cx24110.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669
  1. /*
  2. cx24110 - Single Chip Satellite Channel Receiver driver module
  3. Copyright (C) 2002 Peter Hettkamp <peter.hettkamp@htp-tel.de> based on
  4. work
  5. Copyright (C) 1999 Convergence Integrated Media GmbH <ralph@convergence.de>
  6. This program is free software; you can redistribute it and/or modify
  7. it under the terms of the GNU General Public License as published by
  8. the Free Software Foundation; either version 2 of the License, or
  9. (at your option) any later version.
  10. This program is distributed in the hope that it will be useful,
  11. but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. GNU General Public License for more details.
  14. You should have received a copy of the GNU General Public License
  15. along with this program; if not, write to the Free Software
  16. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17. */
  18. #include <linux/slab.h>
  19. #include <linux/kernel.h>
  20. #include <linux/module.h>
  21. #include <linux/init.h>
  22. #include "dvb_frontend.h"
  23. #include "cx24110.h"
  24. struct cx24110_state {
  25. struct i2c_adapter* i2c;
  26. const struct cx24110_config* config;
  27. struct dvb_frontend frontend;
  28. u32 lastber;
  29. u32 lastbler;
  30. u32 lastesn0;
  31. };
  32. static int debug;
  33. #define dprintk(args...) \
  34. do { \
  35. if (debug) printk(KERN_DEBUG "cx24110: " args); \
  36. } while (0)
  37. static struct {u8 reg; u8 data;} cx24110_regdata[]=
  38. /* Comments beginning with @ denote this value should
  39. be the default */
  40. {{0x09,0x01}, /* SoftResetAll */
  41. {0x09,0x00}, /* release reset */
  42. {0x01,0xe8}, /* MSB of code rate 27.5MS/s */
  43. {0x02,0x17}, /* middle byte " */
  44. {0x03,0x29}, /* LSB " */
  45. {0x05,0x03}, /* @ DVB mode, standard code rate 3/4 */
  46. {0x06,0xa5}, /* @ PLL 60MHz */
  47. {0x07,0x01}, /* @ Fclk, i.e. sampling clock, 60MHz */
  48. {0x0a,0x00}, /* @ partial chip disables, do not set */
  49. {0x0b,0x01}, /* set output clock in gapped mode, start signal low
  50. active for first byte */
  51. {0x0c,0x11}, /* no parity bytes, large hold time, serial data out */
  52. {0x0d,0x6f}, /* @ RS Sync/Unsync thresholds */
  53. {0x10,0x40}, /* chip doc is misleading here: write bit 6 as 1
  54. to avoid starting the BER counter. Reset the
  55. CRC test bit. Finite counting selected */
  56. {0x15,0xff}, /* @ size of the limited time window for RS BER
  57. estimation. It is <value>*256 RS blocks, this
  58. gives approx. 2.6 sec at 27.5MS/s, rate 3/4 */
  59. {0x16,0x00}, /* @ enable all RS output ports */
  60. {0x17,0x04}, /* @ time window allowed for the RS to sync */
  61. {0x18,0xae}, /* @ allow all standard DVB code rates to be scanned
  62. for automatically */
  63. /* leave the current code rate and normalization
  64. registers as they are after reset... */
  65. {0x21,0x10}, /* @ during AutoAcq, search each viterbi setting
  66. only once */
  67. {0x23,0x18}, /* @ size of the limited time window for Viterbi BER
  68. estimation. It is <value>*65536 channel bits, i.e.
