MaxSector;
  7228. rcu_read_lock();
  7229. rdev_for_each_rcu(rdev, mddev)
  7230. if (rdev->raid_disk >= 0 &&
  7231. mddev->delta_disks >= 0 &&
  7232. !test_bit(Journal, &rdev->flags) &&
  7233. !test_bit(Faulty, &rdev->flags) &&
  7234. !test_bit(In_sync, &rdev->flags) &&
  7235. rdev->recovery_offset < mddev->curr_resync)
  7236. rdev->recovery_offset = mddev->curr_resync;
  7237. rcu_read_unlock();
  7238. }
  7239. }
  7240. skip:
  7241. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  7242. if (mddev_is_clustered(mddev) &&
  7243. test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  7244. !cluster_resync_finished)
  7245. md_cluster_ops->resync_finish(mddev);
  7246. spin_lock(&mddev->lock);
  7247. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  7248. /* We completed so min/max setting can be forgotten if used. */
  7249. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  7250. mddev->resync_min = 0;
  7251. mddev->resync_max = MaxSector;
  7252. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  7253. mddev->resync_min = mddev->curr_resync_completed;
  7254. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  7255. mddev->curr_resync = 0;
  7256. spin_unlock(&mddev->lock);
  7257. wake_up(&resync_wait);
  7258. md_wakeup_thread(mddev->thread);
  7259. return;
  7260. }
  7261. EXPORT_SYMBOL_GPL(md_do_sync);
  7262. static int remove_and_add_spares(struct mddev *mddev,
  7263. struct md_rdev *this)
  7264. {
  7265. struct md_rdev *rdev;
  7266. int spares = 0;
  7267. int removed = 0;
  7268. rdev_for_each(rdev, mddev)
  7269. if ((this == NULL || rdev == this) &&
  7270. rdev->raid_disk >= 0 &&
  7271. !test_bit(Blocked, &rdev->flags) &&
  7272. (test_bit(Faulty, &rdev->flags) ||
  7273. (!test_bit(In_sync, &rdev->flags) &&
  7274. !test_bit(Journal, &rdev->flags))) &&
  7275. atomic_read(&rdev->nr_pending)==0) {
  7276. if (mddev->pers->hot_remove_disk(
  7277. mddev, rdev) == 0) {
  7278. sysfs_unlink_rdev(mddev, rdev);
  7279. rdev->saved_raid_disk = rdev->raid_disk;
  7280. rdev->raid_disk = -1;
  7281. removed++;
  7282. }
  7283. }
  7284. if (removed && mddev->kobj.sd)
  7285. sysfs_notify(&mddev->kobj, NULL, "degraded");
  7286. if (this && removed)
  7287. goto no_add;
  7288. rdev_for_each(rdev, mddev) {
  7289. if (this && this != rdev)
  7290. continue;
  7291. if (test_bit(Candidate, &rdev->flags))
  7292. continue;
  7293. if (rdev->raid_disk >= 0 &&
  7294. !test_bit(In_sync, &rdev->flags) &&
  7295. !test_bit(Journal, &rdev->flags) &&
  7296. !test_bit(Faulty, &rdev->flags))
  7297. spares++;
  7298. if (rdev->raid_disk >= 0)
  7299. continue;
  7300. if (test_bit(Faulty, &rdev->flags))
  7301. continue;
  7302. if (test_bit(Journal, &rdev->flags))
  7303. continue;
  7304. if (mddev->ro &&
  7305. ! (rdev->saved_raid_disk >= 0 &&
  7306. !test_bit(Bitmap_sync, &rdev->flags)))
  7307. continue;
  7308. rdev->recovery_offset = 0;
  7309. if (mddev->pers->
  7310. hot_add_disk(mddev, rdev) == 0) {
  7311. if (sysfs_link_rdev(mddev, rdev))
  7312. /* failure here is OK */;
  7313. spares++;
  7314. md_new_event(mddev);
  7315. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  7316. }
  7317. }
  7318. no_add:
  7319. if (removed)
  7320. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  7321. return spares;
  7322. }
  7323. static void md_start_sync(struct work_struct *ws)
  7324. {
  7325. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  7326. int ret = 0;
  7327. if (mddev_is_clustered(mddev)) {
  7328. ret = md_cluster_ops->resync_start(mddev);
  7329. if (ret) {
  7330. mddev->sync_thread = NULL;
  7331. goto out;
  7332. }
  7333. }
  7334. mddev->sync_thread = md_register_thread(md_do_sync,
  7335. mddev,
  7336. "resync");
  7337. out:
  7338. if (!mddev->sync_thread) {
  7339. if (!(mddev_is_clustered(mddev) && ret == -EAGAIN))
  7340. printk(KERN_ERR "%s: could not start resync"
  7341. " thread...\n",
  7342. mdname(mddev));
  7343. /* leave the spares where they are, it shouldn't hurt */
  7344. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7345. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7346. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7347. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7348. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7349. wake_up(&resync_wait);
  7350. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  7351. &mddev->recovery))
  7352. if (mddev->sysfs_action)
  7353. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7354. } else
  7355. md_wakeup_thread(mddev->sync_thread);
  7356. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7357. md_new_event(mddev);
  7358. }
  7359. /*
  7360. * This routine is regularly called by all per-raid-array threads to
  7361. * deal with generic issues like resync and super-block update.
