pch_can.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279
  1. /*
  2. * Copyright (C) 1999 - 2010 Intel Corporation.
  3. * Copyright (C) 2010 LAPIS SEMICONDUCTOR CO., LTD.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; version 2 of the License.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, see <http://www.gnu.org/licenses/>.
  16. */
  17. #include <linux/interrupt.h>
  18. #include <linux/delay.h>
  19. #include <linux/io.h>
  20. #include <linux/module.h>
  21. #include <linux/sched.h>
  22. #include <linux/pci.h>
  23. #include <linux/kernel.h>
  24. #include <linux/types.h>
  25. #include <linux/errno.h>
  26. #include <linux/netdevice.h>
  27. #include <linux/skbuff.h>
  28. #include <linux/can.h>
  29. #include <linux/can/dev.h>
  30. #include <linux/can/error.h>
  31. #define PCH_CTRL_INIT BIT(0) /* The INIT bit of CANCONT register. */
  32. #define PCH_CTRL_IE BIT(1) /* The IE bit of CAN control register */
  33. #define PCH_CTRL_IE_SIE_EIE (BIT(3) | BIT(2) | BIT(1))
  34. #define PCH_CTRL_CCE BIT(6)
  35. #define PCH_CTRL_OPT BIT(7) /* The OPT bit of CANCONT register. */
  36. #define PCH_OPT_SILENT BIT(3) /* The Silent bit of CANOPT reg. */
  37. #define PCH_OPT_LBACK BIT(4) /* The LoopBack bit of CANOPT reg. */
  38. #define PCH_CMASK_RX_TX_SET 0x00f3
  39. #define PCH_CMASK_RX_TX_GET 0x0073
  40. #define PCH_CMASK_ALL 0xff
  41. #define PCH_CMASK_NEWDAT BIT(2)
  42. #define PCH_CMASK_CLRINTPND BIT(3)
  43. #define PCH_CMASK_CTRL BIT(4)
  44. #define PCH_CMASK_ARB BIT(5)
  45. #define PCH_CMASK_MASK BIT(6)
  46. #define PCH_CMASK_RDWR BIT(7)
  47. #define PCH_IF_MCONT_NEWDAT BIT(15)
  48. #define PCH_IF_MCONT_MSGLOST BIT(14)
  49. #define PCH_IF_MCONT_INTPND BIT(13)
  50. #define PCH_IF_MCONT_UMASK BIT(12)
  51. #define PCH_IF_MCONT_TXIE BIT(11)
  52. #define PCH_IF_MCONT_RXIE BIT(10)
  53. #define PCH_IF_MCONT_RMTEN BIT(9)
  54. #define PCH_IF_MCONT_TXRQXT BIT(8)
  55. #define PCH_IF_MCONT_EOB BIT(7)
  56. #define PCH_IF_MCONT_DLC (BIT(0) | BIT(1) | BIT(2) | BIT(3))
  57. #define PCH_MASK2_MDIR_MXTD (BIT(14) | BIT(15))
  58. #define PCH_ID2_DIR BIT(13)
  59. #define PCH_ID2_XTD BIT(14)
  60. #define PCH_ID_MSGVAL BIT(15)
  61. #define PCH_IF_CREQ_BUSY BIT(15)
  62. #define PCH_STATUS_INT 0x8000
  63. #define PCH_RP 0x00008000
  64. #define PCH_REC 0x00007f00
  65. #define PCH_TEC 0x000000ff
  66. #define PCH_TX_OK BIT(3)
  67. #define PCH_RX_OK BIT(4)
  68. #define PCH_EPASSIV BIT(5)
  69. #define PCH_EWARN BIT(6)
  70. #define PCH_BUS_OFF BIT(7)
  71. /* bit position of certain controller bits. */
  72. #define PCH_BIT_BRP_SHIFT 0
  73. #define PCH_BIT_SJW_SHIFT 6
  74. #define PCH_BIT_TSEG1_SHIFT 8
  75. #define PCH_BIT_TSEG2_SHIFT 12
  76. #define PCH_BIT_BRPE_BRPE_SHIFT 6
  77. #define PCH_MSK_BITT_BRP 0x3f
  78. #define PCH_MSK_BRPE_BRPE 0x3c0
  79. #define PCH_MSK_CTRL_IE_SIE_EIE 0x07
  80. #define PCH_COUNTER_LIMIT 10
  81. #define PCH_CAN_CLK 50000000 /* 50MHz */
  82. /*
  83. * Define the number of message object.
  84. * PCH CAN communications are done via Message RAM.
  85. * The Message RAM consists of 32 message objects.
