lpc32xx_slc.c 28 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015
  1. /*
  2. * NXP LPC32XX NAND SLC driver
  3. *
  4. * Authors:
  5. * Kevin Wells <kevin.wells@nxp.com>
  6. * Roland Stigge <stigge@antcom.de>
  7. *
  8. * Copyright © 2011 NXP Semiconductors
  9. * Copyright © 2012 Roland Stigge
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License, or
  14. * (at your option) any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. */
  21. #include <linux/slab.h>
  22. #include <linux/module.h>
  23. #include <linux/platform_device.h>
  24. #include <linux/mtd/mtd.h>
  25. #include <linux/mtd/nand.h>
  26. #include <linux/mtd/partitions.h>
  27. #include <linux/clk.h>
  28. #include <linux/err.h>
  29. #include <linux/delay.h>
  30. #include <linux/io.h>
  31. #include <linux/mm.h>
  32. #include <linux/dma-mapping.h>
  33. #include <linux/dmaengine.h>
  34. #include <linux/mtd/nand_ecc.h>
  35. #include <linux/gpio.h>
  36. #include <linux/of.h>
  37. #include <linux/of_mtd.h>
  38. #include <linux/of_gpio.h>
  39. #include <linux/mtd/lpc32xx_slc.h>
  40. #define LPC32XX_MODNAME "lpc32xx-nand"
  41. /**********************************************************************
  42. * SLC NAND controller register offsets
  43. **********************************************************************/
  44. #define SLC_DATA(x) (x + 0x000)
  45. #define SLC_ADDR(x) (x + 0x004)
  46. #define SLC_CMD(x) (x + 0x008)
  47. #define SLC_STOP(x) (x + 0x00C)
  48. #define SLC_CTRL(x) (x + 0x010)
  49. #define SLC_CFG(x) (x + 0x014)
  50. #define SLC_STAT(x) (x + 0x018)
  51. #define SLC_INT_STAT(x) (x + 0x01C)
  52. #define SLC_IEN(x) (x + 0x020)
  53. #define SLC_ISR(x) (x + 0x024)
  54. #define SLC_ICR(x) (x + 0x028)
  55. #define SLC_TAC(x) (x + 0x02C)
  56. #define SLC_TC(x) (x + 0x030)
  57. #define SLC_ECC(x) (x + 0x034)
  58. #define SLC_DMA_DATA(x) (x + 0x038)
  59. /**********************************************************************
  60. * slc_ctrl register definitions
  61. **********************************************************************/
  62. #define SLCCTRL_SW_RESET (1 << 2) /* Reset the NAND controller bit */
  63. #define SLCCTRL_ECC_CLEAR (1 << 1) /* Reset ECC bit */
  64. #define SLCCTRL_DMA_START (1 << 0) /* Start DMA channel bit */
  65. /**********************************************************************
  66. * slc_cfg register definitions
  67. **********************************************************************/
  68. #define SLCCFG_CE_LOW (1 << 5) /* Force CE low bit */
  69. #define SLCCFG_DMA_ECC (1 << 4) /* Enable DMA ECC bit */
  70. #define SLCCFG_ECC_EN (1 << 3) /* ECC enable bit */
  71. #define SLCCFG_DMA_BURST (1 << 2) /* DMA burst bit */
  72. #define SLCCFG_DMA_DIR (1 << 1) /* DMA write(0)/read(1) bit */
  73. #define SLCCFG_WIDTH (1 << 0) /* External device width, 0=8bit */
  74. /**********************************************************************
  75. * slc_stat register definitions
  76. **********************************************************************/
  77. #define SLCSTAT_DMA_FIFO (1 << 2) /* DMA FIFO has data bit */
  78. #define SLCSTAT_SLC_FIFO (1 << 1) /* SLC FIFO has data bit */
  79. #define SLCSTAT_NAND_READY (1 << 0) /* NAND device is ready bit */
  80. /**********************************************************************
  81. * slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions
  82. **********************************************************************/
  83. #define SLCSTAT_INT_TC (1 << 1) /* Transfer count bit */
  84. #define SLCSTAT_INT_RDY_EN (1 << 0) /* Ready interrupt bit */
  85. /**********************************************************************
  86. * slc_tac register definitions
  87. **********************************************************************/
  88. /* Computation of clock cycles on basis of controller and device clock rates */