  7362. * Raid personalities that don't have a thread (linear/raid0) do not
  7363. * need this as they never do any recovery or update the superblock.
  7364. *
  7365. * It does not do any resync itself, but rather "forks" off other threads
  7366. * to do that as needed.
  7367. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  7368. * "->recovery" and create a thread at ->sync_thread.
  7369. * When the thread finishes it sets MD_RECOVERY_DONE
  7370. * and wakeups up this thread which will reap the thread and finish up.
  7371. * This thread also removes any faulty devices (with nr_pending == 0).
  7372. *
  7373. * The overall approach is:
  7374. * 1/ if the superblock needs updating, update it.
  7375. * 2/ If a recovery thread is running, don't do anything else.
  7376. * 3/ If recovery has finished, clean up, possibly marking spares active.
  7377. * 4/ If there are any faulty devices, remove them.
  7378. * 5/ If array is degraded, try to add spares devices
  7379. * 6/ If array has spares or is not in-sync, start a resync thread.
  7380. */
  7381. void md_check_recovery(struct mddev *mddev)
  7382. {
  7383. if (mddev->suspended)
  7384. return;
  7385. if (mddev->bitmap)
  7386. bitmap_daemon_work(mddev);
  7387. if (signal_pending(current)) {
  7388. if (mddev->pers->sync_request && !mddev->external) {
  7389. printk(KERN_INFO "md: %s in immediate safe mode\n",
  7390. mdname(mddev));
  7391. mddev->safemode = 2;
  7392. }
  7393. flush_signals(current);
  7394. }
  7395. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  7396. return;
  7397. if ( ! (
  7398. (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
  7399. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  7400. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  7401. (mddev->external == 0 && mddev->safemode == 1) ||
  7402. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  7403. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  7404. ))
  7405. return;
  7406. if (mddev_trylock(mddev)) {
  7407. int spares = 0;
  7408. if (mddev->ro) {
  7409. struct md_rdev *rdev;
  7410. if (!mddev->external && mddev->in_sync)
  7411. /* 'Blocked' flag not needed as failed devices
  7412. * will be recorded if array switched to read/write.
  7413. * Leaving it set will prevent the device
  7414. * from being removed.
  7415. */
  7416. rdev_for_each(rdev, mddev)
  7417. clear_bit(Blocked, &rdev->flags);
  7418. /* On a read-only array we can:
  7419. * - remove failed devices
  7420. * - add already-in_sync devices if the array itself
  7421. * is in-sync.
  7422. * As we only add devices that are already in-sync,
  7423. * we can activate the spares immediately.
  7424. */
  7425. remove_and_add_spares(mddev, NULL);
  7426. /* There is no thread, but we need to call
  7427. * ->spare_active and clear saved_raid_disk
  7428. */
  7429. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  7430. md_reap_sync_thread(mddev);
  7431. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7432. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  7433. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  7434. goto unlock;
  7435. }
  7436. if (!mddev->external) {
  7437. int did_change = 0;
  7438. spin_lock(&mddev->lock);
  7439. if (mddev->safemode &&
  7440. !atomic_read(&mddev->writes_pending) &&
  7441. !mddev->in_sync &&
  7442. mddev->recovery_cp == MaxSector) {
  7443. mddev->in_sync = 1;
  7444. did_change = 1;
  7445. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  7446. }
  7447. if (mddev->safemode == 1)
  7448. mddev->safemode = 0;
  7449. spin_unlock(&mddev->lock);
  7450. if (did_change)
  7451. sysfs_notify_dirent_safe(mddev->sysfs_state);
  7452. }
  7453. if (mddev->flags & MD_UPDATE_SB_FLAGS)
  7454. md_update_sb(mddev, 0);
  7455. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  7456. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  7457. /* resync/recovery still happening */
  7458. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  7459. goto unlock;
  7460. }
  7461. if (mddev->sync_thread) {
  7462. md_reap_sync_thread(mddev);
  7463. goto unlock;
  7464. }
  7465. /* Set RUNNING before clearing NEEDED to avoid
  7466. * any transients in the value of "sync_action".
  7467. */
  7468. mddev->curr_resync_completed = 0;
  7469. spin_lock(&mddev->lock);
  7470. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7471. spin_unlock(&mddev->lock);
  7472. /* Clear some bits that don't mean anything, but
  7473. * might be left set
  7474. */
  7475. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  7476. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  7477. if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  7478. test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  7479. goto not_running;
  7480. /* no recovery is running.
  7481. * remove any failed drives, then
  7482. * add spares if possible.
  7483. * Spares are also removed and re-added, to allow
  7484. * the personality to fail the re-add.