  86. */
  87. #define PCH_RX_OBJ_NUM 26
  88. #define PCH_TX_OBJ_NUM 6
  89. #define PCH_RX_OBJ_START 1
  90. #define PCH_RX_OBJ_END PCH_RX_OBJ_NUM
  91. #define PCH_TX_OBJ_START (PCH_RX_OBJ_END + 1)
  92. #define PCH_TX_OBJ_END (PCH_RX_OBJ_NUM + PCH_TX_OBJ_NUM)
  93. #define PCH_FIFO_THRESH 16
  94. /* TxRqst2 show status of MsgObjNo.17~32 */
  95. #define PCH_TREQ2_TX_MASK (((1 << PCH_TX_OBJ_NUM) - 1) <<\
  96. (PCH_RX_OBJ_END - 16))
  97. enum pch_ifreg {
  98. PCH_RX_IFREG,
  99. PCH_TX_IFREG,
  100. };
  101. enum pch_can_err {
  102. PCH_STUF_ERR = 1,
  103. PCH_FORM_ERR,
  104. PCH_ACK_ERR,
  105. PCH_BIT1_ERR,
  106. PCH_BIT0_ERR,
  107. PCH_CRC_ERR,
  108. PCH_LEC_ALL,
  109. };
  110. enum pch_can_mode {
  111. PCH_CAN_ENABLE,
  112. PCH_CAN_DISABLE,
  113. PCH_CAN_ALL,
  114. PCH_CAN_NONE,
  115. PCH_CAN_STOP,
  116. PCH_CAN_RUN,
  117. };
  118. struct pch_can_if_regs {
  119. u32 creq;
  120. u32 cmask;
  121. u32 mask1;
  122. u32 mask2;
  123. u32 id1;
  124. u32 id2;
  125. u32 mcont;
  126. u32 data[4];
  127. u32 rsv[13];
  128. };
  129. struct pch_can_regs {
  130. u32 cont;
  131. u32 stat;
  132. u32 errc;
  133. u32 bitt;
  134. u32 intr;
  135. u32 opt;
  136. u32 brpe;
  137. u32 reserve;
  138. struct pch_can_if_regs ifregs[2]; /* [0]=if1 [1]=if2 */
  139. u32 reserve1[8];
  140. u32 treq1;
  141. u32 treq2;
  142. u32 reserve2[6];
  143. u32 data1;
  144. u32 data2;
  145. u32 reserve3[6];
  146. u32 canipend1;
  147. u32 canipend2;
  148. u32 reserve4[6];
  149. u32 canmval1;
  150. u32 canmval2;
  151. u32 reserve5[37];
  152. u32 srst;
  153. };
  154. struct pch_can_priv {
  155. struct can_priv can;
  156. struct pci_dev *dev;
  157. u32 tx_enable[PCH_TX_OBJ_END];
  158. u32 rx_enable[PCH_TX_OBJ_END];
  159. u32 rx_link[PCH_TX_OBJ_END];
  160. u32 int_enables;
  161. struct net_device *ndev;
  162. struct pch_can_regs __iomem *regs;
  163. struct napi_struct napi;
  164. int tx_obj; /* Point next Tx Obj index */
  165. int use_msi;
  166. };
  167. static const struct can_bittiming_const pch_can_bittiming_const = {
  168. .name = KBUILD_MODNAME,
  169. .tseg1_min = 2,
  170. .tseg1_max = 16,
  171. .tseg2_min = 1,
  172. .tseg2_max = 8,
  173. .sjw_max = 4,
  174. .brp_min = 1,
  175. .brp_max = 1024, /* 6bit + extended 4bit */
  176. .brp_inc = 1,
  177. };
  178. static const struct pci_device_id pch_pci_tbl[] = {
  179. {PCI_VENDOR_ID_INTEL, 0x8818, PCI_ANY_ID, PCI_ANY_ID,},
  180. {0,}
  181. };
  182. MODULE_DEVICE_TABLE(pci, pch_pci_tbl);
  183. static inline void pch_can_bit_set(void __iomem *addr, u32 mask)
  184. {
  185. iowrite32(ioread32(addr) | mask, addr);
  186. }
  187. static inline void pch_can_bit_clear(void __iomem *addr, u32 mask)
  188. {
  189. iowrite32(ioread32(addr) & ~mask, addr);
  190. }
  191. static void pch_can_set_run_mode(struct pch_can_priv *priv,
  192. enum pch_can_mode mode)
  193. {
  194. switch (mode) {
  195. case PCH_CAN_RUN:
  196. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_INIT);
  197. break;
  198. case PCH_CAN_STOP:
  199. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_INIT);
  200. break;
  201. default:
  202. netdev_err(priv->ndev, "%s -> Invalid Mode.\n", __func__);
  203. break;
  204. }
  205. }
  206. static void pch_can_set_optmode(struct pch_can_priv *priv)
  207. {
  208. u32 reg_val = ioread32(&priv->regs->opt);
  209. if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
  210. reg_val |= PCH_OPT_SILENT;
  211. if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
  212. reg_val |= PCH_OPT_LBACK;
  213. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_OPT);
  214. iowrite32(reg_val, &priv->regs->opt);
  215. }
  216. static void pch_can_rw_msg_obj(void __iomem *creq_addr, u32 num)
  217. {
  218. int counter = PCH_COUNTER_LIMIT;
  219. u32 ifx_creq;
  220. iowrite32(num, creq_addr);
  221. while (counter) {
  222. ifx_creq = ioread32(creq_addr) & PCH_IF_CREQ_BUSY;
  223. if (!ifx_creq)
  224. break;
  225. counter--;
  226. udelay(1);
  227. }
  228. if (!counter)
  229. pr_err("%s:IF1 BUSY Flag is set forever.\n", __func__);
  230. }
  231. static void pch_can_set_int_enables(struct pch_can_priv *priv,
  232. enum pch_can_mode interrupt_no)
  233. {
  234. switch (interrupt_no) {
  235. case PCH_CAN_DISABLE:
  236. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE);
  237. break;
  238. case PCH_CAN_ALL:
  239. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
  240. break;
  241. case PCH_CAN_NONE:
  242. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
  243. break;
  244. default:
  245. netdev_err(priv->ndev, "Invalid interrupt number.\n");
  246. break;
  247. }
  248. }
  249. static void pch_can_set_rxtx(struct pch_can_priv *priv, u32 buff_num,
  250. int set, enum pch_ifreg dir)
  251. {
  252. u32 ie;
  253. if (dir)
  254. ie = PCH_IF_MCONT_TXIE;
  255. else
  256. ie = PCH_IF_MCONT_RXIE;
  257. /* Reading the Msg buffer from Message RAM to IF1/2 registers. */
  258. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[dir].cmask);
  259. pch_can_rw_msg_obj(&priv->regs->ifregs[dir].creq, buff_num);
  260. /* Setting the IF1/2MASK1 register to access MsgVal and RxIE bits */
  261. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_ARB | PCH_CMASK_CTRL,
  262. &priv->regs->ifregs[dir].cmask);
  263. if (set) {
  264. /* Setting the MsgVal and RxIE/TxIE bits */
  265. pch_can_bit_set(&priv->regs->ifregs[dir].mcont, ie);
  266. pch_can_bit_set(&priv->regs->ifregs[dir].id2, PCH_ID_MSGVAL);
  267. } else {
  268. /* Clearing the MsgVal and RxIE/TxIE bits */
  269. pch_can_bit_clear(&priv->regs->ifregs[dir].mcont, ie);