  89. #define SLCTAC_CLOCKS(c, n, s) (min_t(u32, DIV_ROUND_UP(c, n) - 1, 0xF) << s)
  90. /* Clock setting for RDY write sample wait time in 2*n clocks */
  91. #define SLCTAC_WDR(n) (((n) & 0xF) << 28)
  92. /* Write pulse width in clock cycles, 1 to 16 clocks */
  93. #define SLCTAC_WWIDTH(c, n) (SLCTAC_CLOCKS(c, n, 24))
  94. /* Write hold time of control and data signals, 1 to 16 clocks */
  95. #define SLCTAC_WHOLD(c, n) (SLCTAC_CLOCKS(c, n, 20))
  96. /* Write setup time of control and data signals, 1 to 16 clocks */
  97. #define SLCTAC_WSETUP(c, n) (SLCTAC_CLOCKS(c, n, 16))
  98. /* Clock setting for RDY read sample wait time in 2*n clocks */
  99. #define SLCTAC_RDR(n) (((n) & 0xF) << 12)
  100. /* Read pulse width in clock cycles, 1 to 16 clocks */
  101. #define SLCTAC_RWIDTH(c, n) (SLCTAC_CLOCKS(c, n, 8))
  102. /* Read hold time of control and data signals, 1 to 16 clocks */
  103. #define SLCTAC_RHOLD(c, n) (SLCTAC_CLOCKS(c, n, 4))
  104. /* Read setup time of control and data signals, 1 to 16 clocks */
  105. #define SLCTAC_RSETUP(c, n) (SLCTAC_CLOCKS(c, n, 0))
  106. /**********************************************************************
  107. * slc_ecc register definitions
  108. **********************************************************************/
  109. /* ECC line party fetch macro */
  110. #define SLCECC_TO_LINEPAR(n) (((n) >> 6) & 0x7FFF)
  111. #define SLCECC_TO_COLPAR(n) ((n) & 0x3F)
  112. /*
  113. * DMA requires storage space for the DMA local buffer and the hardware ECC
  114. * storage area. The DMA local buffer is only used if DMA mapping fails
  115. * during runtime.
  116. */
  117. #define LPC32XX_DMA_DATA_SIZE 4096
  118. #define LPC32XX_ECC_SAVE_SIZE ((4096 / 256) * 4)
  119. /* Number of bytes used for ECC stored in NAND per 256 bytes */
  120. #define LPC32XX_SLC_DEV_ECC_BYTES 3
  121. /*
  122. * If the NAND base clock frequency can't be fetched, this frequency will be
  123. * used instead as the base. This rate is used to setup the timing registers
  124. * used for NAND accesses.
  125. */
  126. #define LPC32XX_DEF_BUS_RATE 133250000
  127. /* Milliseconds for DMA FIFO timeout (unlikely anyway) */
  128. #define LPC32XX_DMA_TIMEOUT 100
  129. /*
  130. * NAND ECC Layout for small page NAND devices
  131. * Note: For large and huge page devices, the default layouts are used
  132. */
  133. static struct nand_ecclayout lpc32xx_nand_oob_16 = {
  134. .eccbytes = 6,
  135. .eccpos = {10, 11, 12, 13, 14, 15},
  136. .oobfree = {
  137. { .offset = 0, .length = 4 },
  138. { .offset = 6, .length = 4 },
  139. },
  140. };
  141. static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
  142. static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
  143. /*
  144. * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6
  145. * Note: Large page devices used the default layout
  146. */
  147. static struct nand_bbt_descr bbt_smallpage_main_descr = {
  148. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  149. | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
  150. .offs = 0,
  151. .len = 4,
  152. .veroffs = 6,
  153. .maxblocks = 4,
  154. .pattern = bbt_pattern
  155. };
  156. static struct nand_bbt_descr bbt_smallpage_mirror_descr = {
  157. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  158. | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
  159. .offs = 0,
  160. .len = 4,
  161. .veroffs = 6,
  162. .maxblocks = 4,
  163. .pattern = mirror_pattern
  164. };
  165. /*
  166. * NAND platform configuration structure
  167. */
  168. struct lpc32xx_nand_cfg_slc {
  169. uint32_t wdr_clks;
  170. uint32_t wwidth;
  171. uint32_t whold;
  172. uint32_t wsetup;
  173. uint32_t rdr_clks;
  174. uint32_t rwidth;
  175. uint32_t rhold;
  176. uint32_t rsetup;
  177. bool use_bbt;
  178. int wp_gpio;