  69. approx. 38ms at 27.5MS/s, rate 3/4 */
  70. {0x24,0x24}, /* do not trigger Viterbi CRC test. Finite count window */
  71. /* leave front-end AGC parameters at default values */
  72. /* leave decimation AGC parameters at default values */
  73. {0x35,0x40}, /* disable all interrupts. They are not connected anyway */
  74. {0x36,0xff}, /* clear all interrupt pending flags */
  75. {0x37,0x00}, /* @ fully enable AutoAcqq state machine */
  76. {0x38,0x07}, /* @ enable fade recovery, but not autostart AutoAcq */
  77. /* leave the equalizer parameters on their default values */
  78. /* leave the final AGC parameters on their default values */
  79. {0x41,0x00}, /* @ MSB of front-end derotator frequency */
  80. {0x42,0x00}, /* @ middle bytes " */
  81. {0x43,0x00}, /* @ LSB " */
  82. /* leave the carrier tracking loop parameters on default */
  83. /* leave the bit timing loop parameters at default */
  84. {0x56,0x4d}, /* set the filtune voltage to 2.7V, as recommended by */
  85. /* the cx24108 data sheet for symbol rates above 15MS/s */
  86. {0x57,0x00}, /* @ Filter sigma delta enabled, positive */
  87. {0x61,0x95}, /* GPIO pins 1-4 have special function */
  88. {0x62,0x05}, /* GPIO pin 5 has special function, pin 6 is GPIO */
  89. {0x63,0x00}, /* All GPIO pins use CMOS output characteristics */
  90. {0x64,0x20}, /* GPIO 6 is input, all others are outputs */
  91. {0x6d,0x30}, /* tuner auto mode clock freq 62kHz */
  92. {0x70,0x15}, /* use auto mode, tuner word is 21 bits long */
  93. {0x73,0x00}, /* @ disable several demod bypasses */
  94. {0x74,0x00}, /* @ " */
  95. {0x75,0x00} /* @ " */
  96. /* the remaining registers are for SEC */
  97. };
  98. static int cx24110_writereg (struct cx24110_state* state, int reg, int data)
  99. {
  100. u8 buf [] = { reg, data };
  101. struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 };
  102. int err;
  103. if ((err = i2c_transfer(state->i2c, &msg, 1)) != 1) {
  104. dprintk ("%s: writereg error (err == %i, reg == 0x%02x,"
  105. " data == 0x%02x)\n", __func__, err, reg, data);
  106. return -EREMOTEIO;
  107. }
  108. return 0;
  109. }
  110. static int cx24110_readreg (struct cx24110_state* state, u8 reg)
  111. {
  112. int ret;
  113. u8 b0 [] = { reg };
  114. u8 b1 [] = { 0 };
  115. struct i2c_msg msg [] = { { .addr = state->config->demod_address, .flags = 0, .buf = b0, .len = 1 },
  116. { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 1 } };
  117. ret = i2c_transfer(state->i2c, msg, 2);
  118. if (ret != 2) return ret;
  119. return b1[0];
  120. }
  121. static int cx24110_set_inversion(struct cx24110_state *state,
  122. enum fe_spectral_inversion inversion)
  123. {
  124. /* fixme (low): error handling */
  125. switch (inversion) {
  126. case INVERSION_OFF:
  127. cx24110_writereg(state,0x37,cx24110_readreg(state,0x37)|0x1);
  128. /* AcqSpectrInvDis on. No idea why someone should want this */
  129. cx24110_writereg(state,0x5,cx24110_readreg(state,0x5)&0xf7);
  130. /* Initial value 0 at start of acq */
  131. cx24110_writereg(state,0x22,cx24110_readreg(state,0x22)&0xef);
  132. /* current value 0 */
  133. /* The cx24110 manual tells us this reg is read-only.
