ems_usb.c 26 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093
  1. /*
  2. * CAN driver for EMS Dr. Thomas Wuensche CPC-USB/ARM7
  3. *
  4. * Copyright (C) 2004-2009 EMS Dr. Thomas Wuensche
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License as published
  8. * by the Free Software Foundation; version 2 of the License.
  9. *
  10. * This program is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along
  16. * with this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  18. */
  19. #include <linux/signal.h>
  20. #include <linux/slab.h>
  21. #include <linux/module.h>
  22. #include <linux/netdevice.h>
  23. #include <linux/usb.h>
  24. #include <linux/can.h>
  25. #include <linux/can/dev.h>
  26. #include <linux/can/error.h>
  27. MODULE_AUTHOR("Sebastian Haas <haas@ems-wuensche.com>");
  28. MODULE_DESCRIPTION("CAN driver for EMS Dr. Thomas Wuensche CAN/USB interfaces");
  29. MODULE_LICENSE("GPL v2");
  30. /* Control-Values for CPC_Control() Command Subject Selection */
  31. #define CONTR_CAN_MESSAGE 0x04
  32. #define CONTR_CAN_STATE 0x0C
  33. #define CONTR_BUS_ERROR 0x1C
  34. /* Control Command Actions */
  35. #define CONTR_CONT_OFF 0
  36. #define CONTR_CONT_ON 1
  37. #define CONTR_ONCE 2
  38. /* Messages from CPC to PC */
  39. #define CPC_MSG_TYPE_CAN_FRAME 1 /* CAN data frame */
  40. #define CPC_MSG_TYPE_RTR_FRAME 8 /* CAN remote frame */
  41. #define CPC_MSG_TYPE_CAN_PARAMS 12 /* Actual CAN parameters */
  42. #define CPC_MSG_TYPE_CAN_STATE 14 /* CAN state message */
  43. #define CPC_MSG_TYPE_EXT_CAN_FRAME 16 /* Extended CAN data frame */
  44. #define CPC_MSG_TYPE_EXT_RTR_FRAME 17 /* Extended remote frame */
  45. #define CPC_MSG_TYPE_CONTROL 19 /* change interface behavior */
  46. #define CPC_MSG_TYPE_CONFIRM 20 /* command processed confirmation */
  47. #define CPC_MSG_TYPE_OVERRUN 21 /* overrun events */
  48. #define CPC_MSG_TYPE_CAN_FRAME_ERROR 23 /* detected bus errors */
  49. #define CPC_MSG_TYPE_ERR_COUNTER 25 /* RX/TX error counter */
  50. /* Messages from the PC to the CPC interface */
  51. #define CPC_CMD_TYPE_CAN_FRAME 1 /* CAN data frame */
  52. #define CPC_CMD_TYPE_CONTROL 3 /* control of interface behavior */
  53. #define CPC_CMD_TYPE_CAN_PARAMS 6 /* set CAN parameters */
  54. #define CPC_CMD_TYPE_RTR_FRAME 13 /* CAN remote frame */
  55. #define CPC_CMD_TYPE_CAN_STATE 14 /* CAN state message */
  56. #define CPC_CMD_TYPE_EXT_CAN_FRAME 15 /* Extended CAN data frame */
  57. #define CPC_CMD_TYPE_EXT_RTR_FRAME 16 /* Extended CAN remote frame */
  58. #define CPC_CMD_TYPE_CAN_EXIT 200 /* exit the CAN */
  59. #define CPC_CMD_TYPE_INQ_ERR_COUNTER 25 /* request the CAN error counters */
  60. #define CPC_CMD_TYPE_CLEAR_MSG_QUEUE 8 /* clear CPC_MSG queue */
  61. #define CPC_CMD_TYPE_CLEAR_CMD_QUEUE 28 /* clear CPC_CMD queue */
  62. #define CPC_CC_TYPE_SJA1000 2 /* Philips basic CAN controller */
  63. #define CPC_CAN_ECODE_ERRFRAME 0x01 /* Ecode type */
  64. /* Overrun types */
  65. #define CPC_OVR_EVENT_CAN 0x01
  66. #define CPC_OVR_EVENT_CANSTATE 0x02
  67. #define CPC_OVR_EVENT_BUSERROR 0x04
  68. /*
  69. * If the CAN controller lost a message we indicate it with the highest bit
  70. * set in the count field.