  179. struct mtd_partition *parts;
  180. unsigned num_parts;
  181. };
  182. struct lpc32xx_nand_host {
  183. struct nand_chip nand_chip;
  184. struct lpc32xx_slc_platform_data *pdata;
  185. struct clk *clk;
  186. struct mtd_info mtd;
  187. void __iomem *io_base;
  188. struct lpc32xx_nand_cfg_slc *ncfg;
  189. struct completion comp;
  190. struct dma_chan *dma_chan;
  191. uint32_t dma_buf_len;
  192. struct dma_slave_config dma_slave_config;
  193. struct scatterlist sgl;
  194. /*
  195. * DMA and CPU addresses of ECC work area and data buffer
  196. */
  197. uint32_t *ecc_buf;
  198. uint8_t *data_buf;
  199. dma_addr_t io_base_dma;
  200. };
  201. static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
  202. {
  203. uint32_t clkrate, tmp;
  204. /* Reset SLC controller */
  205. writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base));
  206. udelay(1000);
  207. /* Basic setup */
  208. writel(0, SLC_CFG(host->io_base));
  209. writel(0, SLC_IEN(host->io_base));
  210. writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN),
  211. SLC_ICR(host->io_base));
  212. /* Get base clock for SLC block */
  213. clkrate = clk_get_rate(host->clk);
  214. if (clkrate == 0)
  215. clkrate = LPC32XX_DEF_BUS_RATE;
  216. /* Compute clock setup values */
  217. tmp = SLCTAC_WDR(host->ncfg->wdr_clks) |
  218. SLCTAC_WWIDTH(clkrate, host->ncfg->wwidth) |
  219. SLCTAC_WHOLD(clkrate, host->ncfg->whold) |
  220. SLCTAC_WSETUP(clkrate, host->ncfg->wsetup) |
  221. SLCTAC_RDR(host->ncfg->rdr_clks) |
  222. SLCTAC_RWIDTH(clkrate, host->ncfg->rwidth) |
  223. SLCTAC_RHOLD(clkrate, host->ncfg->rhold) |
  224. SLCTAC_RSETUP(clkrate, host->ncfg->rsetup);
  225. writel(tmp, SLC_TAC(host->io_base));
  226. }
  227. /*
  228. * Hardware specific access to control lines
  229. */
  230. static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
  231. unsigned int ctrl)
  232. {
  233. uint32_t tmp;
  234. struct nand_chip *chip = mtd->priv;
  235. struct lpc32xx_nand_host *host = chip->priv;
  236. /* Does CE state need to be changed? */
  237. tmp = readl(SLC_CFG(host->io_base));
  238. if (ctrl & NAND_NCE)
  239. tmp |= SLCCFG_CE_LOW;
  240. else
  241. tmp &= ~SLCCFG_CE_LOW;
  242. writel(tmp, SLC_CFG(host->io_base));
  243. if (cmd != NAND_CMD_NONE) {
  244. if (ctrl & NAND_CLE)
  245. writel(cmd, SLC_CMD(host->io_base));
  246. else
  247. writel(cmd, SLC_ADDR(host->io_base));
  248. }
  249. }
  250. /*
  251. * Read the Device Ready pin
  252. */
  253. static int lpc32xx_nand_device_ready(struct mtd_info *mtd)
  254. {
  255. struct nand_chip *chip = mtd->priv;
  256. struct lpc32xx_nand_host *host = chip->priv;
  257. int rdy = 0;
  258. if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0)
  259. rdy = 1;
  260. return rdy;
  261. }
  262. /*
  263. * Enable NAND write protect
  264. */
  265. static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
  266. {
  267. if (gpio_is_valid(host->ncfg->wp_gpio))
  268. gpio_set_value(host->ncfg->wp_gpio, 0);
  269. }
  270. /*
  271. * Disable NAND write protect
  272. */
  273. static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
  274. {
  275. if (gpio_is_valid(host->ncfg->wp_gpio))
  276. gpio_set_value(host->ncfg->wp_gpio, 1);
  277. }
  278. /*
  279. * Prepares SLC for transfers with H/W ECC enabled
  280. */
  281. static void lpc32xx_nand_ecc_enable(struct mtd_info *mtd, int mode)
  282. {
  283. /* Hardware ECC is enabled automatically in hardware as needed */
  284. }
  285. /*
  286. * Calculates the ECC for the data
  287. */
  288. static int lpc32xx_nand_ecc_calculate(struct mtd_info *mtd,
  289. const unsigned char *buf,
  290. unsigned char *code)
  291. {
  292. /*
  293. * ECC is calculated automatically in hardware during syndrome read
  294. * and write operations, so it doesn't need to be calculated here.