  134. But what the heck... set it ayways */
  135. break;
  136. case INVERSION_ON:
  137. cx24110_writereg(state,0x37,cx24110_readreg(state,0x37)|0x1);
  138. /* AcqSpectrInvDis on. No idea why someone should want this */
  139. cx24110_writereg(state,0x5,cx24110_readreg(state,0x5)|0x08);
  140. /* Initial value 1 at start of acq */
  141. cx24110_writereg(state,0x22,cx24110_readreg(state,0x22)|0x10);
  142. /* current value 1 */
  143. break;
  144. case INVERSION_AUTO:
  145. cx24110_writereg(state,0x37,cx24110_readreg(state,0x37)&0xfe);
  146. /* AcqSpectrInvDis off. Leave initial & current states as is */
  147. break;
  148. default:
  149. return -EINVAL;
  150. }
  151. return 0;
  152. }
  153. static int cx24110_set_fec(struct cx24110_state *state, enum fe_code_rate fec)
  154. {
  155. static const int rate[FEC_AUTO] = {-1, 1, 2, 3, 5, 7, -1};
  156. static const int g1[FEC_AUTO] = {-1, 0x01, 0x02, 0x05, 0x15, 0x45, -1};
  157. static const int g2[FEC_AUTO] = {-1, 0x01, 0x03, 0x06, 0x1a, 0x7a, -1};
  158. /* Well, the AutoAcq engine of the cx24106 and 24110 automatically
  159. searches all enabled viterbi rates, and can handle non-standard
  160. rates as well. */
  161. if (fec > FEC_AUTO)
  162. fec = FEC_AUTO;
  163. if (fec == FEC_AUTO) { /* (re-)establish AutoAcq behaviour */
  164. cx24110_writereg(state, 0x37, cx24110_readreg(state, 0x37) & 0xdf);
  165. /* clear AcqVitDis bit */
  166. cx24110_writereg(state, 0x18, 0xae);
  167. /* allow all DVB standard code rates */
  168. cx24110_writereg(state, 0x05, (cx24110_readreg(state, 0x05) & 0xf0) | 0x3);
  169. /* set nominal Viterbi rate 3/4 */
  170. cx24110_writereg(state, 0x22, (cx24110_readreg(state, 0x22) & 0xf0) | 0x3);
  171. /* set current Viterbi rate 3/4 */
  172. cx24110_writereg(state, 0x1a, 0x05);
  173. cx24110_writereg(state, 0x1b, 0x06);
  174. /* set the puncture registers for code rate 3/4 */
  175. return 0;
  176. } else {
  177. cx24110_writereg(state, 0x37, cx24110_readreg(state, 0x37) | 0x20);
  178. /* set AcqVitDis bit */
  179. if (rate[fec] < 0)
  180. return -EINVAL;
  181. cx24110_writereg(state, 0x05, (cx24110_readreg(state, 0x05) & 0xf0) | rate[fec]);
  182. /* set nominal Viterbi rate */
  183. cx24110_writereg(state, 0x22, (cx24110_readreg(state, 0x22) & 0xf0) | rate[fec]);
  184. /* set current Viterbi rate */
  185. cx24110_writereg(state, 0x1a, g1[fec]);
  186. cx24110_writereg(state, 0x1b, g2[fec]);
  187. /* not sure if this is the right way: I always used AutoAcq mode */
  188. }
  189. return 0;
  190. }
  191. static enum fe_code_rate cx24110_get_fec(struct cx24110_state *state)
  192. {
  193. int i;
  194. i=cx24110_readreg(state,0x22)&0x0f;
  195. if(!(i&0x08)) {
  196. return FEC_1_2 + i - 1;
  197. } else {
  198. /* fixme (low): a special code rate has been selected. In theory, we need to
  199. return a denominator value, a numerator value, and a pair of puncture
  200. maps to correctly describe this mode. But this should never happen in
  201. practice, because it cannot be set by cx24110_get_fec. */
  202. return FEC_NONE;
  203. }
  204. }
  205. static int cx24110_set_symbolrate (struct cx24110_state* state, u32 srate)
  206. {
  207. /* fixme (low): add error handling */
  208. u32 ratio;
  209. u32 tmp, fclk, BDRI;
  210. static const u32 bands[]={5000000UL,15000000UL,90999000UL/2};
  211. int i;
  212. dprintk("cx24110 debug: entering %s(%d)\n",__func__,srate);