  71. */
  72. #define CPC_OVR_HW 0x80
  73. /* Size of the "struct ems_cpc_msg" without the union */
  74. #define CPC_MSG_HEADER_LEN 11
  75. #define CPC_CAN_MSG_MIN_SIZE 5
  76. /* Define these values to match your devices */
  77. #define USB_CPCUSB_VENDOR_ID 0x12D6
  78. #define USB_CPCUSB_ARM7_PRODUCT_ID 0x0444
  79. /* Mode register NXP LPC2119/SJA1000 CAN Controller */
  80. #define SJA1000_MOD_NORMAL 0x00
  81. #define SJA1000_MOD_RM 0x01
  82. /* ECC register NXP LPC2119/SJA1000 CAN Controller */
  83. #define SJA1000_ECC_SEG 0x1F
  84. #define SJA1000_ECC_DIR 0x20
  85. #define SJA1000_ECC_ERR 0x06
  86. #define SJA1000_ECC_BIT 0x00
  87. #define SJA1000_ECC_FORM 0x40
  88. #define SJA1000_ECC_STUFF 0x80
  89. #define SJA1000_ECC_MASK 0xc0
  90. /* Status register content */
  91. #define SJA1000_SR_BS 0x80
  92. #define SJA1000_SR_ES 0x40
  93. #define SJA1000_DEFAULT_OUTPUT_CONTROL 0xDA
  94. /*
  95. * The device actually uses a 16MHz clock to generate the CAN clock
  96. * but it expects SJA1000 bit settings based on 8MHz (is internally
  97. * converted).
  98. */
  99. #define EMS_USB_ARM7_CLOCK 8000000
  100. #define CPC_TX_QUEUE_TRIGGER_LOW 25
  101. #define CPC_TX_QUEUE_TRIGGER_HIGH 35
  102. /*
  103. * CAN-Message representation in a CPC_MSG. Message object type is
  104. * CPC_MSG_TYPE_CAN_FRAME or CPC_MSG_TYPE_RTR_FRAME or
  105. * CPC_MSG_TYPE_EXT_CAN_FRAME or CPC_MSG_TYPE_EXT_RTR_FRAME.
  106. */
  107. struct cpc_can_msg {
  108. __le32 id;
  109. u8 length;
  110. u8 msg[8];
  111. };
  112. /* Representation of the CAN parameters for the SJA1000 controller */
  113. struct cpc_sja1000_params {
  114. u8 mode;
  115. u8 acc_code0;
  116. u8 acc_code1;
  117. u8 acc_code2;
  118. u8 acc_code3;
  119. u8 acc_mask0;
  120. u8 acc_mask1;
  121. u8 acc_mask2;
  122. u8 acc_mask3;
  123. u8 btr0;
  124. u8 btr1;
  125. u8 outp_contr;
  126. };
  127. /* CAN params message representation */
  128. struct cpc_can_params {
  129. u8 cc_type;
  130. /* Will support M16C CAN controller in the future */
  131. union {
  132. struct cpc_sja1000_params sja1000;
  133. } cc_params;
  134. };
  135. /* Structure for confirmed message handling */
  136. struct cpc_confirm {
  137. u8 error; /* error code */
  138. };
  139. /* Structure for overrun conditions */
  140. struct cpc_overrun {
  141. u8 event;
  142. u8 count;
  143. };
  144. /* SJA1000 CAN errors (compatible to NXP LPC2119) */
  145. struct cpc_sja1000_can_error {
  146. u8 ecc;
  147. u8 rxerr;
  148. u8 txerr;
  149. };
  150. /* structure for CAN error conditions */
  151. struct cpc_can_error {
  152. u8 ecode;
  153. struct {
  154. u8 cc_type;
  155. /* Other controllers may also provide error code capture regs */
  156. union {
  157. struct cpc_sja1000_can_error sja1000;
  158. } regs;
  159. } cc;
  160. };
  161. /*
  162. * Structure containing RX/TX error counter. This structure is used to request
  163. * the values of the CAN controllers TX and RX error counter.
  164. */
  165. struct cpc_can_err_counter {
  166. u8 rx;
  167. u8 tx;
  168. };
  169. /* Main message type used between library and application */
  170. struct __packed ems_cpc_msg {
  171. u8 type; /* type of message */
  172. u8 length; /* length of data within union 'msg' */
  173. u8 msgid; /* confirmation handle */
  174. __le32 ts_sec; /* timestamp in seconds */
  175. __le32 ts_nsec; /* timestamp in nano seconds */
  176. union {
  177. u8 generic[64];
  178. struct cpc_can_msg can_msg;
  179. struct cpc_can_params can_params;
  180. struct cpc_confirm confirmation;
  181. struct cpc_overrun overrun;
  182. struct cpc_can_error error;
  183. struct cpc_can_err_counter err_counter;
  184. u8 can_state;
  185. } msg;
  186. };
  187. /*
  188. * Table of devices that work with this driver
  189. * NOTE: This driver supports only CPC-USB/ARM7 (LPC2119) yet.