  295. */
  296. return 0;
  297. }
  298. /*
  299. * Read a single byte from NAND device
  300. */
  301. static uint8_t lpc32xx_nand_read_byte(struct mtd_info *mtd)
  302. {
  303. struct nand_chip *chip = mtd->priv;
  304. struct lpc32xx_nand_host *host = chip->priv;
  305. return (uint8_t)readl(SLC_DATA(host->io_base));
  306. }
  307. /*
  308. * Simple device read without ECC
  309. */
  310. static void lpc32xx_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
  311. {
  312. struct nand_chip *chip = mtd->priv;
  313. struct lpc32xx_nand_host *host = chip->priv;
  314. /* Direct device read with no ECC */
  315. while (len-- > 0)
  316. *buf++ = (uint8_t)readl(SLC_DATA(host->io_base));
  317. }
  318. /*
  319. * Simple device write without ECC
  320. */
  321. static void lpc32xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
  322. {
  323. struct nand_chip *chip = mtd->priv;
  324. struct lpc32xx_nand_host *host = chip->priv;
  325. /* Direct device write with no ECC */
  326. while (len-- > 0)
  327. writel((uint32_t)*buf++, SLC_DATA(host->io_base));
  328. }
  329. /*
  330. * Read the OOB data from the device without ECC using FIFO method
  331. */
  332. static int lpc32xx_nand_read_oob_syndrome(struct mtd_info *mtd,
  333. struct nand_chip *chip, int page)
  334. {
  335. chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
  336. chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
  337. return 0;
  338. }
  339. /*
  340. * Write the OOB data to the device without ECC using FIFO method
  341. */
  342. static int lpc32xx_nand_write_oob_syndrome(struct mtd_info *mtd,
  343. struct nand_chip *chip, int page)
  344. {
  345. int status;
  346. chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
  347. chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
  348. /* Send command to program the OOB data */
  349. chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
  350. status = chip->waitfunc(mtd, chip);
  351. return status & NAND_STATUS_FAIL ? -EIO : 0;
  352. }
  353. /*
  354. * Fills in the ECC fields in the OOB buffer with the hardware generated ECC
  355. */
  356. static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count)
  357. {
  358. int i;
  359. for (i = 0; i < (count * 3); i += 3) {
  360. uint32_t ce = ecc[i / 3];
  361. ce = ~(ce << 2) & 0xFFFFFF;
  362. spare[i + 2] = (uint8_t)(ce & 0xFF);
  363. ce >>= 8;
  364. spare[i + 1] = (uint8_t)(ce & 0xFF);
  365. ce >>= 8;
  366. spare[i] = (uint8_t)(ce & 0xFF);
  367. }
  368. }
  369. static void lpc32xx_dma_complete_func(void *completion)
  370. {
  371. complete(completion);
  372. }
  373. static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma,
  374. void *mem, int len, enum dma_transfer_direction dir)
  375. {
  376. struct nand_chip *chip = mtd->priv;
  377. struct lpc32xx_nand_host *host = chip->priv;
  378. struct dma_async_tx_descriptor *desc;
  379. int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
  380. int res;
  381. host->dma_slave_config.direction = dir;
  382. host->dma_slave_config.src_addr = dma;
  383. host->dma_slave_config.dst_addr = dma;
  384. host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  385. host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  386. host->dma_slave_config.src_maxburst = 4;
  387. host->dma_slave_config.dst_maxburst = 4;
  388. /* DMA controller does flow control: */
  389. host->dma_slave_config.device_fc = false;
  390. if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
  391. dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
  392. return -ENXIO;
  393. }
  394. sg_init_one(&host->sgl, mem, len);
  395. res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
  396. DMA_BIDIRECTIONAL);
  397. if (res != 1) {
  398. dev_err(mtd->dev.parent, "Failed to map sg list\n");
  399. return -ENXIO;
  400. }
  401. desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
  402. flags);
  403. if (!desc) {
  404. dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
  405. goto out1;
  406. }
  407. init_completion(&host->comp);
  408. desc->callback = lpc32xx_dma_complete_func;
  409. desc->callback_param = &host->comp;
  410. dmaengine_submit(desc);
  411. dma_async_issue_pending(host->dma_chan);
  412. wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000));
  413. dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
  414. DMA_BIDIRECTIONAL);