  213. if (srate>90999000UL/2)
  214. srate=90999000UL/2;
  215. if (srate<500000)
  216. srate=500000;
  217. for(i = 0; (i < ARRAY_SIZE(bands)) && (srate>bands[i]); i++)
  218. ;
  219. /* first, check which sample rate is appropriate: 45, 60 80 or 90 MHz,
  220. and set the PLL accordingly (R07[1:0] Fclk, R06[7:4] PLLmult,
  221. R06[3:0] PLLphaseDetGain */
  222. tmp=cx24110_readreg(state,0x07)&0xfc;
  223. if(srate<90999000UL/4) { /* sample rate 45MHz*/
  224. cx24110_writereg(state,0x07,tmp);
  225. cx24110_writereg(state,0x06,0x78);
  226. fclk=90999000UL/2;
  227. } else if(srate<60666000UL/2) { /* sample rate 60MHz */
  228. cx24110_writereg(state,0x07,tmp|0x1);
  229. cx24110_writereg(state,0x06,0xa5);
  230. fclk=60666000UL;
  231. } else if(srate<80888000UL/2) { /* sample rate 80MHz */
  232. cx24110_writereg(state,0x07,tmp|0x2);
  233. cx24110_writereg(state,0x06,0x87);
  234. fclk=80888000UL;
  235. } else { /* sample rate 90MHz */
  236. cx24110_writereg(state,0x07,tmp|0x3);
  237. cx24110_writereg(state,0x06,0x78);
  238. fclk=90999000UL;
  239. }
  240. dprintk("cx24110 debug: fclk %d Hz\n",fclk);
  241. /* we need to divide two integers with approx. 27 bits in 32 bit
  242. arithmetic giving a 25 bit result */
  243. /* the maximum dividend is 90999000/2, 0x02b6446c, this number is
  244. also the most complex divisor. Hence, the dividend has,
  245. assuming 32bit unsigned arithmetic, 6 clear bits on top, the
  246. divisor 2 unused bits at the bottom. Also, the quotient is
  247. always less than 1/2. Borrowed from VES1893.c, of course */
  248. tmp=srate<<6;
  249. BDRI=fclk>>2;
  250. ratio=(tmp/BDRI);
  251. tmp=(tmp%BDRI)<<8;
  252. ratio=(ratio<<8)+(tmp/BDRI);
  253. tmp=(tmp%BDRI)<<8;
  254. ratio=(ratio<<8)+(tmp/BDRI);
  255. tmp=(tmp%BDRI)<<1;
  256. ratio=(ratio<<1)+(tmp/BDRI);
  257. dprintk("srate= %d (range %d, up to %d)\n", srate,i,bands[i]);
  258. dprintk("fclk = %d\n", fclk);
  259. dprintk("ratio= %08x\n", ratio);
  260. cx24110_writereg(state, 0x1, (ratio>>16)&0xff);
  261. cx24110_writereg(state, 0x2, (ratio>>8)&0xff);
  262. cx24110_writereg(state, 0x3, (ratio)&0xff);
  263. return 0;
  264. }
  265. static int _cx24110_pll_write (struct dvb_frontend* fe, const u8 buf[], int len)
  266. {
  267. struct cx24110_state *state = fe->demodulator_priv;
  268. if (len != 3)
  269. return -EINVAL;
  270. /* tuner data is 21 bits long, must be left-aligned in data */
  271. /* tuner cx24108 is written through a dedicated 3wire interface on the demod chip */
  272. /* FIXME (low): add error handling, avoid infinite loops if HW fails... */
  273. cx24110_writereg(state,0x6d,0x30); /* auto mode at 62kHz */
  274. cx24110_writereg(state,0x70,0x15); /* auto mode 21 bits */
  275. /* if the auto tuner writer is still busy, clear it out */
  276. while (cx24110_readreg(state,0x6d)&0x80)
  277. cx24110_writereg(state,0x72,0);
  278. /* write the topmost 8 bits */
  279. cx24110_writereg(state,0x72,buf[0]);
  280. /* wait for the send to be completed */
  281. while ((cx24110_readreg(state,0x6d)&0xc0)==0x80)
  282. ;
  283. /* send another 8 bytes */
  284. cx24110_writereg(state,0x72,buf[1]);
  285. while ((cx24110_readreg(state,0x6d)&0xc0)==0x80)
  286. ;
  287. /* and the topmost 5 bits of this byte */
  288. cx24110_writereg(state,0x72,buf[2]);
  289. while ((cx24110_readreg(state,0x6d)&0xc0)==0x80)
  290. ;