  190. */
  191. static struct usb_device_id ems_usb_table[] = {
  192. {USB_DEVICE(USB_CPCUSB_VENDOR_ID, USB_CPCUSB_ARM7_PRODUCT_ID)},
  193. {} /* Terminating entry */
  194. };
  195. MODULE_DEVICE_TABLE(usb, ems_usb_table);
  196. #define RX_BUFFER_SIZE 64
  197. #define CPC_HEADER_SIZE 4
  198. #define INTR_IN_BUFFER_SIZE 4
  199. #define MAX_RX_URBS 10
  200. #define MAX_TX_URBS 10
  201. struct ems_usb;
  202. struct ems_tx_urb_context {
  203. struct ems_usb *dev;
  204. u32 echo_index;
  205. u8 dlc;
  206. };
  207. struct ems_usb {
  208. struct can_priv can; /* must be the first member */
  209. struct sk_buff *echo_skb[MAX_TX_URBS];
  210. struct usb_device *udev;
  211. struct net_device *netdev;
  212. atomic_t active_tx_urbs;
  213. struct usb_anchor tx_submitted;
  214. struct ems_tx_urb_context tx_contexts[MAX_TX_URBS];
  215. struct usb_anchor rx_submitted;
  216. struct urb *intr_urb;
  217. u8 *tx_msg_buffer;
  218. u8 *intr_in_buffer;
  219. unsigned int free_slots; /* remember number of available slots */
  220. struct ems_cpc_msg active_params; /* active controller parameters */
  221. };
  222. static void ems_usb_read_interrupt_callback(struct urb *urb)
  223. {
  224. struct ems_usb *dev = urb->context;
  225. struct net_device *netdev = dev->netdev;
  226. int err;
  227. if (!netif_device_present(netdev))
  228. return;
  229. switch (urb->status) {
  230. case 0:
  231. dev->free_slots = dev->intr_in_buffer[1];
  232. if(dev->free_slots > CPC_TX_QUEUE_TRIGGER_HIGH){
  233. if (netif_queue_stopped(netdev)){
  234. netif_wake_queue(netdev);
  235. }
  236. }
  237. break;
  238. case -ECONNRESET: /* unlink */
  239. case -ENOENT:
  240. case -EPIPE:
  241. case -EPROTO:
  242. case -ESHUTDOWN:
  243. return;
  244. default:
  245. netdev_info(netdev, "Rx interrupt aborted %d\n", urb->status);
  246. break;
  247. }
  248. err = usb_submit_urb(urb, GFP_ATOMIC);
  249. if (err == -ENODEV)
  250. netif_device_detach(netdev);
  251. else if (err)
  252. netdev_err(netdev, "failed resubmitting intr urb: %d\n", err);
  253. }
  254. static void ems_usb_rx_can_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
  255. {
  256. struct can_frame *cf;
  257. struct sk_buff *skb;
  258. int i;
  259. struct net_device_stats *stats = &dev->netdev->stats;
  260. skb = alloc_can_skb(dev->netdev, &cf);
  261. if (skb == NULL)
  262. return;
  263. cf->can_id = le32_to_cpu(msg->msg.can_msg.id);
  264. cf->can_dlc = get_can_dlc(msg->msg.can_msg.length & 0xF);
  265. if (msg->type == CPC_MSG_TYPE_EXT_CAN_FRAME ||
  266. msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME)
  267. cf->can_id |= CAN_EFF_FLAG;
  268. if (msg->type == CPC_MSG_TYPE_RTR_FRAME ||
  269. msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME) {
  270. cf->can_id |= CAN_RTR_FLAG;
  271. } else {
  272. for (i = 0; i < cf->can_dlc; i++)
  273. cf->data[i] = msg->msg.can_msg.msg[i];
  274. }
  275. stats->rx_packets++;
  276. stats->rx_bytes += cf->can_dlc;
  277. netif_rx(skb);
  278. }
  279. static void ems_usb_rx_err(struct ems_usb *dev, struct ems_cpc_msg *msg)
  280. {
  281. struct can_frame *cf;
  282. struct sk_buff *skb;
  283. struct net_device_stats *stats = &dev->netdev->stats;
  284. skb = alloc_can_err_skb(dev->netdev, &cf);
  285. if (skb == NULL)
  286. return;
  287. if (msg->type == CPC_MSG_TYPE_CAN_STATE) {
  288. u8 state = msg->msg.can_state;
  289. if (state & SJA1000_SR_BS) {
  290. dev->can.state = CAN_STATE_BUS_OFF;
  291. cf->can_id |= CAN_ERR_BUSOFF;
  292. dev->can.can_stats.bus_off++;
  293. can_bus_off(dev->netdev);
  294. } else if (state & SJA1000_SR_ES) {
  295. dev->can.state = CAN_STATE_ERROR_WARNING;
  296. dev->can.can_stats.error_warning++;
  297. } else {
  298. dev->can.state = CAN_STATE_ERROR_ACTIVE;
  299. dev->can.can_stats.error_passive++;
  300. }
  301. } else if (msg->type == CPC_MSG_TYPE_CAN_FRAME_ERROR) {
  302. u8 ecc = msg->msg.error.cc.regs.sja1000.ecc;
  303. u8 txerr = msg->msg.error.cc.regs.sja1000.txerr;
  304. u8 rxerr = msg->msg.error.cc.regs.sja1000.rxerr;
  305. /* bus error interrupt */
  306. dev->can.can_stats.bus_error++;
  307. stats->rx_errors++;
  308. cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
  309. switch (ecc & SJA1000_ECC_MASK) {
  310. case SJA1000_ECC_BIT:
  311. cf->data[2] |= CAN_ERR_PROT_BIT;
  312. break;
  313. case SJA1000_ECC_FORM:
  314. cf->data[2] |= CAN_ERR_PROT_FORM;
  315. break;
  316. case SJA1000_ECC_STUFF:
  317. cf->data[2] |= CAN_ERR_PROT_STUFF;
  318. break;
  319. default:
  320. cf->data[3] = ecc & SJA1000_ECC_SEG;
  321. break;
  322. }
  323. /* Error occurred during transmission? */
  324. if ((ecc & SJA1000_ECC_DIR) == 0)
  325. cf->data[2] |= CAN_ERR_PROT_TX;
  326. if (dev->can.state == CAN_STATE_ERROR_WARNING ||
  327. dev->can.state == CAN_STATE_ERROR_PASSIVE) {
  328. cf->data[1] = (txerr > rxerr) ?
