cx18-av-vbi.c 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313
  1. /*
  2. * cx18 ADEC VBI functions
  3. *
  4. * Derived from cx25840-vbi.c
  5. *
  6. * Copyright (C) 2007 Hans Verkuil <hverkuil@xs4all.nl>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version 2
  11. * of the License, or (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  21. * 02110-1301, USA.
  22. */
  23. #include "cx18-driver.h"
  24. /*
  25. * For sliced VBI output, we set up to use VIP-1.1, 8-bit mode,
  26. * NN counts 1 byte Dwords, an IDID with the VBI line # in it.
  27. * Thus, according to the VIP-2 Spec, our VBI ancillary data lines
  28. * (should!) look like:
  29. * 4 byte EAV code: 0xff 0x00 0x00 0xRP
  30. * unknown number of possible idle bytes
  31. * 3 byte Anc data preamble: 0x00 0xff 0xff
  32. * 1 byte data identifier: ne010iii (parity bits, 010, DID bits)
  33. * 1 byte secondary data id: nessssss (parity bits, SDID bits)
  34. * 1 byte data word count: necccccc (parity bits, NN Dword count)
  35. * 2 byte Internal DID: VBI-line-# 0x80
  36. * NN data bytes
  37. * 1 byte checksum
  38. * Fill bytes needed to fil out to 4*NN bytes of payload
  39. *
  40. * The RP codes for EAVs when in VIP-1.1 mode, not in raw mode, &
  41. * in the vertical blanking interval are:
  42. * 0xb0 (Task 0 VerticalBlank HorizontalBlank 0 0 0 0)
  43. * 0xf0 (Task EvenField VerticalBlank HorizontalBlank 0 0 0 0)
  44. *
  45. * Since the V bit is only allowed to toggle in the EAV RP code, just
  46. * before the first active region line and for active lines, they are:
  47. * 0x90 (Task 0 0 HorizontalBlank 0 0 0 0)
  48. * 0xd0 (Task EvenField 0 HorizontalBlank 0 0 0 0)
  49. *
  50. * The user application DID bytes we care about are:
  51. * 0x91 (1 0 010 0 !ActiveLine AncDataPresent)
  52. * 0x55 (0 1 010 2ndField !ActiveLine AncDataPresent)
  53. *
  54. */
  55. static const u8 sliced_vbi_did[2] = { 0x91, 0x55 };
  56. struct vbi_anc_data {
  57. /* u8 eav[4]; */
  58. /* u8 idle[]; Variable number of idle bytes */
  59. u8 preamble[3];
  60. u8 did;
  61. u8 sdid;
  62. u8 data_count;
  63. u8 idid[2];
  64. u8 payload[1]; /* data_count of payload */
  65. /* u8 checksum; */
  66. /* u8 fill[]; Variable number of fill bytes */
  67. };
  68. static int odd_parity(u8 c)
  69. {
  70. c ^= (c >> 4);
  71. c ^= (c >> 2);
  72. c ^= (c >> 1);
  73. return c & 1;
  74. }
  75. static int decode_vps(u8 *dst, u8 *p)
  76. {
  77. static const u8 biphase_tbl[] = {
  78. 0xf0, 0x78, 0x70, 0xf0, 0xb4, 0x3c, 0x34, 0xb4,
  79. 0xb0, 0x38, 0x30, 0xb0, 0xf0, 0x78, 0x70, 0xf0,
  80. 0xd2, 0x5a, 0x52, 0xd2, 0x96, 0x1e, 0x16, 0x96,
  81. 0x92, 0x1a, 0x12, 0x92, 0xd2, 0x5a, 0x52, 0xd2,
  82. 0xd0, 0x58, 0x50, 0xd0, 0x94, 0x1c, 0x14, 0x94,
  83. 0x90, 0x18, 0x10, 0x90, 0xd0, 0x58, 0x50, 0xd0,
  84. 0xf0, 0x78, 0x70, 0xf0, 0xb4, 0x3c, 0x34, 0xb4,
  85. 0xb0, 0x38, 0x30, 0xb0, 0xf0, 0x78, 0x70, 0xf0,
  86. 0xe1, 0x69, 0x61, 0xe1, 0xa5, 0x2d, 0x25, 0xa5,
  87. 0xa1, 0x29, 0x21, 0xa1, 0xe1, 0x69, 0x61, 0xe1,
  88. 0xc3, 0x4b, 0x43, 0xc3, 0x87, 0x0f, 0x07, 0x87,
  89. 0x83, 0x0b, 0x03, 0x83, 0xc3, 0x4b, 0x43, 0xc3,
  90. 0xc1, 0x49, 0x41, 0xc1, 0x85, 0x0d, 0x05, 0x85,
  91. 0x81, 0x09, 0x01, 0x81, 0xc1, 0x49, 0x41, 0xc1,