  270. pch_can_bit_clear(&priv->regs->ifregs[dir].id2, PCH_ID_MSGVAL);
  271. }
  272. pch_can_rw_msg_obj(&priv->regs->ifregs[dir].creq, buff_num);
  273. }
  274. static void pch_can_set_rx_all(struct pch_can_priv *priv, int set)
  275. {
  276. int i;
  277. /* Traversing to obtain the object configured as receivers. */
  278. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++)
  279. pch_can_set_rxtx(priv, i, set, PCH_RX_IFREG);
  280. }
  281. static void pch_can_set_tx_all(struct pch_can_priv *priv, int set)
  282. {
  283. int i;
  284. /* Traversing to obtain the object configured as transmit object. */
  285. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
  286. pch_can_set_rxtx(priv, i, set, PCH_TX_IFREG);
  287. }
  288. static u32 pch_can_int_pending(struct pch_can_priv *priv)
  289. {
  290. return ioread32(&priv->regs->intr) & 0xffff;
  291. }
  292. static void pch_can_clear_if_buffers(struct pch_can_priv *priv)
  293. {
  294. int i; /* Msg Obj ID (1~32) */
  295. for (i = PCH_RX_OBJ_START; i <= PCH_TX_OBJ_END; i++) {
  296. iowrite32(PCH_CMASK_RX_TX_SET, &priv->regs->ifregs[0].cmask);
  297. iowrite32(0xffff, &priv->regs->ifregs[0].mask1);
  298. iowrite32(0xffff, &priv->regs->ifregs[0].mask2);
  299. iowrite32(0x0, &priv->regs->ifregs[0].id1);
  300. iowrite32(0x0, &priv->regs->ifregs[0].id2);
  301. iowrite32(0x0, &priv->regs->ifregs[0].mcont);
  302. iowrite32(0x0, &priv->regs->ifregs[0].data[0]);
  303. iowrite32(0x0, &priv->regs->ifregs[0].data[1]);
  304. iowrite32(0x0, &priv->regs->ifregs[0].data[2]);
  305. iowrite32(0x0, &priv->regs->ifregs[0].data[3]);
  306. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK |
  307. PCH_CMASK_ARB | PCH_CMASK_CTRL,
  308. &priv->regs->ifregs[0].cmask);
  309. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, i);
  310. }
  311. }
  312. static void pch_can_config_rx_tx_buffers(struct pch_can_priv *priv)
  313. {
  314. int i;
  315. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
  316. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
  317. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, i);
  318. iowrite32(0x0, &priv->regs->ifregs[0].id1);
  319. iowrite32(0x0, &priv->regs->ifregs[0].id2);
  320. pch_can_bit_set(&priv->regs->ifregs[0].mcont,
  321. PCH_IF_MCONT_UMASK);
  322. /* In case FIFO mode, Last EoB of Rx Obj must be 1 */
  323. if (i == PCH_RX_OBJ_END)
  324. pch_can_bit_set(&priv->regs->ifregs[0].mcont,
  325. PCH_IF_MCONT_EOB);
  326. else
  327. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  328. PCH_IF_MCONT_EOB);
  329. iowrite32(0, &priv->regs->ifregs[0].mask1);
  330. pch_can_bit_clear(&priv->regs->ifregs[0].mask2,
  331. 0x1fff | PCH_MASK2_MDIR_MXTD);
  332. /* Setting CMASK for writing */
  333. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK | PCH_CMASK_ARB |
  334. PCH_CMASK_CTRL, &priv->regs->ifregs[0].cmask);
  335. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, i);
  336. }
  337. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++) {
  338. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[1].cmask);
  339. pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, i);
  340. /* Resetting DIR bit for reception */
  341. iowrite32(0x0, &priv->regs->ifregs[1].id1);
  342. iowrite32(PCH_ID2_DIR, &priv->regs->ifregs[1].id2);
  343. /* Setting EOB bit for transmitter */
  344. iowrite32(PCH_IF_MCONT_EOB | PCH_IF_MCONT_UMASK,
  345. &priv->regs->ifregs[1].mcont);
  346. iowrite32(0, &priv->regs->ifregs[1].mask1);
  347. pch_can_bit_clear(&priv->regs->ifregs[1].mask2, 0x1fff);
  348. /* Setting CMASK for writing */
  349. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK | PCH_CMASK_ARB |
  350. PCH_CMASK_CTRL, &priv->regs->ifregs[1].cmask);
  351. pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, i);
  352. }
  353. }
  354. static void pch_can_init(struct pch_can_priv *priv)
  355. {
  356. /* Stopping the Can device. */
  357. pch_can_set_run_mode(priv, PCH_CAN_STOP);
  358. /* Clearing all the message object buffers. */
  359. pch_can_clear_if_buffers(priv);
  360. /* Configuring the respective message object as either rx/tx object. */
  361. pch_can_config_rx_tx_buffers(priv);
  362. /* Enabling the interrupts. */
  363. pch_can_set_int_enables(priv, PCH_CAN_ALL);
  364. }
  365. static void pch_can_release(struct pch_can_priv *priv)
  366. {
  367. /* Stooping the CAN device. */
  368. pch_can_set_run_mode(priv, PCH_CAN_STOP);
  369. /* Disabling the interrupts. */
  370. pch_can_set_int_enables(priv, PCH_CAN_NONE);
  371. /* Disabling all the receive object. */
  372. pch_can_set_rx_all(priv, 0);
  373. /* Disabling all the transmit object. */
  374. pch_can_set_tx_all(priv, 0);
  375. }
  376. /* This function clears interrupt(s) from the CAN device. */
  377. static void pch_can_int_clr(struct pch_can_priv *priv, u32 mask)
  378. {
  379. /* Clear interrupt for transmit object */
  380. if ((mask >= PCH_RX_OBJ_START) && (mask <= PCH_RX_OBJ_END)) {
  381. /* Setting CMASK for clearing the reception interrupts. */
  382. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL | PCH_CMASK_ARB,
  383. &priv->regs->ifregs[0].cmask);
  384. /* Clearing the Dir bit. */
  385. pch_can_bit_clear(&priv->regs->ifregs[0].id2, PCH_ID2_DIR);
  386. /* Clearing NewDat & IntPnd */
  387. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  388. PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND);
  389. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, mask);
  390. } else if ((mask >= PCH_TX_OBJ_START) && (mask <= PCH_TX_OBJ_END)) {
  391. /*
  392. * Setting CMASK for clearing interrupts for frame transmission.