  329. CAN_ERR_CRTL_TX_PASSIVE : CAN_ERR_CRTL_RX_PASSIVE;
  330. }
  331. } else if (msg->type == CPC_MSG_TYPE_OVERRUN) {
  332. cf->can_id |= CAN_ERR_CRTL;
  333. cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
  334. stats->rx_over_errors++;
  335. stats->rx_errors++;
  336. }
  337. stats->rx_packets++;
  338. stats->rx_bytes += cf->can_dlc;
  339. netif_rx(skb);
  340. }
  341. /*
  342. * callback for bulk IN urb
  343. */
  344. static void ems_usb_read_bulk_callback(struct urb *urb)
  345. {
  346. struct ems_usb *dev = urb->context;
  347. struct net_device *netdev;
  348. int retval;
  349. netdev = dev->netdev;
  350. if (!netif_device_present(netdev))
  351. return;
  352. switch (urb->status) {
  353. case 0: /* success */
  354. break;
  355. case -ENOENT:
  356. return;
  357. default:
  358. netdev_info(netdev, "Rx URB aborted (%d)\n", urb->status);
  359. goto resubmit_urb;
  360. }
  361. if (urb->actual_length > CPC_HEADER_SIZE) {
  362. struct ems_cpc_msg *msg;
  363. u8 *ibuf = urb->transfer_buffer;
  364. u8 msg_count, start;
  365. msg_count = ibuf[0] & ~0x80;
  366. start = CPC_HEADER_SIZE;
  367. while (msg_count) {
  368. msg = (struct ems_cpc_msg *)&ibuf[start];
  369. switch (msg->type) {
  370. case CPC_MSG_TYPE_CAN_STATE:
  371. /* Process CAN state changes */
  372. ems_usb_rx_err(dev, msg);
  373. break;
  374. case CPC_MSG_TYPE_CAN_FRAME:
  375. case CPC_MSG_TYPE_EXT_CAN_FRAME:
  376. case CPC_MSG_TYPE_RTR_FRAME:
  377. case CPC_MSG_TYPE_EXT_RTR_FRAME:
  378. ems_usb_rx_can_msg(dev, msg);
  379. break;
  380. case CPC_MSG_TYPE_CAN_FRAME_ERROR:
  381. /* Process errorframe */
  382. ems_usb_rx_err(dev, msg);
  383. break;
  384. case CPC_MSG_TYPE_OVERRUN:
  385. /* Message lost while receiving */
  386. ems_usb_rx_err(dev, msg);
  387. break;
  388. }
  389. start += CPC_MSG_HEADER_LEN + msg->length;
  390. msg_count--;
  391. if (start > urb->transfer_buffer_length) {
  392. netdev_err(netdev, "format error\n");
  393. break;
  394. }
  395. }
  396. }
  397. resubmit_urb:
  398. usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
  399. urb->transfer_buffer, RX_BUFFER_SIZE,
  400. ems_usb_read_bulk_callback, dev);
  401. retval = usb_submit_urb(urb, GFP_ATOMIC);
  402. if (retval == -ENODEV)
  403. netif_device_detach(netdev);
  404. else if (retval)
  405. netdev_err(netdev,
  406. "failed resubmitting read bulk urb: %d\n", retval);
  407. }
  408. /*
  409. * callback for bulk IN urb
  410. */
  411. static void ems_usb_write_bulk_callback(struct urb *urb)
  412. {
  413. struct ems_tx_urb_context *context = urb->context;
  414. struct ems_usb *dev;
  415. struct net_device *netdev;
  416. BUG_ON(!context);
  417. dev = context->dev;
  418. netdev = dev->netdev;
  419. /* free up our allocated buffer */
  420. usb_free_coherent(urb->dev, urb->transfer_buffer_length,
  421. urb->transfer_buffer, urb->transfer_dma);
  422. atomic_dec(&dev->active_tx_urbs);
  423. if (!netif_device_present(netdev))
  424. return;
  425. if (urb->status)
  426. netdev_info(netdev, "Tx URB aborted (%d)\n", urb->status);
  427. netdev->trans_start = jiffies;
  428. /* transmission complete interrupt */
  429. netdev->stats.tx_packets++;
  430. netdev->stats.tx_bytes += context->dlc;
  431. can_get_echo_skb(netdev, context->echo_index);
  432. /* Release context */
  433. context->echo_index = MAX_TX_URBS;
  434. }
  435. /*
  436. * Send the given CPC command synchronously
  437. */
  438. static int ems_usb_command_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
  439. {
  440. int actual_length;
  441. /* Copy payload */
  442. memcpy(&dev->tx_msg_buffer[CPC_HEADER_SIZE], msg,
  443. msg->length + CPC_MSG_HEADER_LEN);
  444. /* Clear header */
  445. memset(&dev->tx_msg_buffer[0], 0, CPC_HEADER_SIZE);
  446. return usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, 2),
  447. &dev->tx_msg_buffer[0],
  448. msg->length + CPC_MSG_HEADER_LEN + CPC_HEADER_SIZE,
  449. &actual_length, 1000);
  450. }
  451. /*
  452. * Change CAN controllers' mode register
  453. */
  454. static int ems_usb_write_mode(struct ems_usb *dev, u8 mode)
  455. {
  456. dev->active_params.msg.can_params.cc_params.sja1000.mode = mode;
  457. return ems_usb_command_msg(dev, &dev->active_params);
  458. }
  459. /*
  460. * Send a CPC_Control command to change behaviour when interface receives a CAN
  461. * message, bus error or CAN state changed notifications.
  462. */
  463. static int ems_usb_control_cmd(struct ems_usb *dev, u8 val)
  464. {
  465. struct ems_cpc_msg cmd;
  466. cmd.type = CPC_CMD_TYPE_CONTROL;
  467. cmd.length = CPC_MSG_HEADER_LEN + 1;
  468. cmd.msgid = 0;
  469. cmd.msg.generic[0] = val;
  470. return ems_usb_command_msg(dev, &cmd);
  471. }
  472. /*
  473. * Start interface
  474. */
  475. static int ems_usb_start(struct ems_usb *dev)
  476. {
  477. struct net_device *netdev = dev->netdev;
  478. int err, i;
  479. dev->intr_in_buffer[0] = 0;
  480. dev->free_slots = 50; /* initial size */
  481. for (i = 0; i < MAX_RX_URBS; i++) {
  482. struct urb *urb = NULL;
  483. u8 *buf = NULL;
  484. /* create a URB, and a buffer for it */
  485. urb = usb_alloc_urb(0, GFP_KERNEL);
  486. if (!urb) {
  487. netdev_err(netdev, "No memory left for URBs\n");
  488. err = -ENOMEM;
  489. break;
  490. }
  491. buf = usb_alloc_coherent(dev->udev, RX_BUFFER_SIZE, GFP_KERNEL,
  492. &urb->transfer_dma);
  493. if (!buf) {
  494. netdev_err(netdev, "No memory left for USB buffer\n");
  495. usb_free_urb(urb);
  496. err = -ENOMEM;
  497. break;
  498. }
  499. usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
  500. buf, RX_BUFFER_SIZE,
  501. ems_usb_read_bulk_callback, dev);
  502. urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
  503. usb_anchor_urb(urb, &dev->rx_submitted);
  504. err = usb_submit_urb(urb, GFP_KERNEL);
  505. if (err) {
  506. usb_unanchor_urb(urb);
  507. usb_free_coherent(dev->udev, RX_BUFFER_SIZE, buf,
  508. urb->transfer_dma);
  509. usb_free_urb(urb);
  510. break;
  511. }
  512. /* Drop reference, USB core will take care of freeing it */
  513. usb_free_urb(urb);
  514. }
  515. /* Did we submit any URBs */
  516. if (i == 0) {
  517. netdev_warn(netdev, "couldn't setup read URBs\n");
  518. return err;
  519. }
  520. /* Warn if we've couldn't transmit all the URBs */
  521. if (i < MAX_RX_URBS)
  522. netdev_warn(netdev, "rx performance may be slow\n");
  523. /* Setup and start interrupt URB */
  524. usb_fill_int_urb(dev->intr_urb, dev->udev,
  525. usb_rcvintpipe(dev->udev, 1),
  526. dev->intr_in_buffer,
  527. INTR_IN_BUFFER_SIZE,
  528. ems_usb_read_interrupt_callback, dev, 1);
  529. err = usb_submit_urb(dev->intr_urb, GFP_KERNEL);
  530. if (err) {
  531. netdev_warn(netdev, "intr URB submit failed: %d\n", err);
  532. return err;
  533. }
  534. /* CPC-USB will transfer received message to host */
  535. err = ems_usb_control_cmd(dev, CONTR_CAN_MESSAGE | CONTR_CONT_ON);
  536. if (err)
  537. goto failed;
  538. /* CPC-USB will transfer CAN state changes to host */