  7485. */
  7486. if (mddev->reshape_position != MaxSector) {
  7487. if (mddev->pers->check_reshape == NULL ||
  7488. mddev->pers->check_reshape(mddev) != 0)
  7489. /* Cannot proceed */
  7490. goto not_running;
  7491. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7492. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7493. } else if ((spares = remove_and_add_spares(mddev, NULL))) {
  7494. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7495. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7496. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7497. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7498. } else if (mddev->recovery_cp < MaxSector) {
  7499. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7500. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7501. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  7502. /* nothing to be done ... */
  7503. goto not_running;
  7504. if (mddev->pers->sync_request) {
  7505. if (spares) {
  7506. /* We are adding a device or devices to an array
  7507. * which has the bitmap stored on all devices.
  7508. * So make sure all bitmap pages get written
  7509. */
  7510. bitmap_write_all(mddev->bitmap);
  7511. }
  7512. INIT_WORK(&mddev->del_work, md_start_sync);
  7513. queue_work(md_misc_wq, &mddev->del_work);
  7514. goto unlock;
  7515. }
  7516. not_running:
  7517. if (!mddev->sync_thread) {
  7518. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7519. wake_up(&resync_wait);
  7520. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  7521. &mddev->recovery))
  7522. if (mddev->sysfs_action)
  7523. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7524. }
  7525. unlock:
  7526. wake_up(&mddev->sb_wait);
  7527. mddev_unlock(mddev);
  7528. }
  7529. }
  7530. EXPORT_SYMBOL(md_check_recovery);
  7531. void md_reap_sync_thread(struct mddev *mddev)
  7532. {
  7533. struct md_rdev *rdev;
  7534. /* resync has finished, collect result */
  7535. md_unregister_thread(&mddev->sync_thread);
  7536. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  7537. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  7538. /* success...*/
  7539. /* activate any spares */
  7540. if (mddev->pers->spare_active(mddev)) {
  7541. sysfs_notify(&mddev->kobj, NULL,
  7542. "degraded");
  7543. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  7544. }
  7545. }
  7546. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  7547. mddev->pers->finish_reshape)
  7548. mddev->pers->finish_reshape(mddev);
  7549. /* If array is no-longer degraded, then any saved_raid_disk
  7550. * information must be scrapped.
  7551. */
  7552. if (!mddev->degraded)
  7553. rdev_for_each(rdev, mddev)
  7554. rdev->saved_raid_disk = -1;
  7555. md_update_sb(mddev, 1);
  7556. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7557. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  7558. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7559. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7560. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7561. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7562. wake_up(&resync_wait);
  7563. /* flag recovery needed just to double check */
  7564. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  7565. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7566. md_new_event(mddev);
  7567. if (mddev->event_work.func)
  7568. queue_work(md_misc_wq, &mddev->event_work);
  7569. }
  7570. EXPORT_SYMBOL(md_reap_sync_thread);
  7571. void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
  7572. {
  7573. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7574. wait_event_timeout(rdev->blocked_wait,
  7575. !test_bit(Blocked, &rdev->flags) &&
  7576. !test_bit(BlockedBadBlocks, &rdev->flags),
  7577. msecs_to_jiffies(5000));
  7578. rdev_dec_pending(rdev, mddev);
  7579. }
  7580. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  7581. void md_finish_reshape(struct mddev *mddev)
  7582. {
  7583. /* called be personality module when reshape completes. */
  7584. struct md_rdev *rdev;
  7585. rdev_for_each(rdev, mddev) {
  7586. if (rdev->data_offset > rdev->new_data_offset)
  7587. rdev->sectors += rdev->data_offset - rdev->new_data_offset;
  7588. else
  7589. rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
  7590. rdev->data_offset = rdev->new_data_offset;
  7591. }
  7592. }
  7593. EXPORT_SYMBOL(md_finish_reshape);
  7594. /* Bad block management.
  7595. * We can record which blocks on each device are 'bad' and so just
  7596. * fail those blocks, or that stripe, rather than the whole device.
  7597. * Entries in the bad-block table are 64bits wide. This comprises:
  7598. * Length of bad-range, in sectors: 0-511 for lengths 1-512
  7599. * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
  7600. * A 'shift' can be set so that larger blocks are tracked and
  7601. * consequently larger devices can be covered.
  7602. * 'Acknowledged' flag - 1 bit. - the most significant bit.
  7603. *
  7604. * Locking of the bad-block table uses a seqlock so md_is_badblock
  7605. * might need to retry if it is very unlucky.
  7606. * We will sometimes want to check for bad blocks in a bi_end_io function,
  7607. * so we use the write_seqlock_irq variant.
  7608. *
  7609. * When looking for a bad block we specify a range and want to
  7610. * know if any block in the range is bad. So we binary-search
  7611. * to the last range that starts at-or-before the given endpoint,
  7612. * (or "before the sector after the target range")
  7613. * then see if it ends after the given start.
  7614. * We return
  7615. * 0 if there are no known bad blocks in the range
  7616. * 1 if there are known bad block which are all acknowledged
  7617. * -1 if there are bad blocks which have not yet been acknowledged in metadata.
  7618. * plus the start/length of the first bad section we overlap.