  393. */
  394. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL | PCH_CMASK_ARB,
  395. &priv->regs->ifregs[1].cmask);
  396. /* Resetting the ID registers. */
  397. pch_can_bit_set(&priv->regs->ifregs[1].id2,
  398. PCH_ID2_DIR | (0x7ff << 2));
  399. iowrite32(0x0, &priv->regs->ifregs[1].id1);
  400. /* Claring NewDat, TxRqst & IntPnd */
  401. pch_can_bit_clear(&priv->regs->ifregs[1].mcont,
  402. PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND |
  403. PCH_IF_MCONT_TXRQXT);
  404. pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, mask);
  405. }
  406. }
  407. static void pch_can_reset(struct pch_can_priv *priv)
  408. {
  409. /* write to sw reset register */
  410. iowrite32(1, &priv->regs->srst);
  411. iowrite32(0, &priv->regs->srst);
  412. }
  413. static void pch_can_error(struct net_device *ndev, u32 status)
  414. {
  415. struct sk_buff *skb;
  416. struct pch_can_priv *priv = netdev_priv(ndev);
  417. struct can_frame *cf;
  418. u32 errc, lec;
  419. struct net_device_stats *stats = &(priv->ndev->stats);
  420. enum can_state state = priv->can.state;
  421. skb = alloc_can_err_skb(ndev, &cf);
  422. if (!skb)
  423. return;
  424. if (status & PCH_BUS_OFF) {
  425. pch_can_set_tx_all(priv, 0);
  426. pch_can_set_rx_all(priv, 0);
  427. state = CAN_STATE_BUS_OFF;
  428. cf->can_id |= CAN_ERR_BUSOFF;
  429. priv->can.can_stats.bus_off++;
  430. can_bus_off(ndev);
  431. }
  432. errc = ioread32(&priv->regs->errc);
  433. /* Warning interrupt. */
  434. if (status & PCH_EWARN) {
  435. state = CAN_STATE_ERROR_WARNING;
  436. priv->can.can_stats.error_warning++;
  437. cf->can_id |= CAN_ERR_CRTL;
  438. if (((errc & PCH_REC) >> 8) > 96)
  439. cf->data[1] |= CAN_ERR_CRTL_RX_WARNING;
  440. if ((errc & PCH_TEC) > 96)
  441. cf->data[1] |= CAN_ERR_CRTL_TX_WARNING;
  442. netdev_dbg(ndev,
  443. "%s -> Error Counter is more than 96.\n", __func__);
  444. }
  445. /* Error passive interrupt. */
  446. if (status & PCH_EPASSIV) {
  447. priv->can.can_stats.error_passive++;
  448. state = CAN_STATE_ERROR_PASSIVE;
  449. cf->can_id |= CAN_ERR_CRTL;
  450. if (errc & PCH_RP)
  451. cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
  452. if ((errc & PCH_TEC) > 127)
  453. cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
  454. netdev_dbg(ndev,
  455. "%s -> CAN controller is ERROR PASSIVE .\n", __func__);
  456. }
  457. lec = status & PCH_LEC_ALL;
  458. switch (lec) {
  459. case PCH_STUF_ERR:
  460. cf->data[2] |= CAN_ERR_PROT_STUFF;
  461. priv->can.can_stats.bus_error++;
  462. stats->rx_errors++;
  463. break;
  464. case PCH_FORM_ERR:
  465. cf->data[2] |= CAN_ERR_PROT_FORM;
  466. priv->can.can_stats.bus_error++;
  467. stats->rx_errors++;
  468. break;
  469. case PCH_ACK_ERR:
  470. cf->can_id |= CAN_ERR_ACK;
  471. priv->can.can_stats.bus_error++;
  472. stats->rx_errors++;
  473. break;
  474. case PCH_BIT1_ERR:
  475. case PCH_BIT0_ERR:
  476. cf->data[2] |= CAN_ERR_PROT_BIT;
  477. priv->can.can_stats.bus_error++;
  478. stats->rx_errors++;
  479. break;
  480. case PCH_CRC_ERR:
  481. cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
  482. priv->can.can_stats.bus_error++;
  483. stats->rx_errors++;
  484. break;
  485. case PCH_LEC_ALL: /* Written by CPU. No error status */
  486. break;
  487. }
  488. cf->data[6] = errc & PCH_TEC;
  489. cf->data[7] = (errc & PCH_REC) >> 8;
  490. priv->can.state = state;
  491. netif_receive_skb(skb);
  492. stats->rx_packets++;
  493. stats->rx_bytes += cf->can_dlc;
  494. }
  495. static irqreturn_t pch_can_interrupt(int irq, void *dev_id)
  496. {
  497. struct net_device *ndev = (struct net_device *)dev_id;
  498. struct pch_can_priv *priv = netdev_priv(ndev);
  499. if (!pch_can_int_pending(priv))
  500. return IRQ_NONE;
  501. pch_can_set_int_enables(priv, PCH_CAN_NONE);
  502. napi_schedule(&priv->napi);
  503. return IRQ_HANDLED;
  504. }
  505. static void pch_fifo_thresh(struct pch_can_priv *priv, int obj_id)
  506. {
  507. if (obj_id < PCH_FIFO_THRESH) {
  508. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL |
  509. PCH_CMASK_ARB, &priv->regs->ifregs[0].cmask);
  510. /* Clearing the Dir bit. */
  511. pch_can_bit_clear(&priv->regs->ifregs[0].id2, PCH_ID2_DIR);
  512. /* Clearing NewDat & IntPnd */
  513. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  514. PCH_IF_MCONT_INTPND);
  515. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, obj_id);
  516. } else if (obj_id > PCH_FIFO_THRESH) {
  517. pch_can_int_clr(priv, obj_id);
  518. } else if (obj_id == PCH_FIFO_THRESH) {
  519. int cnt;
  520. for (cnt = 0; cnt < PCH_FIFO_THRESH; cnt++)
  521. pch_can_int_clr(priv, cnt + 1);
  522. }
  523. }
  524. static void pch_can_rx_msg_lost(struct net_device *ndev, int obj_id)
  525. {
  526. struct pch_can_priv *priv = netdev_priv(ndev);
  527. struct net_device_stats *stats = &(priv->ndev->stats);