  92. 0xe1, 0x69, 0x61, 0xe1, 0xa5, 0x2d, 0x25, 0xa5,
  93. 0xa1, 0x29, 0x21, 0xa1, 0xe1, 0x69, 0x61, 0xe1,
  94. 0xe0, 0x68, 0x60, 0xe0, 0xa4, 0x2c, 0x24, 0xa4,
  95. 0xa0, 0x28, 0x20, 0xa0, 0xe0, 0x68, 0x60, 0xe0,
  96. 0xc2, 0x4a, 0x42, 0xc2, 0x86, 0x0e, 0x06, 0x86,
  97. 0x82, 0x0a, 0x02, 0x82, 0xc2, 0x4a, 0x42, 0xc2,
  98. 0xc0, 0x48, 0x40, 0xc0, 0x84, 0x0c, 0x04, 0x84,
  99. 0x80, 0x08, 0x00, 0x80, 0xc0, 0x48, 0x40, 0xc0,
  100. 0xe0, 0x68, 0x60, 0xe0, 0xa4, 0x2c, 0x24, 0xa4,
  101. 0xa0, 0x28, 0x20, 0xa0, 0xe0, 0x68, 0x60, 0xe0,
  102. 0xf0, 0x78, 0x70, 0xf0, 0xb4, 0x3c, 0x34, 0xb4,
  103. 0xb0, 0x38, 0x30, 0xb0, 0xf0, 0x78, 0x70, 0xf0,
  104. 0xd2, 0x5a, 0x52, 0xd2, 0x96, 0x1e, 0x16, 0x96,
  105. 0x92, 0x1a, 0x12, 0x92, 0xd2, 0x5a, 0x52, 0xd2,
  106. 0xd0, 0x58, 0x50, 0xd0, 0x94, 0x1c, 0x14, 0x94,
  107. 0x90, 0x18, 0x10, 0x90, 0xd0, 0x58, 0x50, 0xd0,
  108. 0xf0, 0x78, 0x70, 0xf0, 0xb4, 0x3c, 0x34, 0xb4,
  109. 0xb0, 0x38, 0x30, 0xb0, 0xf0, 0x78, 0x70, 0xf0,
  110. };
  111. u8 c, err = 0;
  112. int i;
  113. for (i = 0; i < 2 * 13; i += 2) {
  114. err |= biphase_tbl[p[i]] | biphase_tbl[p[i + 1]];
  115. c = (biphase_tbl[p[i + 1]] & 0xf) |
  116. ((biphase_tbl[p[i]] & 0xf) << 4);
  117. dst[i / 2] = c;
  118. }
  119. return err & 0xf0;
  120. }
  121. int cx18_av_g_sliced_fmt(struct v4l2_subdev *sd, struct v4l2_sliced_vbi_format *svbi)
  122. {
  123. struct cx18 *cx = v4l2_get_subdevdata(sd);
  124. struct cx18_av_state *state = &cx->av_state;
  125. static const u16 lcr2vbi[] = {
  126. 0, V4L2_SLICED_TELETEXT_B, 0, /* 1 */
  127. 0, V4L2_SLICED_WSS_625, 0, /* 4 */
  128. V4L2_SLICED_CAPTION_525, /* 6 */
  129. 0, 0, V4L2_SLICED_VPS, 0, 0, /* 9 */
  130. 0, 0, 0, 0
  131. };
  132. int is_pal = !(state->std & V4L2_STD_525_60);
  133. int i;
  134. memset(svbi->service_lines, 0, sizeof(svbi->service_lines));
  135. svbi->service_set = 0;
  136. /* we're done if raw VBI is active */
  137. if ((cx18_av_read(cx, 0x404) & 0x10) == 0)
  138. return 0;
  139. if (is_pal) {
  140. for (i = 7; i <= 23; i++) {
  141. u8 v = cx18_av_read(cx, 0x424 + i - 7);
  142. svbi->service_lines[0][i] = lcr2vbi[v >> 4];
  143. svbi->service_lines[1][i] = lcr2vbi[v & 0xf];
  144. svbi->service_set |= svbi->service_lines[0][i] |
  145. svbi->service_lines[1][i];
  146. }
  147. } else {
  148. for (i = 10; i <= 21; i++) {
  149. u8 v = cx18_av_read(cx, 0x424 + i - 10);
  150. svbi->service_lines[0][i] = lcr2vbi[v >> 4];
  151. svbi->service_lines[1][i] = lcr2vbi[v & 0xf];
  152. svbi->service_set |= svbi->service_lines[0][i] |
  153. svbi->service_lines[1][i];
  154. }
  155. }
  156. return 0;
  157. }
  158. int cx18_av_s_raw_fmt(struct v4l2_subdev *sd, struct v4l2_vbi_format *fmt)
  159. {
  160. struct cx18 *cx = v4l2_get_subdevdata(sd);
  161. struct cx18_av_state *state = &cx->av_state;
  162. /* Setup standard */
  163. cx18_av_std_setup(cx);
  164. /* VBI Offset */
  165. cx18_av_write(cx, 0x47f, state->slicer_line_delay);
  166. cx18_av_write(cx, 0x404, 0x2e);
  167. return 0;
  168. }
  169. int cx18_av_s_sliced_fmt(struct v4l2_subdev *sd, struct v4l2_sliced_vbi_format *svbi)
  170. {
  171. struct cx18 *cx = v4l2_get_subdevdata(sd);
  172. struct cx18_av_state *state = &cx->av_state;