  291. /* now strobe the enable line once */
  292. cx24110_writereg(state,0x6d,0x32);
  293. cx24110_writereg(state,0x6d,0x30);
  294. return 0;
  295. }
  296. static int cx24110_initfe(struct dvb_frontend* fe)
  297. {
  298. struct cx24110_state *state = fe->demodulator_priv;
  299. /* fixme (low): error handling */
  300. int i;
  301. dprintk("%s: init chip\n", __func__);
  302. for(i = 0; i < ARRAY_SIZE(cx24110_regdata); i++) {
  303. cx24110_writereg(state, cx24110_regdata[i].reg, cx24110_regdata[i].data);
  304. }
  305. return 0;
  306. }
  307. static int cx24110_set_voltage(struct dvb_frontend *fe,
  308. enum fe_sec_voltage voltage)
  309. {
  310. struct cx24110_state *state = fe->demodulator_priv;
  311. switch (voltage) {
  312. case SEC_VOLTAGE_13:
  313. return cx24110_writereg(state,0x76,(cx24110_readreg(state,0x76)&0x3b)|0xc0);
  314. case SEC_VOLTAGE_18:
  315. return cx24110_writereg(state,0x76,(cx24110_readreg(state,0x76)&0x3b)|0x40);
  316. default:
  317. return -EINVAL;
  318. }
  319. }
  320. static int cx24110_diseqc_send_burst(struct dvb_frontend *fe,
  321. enum fe_sec_mini_cmd burst)
  322. {
  323. int rv, bit;
  324. struct cx24110_state *state = fe->demodulator_priv;
  325. unsigned long timeout;
  326. if (burst == SEC_MINI_A)
  327. bit = 0x00;
  328. else if (burst == SEC_MINI_B)
  329. bit = 0x08;
  330. else
  331. return -EINVAL;
  332. rv = cx24110_readreg(state, 0x77);
  333. if (!(rv & 0x04))
  334. cx24110_writereg(state, 0x77, rv | 0x04);
  335. rv = cx24110_readreg(state, 0x76);
  336. cx24110_writereg(state, 0x76, ((rv & 0x90) | 0x40 | bit));
  337. timeout = jiffies + msecs_to_jiffies(100);
  338. while (!time_after(jiffies, timeout) && !(cx24110_readreg(state, 0x76) & 0x40))
  339. ; /* wait for LNB ready */
  340. return 0;
  341. }
  342. static int cx24110_send_diseqc_msg(struct dvb_frontend* fe,
  343. struct dvb_diseqc_master_cmd *cmd)
  344. {
  345. int i, rv;
  346. struct cx24110_state *state = fe->demodulator_priv;
  347. unsigned long timeout;
  348. if (cmd->msg_len < 3 || cmd->msg_len > 6)
  349. return -EINVAL; /* not implemented */
  350. for (i = 0; i < cmd->msg_len; i++)
  351. cx24110_writereg(state, 0x79 + i, cmd->msg[i]);
  352. rv = cx24110_readreg(state, 0x77);
  353. if (rv & 0x04) {
  354. cx24110_writereg(state, 0x77, rv & ~0x04);
  355. msleep(30); /* reportedly fixes switching problems */
  356. }
  357. rv = cx24110_readreg(state, 0x76);
  358. cx24110_writereg(state, 0x76, ((rv & 0x90) | 0x40) | ((cmd->msg_len-3) & 3));
  359. timeout = jiffies + msecs_to_jiffies(100);
  360. while (!time_after(jiffies, timeout) && !(cx24110_readreg(state, 0x76) & 0x40))
  361. ; /* wait for LNB ready */
  362. return 0;
  363. }
  364. static int cx24110_read_status(struct dvb_frontend *fe,
  365. enum fe_status *status)
  366. {
  367. struct cx24110_state *state = fe->demodulator_priv;
  368. int sync = cx24110_readreg (state, 0x55);
  369. *status = 0;
  370. if (sync & 0x10)
  371. *status |= FE_HAS_SIGNAL;
  372. if (sync & 0x08)
  373. *status |= FE_HAS_CARRIER;
  374. sync = cx24110_readreg (state, 0x08);
  375. if (sync & 0x40)
  376. *status |= FE_HAS_VITERBI;
  377. if (sync & 0x20)
  378. *status |= FE_HAS_SYNC;
  379. if ((sync & 0x60) == 0x60)
  380. *status |= FE_HAS_LOCK;
  381. return 0;
  382. }
  383. static int cx24110_read_ber(struct dvb_frontend* fe, u32* ber)
  384. {