  528. struct sk_buff *skb;
  529. struct can_frame *cf;
  530. netdev_dbg(priv->ndev, "Msg Obj is overwritten.\n");
  531. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  532. PCH_IF_MCONT_MSGLOST);
  533. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL,
  534. &priv->regs->ifregs[0].cmask);
  535. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, obj_id);
  536. skb = alloc_can_err_skb(ndev, &cf);
  537. if (!skb)
  538. return;
  539. cf->can_id |= CAN_ERR_CRTL;
  540. cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
  541. stats->rx_over_errors++;
  542. stats->rx_errors++;
  543. netif_receive_skb(skb);
  544. }
  545. static int pch_can_rx_normal(struct net_device *ndev, u32 obj_num, int quota)
  546. {
  547. u32 reg;
  548. canid_t id;
  549. int rcv_pkts = 0;
  550. struct sk_buff *skb;
  551. struct can_frame *cf;
  552. struct pch_can_priv *priv = netdev_priv(ndev);
  553. struct net_device_stats *stats = &(priv->ndev->stats);
  554. int i;
  555. u32 id2;
  556. u16 data_reg;
  557. do {
  558. /* Reading the message object from the Message RAM */
  559. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
  560. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, obj_num);
  561. /* Reading the MCONT register. */
  562. reg = ioread32(&priv->regs->ifregs[0].mcont);
  563. if (reg & PCH_IF_MCONT_EOB)
  564. break;
  565. /* If MsgLost bit set. */
  566. if (reg & PCH_IF_MCONT_MSGLOST) {
  567. pch_can_rx_msg_lost(ndev, obj_num);
  568. rcv_pkts++;
  569. quota--;
  570. obj_num++;
  571. continue;
  572. } else if (!(reg & PCH_IF_MCONT_NEWDAT)) {
  573. obj_num++;
  574. continue;
  575. }
  576. skb = alloc_can_skb(priv->ndev, &cf);
  577. if (!skb) {
  578. netdev_err(ndev, "alloc_can_skb Failed\n");
  579. return rcv_pkts;
  580. }
  581. /* Get Received data */
  582. id2 = ioread32(&priv->regs->ifregs[0].id2);
  583. if (id2 & PCH_ID2_XTD) {
  584. id = (ioread32(&priv->regs->ifregs[0].id1) & 0xffff);
  585. id |= (((id2) & 0x1fff) << 16);
  586. cf->can_id = id | CAN_EFF_FLAG;
  587. } else {
  588. id = (id2 >> 2) & CAN_SFF_MASK;
  589. cf->can_id = id;
  590. }
  591. if (id2 & PCH_ID2_DIR)
  592. cf->can_id |= CAN_RTR_FLAG;
  593. cf->can_dlc = get_can_dlc((ioread32(&priv->regs->
  594. ifregs[0].mcont)) & 0xF);
  595. for (i = 0; i < cf->can_dlc; i += 2) {
  596. data_reg = ioread16(&priv->regs->ifregs[0].data[i / 2]);
  597. cf->data[i] = data_reg;
  598. cf->data[i + 1] = data_reg >> 8;
  599. }
  600. netif_receive_skb(skb);
  601. rcv_pkts++;
  602. stats->rx_packets++;
  603. quota--;
  604. stats->rx_bytes += cf->can_dlc;
  605. pch_fifo_thresh(priv, obj_num);
  606. obj_num++;
  607. } while (quota > 0);
  608. return rcv_pkts;
  609. }
  610. static void pch_can_tx_complete(struct net_device *ndev, u32 int_stat)
  611. {
  612. struct pch_can_priv *priv = netdev_priv(ndev);
  613. struct net_device_stats *stats = &(priv->ndev->stats);
  614. u32 dlc;
  615. can_get_echo_skb(ndev, int_stat - PCH_RX_OBJ_END - 1);
  616. iowrite32(PCH_CMASK_RX_TX_GET | PCH_CMASK_CLRINTPND,
  617. &priv->regs->ifregs[1].cmask);
  618. pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, int_stat);
  619. dlc = get_can_dlc(ioread32(&priv->regs->ifregs[1].mcont) &
  620. PCH_IF_MCONT_DLC);
  621. stats->tx_bytes += dlc;
  622. stats->tx_packets++;
  623. if (int_stat == PCH_TX_OBJ_END)
  624. netif_wake_queue(ndev);
  625. }
  626. static int pch_can_poll(struct napi_struct *napi, int quota)
  627. {
  628. struct net_device *ndev = napi->dev;
  629. struct pch_can_priv *priv = netdev_priv(ndev);
  630. u32 int_stat;
  631. u32 reg_stat;
  632. int quota_save = quota;
  633. int_stat = pch_can_int_pending(priv);
  634. if (!int_stat)
  635. goto end;
  636. if (int_stat == PCH_STATUS_INT) {
  637. reg_stat = ioread32(&priv->regs->stat);
  638. if ((reg_stat & (PCH_BUS_OFF | PCH_LEC_ALL)) &&
  639. ((reg_stat & PCH_LEC_ALL) != PCH_LEC_ALL)) {
  640. pch_can_error(ndev, reg_stat);
  641. quota--;
  642. }
  643. if (reg_stat & (PCH_TX_OK | PCH_RX_OK))
  644. pch_can_bit_clear(&priv->regs->stat,
  645. reg_stat & (PCH_TX_OK | PCH_RX_OK));
  646. int_stat = pch_can_int_pending(priv);
  647. }
  648. if (quota == 0)
  649. goto end;
  650. if ((int_stat >= PCH_RX_OBJ_START) && (int_stat <= PCH_RX_OBJ_END)) {
  651. quota -= pch_can_rx_normal(ndev, int_stat, quota);
  652. } else if ((int_stat >= PCH_TX_OBJ_START) &&
  653. (int_stat <= PCH_TX_OBJ_END)) {
  654. /* Handle transmission interrupt */
  655. pch_can_tx_complete(ndev, int_stat);
  656. }
  657. end:
  658. napi_complete(napi);
  659. pch_can_set_int_enables(priv, PCH_CAN_ALL);
  660. return quota_save - quota;
  661. }
  662. static int pch_set_bittiming(struct net_device *ndev)
  663. {
  664. struct pch_can_priv *priv = netdev_priv(ndev);
  665. const struct can_bittiming *bt = &priv->can.bittiming;
  666. u32 canbit;
  667. u32 bepe;
  668. /* Setting the CCE bit for accessing the Can Timing register. */
  669. pch_can_bit_set(&priv->regs->cont, PCH_CTRL_CCE);
  670. canbit = (bt->brp - 1) & PCH_MSK_BITT_BRP;
  671. canbit |= (bt->sjw - 1) << PCH_BIT_SJW_SHIFT;
  672. canbit |= (bt->phase_seg1 + bt->prop_seg - 1) << PCH_BIT_TSEG1_SHIFT;
  673. canbit |= (bt->phase_seg2 - 1) << PCH_BIT_TSEG2_SHIFT;
  674. bepe = ((bt->brp - 1) & PCH_MSK_BRPE_BRPE) >> PCH_BIT_BRPE_BRPE_SHIFT;
  675. iowrite32(canbit, &priv->regs->bitt);
  676. iowrite32(bepe, &priv->regs->brpe);
  677. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_CCE);
  678. return 0;
  679. }
  680. static void pch_can_start(struct net_device *ndev)
  681. {
  682. struct pch_can_priv *priv = netdev_priv(ndev);
  683. if (priv->can.state != CAN_STATE_STOPPED)
  684. pch_can_reset(priv);
  685. pch_set_bittiming(ndev);
  686. pch_can_set_optmode(priv);
  687. pch_can_set_tx_all(priv, 1);
  688. pch_can_set_rx_all(priv, 1);
  689. /* Setting the CAN to run mode. */
  690. pch_can_set_run_mode(priv, PCH_CAN_RUN);
  691. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  692. return;
  693. }
  694. static int pch_can_do_set_mode(struct net_device *ndev, enum can_mode mode)
  695. {
  696. int ret = 0;
  697. switch (mode) {
  698. case CAN_MODE_START:
  699. pch_can_start(ndev);
  700. netif_wake_queue(ndev);
  701. break;
  702. default:
  703. ret = -EOPNOTSUPP;
  704. break;
  705. }
  706. return ret;
  707. }
  708. static int pch_can_open(struct net_device *ndev)
  709. {
  710. struct pch_can_priv *priv = netdev_priv(ndev);
  711. int retval;
  712. /* Regstering the interrupt. */
  713. retval = request_irq(priv->dev->irq, pch_can_interrupt, IRQF_SHARED,
  714. ndev->name, ndev);
  715. if (retval) {
  716. netdev_err(ndev, "request_irq failed.\n");
  717. goto req_irq_err;
  718. }
  719. /* Open common can device */
  720. retval = open_candev(ndev);
  721. if (retval) {
  722. netdev_err(ndev, "open_candev() failed %d\n", retval);
  723. goto err_open_candev;
  724. }
  725. pch_can_init(priv);
  726. pch_can_start(ndev);
  727. napi_enable(&priv->napi);
  728. netif_start_queue(ndev);
  729. return 0;
  730. err_open_candev:
  731. free_irq(priv->dev->irq, ndev);
  732. req_irq_err:
  733. pch_can_release(priv);
  734. return retval;
  735. }
  736. static int pch_close(struct net_device *ndev)
  737. {
  738. struct pch_can_priv *priv = netdev_priv(ndev);
  739. netif_stop_queue(ndev);
  740. napi_disable(&priv->napi);
  741. pch_can_release(priv);
  742. free_irq(priv->dev->irq, ndev);
  743. close_candev(ndev);
  744. priv->can.state = CAN_STATE_STOPPED;
  745. return 0;
  746. }
  747. static netdev_tx_t pch_xmit(struct sk_buff *skb, struct net_device *ndev)
  748. {
  749. struct pch_can_priv *priv = netdev_priv(ndev);
  750. struct can_frame *cf = (struct can_frame *)skb->data;
  751. int tx_obj_no;
  752. int i;
  753. u32 id2;
  754. if (can_dropped_invalid_skb(ndev, skb))
  755. return NETDEV_TX_OK;
  756. tx_obj_no = priv->tx_obj;
  757. if (priv->tx_obj == PCH_TX_OBJ_END) {
  758. if (ioread32(&priv->regs->treq2) & PCH_TREQ2_TX_MASK)
  759. netif_stop_queue(ndev);
  760. priv->tx_obj = PCH_TX_OBJ_START;
  761. } else {
  762. priv->tx_obj++;
  763. }
  764. /* Setting the CMASK register. */
  765. pch_can_bit_set(&priv->regs->ifregs[1].cmask, PCH_CMASK_ALL);
  766. /* If ID extended is set. */
  767. if (cf->can_id & CAN_EFF_FLAG) {
  768. iowrite32(cf->can_id & 0xffff, &priv->regs->ifregs[1].id1);
  769. id2 = ((cf->can_id >> 16) & 0x1fff) | PCH_ID2_XTD;
  770. } else {
  771. iowrite32(0, &priv->regs->ifregs[1].id1);
  772. id2 = (cf->can_id & CAN_SFF_MASK) << 2;
  773. }
  774. id2 |= PCH_ID_MSGVAL;
  775. /* If remote frame has to be transmitted.. */
  776. if (!(cf->can_id & CAN_RTR_FLAG))
  777. id2 |= PCH_ID2_DIR;
  778. iowrite32(id2, &priv->regs->ifregs[1].id2);
  779. /* Copy data to register */
  780. for (i = 0; i < cf->can_dlc; i += 2) {
  781. iowrite16(cf->data[i] | (cf->data[i + 1] << 8),
  782. &priv->regs->ifregs[1].data[i / 2]);
  783. }
  784. can_put_echo_skb(skb, ndev, tx_obj_no - PCH_RX_OBJ_END - 1);
  785. /* Set the size of the data. Update if2_mcont */
  786. iowrite32(cf->can_dlc | PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_TXRQXT |
  787. PCH_IF_MCONT_TXIE, &priv->regs->ifregs[1].mcont);
  788. pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, tx_obj_no);
  789. return NETDEV_TX_OK;
  790. }
  791. static const struct net_device_ops pch_can_netdev_ops = {
  792. .ndo_open = pch_can_open,
  793. .ndo_stop = pch_close,
  794. .ndo_start_xmit = pch_xmit,
  795. .ndo_change_mtu = can_change_mtu,
  796. };
  797. static void pch_can_remove(struct pci_dev *pdev)
  798. {
  799. struct net_device *ndev = pci_get_drvdata(pdev);