  173. int is_pal = !(state->std & V4L2_STD_525_60);
  174. int i, x;
  175. u8 lcr[24];
  176. for (x = 0; x <= 23; x++)
  177. lcr[x] = 0x00;
  178. /* Setup standard */
  179. cx18_av_std_setup(cx);
  180. /* Sliced VBI */
  181. cx18_av_write(cx, 0x404, 0x32); /* Ancillary data */
  182. cx18_av_write(cx, 0x406, 0x13);
  183. cx18_av_write(cx, 0x47f, state->slicer_line_delay);
  184. /* Force impossible lines to 0 */
  185. if (is_pal) {
  186. for (i = 0; i <= 6; i++)
  187. svbi->service_lines[0][i] =
  188. svbi->service_lines[1][i] = 0;
  189. } else {
  190. for (i = 0; i <= 9; i++)
  191. svbi->service_lines[0][i] =
  192. svbi->service_lines[1][i] = 0;
  193. for (i = 22; i <= 23; i++)
  194. svbi->service_lines[0][i] =
  195. svbi->service_lines[1][i] = 0;
  196. }
  197. /* Build register values for requested service lines */
  198. for (i = 7; i <= 23; i++) {
  199. for (x = 0; x <= 1; x++) {
  200. switch (svbi->service_lines[1-x][i]) {
  201. case V4L2_SLICED_TELETEXT_B:
  202. lcr[i] |= 1 << (4 * x);
  203. break;
  204. case V4L2_SLICED_WSS_625:
  205. lcr[i] |= 4 << (4 * x);
  206. break;
  207. case V4L2_SLICED_CAPTION_525:
  208. lcr[i] |= 6 << (4 * x);
  209. break;
  210. case V4L2_SLICED_VPS:
  211. lcr[i] |= 9 << (4 * x);
  212. break;
  213. }
  214. }
  215. }
  216. if (is_pal) {
  217. for (x = 1, i = 0x424; i <= 0x434; i++, x++)
  218. cx18_av_write(cx, i, lcr[6 + x]);
  219. } else {
  220. for (x = 1, i = 0x424; i <= 0x430; i++, x++)
  221. cx18_av_write(cx, i, lcr[9 + x]);
  222. for (i = 0x431; i <= 0x434; i++)
  223. cx18_av_write(cx, i, 0);
  224. }
  225. cx18_av_write(cx, 0x43c, 0x16);
  226. /* Should match vblank set in cx18_av_std_setup() */
  227. cx18_av_write(cx, 0x474, is_pal ? 38 : 26);
  228. return 0;
  229. }
  230. int cx18_av_decode_vbi_line(struct v4l2_subdev *sd,
  231. struct v4l2_decode_vbi_line *vbi)
  232. {
  233. struct cx18 *cx = v4l2_get_subdevdata(sd);
  234. struct cx18_av_state *state = &cx->av_state;
  235. struct vbi_anc_data *anc = (struct vbi_anc_data *)vbi->p;
  236. u8 *p;
  237. int did, sdid, l, err = 0;
  238. /*
  239. * Check for the ancillary data header for sliced VBI
  240. */
  241. if (anc->preamble[0] ||
  242. anc->preamble[1] != 0xff || anc->preamble[2] != 0xff ||
  243. (anc->did != sliced_vbi_did[0] &&
  244. anc->did != sliced_vbi_did[1])) {
  245. vbi->line = vbi->type = 0;
  246. return 0;
  247. }
  248. did = anc->did;
  249. sdid = anc->sdid & 0xf;
  250. l = anc->idid[0] & 0x3f;
  251. l += state->slicer_line_offset;
  252. p = anc->payload;
  253. /* Decode the SDID set by the slicer */
  254. switch (sdid) {
  255. case 1:
  256. sdid = V4L2_SLICED_TELETEXT_B;
  257. break;
  258. case 4:
  259. sdid = V4L2_SLICED_WSS_625;
  260. break;
  261. case 6:
  262. sdid = V4L2_SLICED_CAPTION_525;
  263. err = !odd_parity(p[0]) || !odd_parity(p[1]);
  264. break;
  265. case 9:
  266. sdid = V4L2_SLICED_VPS;
  267. if (decode_vps(p, p) != 0)
  268. err = 1;
  269. break;
  270. default:
  271. sdid = 0;
  272. err = 1;
  273. break;
  274. }
  275. vbi->type = err ? 0 : sdid;
  276. vbi->line = err ? 0 : l;
  277. vbi->is_second_field = err ? 0 : (did == sliced_vbi_did[1]);
  278. vbi->p = p;
  279. return 0;
  280. }