  415. return 0;
  416. out1:
  417. dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
  418. DMA_BIDIRECTIONAL);
  419. return -ENXIO;
  420. }
  421. /*
  422. * DMA read/write transfers with ECC support
  423. */
  424. static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages,
  425. int read)
  426. {
  427. struct nand_chip *chip = mtd->priv;
  428. struct lpc32xx_nand_host *host = chip->priv;
  429. int i, status = 0;
  430. unsigned long timeout;
  431. int res;
  432. enum dma_transfer_direction dir =
  433. read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
  434. uint8_t *dma_buf;
  435. bool dma_mapped;
  436. if ((void *)buf <= high_memory) {
  437. dma_buf = buf;
  438. dma_mapped = true;
  439. } else {
  440. dma_buf = host->data_buf;
  441. dma_mapped = false;
  442. if (!read)
  443. memcpy(host->data_buf, buf, mtd->writesize);
  444. }
  445. if (read) {
  446. writel(readl(SLC_CFG(host->io_base)) |
  447. SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
  448. SLCCFG_DMA_BURST, SLC_CFG(host->io_base));
  449. } else {
  450. writel((readl(SLC_CFG(host->io_base)) |
  451. SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) &
  452. ~SLCCFG_DMA_DIR,
  453. SLC_CFG(host->io_base));
  454. }
  455. /* Clear initial ECC */
  456. writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base));
  457. /* Transfer size is data area only */
  458. writel(mtd->writesize, SLC_TC(host->io_base));
  459. /* Start transfer in the NAND controller */
  460. writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START,
  461. SLC_CTRL(host->io_base));
  462. for (i = 0; i < chip->ecc.steps; i++) {
  463. /* Data */
  464. res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma),
  465. dma_buf + i * chip->ecc.size,
  466. mtd->writesize / chip->ecc.steps, dir);
  467. if (res)
  468. return res;
  469. /* Always _read_ ECC */
  470. if (i == chip->ecc.steps - 1)
  471. break;
  472. if (!read) /* ECC availability delayed on write */
  473. udelay(10);
  474. res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma),
  475. &host->ecc_buf[i], 4, DMA_DEV_TO_MEM);
  476. if (res)
  477. return res;
  478. }
  479. /*
  480. * According to NXP, the DMA can be finished here, but the NAND
  481. * controller may still have buffered data. After porting to using the
  482. * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty)
  483. * appears to be always true, according to tests. Keeping the check for
  484. * safety reasons for now.
  485. */
  486. if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) {
  487. dev_warn(mtd->dev.parent, "FIFO not empty!\n");
  488. timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT);
  489. while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) &&
  490. time_before(jiffies, timeout))
  491. cpu_relax();
  492. if (!time_before(jiffies, timeout)) {
  493. dev_err(mtd->dev.parent, "FIFO held data too long\n");
  494. status = -EIO;
  495. }
  496. }
  497. /* Read last calculated ECC value */
  498. if (!read)
  499. udelay(10);
  500. host->ecc_buf[chip->ecc.steps - 1] =
  501. readl(SLC_ECC(host->io_base));
  502. /* Flush DMA */
  503. dmaengine_terminate_all(host->dma_chan);
  504. if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO ||
  505. readl(SLC_TC(host->io_base))) {
  506. /* Something is left in the FIFO, something is wrong */
  507. dev_err(mtd->dev.parent, "DMA FIFO failure\n");
  508. status = -EIO;
  509. }
  510. /* Stop DMA & HW ECC */
  511. writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START,
  512. SLC_CTRL(host->io_base));
  513. writel(readl(SLC_CFG(host->io_base)) &
  514. ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
  515. SLCCFG_DMA_BURST), SLC_CFG(host->io_base));
  516. if (!dma_mapped && read)
  517. memcpy(buf, host->data_buf, mtd->writesize);
  518. return status;
  519. }
  520. /*
  521. * Read the data and OOB data from the device, use ECC correction with the
  522. * data, disable ECC for the OOB data
  523. */
  524. static int lpc32xx_nand_read_page_syndrome(struct mtd_info *mtd,
  525. struct nand_chip *chip, uint8_t *buf,
  526. int oob_required, int page)
  527. {
  528. struct lpc32xx_nand_host *host = chip->priv;
  529. int stat, i, status;
  530. uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE];
  531. /* Issue read command */
  532. chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