  800. struct pch_can_priv *priv = netdev_priv(ndev);
  801. unregister_candev(priv->ndev);
  802. if (priv->use_msi)
  803. pci_disable_msi(priv->dev);
  804. pci_release_regions(pdev);
  805. pci_disable_device(pdev);
  806. pch_can_reset(priv);
  807. pci_iounmap(pdev, priv->regs);
  808. free_candev(priv->ndev);
  809. }
  810. #ifdef CONFIG_PM
  811. static void pch_can_set_int_custom(struct pch_can_priv *priv)
  812. {
  813. /* Clearing the IE, SIE and EIE bits of Can control register. */
  814. pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
  815. /* Appropriately setting them. */
  816. pch_can_bit_set(&priv->regs->cont,
  817. ((priv->int_enables & PCH_MSK_CTRL_IE_SIE_EIE) << 1));
  818. }
  819. /* This function retrieves interrupt enabled for the CAN device. */
  820. static u32 pch_can_get_int_enables(struct pch_can_priv *priv)
  821. {
  822. /* Obtaining the status of IE, SIE and EIE interrupt bits. */
  823. return (ioread32(&priv->regs->cont) & PCH_CTRL_IE_SIE_EIE) >> 1;
  824. }
  825. static u32 pch_can_get_rxtx_ir(struct pch_can_priv *priv, u32 buff_num,
  826. enum pch_ifreg dir)
  827. {
  828. u32 ie, enable;
  829. if (dir)
  830. ie = PCH_IF_MCONT_RXIE;
  831. else
  832. ie = PCH_IF_MCONT_TXIE;
  833. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[dir].cmask);
  834. pch_can_rw_msg_obj(&priv->regs->ifregs[dir].creq, buff_num);
  835. if (((ioread32(&priv->regs->ifregs[dir].id2)) & PCH_ID_MSGVAL) &&
  836. ((ioread32(&priv->regs->ifregs[dir].mcont)) & ie))
  837. enable = 1;
  838. else
  839. enable = 0;
  840. return enable;
  841. }
  842. static void pch_can_set_rx_buffer_link(struct pch_can_priv *priv,
  843. u32 buffer_num, int set)
  844. {
  845. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
  846. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, buffer_num);
  847. iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL,
  848. &priv->regs->ifregs[0].cmask);
  849. if (set)
  850. pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
  851. PCH_IF_MCONT_EOB);
  852. else
  853. pch_can_bit_set(&priv->regs->ifregs[0].mcont, PCH_IF_MCONT_EOB);
  854. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, buffer_num);
  855. }
  856. static u32 pch_can_get_rx_buffer_link(struct pch_can_priv *priv, u32 buffer_num)
  857. {
  858. u32 link;
  859. iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
  860. pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, buffer_num);
  861. if (ioread32(&priv->regs->ifregs[0].mcont) & PCH_IF_MCONT_EOB)
  862. link = 0;
  863. else
  864. link = 1;
  865. return link;
  866. }
  867. static int pch_can_get_buffer_status(struct pch_can_priv *priv)
  868. {
  869. return (ioread32(&priv->regs->treq1) & 0xffff) |
  870. (ioread32(&priv->regs->treq2) << 16);
  871. }
  872. static int pch_can_suspend(struct pci_dev *pdev, pm_message_t state)
  873. {
  874. int i;
  875. int retval;
  876. u32 buf_stat; /* Variable for reading the transmit buffer status. */
  877. int counter = PCH_COUNTER_LIMIT;
  878. struct net_device *dev = pci_get_drvdata(pdev);
  879. struct pch_can_priv *priv = netdev_priv(dev);
  880. /* Stop the CAN controller */
  881. pch_can_set_run_mode(priv, PCH_CAN_STOP);
  882. /* Indicate that we are aboutto/in suspend */
  883. priv->can.state = CAN_STATE_STOPPED;
  884. /* Waiting for all transmission to complete. */
  885. while (counter) {
  886. buf_stat = pch_can_get_buffer_status(priv);
  887. if (!buf_stat)
  888. break;
  889. counter--;
  890. udelay(1);
  891. }
  892. if (!counter)
  893. dev_err(&pdev->dev, "%s -> Transmission time out.\n", __func__);
  894. /* Save interrupt configuration and then disable them */
  895. priv->int_enables = pch_can_get_int_enables(priv);
  896. pch_can_set_int_enables(priv, PCH_CAN_DISABLE);
  897. /* Save Tx buffer enable state */
  898. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
  899. priv->tx_enable[i - 1] = pch_can_get_rxtx_ir(priv, i,
  900. PCH_TX_IFREG);
  901. /* Disable all Transmit buffers */
  902. pch_can_set_tx_all(priv, 0);
  903. /* Save Rx buffer enable state */
  904. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
  905. priv->rx_enable[i - 1] = pch_can_get_rxtx_ir(priv, i,
  906. PCH_RX_IFREG);
  907. priv->rx_link[i - 1] = pch_can_get_rx_buffer_link(priv, i);
  908. }
  909. /* Disable all Receive buffers */
  910. pch_can_set_rx_all(priv, 0);
  911. retval = pci_save_state(pdev);
  912. if (retval) {
  913. dev_err(&pdev->dev, "pci_save_state failed.\n");
  914. } else {
  915. pci_enable_wake(pdev, PCI_D3hot, 0);
  916. pci_disable_device(pdev);
  917. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  918. }
  919. return retval;
  920. }
  921. static int pch_can_resume(struct pci_dev *pdev)
  922. {
  923. int i;
  924. int retval;
  925. struct net_device *dev = pci_get_drvdata(pdev);
  926. struct pch_can_priv *priv = netdev_priv(dev);
  927. pci_set_power_state(pdev, PCI_D0);
  928. pci_restore_state(pdev);
  929. retval = pci_enable_device(pdev);
  930. if (retval) {
  931. dev_err(&pdev->dev, "pci_enable_device failed.\n");
  932. return retval;
  933. }
  934. pci_enable_wake(pdev, PCI_D3hot, 0);
  935. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  936. /* Disabling all interrupts. */
  937. pch_can_set_int_enables(priv, PCH_CAN_DISABLE);
  938. /* Setting the CAN device in Stop Mode. */
  939. pch_can_set_run_mode(priv, PCH_CAN_STOP);
  940. /* Configuring the transmit and receive buffers. */
  941. pch_can_config_rx_tx_buffers(priv);
  942. /* Restore the CAN state */
  943. pch_set_bittiming(dev);
  944. /* Listen/Active */
  945. pch_can_set_optmode(priv);
  946. /* Enabling the transmit buffer. */
  947. for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
  948. pch_can_set_rxtx(priv, i, priv->tx_enable[i - 1], PCH_TX_IFREG);
  949. /* Configuring the receive buffer and enabling them. */
  950. for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
  951. /* Restore buffer link */
  952. pch_can_set_rx_buffer_link(priv, i, priv->rx_link[i - 1]);
  953. /* Restore buffer enables */
  954. pch_can_set_rxtx(priv, i, priv->rx_enable[i - 1], PCH_RX_IFREG);
  955. }
  956. /* Enable CAN Interrupts */
  957. pch_can_set_int_custom(priv);
  958. /* Restore Run Mode */
  959. pch_can_set_run_mode(priv, PCH_CAN_RUN);
  960. return retval;
  961. }
  962. #else
  963. #define pch_can_suspend NULL
  964. #define pch_can_resume NULL
  965. #endif
  966. static int pch_can_get_berr_counter(const struct net_device *dev,
  967. struct can_berr_counter *bec)
  968. {
  969. struct pch_can_priv *priv = netdev_priv(dev);
  970. u32 errc = ioread32(&priv->regs->errc);
  971. bec->txerr = errc & PCH_TEC;
  972. bec->rxerr = (errc & PCH_REC) >> 8;
  973. return 0;
  974. }
  975. static int pch_can_probe(struct pci_dev *pdev,
  976. const struct pci_device_id *id)
  977. {
  978. struct net_device *ndev;
  979. struct pch_can_priv *priv;
  980. int rc;
  981. void __iomem *addr;
  982. rc = pci_enable_device(pdev);
  983. if (rc) {
  984. dev_err(&pdev->dev, "Failed pci_enable_device %d\n", rc);
  985. goto probe_exit_endev;
  986. }
  987. rc = pci_request_regions(pdev, KBUILD_MODNAME);
  988. if (rc) {
  989. dev_err(&pdev->dev, "Failed pci_request_regions %d\n", rc);
  990. goto probe_exit_pcireq;
  991. }
  992. addr = pci_iomap(pdev, 1, 0);
  993. if (!addr) {
  994. rc = -EIO;
  995. dev_err(&pdev->dev, "Failed pci_iomap\n");
  996. goto probe_exit_ipmap;
  997. }
  998. ndev = alloc_candev(sizeof(struct pch_can_priv), PCH_TX_OBJ_END);
  999. if (!ndev) {
  1000. rc = -ENOMEM;
  1001. dev_err(&pdev->dev, "Failed alloc_candev\n");
  1002. goto probe_exit_alloc_candev;
  1003. }
  1004. priv = netdev_priv(ndev);
  1005. priv->ndev = ndev;
  1006. priv->regs = addr;
  1007. priv->dev = pdev;
  1008. priv->can.bittiming_const = &pch_can_bittiming_const;
  1009. priv->can.do_set_mode = pch_can_do_set_mode;
  1010. priv->can.do_get_berr_counter = pch_can_get_berr_counter;
  1011. priv->can.ctrlmode_supported = CAN_CTRLMODE_LISTENONLY |
  1012. CAN_CTRLMODE_LOOPBACK;
  1013. priv->tx_obj = PCH_TX_OBJ_START; /* Point head of Tx Obj */
  1014. ndev->irq = pdev->irq;
  1015. ndev->flags |= IFF_ECHO;
  1016. pci_set_drvdata(pdev, ndev);
  1017. SET_NETDEV_DEV(ndev, &pdev->dev);
  1018. ndev->netdev_ops = &pch_can_netdev_ops;
  1019. priv->can.clock.freq = PCH_CAN_CLK; /* Hz */
  1020. netif_napi_add(ndev, &priv->napi, pch_can_poll, PCH_RX_OBJ_END);
  1021. rc = pci_enable_msi(priv->dev);
  1022. if (rc) {
  1023. netdev_err(ndev, "PCH CAN opened without MSI\n");
  1024. priv->use_msi = 0;
  1025. } else {
  1026. netdev_err(ndev, "PCH CAN opened with MSI\n");
  1027. pci_set_master(pdev);
  1028. priv->use_msi = 1;
  1029. }
  1030. rc = register_candev(ndev);
  1031. if (rc) {
  1032. dev_err(&pdev->dev, "Failed register_candev %d\n", rc);
  1033. goto probe_exit_reg_candev;
  1034. }
  1035. return 0;
  1036. probe_exit_reg_candev:
  1037. if (priv->use_msi)
  1038. pci_disable_msi(priv->dev);
  1039. free_candev(ndev);
  1040. probe_exit_alloc_candev:
  1041. pci_iounmap(pdev, addr);
  1042. probe_exit_ipmap:
  1043. pci_release_regions(pdev);
  1044. probe_exit_pcireq:
  1045. pci_disable_device(pdev);
  1046. probe_exit_endev:
  1047. return rc;
  1048. }
  1049. static struct pci_driver pch_can_pci_driver = {
  1050. .name = "pch_can",
  1051. .id_table = pch_pci_tbl,
  1052. .probe = pch_can_probe,
  1053. .remove = pch_can_remove,
  1054. .suspend = pch_can_suspend,
  1055. .resume = pch_can_resume,
  1056. };
  1057. module_pci_driver(pch_can_pci_driver);
  1058. MODULE_DESCRIPTION("Intel EG20T PCH CAN(Controller Area Network) Driver");
  1059. MODULE_LICENSE("GPL v2");
  1060. MODULE_VERSION("0.94");