  7619. */
  7620. int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
  7621. sector_t *first_bad, int *bad_sectors)
  7622. {
  7623. int hi;
  7624. int lo;
  7625. u64 *p = bb->page;
  7626. int rv;
  7627. sector_t target = s + sectors;
  7628. unsigned seq;
  7629. if (bb->shift > 0) {
  7630. /* round the start down, and the end up */
  7631. s >>= bb->shift;
  7632. target += (1<<bb->shift) - 1;
  7633. target >>= bb->shift;
  7634. sectors = target - s;
  7635. }
  7636. /* 'target' is now the first block after the bad range */
  7637. retry:
  7638. seq = read_seqbegin(&bb->lock);
  7639. lo = 0;
  7640. rv = 0;
  7641. hi = bb->count;
  7642. /* Binary search between lo and hi for 'target'
  7643. * i.e. for the last range that starts before 'target'
  7644. */
  7645. /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
  7646. * are known not to be the last range before target.
  7647. * VARIANT: hi-lo is the number of possible
  7648. * ranges, and decreases until it reaches 1
  7649. */
  7650. while (hi - lo > 1) {
  7651. int mid = (lo + hi) / 2;
  7652. sector_t a = BB_OFFSET(p[mid]);
  7653. if (a < target)
  7654. /* This could still be the one, earlier ranges
  7655. * could not. */
  7656. lo = mid;
  7657. else
  7658. /* This and later ranges are definitely out. */
  7659. hi = mid;
  7660. }
  7661. /* 'lo' might be the last that started before target, but 'hi' isn't */
  7662. if (hi > lo) {
  7663. /* need to check all range that end after 's' to see if
  7664. * any are unacknowledged.
  7665. */
  7666. while (lo >= 0 &&
  7667. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7668. if (BB_OFFSET(p[lo]) < target) {
  7669. /* starts before the end, and finishes after
  7670. * the start, so they must overlap
  7671. */
  7672. if (rv != -1 && BB_ACK(p[lo]))
  7673. rv = 1;
  7674. else
  7675. rv = -1;
  7676. *first_bad = BB_OFFSET(p[lo]);
  7677. *bad_sectors = BB_LEN(p[lo]);
  7678. }
  7679. lo--;
  7680. }
  7681. }
  7682. if (read_seqretry(&bb->lock, seq))
  7683. goto retry;
  7684. return rv;
  7685. }
  7686. EXPORT_SYMBOL_GPL(md_is_badblock);
  7687. /*
  7688. * Add a range of bad blocks to the table.
  7689. * This might extend the table, or might contract it
  7690. * if two adjacent ranges can be merged.
  7691. * We binary-search to find the 'insertion' point, then
  7692. * decide how best to handle it.
  7693. */
  7694. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  7695. int acknowledged)
  7696. {
  7697. u64 *p;
  7698. int lo, hi;
  7699. int rv = 1;
  7700. unsigned long flags;
  7701. if (bb->shift < 0)
  7702. /* badblocks are disabled */
  7703. return 0;
  7704. if (bb->shift) {
  7705. /* round the start down, and the end up */
  7706. sector_t next = s + sectors;
  7707. s >>= bb->shift;
  7708. next += (1<<bb->shift) - 1;
  7709. next >>= bb->shift;
  7710. sectors = next - s;
  7711. }
  7712. write_seqlock_irqsave(&bb->lock, flags);
  7713. p = bb->page;
  7714. lo = 0;
  7715. hi = bb->count;
  7716. /* Find the last range that starts at-or-before 's' */
  7717. while (hi - lo > 1) {
  7718. int mid = (lo + hi) / 2;
  7719. sector_t a = BB_OFFSET(p[mid]);
  7720. if (a <= s)
  7721. lo = mid;
  7722. else
  7723. hi = mid;
  7724. }
  7725. if (hi > lo && BB_OFFSET(p[lo]) > s)
  7726. hi = lo;
  7727. if (hi > lo) {
  7728. /* we found a range that might merge with the start
  7729. * of our new range
  7730. */
  7731. sector_t a = BB_OFFSET(p[lo]);
  7732. sector_t e = a + BB_LEN(p[lo]);
  7733. int ack = BB_ACK(p[lo]);
  7734. if (e >= s) {
  7735. /* Yes, we can merge with a previous range */
  7736. if (s == a && s + sectors >= e)
  7737. /* new range covers old */
  7738. ack = acknowledged;
  7739. else
  7740. ack = ack && acknowledged;
  7741. if (e < s + sectors)
  7742. e = s + sectors;
  7743. if (e - a <= BB_MAX_LEN) {
  7744. p[lo] = BB_MAKE(a, e-a, ack);
  7745. s = e;
  7746. } else {
  7747. /* does not all fit in one range,
  7748. * make p[lo] maximal
  7749. */
  7750. if (BB_LEN(p[lo]) != BB_MAX_LEN)
  7751. p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
  7752. s = a + BB_MAX_LEN;
  7753. }
  7754. sectors = e - s;
  7755. }
  7756. }
  7757. if (sectors && hi < bb->count) {
  7758. /* 'hi' points to the first range that starts after 's'.
  7759. * Maybe we can merge with the start of that range */
  7760. sector_t a = BB_OFFSET(p[hi]);
  7761. sector_t e = a + BB_LEN(p[hi]);
  7762. int ack = BB_ACK(p[hi]);
  7763. if (a <= s + sectors) {
  7764. /* merging is possible */
  7765. if (e <= s + sectors) {
  7766. /* full overlap */
  7767. e = s + sectors;
  7768. ack = acknowledged;
  7769. } else
  7770. ack = ack && acknowledged;
  7771. a = s;
  7772. if (e - a <= BB_MAX_LEN) {
  7773. p[hi] = BB_MAKE(a, e-a, ack);
  7774. s = e;
  7775. } else {
  7776. p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
  7777. s = a + BB_MAX_LEN;
  7778. }
  7779. sectors = e - s;
  7780. lo = hi;
  7781. hi++;
  7782. }
  7783. }
  7784. if (sectors == 0 && hi < bb->count) {
  7785. /* we might be able to combine lo and hi */
  7786. /* Note: 's' is at the end of 'lo' */
  7787. sector_t a = BB_OFFSET(p[hi]);
  7788. int lolen = BB_LEN(p[lo]);
  7789. int hilen = BB_LEN(p[hi]);
  7790. int newlen = lolen + hilen - (s - a);
  7791. if (s >= a && newlen < BB_MAX_LEN) {
  7792. /* yes, we can combine them */
  7793. int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
  7794. p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
  7795. memmove(p + hi, p + hi + 1,
  7796. (bb->count - hi - 1) * 8);
  7797. bb->count--;
  7798. }
  7799. }
  7800. while (sectors) {
  7801. /* didn't merge (it all).
  7802. * Need to add a range just before 'hi' */
  7803. if (bb->count >= MD_MAX_BADBLOCKS) {
  7804. /* No room for more */
  7805. rv = 0;
  7806. break;
  7807. } else {
  7808. int this_sectors = sectors;
  7809. memmove(p + hi + 1, p + hi,
  7810. (bb->count - hi) * 8);
  7811. bb->count++;
  7812. if (this_sectors > BB_MAX_LEN)
  7813. this_sectors = BB_MAX_LEN;
  7814. p[hi] = BB_MAKE(s, this_sectors, acknowledged);
  7815. sectors -= this_sectors;
  7816. s += this_sectors;
  7817. }
  7818. }
  7819. bb->changed = 1;
  7820. if (!acknowledged)
  7821. bb->unacked_exist = 1;
  7822. write_sequnlock_irqrestore(&bb->lock, flags);
  7823. return rv;
  7824. }
  7825. int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7826. int is_new)
  7827. {
  7828. int rv;
  7829. if (is_new)
  7830. s += rdev->new_data_offset;
  7831. else
  7832. s += rdev->data_offset;
  7833. rv = md_set_badblocks(&rdev->badblocks,
  7834. s, sectors, 0);
  7835. if (rv) {
  7836. /* Make sure they get written out promptly */
  7837. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7838. set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
  7839. set_bit(MD_CHANGE_PENDING, &rdev->mddev->flags);
  7840. md_wakeup_thread(rdev->mddev->thread);
  7841. }
  7842. return rv;
  7843. }
  7844. EXPORT_SYMBOL_GPL(rdev_set_badblocks);
  7845. /*
  7846. * Remove a range of bad blocks from the table.
  7847. * This may involve extending the table if we spilt a region,
  7848. * but it must not fail. So if the table becomes full, we just
  7849. * drop the remove request.
  7850. */
  7851. static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
  7852. {
  7853. u64 *p;
  7854. int lo, hi;
  7855. sector_t target = s + sectors;
  7856. int rv = 0;
  7857. if (bb->shift > 0) {
  7858. /* When clearing we round the start up and the end down.
  7859. * This should not matter as the shift should align with
  7860. * the block size and no rounding should ever be needed.
  7861. * However it is better the think a block is bad when it
  7862. * isn't than to think a block is not bad when it is.
  7863. */
  7864. s += (1<<bb->shift) - 1;
  7865. s >>= bb->shift;
  7866. target >>= bb->shift;
  7867. sectors = target - s;
  7868. }
  7869. write_seqlock_irq(&bb->lock);
  7870. p = bb->page;
  7871. lo = 0;
  7872. hi = bb->count;
  7873. /* Find the last range that starts before 'target' */
  7874. while (hi - lo > 1) {
  7875. int mid = (lo + hi) / 2;
  7876. sector_t a = BB_OFFSET(p[mid]);
  7877. if (a < target)
  7878. lo = mid;
  7879. else
  7880. hi = mid;
  7881. }
  7882. if (hi > lo) {
  7883. /* p[lo] is the last range that could overlap the
  7884. * current range. Earlier ranges could also overlap,
  7885. * but only this one can overlap the end of the range.
  7886. */
  7887. if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
  7888. /* Partial overlap, leave the tail of this range */
  7889. int ack = BB_ACK(p[lo]);
  7890. sector_t a = BB_OFFSET(p[lo]);
  7891. sector_t end = a + BB_LEN(p[lo]);
  7892. if (a < s) {
  7893. /* we need to split this range */
  7894. if (bb->count >= MD_MAX_BADBLOCKS) {
  7895. rv = -ENOSPC;
  7896. goto out;
  7897. }
  7898. memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
  7899. bb->count++;
  7900. p[lo] = BB_MAKE(a, s-a, ack);
  7901. lo++;
  7902. }
  7903. p[lo] = BB_MAKE(target, end - target, ack);
  7904. /* there is no longer an overlap */
  7905. hi = lo;
  7906. lo--;
  7907. }
  7908. while (lo >= 0 &&
  7909. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7910. /* This range does overlap */
  7911. if (BB_OFFSET(p[lo]) < s) {
  7912. /* Keep the early parts of this range. */
  7913. int ack = BB_ACK(p[lo]);
  7914. sector_t start = BB_OFFSET(p[lo]);
  7915. p[lo] = BB_MAKE(start, s - start, ack);
  7916. /* now low doesn't overlap, so.. */
  7917. break;
  7918. }
  7919. lo--;
  7920. }
  7921. /* 'lo' is strictly before, 'hi' is strictly after,
  7922. * anything between needs to be discarded
  7923. */
  7924. if (hi - lo > 1) {
  7925. memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
  7926. bb->count -= (hi - lo - 1);
  7927. }
  7928. }
  7929. bb->changed = 1;
  7930. out:
  7931. write_sequnlock_irq(&bb->lock);
  7932. return rv;
  7933. }
  7934. int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7935. int is_new)
  7936. {
  7937. if (is_new)
  7938. s += rdev->new_data_offset;
  7939. else
  7940. s += rdev->data_offset;
  7941. return md_clear_badblocks(&rdev->badblocks,
  7942. s, sectors);
  7943. }
  7944. EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
  7945. /*
  7946. * Acknowledge all bad blocks in a list.
  7947. * This only succeeds if ->changed is clear. It is used by
  7948. * in-kernel metadata updates
  7949. */
  7950. void md_ack_all_badblocks(struct badblocks *bb)
  7951. {
  7952. if (bb->page == NULL || bb->changed)
  7953. /* no point even trying */
  7954. return;
  7955. write_seqlock_irq(&bb->lock);
  7956. if (bb->changed == 0 && bb->unacked_exist) {
  7957. u64 *p = bb->page;
  7958. int i;
  7959. for (i = 0; i < bb->count ; i++) {
  7960. if (!BB_ACK(p[i])) {
  7961. sector_t start = BB_OFFSET(p[i]);
  7962. int len = BB_LEN(p[i]);
  7963. p[i] = BB_MAKE(start, len, 1);
  7964. }
  7965. }
  7966. bb->unacked_exist = 0;
  7967. }
  7968. write_sequnlock_irq(&bb->lock);
  7969. }
  7970. EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
  7971. /* sysfs access to bad-blocks list.
  7972. * We present two files.
  7973. * 'bad-blocks' lists sector numbers and lengths of ranges that
  7974. * are recorded as bad. The list is truncated to fit within
  7975. * the one-page limit of sysfs.
  7976. * Writing "sector length" to this file adds an acknowledged
  7977. * bad block list.
  7978. * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
  7979. * been acknowledged. Writing to this file adds bad blocks
  7980. * without acknowledging them. This is largely for testing.
  7981. */
  7982. static ssize_t
  7983. badblocks_show(struct badblocks *bb, char *page, int unack)
  7984. {
  7985. size_t len;
  7986. int i;
  7987. u64 *p = bb->page;
  7988. unsigned seq;
  7989. if (bb->shift < 0)
  7990. return 0;
  7991. retry:
  7992. seq = read_seqbegin(&bb->lock);
  7993. len = 0;
  7994. i = 0;
  7995. while (len < PAGE_SIZE && i < bb->count) {
  7996. sector_t s = BB_OFFSET(p[i]);
  7997. unsigned int length = BB_LEN(p[i]);
  7998. int ack = BB_ACK(p[i]);
  7999. i++;
  8000. if (unack && ack)
  8001. continue;
  8002. len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
  8003. (unsigned long long)s << bb->shift,
  8004. length << bb->shift);
  8005. }
  8006. if (unack && len == 0)
  8007. bb->unacked_exist = 0;
  8008. if (read_seqretry(&bb->lock, seq))
  8009. goto retry;
  8010. return len;
  8011. }
  8012. #define DO_DEBUG 1
  8013. static ssize_t
  8014. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
  8015. {
  8016. unsigned long long sector;
  8017. int length;
  8018. char newline;
  8019. #ifdef DO_DEBUG
  8020. /* Allow clearing via sysfs *only* for testing/debugging.
  8021. * Normally only a successful write may clear a badblock
  8022. */
  8023. int clear = 0;
  8024. if (page[0] == '-') {
  8025. clear = 1;
  8026. page++;
  8027. }
  8028. #endif /* DO_DEBUG */
  8029. switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
  8030. case 3:
  8031. if (newline != '\n')
  8032. return -EINVAL;
  8033. case 2:
  8034. if (length <= 0)
  8035. return -EINVAL;
  8036. break;
  8037. default:
  8038. return -EINVAL;
  8039. }
  8040. #ifdef DO_DEBUG
  8041. if (clear) {
  8042. md_clear_badblocks(bb, sector, length);
  8043. return len;
  8044. }
  8045. #endif /* DO_DEBUG */
  8046. if (md_set_badblocks(bb, sector, length, !unack))
  8047. return len;
  8048. else
  8049. return -ENOSPC;
  8050. }
  8051. static int md_notify_reboot(struct notifier_block *this,
  8052. unsigned long code, void *x)
  8053. {
  8054. struct list_head *tmp;
  8055. struct mddev *mddev;
  8056. int need_delay = 0;
  8057. for_each_mddev(mddev, tmp) {
  8058. if (mddev_trylock(mddev)) {
  8059. if (mddev->pers)
  8060. __md_stop_writes(mddev);
  8061. if (mddev->persistent)
  8062. mddev->safemode = 2;
  8063. mddev_unlock(mddev);
  8064. }
  8065. need_delay = 1;
  8066. }
  8067. /*
  8068. * certain more exotic SCSI devices are known to be
  8069. * volatile wrt too early system reboots. While the
  8070. * right place to handle this issue is the given
  8071. * driver, we do want to have a safe RAID driver ...
  8072. */
  8073. if (need_delay)
  8074. mdelay(1000*1);
  8075. return NOTIFY_DONE;
  8076. }
  8077. static struct notifier_block md_notifier = {
  8078. .notifier_call = md_notify_reboot,
  8079. .next = NULL,
  8080. .priority = INT_MAX, /* before any real devices */
  8081. };
  8082. static void md_geninit(void)
  8083. {
  8084. pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  8085. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  8086. }
  8087. static int __init md_init(void)
  8088. {
  8089. int ret = -ENOMEM;
  8090. md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
  8091. if (!md_wq)
  8092. goto err_wq;
  8093. md_misc_wq = alloc_workqueue("md_misc", 0, 0);
  8094. if (!md_misc_wq)
  8095. goto err_misc_wq;
  8096. if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
  8097. goto err_md;
  8098. if ((ret = register_blkdev(0, "mdp")) < 0)
  8099. goto err_mdp;
  8100. mdp_major = ret;
  8101. blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
  8102. md_probe, NULL, NULL);
  8103. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  8104. md_probe, NULL, NULL);
  8105. register_reboot_notifier(&md_notifier);
  8106. raid_table_header = register_sysctl_table(raid_root_table);
  8107. md_geninit();
  8108. return 0;
  8109. err_mdp:
  8110. unregister_blkdev(MD_MAJOR, "md");
  8111. err_md:
  8112. destroy_workqueue(md_misc_wq);
  8113. err_misc_wq:
  8114. destroy_workqueue(md_wq);
  8115. err_wq:
  8116. return ret;
  8117. }
  8118. static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
  8119. {
  8120. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  8121. struct md_rdev *rdev2;
  8122. int role, ret;
  8123. char b[BDEVNAME_SIZE];
  8124. /* Check for change of roles in the active devices */
  8125. rdev_for_each(rdev2, mddev) {
  8126. if (test_bit(Faulty, &rdev2->flags))
  8127. continue;
  8128. /* Check if the roles changed */
  8129. role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
  8130. if (test_bit(Candidate, &rdev2->flags)) {
  8131. if (role == 0xfffe) {
  8132. pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
  8133. md_kick_rdev_from_array(rdev2);
  8134. continue;
  8135. }
  8136. else
  8137. clear_bit(Candidate, &rdev2->flags);
  8138. }
  8139. if (role != rdev2->raid_disk) {
  8140. /* got activated */
  8141. if (rdev2->raid_disk == -1 && role != 0xffff) {
  8142. rdev2->saved_raid_disk = role;
  8143. ret = remove_and_add_spares(mddev, rdev2);
  8144. pr_info("Activated spare: %s\n",
  8145. bdevname(rdev2->bdev,b));
  8146. continue;
  8147. }
  8148. /* device faulty
  8149. * We just want to do the minimum to mark the disk
  8150. * as faulty. The recovery is performed by the
  8151. * one who initiated the error.
  8152. */
  8153. if ((role == 0xfffe) || (role == 0xfffd)) {
  8154. md_error(mddev, rdev2);
  8155. clear_bit(Blocked, &rdev2->flags);
  8156. }
  8157. }
  8158. }
  8159. if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
  8160. update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
  8161. /* Finally set the event to be up to date */
  8162. mddev->events = le64_to_cpu(sb->events);
  8163. }
  8164. static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
  8165. {
  8166. int err;
  8167. struct page *swapout = rdev->sb_page;
  8168. struct mdp_superblock_1 *sb;
  8169. /* Store the sb page of the rdev in the swapout temporary
  8170. * variable in case we err in the future
  8171. */
  8172. rdev->sb_page = NULL;
  8173. alloc_disk_sb(rdev);
  8174. ClearPageUptodate(rdev->sb_page);
  8175. rdev->sb_loaded = 0;
  8176. err = super_types[mddev->major_version].load_super(rdev, NULL, mddev->minor_version);
  8177. if (err < 0) {
  8178. pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
  8179. __func__, __LINE__, rdev->desc_nr, err);
  8180. put_page(rdev->sb_page);
  8181. rdev->sb_page = swapout;
  8182. rdev->sb_loaded = 1;
  8183. return err;
  8184. }
  8185. sb = page_address(rdev->sb_page);
  8186. /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
  8187. * is not set
  8188. */
  8189. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
  8190. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  8191. /* The other node finished recovery, call spare_active to set
  8192. * device In_sync and mddev->degraded
  8193. */
  8194. if (rdev->recovery_offset == MaxSector &&
  8195. !test_bit(In_sync, &rdev->flags) &&
  8196. mddev->pers->spare_active(mddev))
  8197. sysfs_notify(&mddev->kobj, NULL, "degraded");
  8198. put_page(swapout);
  8199. return 0;
  8200. }
  8201. void md_reload_sb(struct mddev *mddev, int nr)
  8202. {
  8203. struct md_rdev *rdev;
  8204. int err;
  8205. /* Find the rdev */
  8206. rdev_for_each_rcu(rdev, mddev) {
  8207. if (rdev->desc_nr == nr)
  8208. break;
  8209. }
  8210. if (!rdev || rdev->desc_nr != nr) {
  8211. pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
  8212. return;
  8213. }
  8214. err = read_rdev(mddev, rdev);
  8215. if (err < 0)
  8216. return;
  8217. check_sb_changes(mddev, rdev);
  8218. /* Read all rdev's to update recovery_offset */
  8219. rdev_for_each_rcu(rdev, mddev)
  8220. read_rdev(mddev, rdev);
  8221. }
  8222. EXPORT_SYMBOL(md_reload_sb);
  8223. #ifndef MODULE
  8224. /*
  8225. * Searches all registered partitions for autorun RAID arrays
  8226. * at boot time.
  8227. */
  8228. static LIST_HEAD(all_detected_devices);
  8229. struct detected_devices_node {
  8230. struct list_head list;
  8231. dev_t dev;
  8232. };
  8233. void md_autodetect_dev(dev_t dev)
  8234. {
  8235. struct detected_devices_node *node_detected_dev;
  8236. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  8237. if (node_detected_dev) {
  8238. node_detected_dev->dev = dev;
  8239. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  8240. } else {
  8241. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  8242. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  8243. }
  8244. }
  8245. static void autostart_arrays(int part)
  8246. {
  8247. struct md_rdev *rdev;
  8248. struct detected_devices_node *node_detected_dev;
  8249. dev_t dev;
  8250. int i_scanned, i_passed;
  8251. i_scanned = 0;
  8252. i_passed = 0;
  8253. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  8254. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  8255. i_scanned++;
  8256. node_detected_dev = list_entry(all_detected_devices.next,
  8257. struct detected_devices_node, list);
  8258. list_del(&node_detected_dev->list);
  8259. dev = node_detected_dev->dev;
  8260. kfree(node_detected_dev);
  8261. rdev = md_import_device(dev,0, 90);
  8262. if (IS_ERR(rdev))
  8263. continue;
  8264. if (test_bit(Faulty, &rdev->flags))
  8265. continue;
  8266. set_bit(AutoDetected, &rdev->flags);
  8267. list_add(&rdev->same_set, &pending_raid_disks);
  8268. i_passed++;
  8269. }
  8270. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  8271. i_scanned, i_passed);
  8272. autorun_devices(part);
  8273. }
  8274. #endif /* !MODULE */
  8275. static __exit void md_exit(void)
  8276. {
  8277. struct mddev *mddev;
  8278. struct list_head *tmp;
  8279. int delay = 1;
  8280. blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
  8281. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  8282. unregister_blkdev(MD_MAJOR,"md");
  8283. unregister_blkdev(mdp_major, "mdp");
  8284. unregister_reboot_notifier(&md_notifier);
  8285. unregister_sysctl_table(raid_table_header);
  8286. /* We cannot unload the modules while some process is
  8287. * waiting for us in select() or poll() - wake them up
  8288. */
  8289. md_unloading = 1;
  8290. while (waitqueue_active(&md_event_waiters)) {
  8291. /* not safe to leave yet */
  8292. wake_up(&md_event_waiters);
  8293. msleep(delay);
  8294. delay += delay;
  8295. }
  8296. remove_proc_entry("mdstat", NULL);
  8297. for_each_mddev(mddev, tmp) {
  8298. export_array(mddev);
  8299. mddev->hold_active = 0;
  8300. }
  8301. destroy_workqueue(md_misc_wq);
  8302. destroy_workqueue(md_wq);
  8303. }
  8304. subsys_initcall(md_init);
  8305. module_exit(md_exit)
  8306. static int get_ro(char *buffer, struct kernel_param *kp)
  8307. {
  8308. return sprintf(buffer, "%d", start_readonly);
  8309. }
  8310. static int set_ro(const char *val, struct kernel_param *kp)
  8311. {
  8312. return kstrtouint(val, 10, (unsigned int *)&start_readonly);
  8313. }
  8314. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  8315. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  8316. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  8317. MODULE_LICENSE("GPL");
  8318. MODULE_DESCRIPTION("MD RAID framework");
  8319. MODULE_ALIAS("md");
  8320. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);