  533. /* Read data and oob, calculate ECC */
  534. status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1);
  535. /* Get OOB data */
  536. chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
  537. /* Convert to stored ECC format */
  538. lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps);
  539. /* Pointer to ECC data retrieved from NAND spare area */
  540. oobecc = chip->oob_poi + chip->ecc.layout->eccpos[0];
  541. for (i = 0; i < chip->ecc.steps; i++) {
  542. stat = chip->ecc.correct(mtd, buf, oobecc,
  543. &tmpecc[i * chip->ecc.bytes]);
  544. if (stat < 0)
  545. mtd->ecc_stats.failed++;
  546. else
  547. mtd->ecc_stats.corrected += stat;
  548. buf += chip->ecc.size;
  549. oobecc += chip->ecc.bytes;
  550. }
  551. return status;
  552. }
  553. /*
  554. * Read the data and OOB data from the device, no ECC correction with the
  555. * data or OOB data
  556. */
  557. static int lpc32xx_nand_read_page_raw_syndrome(struct mtd_info *mtd,
  558. struct nand_chip *chip,
  559. uint8_t *buf, int oob_required,
  560. int page)
  561. {
  562. /* Issue read command */
  563. chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
  564. /* Raw reads can just use the FIFO interface */
  565. chip->read_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
  566. chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
  567. return 0;
  568. }
  569. /*
  570. * Write the data and OOB data to the device, use ECC with the data,
  571. * disable ECC for the OOB data
  572. */
  573. static int lpc32xx_nand_write_page_syndrome(struct mtd_info *mtd,
  574. struct nand_chip *chip,
  575. const uint8_t *buf,
  576. int oob_required, int page)
  577. {
  578. struct lpc32xx_nand_host *host = chip->priv;
  579. uint8_t *pb = chip->oob_poi + chip->ecc.layout->eccpos[0];
  580. int error;
  581. /* Write data, calculate ECC on outbound data */
  582. error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0);
  583. if (error)
  584. return error;
  585. /*
  586. * The calculated ECC needs some manual work done to it before
  587. * committing it to NAND. Process the calculated ECC and place
  588. * the resultant values directly into the OOB buffer. */
  589. lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps);
  590. /* Write ECC data to device */
  591. chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
  592. return 0;
  593. }
  594. /*
  595. * Write the data and OOB data to the device, no ECC correction with the
  596. * data or OOB data
  597. */
  598. static int lpc32xx_nand_write_page_raw_syndrome(struct mtd_info *mtd,
  599. struct nand_chip *chip,
  600. const uint8_t *buf,
  601. int oob_required, int page)
  602. {
  603. /* Raw writes can just use the FIFO interface */
  604. chip->write_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
  605. chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
  606. return 0;
  607. }
  608. static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host)
  609. {
  610. struct mtd_info *mtd = &host->mtd;
  611. dma_cap_mask_t mask;
  612. if (!host->pdata || !host->pdata->dma_filter) {
  613. dev_err(mtd->dev.parent, "no DMA platform data\n");
  614. return -ENOENT;
  615. }
  616. dma_cap_zero(mask);
  617. dma_cap_set(DMA_SLAVE, mask);
  618. host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
  619. "nand-slc");
  620. if (!host->dma_chan) {
  621. dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
  622. return -EBUSY;
  623. }
  624. return 0;
  625. }
  626. static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev)
  627. {
  628. struct lpc32xx_nand_cfg_slc *ncfg;
  629. struct device_node *np = dev->of_node;
  630. ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
  631. if (!ncfg)
  632. return NULL;
  633. of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks);
  634. of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth);
  635. of_property_read_u32(np, "nxp,whold", &ncfg->whold);
  636. of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup);
  637. of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks);
  638. of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth);
  639. of_property_read_u32(np, "nxp,rhold", &ncfg->rhold);
  640. of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup);
  641. if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold ||