  385. struct cx24110_state *state = fe->demodulator_priv;
  386. /* fixme (maybe): value range is 16 bit. Scale? */
  387. if(cx24110_readreg(state,0x24)&0x10) {
  388. /* the Viterbi error counter has finished one counting window */
  389. cx24110_writereg(state,0x24,0x04); /* select the ber reg */
  390. state->lastber=cx24110_readreg(state,0x25)|
  391. (cx24110_readreg(state,0x26)<<8);
  392. cx24110_writereg(state,0x24,0x04); /* start new count window */
  393. cx24110_writereg(state,0x24,0x14);
  394. }
  395. *ber = state->lastber;
  396. return 0;
  397. }
  398. static int cx24110_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength)
  399. {
  400. struct cx24110_state *state = fe->demodulator_priv;
  401. /* no provision in hardware. Read the frontend AGC accumulator. No idea how to scale this, but I know it is 2s complement */
  402. u8 signal = cx24110_readreg (state, 0x27)+128;
  403. *signal_strength = (signal << 8) | signal;
  404. return 0;
  405. }
  406. static int cx24110_read_snr(struct dvb_frontend* fe, u16* snr)
  407. {
  408. struct cx24110_state *state = fe->demodulator_priv;
  409. /* no provision in hardware. Can be computed from the Es/N0 estimator, but I don't know how. */
  410. if(cx24110_readreg(state,0x6a)&0x80) {
  411. /* the Es/N0 error counter has finished one counting window */
  412. state->lastesn0=cx24110_readreg(state,0x69)|
  413. (cx24110_readreg(state,0x68)<<8);
  414. cx24110_writereg(state,0x6a,0x84); /* start new count window */
  415. }
  416. *snr = state->lastesn0;
  417. return 0;
  418. }
  419. static int cx24110_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
  420. {
  421. struct cx24110_state *state = fe->demodulator_priv;
  422. if(cx24110_readreg(state,0x10)&0x40) {
  423. /* the RS error counter has finished one counting window */
  424. cx24110_writereg(state,0x10,0x60); /* select the byer reg */
  425. (void)(cx24110_readreg(state, 0x12) |
  426. (cx24110_readreg(state, 0x13) << 8) |
  427. (cx24110_readreg(state, 0x14) << 16));
  428. cx24110_writereg(state,0x10,0x70); /* select the bler reg */
  429. state->lastbler=cx24110_readreg(state,0x12)|
  430. (cx24110_readreg(state,0x13)<<8)|
  431. (cx24110_readreg(state,0x14)<<16);
  432. cx24110_writereg(state,0x10,0x20); /* start new count window */
  433. }
  434. *ucblocks = state->lastbler;
  435. return 0;
  436. }
  437. static int cx24110_set_frontend(struct dvb_frontend *fe)
  438. {
  439. struct cx24110_state *state = fe->demodulator_priv;
  440. struct dtv_frontend_properties *p = &fe->dtv_property_cache;
  441. if (fe->ops.tuner_ops.set_params) {
  442. fe->ops.tuner_ops.set_params(fe);
  443. if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
  444. }
  445. cx24110_set_inversion(state, p->inversion);
  446. cx24110_set_fec(state, p->fec_inner);
  447. cx24110_set_symbolrate(state, p->symbol_rate);
  448. cx24110_writereg(state,0x04,0x05); /* start acquisition */
  449. return 0;
  450. }
  451. static int cx24110_get_frontend(struct dvb_frontend *fe)
  452. {
  453. struct dtv_frontend_properties *p = &fe->dtv_property_cache;
  454. struct cx24110_state *state = fe->demodulator_priv;
  455. s32 afc; unsigned sclk;
  456. /* cannot read back tuner settings (freq). Need to have some private storage */
  457. sclk = cx24110_readreg (state, 0x07) & 0x03;
  458. /* ok, real AFC (FEDR) freq. is afc/2^24*fsamp, fsamp=45/60/80/90MHz.
  459. * Need 64 bit arithmetic. Is thiss possible in the kernel? */
  460. if (sclk==0) sclk=90999000L/2L;
  461. else if (sclk==1) sclk=60666000L;
  462. else if (sclk==2) sclk=80888000L;
  463. else sclk=90999000L;
  464. sclk>>=8;
  465. afc = sclk*(cx24110_readreg (state, 0x44)&0x1f)+
  466. ((sclk*cx24110_readreg (state, 0x45))>>8)+
  467. ((sclk*cx24110_readreg (state, 0x46))>>16);
  468. p->frequency += afc;
  469. p->inversion = (cx24110_readreg (state, 0x22) & 0x10) ?
  470. INVERSION_ON : INVERSION_OFF;
  471. p->fec_inner = cx24110_get_fec(state);
  472. return 0;
  473. }
  474. static int cx24110_set_tone(struct dvb_frontend *fe,
  475. enum fe_sec_tone_mode tone)
  476. {
  477. struct cx24110_state *state = fe->demodulator_priv;
  478. return cx24110_writereg(state,0x76,(cx24110_readreg(state,0x76)&~0x10)|(((tone==SEC_TONE_ON))?0x10:0));
  479. }
  480. static void cx24110_release(struct dvb_frontend* fe)
  481. {
  482. struct cx24110_state* state = fe->demodulator_priv;
  483. kfree(state);
  484. }
  485. static struct dvb_frontend_ops cx24110_ops;
  486. struct dvb_frontend* cx24110_attach(const struct cx24110_config* config,
  487. struct i2c_adapter* i2c)
  488. {
  489. struct cx24110_state* state = NULL;
  490. int ret;
  491. /* allocate memory for the internal state */
  492. state = kzalloc(sizeof(struct cx24110_state), GFP_KERNEL);
  493. if (state == NULL) goto error;
  494. /* setup the state */
  495. state->config = config;
  496. state->i2c = i2c;
  497. state->lastber = 0;
  498. state->lastbler = 0;
  499. state->lastesn0 = 0;
  500. /* check if the demod is there */
  501. ret = cx24110_readreg(state, 0x00);
  502. if ((ret != 0x5a) && (ret != 0x69)) goto error;
  503. /* create dvb_frontend */
  504. memcpy(&state->frontend.ops, &cx24110_ops, sizeof(struct dvb_frontend_ops));
  505. state->frontend.demodulator_priv = state;
  506. return &state->frontend;
  507. error:
  508. kfree(state);
  509. return NULL;
  510. }
  511. static struct dvb_frontend_ops cx24110_ops = {
  512. .delsys = { SYS_DVBS },
  513. .info = {
  514. .name = "Conexant CX24110 DVB-S",
  515. .frequency_min = 950000,
  516. .frequency_max = 2150000,
  517. .frequency_stepsize = 1011, /* kHz for QPSK frontends */
  518. .frequency_tolerance = 29500,
  519. .symbol_rate_min = 1000000,
  520. .symbol_rate_max = 45000000,
  521. .caps = FE_CAN_INVERSION_AUTO |
  522. FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
  523. FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
  524. FE_CAN_QPSK | FE_CAN_RECOVER
  525. },
  526. .release = cx24110_release,
  527. .init = cx24110_initfe,
  528. .write = _cx24110_pll_write,
  529. .set_frontend = cx24110_set_frontend,
  530. .get_frontend = cx24110_get_frontend,
  531. .read_status = cx24110_read_status,
  532. .read_ber = cx24110_read_ber,
  533. .read_signal_strength = cx24110_read_signal_strength,
  534. .read_snr = cx24110_read_snr,
  535. .read_ucblocks = cx24110_read_ucblocks,
  536. .diseqc_send_master_cmd = cx24110_send_diseqc_msg,
  537. .set_tone = cx24110_set_tone,
  538. .set_voltage = cx24110_set_voltage,
  539. .diseqc_send_burst = cx24110_diseqc_send_burst,
  540. };
  541. module_param(debug, int, 0644);
  542. MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
  543. MODULE_DESCRIPTION("Conexant CX24110 DVB-S Demodulator driver");
  544. MODULE_AUTHOR("Peter Hettkamp");
  545. MODULE_LICENSE("GPL");
  546. EXPORT_SYMBOL(cx24110_attach);