  539. err = ems_usb_control_cmd(dev, CONTR_CAN_STATE | CONTR_CONT_ON);
  540. if (err)
  541. goto failed;
  542. /* CPC-USB will transfer bus errors to host */
  543. err = ems_usb_control_cmd(dev, CONTR_BUS_ERROR | CONTR_CONT_ON);
  544. if (err)
  545. goto failed;
  546. err = ems_usb_write_mode(dev, SJA1000_MOD_NORMAL);
  547. if (err)
  548. goto failed;
  549. dev->can.state = CAN_STATE_ERROR_ACTIVE;
  550. return 0;
  551. failed:
  552. netdev_warn(netdev, "couldn't submit control: %d\n", err);
  553. return err;
  554. }
  555. static void unlink_all_urbs(struct ems_usb *dev)
  556. {
  557. int i;
  558. usb_unlink_urb(dev->intr_urb);
  559. usb_kill_anchored_urbs(&dev->rx_submitted);
  560. usb_kill_anchored_urbs(&dev->tx_submitted);
  561. atomic_set(&dev->active_tx_urbs, 0);
  562. for (i = 0; i < MAX_TX_URBS; i++)
  563. dev->tx_contexts[i].echo_index = MAX_TX_URBS;
  564. }
  565. static int ems_usb_open(struct net_device *netdev)
  566. {
  567. struct ems_usb *dev = netdev_priv(netdev);
  568. int err;
  569. err = ems_usb_write_mode(dev, SJA1000_MOD_RM);
  570. if (err)
  571. return err;
  572. /* common open */
  573. err = open_candev(netdev);
  574. if (err)
  575. return err;
  576. /* finally start device */
  577. err = ems_usb_start(dev);
  578. if (err) {
  579. if (err == -ENODEV)
  580. netif_device_detach(dev->netdev);
  581. netdev_warn(netdev, "couldn't start device: %d\n", err);
  582. close_candev(netdev);
  583. return err;
  584. }
  585. netif_start_queue(netdev);
  586. return 0;
  587. }
  588. static netdev_tx_t ems_usb_start_xmit(struct sk_buff *skb, struct net_device *netdev)
  589. {
  590. struct ems_usb *dev = netdev_priv(netdev);
  591. struct ems_tx_urb_context *context = NULL;
  592. struct net_device_stats *stats = &netdev->stats;
  593. struct can_frame *cf = (struct can_frame *)skb->data;
  594. struct ems_cpc_msg *msg;
  595. struct urb *urb;
  596. u8 *buf;
  597. int i, err;
  598. size_t size = CPC_HEADER_SIZE + CPC_MSG_HEADER_LEN
  599. + sizeof(struct cpc_can_msg);
  600. if (can_dropped_invalid_skb(netdev, skb))
  601. return NETDEV_TX_OK;
  602. /* create a URB, and a buffer for it, and copy the data to the URB */
  603. urb = usb_alloc_urb(0, GFP_ATOMIC);
  604. if (!urb) {
  605. netdev_err(netdev, "No memory left for URBs\n");
  606. goto nomem;
  607. }
  608. buf = usb_alloc_coherent(dev->udev, size, GFP_ATOMIC, &urb->transfer_dma);
  609. if (!buf) {
  610. netdev_err(netdev, "No memory left for USB buffer\n");
  611. usb_free_urb(urb);
  612. goto nomem;
  613. }
  614. msg = (struct ems_cpc_msg *)&buf[CPC_HEADER_SIZE];
  615. msg->msg.can_msg.id = cpu_to_le32(cf->can_id & CAN_ERR_MASK);
  616. msg->msg.can_msg.length = cf->can_dlc;
  617. if (cf->can_id & CAN_RTR_FLAG) {
  618. msg->type = cf->can_id & CAN_EFF_FLAG ?
  619. CPC_CMD_TYPE_EXT_RTR_FRAME : CPC_CMD_TYPE_RTR_FRAME;
  620. msg->length = CPC_CAN_MSG_MIN_SIZE;
  621. } else {
  622. msg->type = cf->can_id & CAN_EFF_FLAG ?
  623. CPC_CMD_TYPE_EXT_CAN_FRAME : CPC_CMD_TYPE_CAN_FRAME;
  624. for (i = 0; i < cf->can_dlc; i++)
  625. msg->msg.can_msg.msg[i] = cf->data[i];
  626. msg->length = CPC_CAN_MSG_MIN_SIZE + cf->can_dlc;
  627. }
  628. for (i = 0; i < MAX_TX_URBS; i++) {
  629. if (dev->tx_contexts[i].echo_index == MAX_TX_URBS) {
  630. context = &dev->tx_contexts[i];
  631. break;
  632. }
  633. }
  634. /*
  635. * May never happen! When this happens we'd more URBs in flight as
  636. * allowed (MAX_TX_URBS).
  637. */
  638. if (!context) {
  639. usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
  640. usb_free_urb(urb);
  641. netdev_warn(netdev, "couldn't find free context\n");
  642. return NETDEV_TX_BUSY;
  643. }
  644. context->dev = dev;
  645. context->echo_index = i;
  646. context->dlc = cf->can_dlc;
  647. usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, 2), buf,
  648. size, ems_usb_write_bulk_callback, context);
  649. urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
  650. usb_anchor_urb(urb, &dev->tx_submitted);
  651. can_put_echo_skb(skb, netdev, context->echo_index);
  652. atomic_inc(&dev->active_tx_urbs);
  653. err = usb_submit_urb(urb, GFP_ATOMIC);
  654. if (unlikely(err)) {
  655. can_free_echo_skb(netdev, context->echo_index);
  656. usb_unanchor_urb(urb);
  657. usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
  658. dev_kfree_skb(skb);
  659. atomic_dec(&dev->active_tx_urbs);
  660. if (err == -ENODEV) {
  661. netif_device_detach(netdev);
  662. } else {
  663. netdev_warn(netdev, "failed tx_urb %d\n", err);
  664. stats->tx_dropped++;
  665. }
  666. } else {
  667. netdev->trans_start = jiffies;
  668. /* Slow down tx path */
  669. if (atomic_read(&dev->active_tx_urbs) >= MAX_TX_URBS ||
  670. dev->free_slots < CPC_TX_QUEUE_TRIGGER_LOW) {
  671. netif_stop_queue(netdev);
  672. }
  673. }
  674. /*
  675. * Release our reference to this URB, the USB core will eventually free
  676. * it entirely.
  677. */
  678. usb_free_urb(urb);
  679. return NETDEV_TX_OK;
  680. nomem:
  681. dev_kfree_skb(skb);
  682. stats->tx_dropped++;
  683. return NETDEV_TX_OK;
  684. }
  685. static int ems_usb_close(struct net_device *netdev)
  686. {
  687. struct ems_usb *dev = netdev_priv(netdev);
  688. /* Stop polling */
  689. unlink_all_urbs(dev);
  690. netif_stop_queue(netdev);
  691. /* Set CAN controller to reset mode */
  692. if (ems_usb_write_mode(dev, SJA1000_MOD_RM))
  693. netdev_warn(netdev, "couldn't stop device");
  694. close_candev(netdev);
  695. return 0;
  696. }
  697. static const struct net_device_ops ems_usb_netdev_ops = {
  698. .ndo_open = ems_usb_open,
  699. .ndo_stop = ems_usb_close,
  700. .ndo_start_xmit = ems_usb_start_xmit,
  701. .ndo_change_mtu = can_change_mtu,
  702. };
  703. static const struct can_bittiming_const ems_usb_bittiming_const = {
  704. .name = "ems_usb",
  705. .tseg1_min = 1,
  706. .tseg1_max = 16,
  707. .tseg2_min = 1,
  708. .tseg2_max = 8,
  709. .sjw_max = 4,
  710. .brp_min = 1,
  711. .brp_max = 64,
  712. .brp_inc = 1,
  713. };
  714. static int ems_usb_set_mode(struct net_device *netdev, enum can_mode mode)
  715. {
  716. struct ems_usb *dev = netdev_priv(netdev);
  717. switch (mode) {
  718. case CAN_MODE_START:
  719. if (ems_usb_write_mode(dev, SJA1000_MOD_NORMAL))
  720. netdev_warn(netdev, "couldn't start device");
  721. if (netif_queue_stopped(netdev))
  722. netif_wake_queue(netdev);
  723. break;
  724. default:
  725. return -EOPNOTSUPP;
  726. }
  727. return 0;
  728. }
  729. static int ems_usb_set_bittiming(struct net_device *netdev)
  730. {
  731. struct ems_usb *dev = netdev_priv(netdev);
  732. struct can_bittiming *bt = &dev->can.bittiming;
  733. u8 btr0, btr1;
  734. btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6);
  735. btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) |
  736. (((bt->phase_seg2 - 1) & 0x7) << 4);
  737. if (dev->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
  738. btr1 |= 0x80;
  739. netdev_info(netdev, "setting BTR0=0x%02x BTR1=0x%02x\n", btr0, btr1);
  740. dev->active_params.msg.can_params.cc_params.sja1000.btr0 = btr0;
  741. dev->active_params.msg.can_params.cc_params.sja1000.btr1 = btr1;
  742. return ems_usb_command_msg(dev, &dev->active_params);
  743. }
  744. static void init_params_sja1000(struct ems_cpc_msg *msg)
  745. {
  746. struct cpc_sja1000_params *sja1000 =
  747. &msg->msg.can_params.cc_params.sja1000;
  748. msg->type = CPC_CMD_TYPE_CAN_PARAMS;
  749. msg->length = sizeof(struct cpc_can_params);
  750. msg->msgid = 0;
  751. msg->msg.can_params.cc_type = CPC_CC_TYPE_SJA1000;
  752. /* Acceptance filter open */
  753. sja1000->acc_code0 = 0x00;
  754. sja1000->acc_code1 = 0x00;
  755. sja1000->acc_code2 = 0x00;
  756. sja1000->acc_code3 = 0x00;
  757. /* Acceptance filter open */
  758. sja1000->acc_mask0 = 0xFF;
  759. sja1000->acc_mask1 = 0xFF;
  760. sja1000->acc_mask2 = 0xFF;
  761. sja1000->acc_mask3 = 0xFF;
  762. sja1000->btr0 = 0;
  763. sja1000->btr1 = 0;
  764. sja1000->outp_contr = SJA1000_DEFAULT_OUTPUT_CONTROL;
  765. sja1000->mode = SJA1000_MOD_RM;
  766. }
  767. /*
  768. * probe function for new CPC-USB devices
  769. */
  770. static int ems_usb_probe(struct usb_interface *intf,
  771. const struct usb_device_id *id)
  772. {
  773. struct net_device *netdev;
  774. struct ems_usb *dev;
  775. int i, err = -ENOMEM;
  776. netdev = alloc_candev(sizeof(struct ems_usb), MAX_TX_URBS);
  777. if (!netdev) {
  778. dev_err(&intf->dev, "ems_usb: Couldn't alloc candev\n");
  779. return -ENOMEM;
  780. }
  781. dev = netdev_priv(netdev);
  782. dev->udev = interface_to_usbdev(intf);
  783. dev->netdev = netdev;
  784. dev->can.state = CAN_STATE_STOPPED;
  785. dev->can.clock.freq = EMS_USB_ARM7_CLOCK;
  786. dev->can.bittiming_const = &ems_usb_bittiming_const;
  787. dev->can.do_set_bittiming = ems_usb_set_bittiming;
  788. dev->can.do_set_mode = ems_usb_set_mode;
  789. dev->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES;
  790. netdev->netdev_ops = &ems_usb_netdev_ops;
  791. netdev->flags |= IFF_ECHO; /* we support local echo */
  792. init_usb_anchor(&dev->rx_submitted);
  793. init_usb_anchor(&dev->tx_submitted);
  794. atomic_set(&dev->active_tx_urbs, 0);
  795. for (i = 0; i < MAX_TX_URBS; i++)
  796. dev->tx_contexts[i].echo_index = MAX_TX_URBS;
  797. dev->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
  798. if (!dev->intr_urb) {
  799. dev_err(&intf->dev, "Couldn't alloc intr URB\n");
  800. goto cleanup_candev;
  801. }
  802. dev->intr_in_buffer = kzalloc(INTR_IN_BUFFER_SIZE, GFP_KERNEL);
  803. if (!dev->intr_in_buffer)
  804. goto cleanup_intr_urb;
  805. dev->tx_msg_buffer = kzalloc(CPC_HEADER_SIZE +
  806. sizeof(struct ems_cpc_msg), GFP_KERNEL);
  807. if (!dev->tx_msg_buffer)
  808. goto cleanup_intr_in_buffer;
  809. usb_set_intfdata(intf, dev);
  810. SET_NETDEV_DEV(netdev, &intf->dev);
  811. init_params_sja1000(&dev->active_params);
  812. err = ems_usb_command_msg(dev, &dev->active_params);
  813. if (err) {
  814. netdev_err(netdev, "couldn't initialize controller: %d\n", err);
  815. goto cleanup_tx_msg_buffer;
  816. }
  817. err = register_candev(netdev);
  818. if (err) {
  819. netdev_err(netdev, "couldn't register CAN device: %d\n", err);
  820. goto cleanup_tx_msg_buffer;
  821. }
  822. return 0;
  823. cleanup_tx_msg_buffer:
  824. kfree(dev->tx_msg_buffer);
  825. cleanup_intr_in_buffer:
  826. kfree(dev->intr_in_buffer);
  827. cleanup_intr_urb:
  828. usb_free_urb(dev->intr_urb);
  829. cleanup_candev:
  830. free_candev(netdev);
  831. return err;
  832. }
  833. /*
  834. * called by the usb core when the device is removed from the system
  835. */
  836. static void ems_usb_disconnect(struct usb_interface *intf)
  837. {
  838. struct ems_usb *dev = usb_get_intfdata(intf);
  839. usb_set_intfdata(intf, NULL);
  840. if (dev) {
  841. unregister_netdev(dev->netdev);
  842. free_candev(dev->netdev);
  843. unlink_all_urbs(dev);
  844. usb_free_urb(dev->intr_urb);
  845. kfree(dev->intr_in_buffer);
  846. kfree(dev->tx_msg_buffer);
  847. }
  848. }
  849. /* usb specific object needed to register this driver with the usb subsystem */
  850. static struct usb_driver ems_usb_driver = {
  851. .name = "ems_usb",
  852. .probe = ems_usb_probe,
  853. .disconnect = ems_usb_disconnect,
  854. .id_table = ems_usb_table,
  855. };
  856. module_usb_driver(ems_usb_driver);