  642. !ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth ||
  643. !ncfg->rhold || !ncfg->rsetup) {
  644. dev_err(dev, "chip parameters not specified correctly\n");
  645. return NULL;
  646. }
  647. ncfg->use_bbt = of_get_nand_on_flash_bbt(np);
  648. ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
  649. return ncfg;
  650. }
  651. /*
  652. * Probe for NAND controller
  653. */
  654. static int lpc32xx_nand_probe(struct platform_device *pdev)
  655. {
  656. struct lpc32xx_nand_host *host;
  657. struct mtd_info *mtd;
  658. struct nand_chip *chip;
  659. struct resource *rc;
  660. struct mtd_part_parser_data ppdata = {};
  661. int res;
  662. rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  663. if (rc == NULL) {
  664. dev_err(&pdev->dev, "No memory resource found for device\n");
  665. return -EBUSY;
  666. }
  667. /* Allocate memory for the device structure (and zero it) */
  668. host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
  669. if (!host)
  670. return -ENOMEM;
  671. host->io_base_dma = rc->start;
  672. host->io_base = devm_ioremap_resource(&pdev->dev, rc);
  673. if (IS_ERR(host->io_base))
  674. return PTR_ERR(host->io_base);
  675. if (pdev->dev.of_node)
  676. host->ncfg = lpc32xx_parse_dt(&pdev->dev);
  677. if (!host->ncfg) {
  678. dev_err(&pdev->dev,
  679. "Missing or bad NAND config from device tree\n");
  680. return -ENOENT;
  681. }
  682. if (host->ncfg->wp_gpio == -EPROBE_DEFER)
  683. return -EPROBE_DEFER;
  684. if (gpio_is_valid(host->ncfg->wp_gpio) && devm_gpio_request(&pdev->dev,
  685. host->ncfg->wp_gpio, "NAND WP")) {
  686. dev_err(&pdev->dev, "GPIO not available\n");
  687. return -EBUSY;
  688. }
  689. lpc32xx_wp_disable(host);
  690. host->pdata = dev_get_platdata(&pdev->dev);
  691. mtd = &host->mtd;
  692. chip = &host->nand_chip;
  693. chip->priv = host;
  694. mtd->priv = chip;
  695. mtd->owner = THIS_MODULE;
  696. mtd->dev.parent = &pdev->dev;
  697. /* Get NAND clock */
  698. host->clk = devm_clk_get(&pdev->dev, NULL);
  699. if (IS_ERR(host->clk)) {
  700. dev_err(&pdev->dev, "Clock failure\n");
  701. res = -ENOENT;
  702. goto err_exit1;
  703. }
  704. clk_prepare_enable(host->clk);
  705. /* Set NAND IO addresses and command/ready functions */
  706. chip->IO_ADDR_R = SLC_DATA(host->io_base);
  707. chip->IO_ADDR_W = SLC_DATA(host->io_base);
  708. chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
  709. chip->dev_ready = lpc32xx_nand_device_ready;
  710. chip->chip_delay = 20; /* 20us command delay time */
  711. /* Init NAND controller */
  712. lpc32xx_nand_setup(host);
  713. platform_set_drvdata(pdev, host);
  714. /* NAND callbacks for LPC32xx SLC hardware */
  715. chip->ecc.mode = NAND_ECC_HW_SYNDROME;
  716. chip->read_byte = lpc32xx_nand_read_byte;
  717. chip->read_buf = lpc32xx_nand_read_buf;
  718. chip->write_buf = lpc32xx_nand_write_buf;
  719. chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome;
  720. chip->ecc.read_page = lpc32xx_nand_read_page_syndrome;
  721. chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome;
  722. chip->ecc.write_page = lpc32xx_nand_write_page_syndrome;
  723. chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome;
  724. chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome;
  725. chip->ecc.calculate = lpc32xx_nand_ecc_calculate;
  726. chip->ecc.correct = nand_correct_data;
  727. chip->ecc.strength = 1;
  728. chip->ecc.hwctl = lpc32xx_nand_ecc_enable;
  729. /*
  730. * Allocate a large enough buffer for a single huge page plus
  731. * extra space for the spare area and ECC storage area
  732. */
  733. host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE;
  734. host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len,
  735. GFP_KERNEL);
  736. if (host->data_buf == NULL) {
  737. res = -ENOMEM;
  738. goto err_exit2;
  739. }
  740. res = lpc32xx_nand_dma_setup(host);
  741. if (res) {
  742. res = -EIO;
  743. goto err_exit2;
  744. }
  745. /* Find NAND device */
  746. if (nand_scan_ident(mtd, 1, NULL)) {
  747. res = -ENXIO;
  748. goto err_exit3;
  749. }
  750. /* OOB and ECC CPU and DMA work areas */
  751. host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE);
  752. /*
  753. * Small page FLASH has a unique OOB layout, but large and huge
  754. * page FLASH use the standard layout. Small page FLASH uses a
  755. * custom BBT marker layout.
  756. */
  757. if (mtd->writesize <= 512)
  758. chip->ecc.layout = &lpc32xx_nand_oob_16;
  759. /* These sizes remain the same regardless of page size */
  760. chip->ecc.size = 256;
  761. chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES;
  762. chip->ecc.prepad = chip->ecc.postpad = 0;
  763. /* Avoid extra scan if using BBT, setup BBT support */
  764. if (host->ncfg->use_bbt) {
  765. chip->bbt_options |= NAND_BBT_USE_FLASH;
  766. /*
  767. * Use a custom BBT marker setup for small page FLASH that
  768. * won't interfere with the ECC layout. Large and huge page
  769. * FLASH use the standard layout.
  770. */
  771. if (mtd->writesize <= 512) {
  772. chip->bbt_td = &bbt_smallpage_main_descr;
  773. chip->bbt_md = &bbt_smallpage_mirror_descr;
  774. }
  775. }
  776. /*
  777. * Fills out all the uninitialized function pointers with the defaults
  778. */
  779. if (nand_scan_tail(mtd)) {
  780. res = -ENXIO;
  781. goto err_exit3;
  782. }
  783. mtd->name = "nxp_lpc3220_slc";
  784. ppdata.of_node = pdev->dev.of_node;
  785. res = mtd_device_parse_register(mtd, NULL, &ppdata, host->ncfg->parts,
  786. host->ncfg->num_parts);
  787. if (!res)
  788. return res;
  789. nand_release(mtd);
  790. err_exit3:
  791. dma_release_channel(host->dma_chan);
  792. err_exit2:
  793. clk_disable_unprepare(host->clk);
  794. err_exit1:
  795. lpc32xx_wp_enable(host);
  796. return res;
  797. }
  798. /*
  799. * Remove NAND device.
  800. */
  801. static int lpc32xx_nand_remove(struct platform_device *pdev)
  802. {
  803. uint32_t tmp;
  804. struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
  805. struct mtd_info *mtd = &host->mtd;
  806. nand_release(mtd);
  807. dma_release_channel(host->dma_chan);
  808. /* Force CE high */
  809. tmp = readl(SLC_CTRL(host->io_base));
  810. tmp &= ~SLCCFG_CE_LOW;
  811. writel(tmp, SLC_CTRL(host->io_base));
  812. clk_disable_unprepare(host->clk);
  813. lpc32xx_wp_enable(host);
  814. return 0;
  815. }
  816. #ifdef CONFIG_PM
  817. static int lpc32xx_nand_resume(struct platform_device *pdev)
  818. {
  819. struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
  820. /* Re-enable NAND clock */
  821. clk_prepare_enable(host->clk);
  822. /* Fresh init of NAND controller */
  823. lpc32xx_nand_setup(host);
  824. /* Disable write protect */
  825. lpc32xx_wp_disable(host);
  826. return 0;
  827. }
  828. static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
  829. {
  830. uint32_t tmp;
  831. struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
  832. /* Force CE high */
  833. tmp = readl(SLC_CTRL(host->io_base));
  834. tmp &= ~SLCCFG_CE_LOW;
  835. writel(tmp, SLC_CTRL(host->io_base));
  836. /* Enable write protect for safety */
  837. lpc32xx_wp_enable(host);
  838. /* Disable clock */
  839. clk_disable_unprepare(host->clk);
  840. return 0;
  841. }
  842. #else
  843. #define lpc32xx_nand_resume NULL
  844. #define lpc32xx_nand_suspend NULL
  845. #endif
  846. static const struct of_device_id lpc32xx_nand_match[] = {
  847. { .compatible = "nxp,lpc3220-slc" },
  848. { /* sentinel */ },
  849. };
  850. MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
  851. static struct platform_driver lpc32xx_nand_driver = {
  852. .probe = lpc32xx_nand_probe,
  853. .remove = lpc32xx_nand_remove,
  854. .resume = lpc32xx_nand_resume,
  855. .suspend = lpc32xx_nand_suspend,
  856. .driver = {
  857. .name = LPC32XX_MODNAME,
  858. .of_match_table = lpc32xx_nand_match,
  859. },
  860. };
  861. module_platform_driver(lpc32xx_nand_driver);
  862. MODULE_LICENSE("GPL");
  863. MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
  864. MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
  865. MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller");