atl1.c 99 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689
  1. /*
  2. * Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved.
  3. * Copyright(c) 2006 - 2007 Chris Snook <csnook@redhat.com>
  4. * Copyright(c) 2006 - 2008 Jay Cliburn <jcliburn@gmail.com>
  5. *
  6. * Derived from Intel e1000 driver
  7. * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
  8. *
  9. * This program is free software; you can redistribute it and/or modify it
  10. * under the terms of the GNU General Public License as published by the Free
  11. * Software Foundation; either version 2 of the License, or (at your option)
  12. * any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful, but WITHOUT
  15. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  16. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  17. * more details.
  18. *
  19. * You should have received a copy of the GNU General Public License along with
  20. * this program; if not, write to the Free Software Foundation, Inc., 59
  21. * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  22. *
  23. * The full GNU General Public License is included in this distribution in the
  24. * file called COPYING.
  25. *
  26. * Contact Information:
  27. * Xiong Huang <xiong.huang@atheros.com>
  28. * Jie Yang <jie.yang@atheros.com>
  29. * Chris Snook <csnook@redhat.com>
  30. * Jay Cliburn <jcliburn@gmail.com>
  31. *
  32. * This version is adapted from the Attansic reference driver.
  33. *
  34. * TODO:
  35. * Add more ethtool functions.
  36. * Fix abstruse irq enable/disable condition described here:
  37. * http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2
  38. *
  39. * NEEDS TESTING:
  40. * VLAN
  41. * multicast
  42. * promiscuous mode
  43. * interrupt coalescing
  44. * SMP torture testing
  45. */
  46. #include <linux/atomic.h>
  47. #include <asm/byteorder.h>
  48. #include <linux/compiler.h>
  49. #include <linux/crc32.h>
  50. #include <linux/delay.h>
  51. #include <linux/dma-mapping.h>
  52. #include <linux/etherdevice.h>
  53. #include <linux/hardirq.h>
  54. #include <linux/if_ether.h>
  55. #include <linux/if_vlan.h>
  56. #include <linux/in.h>
  57. #include <linux/interrupt.h>
  58. #include <linux/ip.h>
  59. #include <linux/irqflags.h>
  60. #include <linux/irqreturn.h>
  61. #include <linux/jiffies.h>
  62. #include <linux/mii.h>
  63. #include <linux/module.h>
  64. #include <linux/moduleparam.h>
  65. #include <linux/net.h>
  66. #include <linux/netdevice.h>
  67. #include <linux/pci.h>
  68. #include <linux/pci_ids.h>
  69. #include <linux/pm.h>
  70. #include <linux/skbuff.h>
  71. #include <linux/slab.h>
  72. #include <linux/spinlock.h>
  73. #include <linux/string.h>
  74. #include <linux/tcp.h>
  75. #include <linux/timer.h>
  76. #include <linux/types.h>
  77. #include <linux/workqueue.h>
  78. #include <net/checksum.h>
  79. #include "atl1.h"
  80. #define ATLX_DRIVER_VERSION "2.1.3"
  81. MODULE_AUTHOR("Xiong Huang <xiong.huang@atheros.com>, "
  82. "Chris Snook <csnook@redhat.com>, "
  83. "Jay Cliburn <jcliburn@gmail.com>");
  84. MODULE_LICENSE("GPL");
  85. MODULE_VERSION(ATLX_DRIVER_VERSION);
  86. /* Temporary hack for merging atl1 and atl2 */
  87. #include "atlx.c"
  88. static const struct ethtool_ops atl1_ethtool_ops;
  89. /*
  90. * This is the only thing that needs to be changed to adjust the
  91. * maximum number of ports that the driver can manage.
  92. */
  93. #define ATL1_MAX_NIC 4
  94. #define OPTION_UNSET -1
  95. #define OPTION_DISABLED 0
  96. #define OPTION_ENABLED 1
  97. #define ATL1_PARAM_INIT { [0 ... ATL1_MAX_NIC] = OPTION_UNSET }
  98. /*
  99. * Interrupt Moderate Timer in units of 2 us
  100. *
  101. * Valid Range: 10-65535
  102. *
  103. * Default Value: 100 (200us)
  104. */
  105. static int int_mod_timer[ATL1_MAX_NIC+1] = ATL1_PARAM_INIT;
  106. static unsigned int num_int_mod_timer;
  107. module_param_array_named(int_mod_timer, int_mod_timer, int,
  108. &num_int_mod_timer, 0);
  109. MODULE_PARM_DESC(int_mod_timer, "Interrupt moderator timer");
  110. #define DEFAULT_INT_MOD_CNT 100 /* 200us */
  111. #define MAX_INT_MOD_CNT 65000
  112. #define MIN_INT_MOD_CNT 50
  113. struct atl1_option {
  114. enum { enable_option, range_option, list_option } type;
  115. char *name;
  116. char *err;
  117. int def;
  118. union {
  119. struct { /* range_option info */
  120. int min;
  121. int max;
  122. } r;
  123. struct { /* list_option info */
  124. int nr;
  125. struct atl1_opt_list {
  126. int i;
  127. char *str;
  128. } *p;
  129. } l;
  130. } arg;
  131. };
  132. static int atl1_validate_option(int *value, struct atl1_option *opt,
  133. struct pci_dev *pdev)
  134. {
  135. if (*value == OPTION_UNSET) {
  136. *value = opt->def;
  137. return 0;
  138. }
  139. switch (opt->type) {
  140. case enable_option:
  141. switch (*value) {
  142. case OPTION_ENABLED:
  143. dev_info(&pdev->dev, "%s enabled\n", opt->name);
  144. return 0;
  145. case OPTION_DISABLED:
  146. dev_info(&pdev->dev, "%s disabled\n", opt->name);
  147. return 0;
  148. }
  149. break;
  150. case range_option:
  151. if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
  152. dev_info(&pdev->dev, "%s set to %i\n", opt->name,
  153. *value);
  154. return 0;
  155. }
  156. break;
  157. case list_option:{
  158. int i;
  159. struct atl1_opt_list *ent;
  160. for (i = 0; i < opt->arg.l.nr; i++) {
  161. ent = &opt->arg.l.p[i];
  162. if (*value == ent->i) {
  163. if (ent->str[0] != '\0')
  164. dev_info(&pdev->dev, "%s\n",
  165. ent->str);
  166. return 0;
  167. }
  168. }
  169. }
  170. break;
  171. default:
  172. break;
  173. }
  174. dev_info(&pdev->dev, "invalid %s specified (%i) %s\n",
  175. opt->name, *value, opt->err);
  176. *value = opt->def;
  177. return -1;
  178. }
  179. /**
  180. * atl1_check_options - Range Checking for Command Line Parameters
  181. * @adapter: board private structure
  182. *
  183. * This routine checks all command line parameters for valid user
  184. * input. If an invalid value is given, or if no user specified
  185. * value exists, a default value is used. The final value is stored
  186. * in a variable in the adapter structure.
  187. */
  188. static void atl1_check_options(struct atl1_adapter *adapter)
  189. {
  190. struct pci_dev *pdev = adapter->pdev;
  191. int bd = adapter->bd_number;
  192. if (bd >= ATL1_MAX_NIC) {
  193. dev_notice(&pdev->dev, "no configuration for board#%i\n", bd);
  194. dev_notice(&pdev->dev, "using defaults for all values\n");
  195. }
  196. { /* Interrupt Moderate Timer */
  197. struct atl1_option opt = {
  198. .type = range_option,
  199. .name = "Interrupt Moderator Timer",
  200. .err = "using default of "
  201. __MODULE_STRING(DEFAULT_INT_MOD_CNT),
  202. .def = DEFAULT_INT_MOD_CNT,
  203. .arg = {.r = {.min = MIN_INT_MOD_CNT,
  204. .max = MAX_INT_MOD_CNT} }
  205. };
  206. int val;
  207. if (num_int_mod_timer > bd) {
  208. val = int_mod_timer[bd];
  209. atl1_validate_option(&val, &opt, pdev);
  210. adapter->imt = (u16) val;
  211. } else
  212. adapter->imt = (u16) (opt.def);
  213. }
  214. }
  215. /*
  216. * atl1_pci_tbl - PCI Device ID Table
  217. */
  218. static const struct pci_device_id atl1_pci_tbl[] = {
  219. {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1)},
  220. /* required last entry */
  221. {0,}
  222. };
  223. MODULE_DEVICE_TABLE(pci, atl1_pci_tbl);
  224. static const u32 atl1_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
  225. NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP;
  226. static int debug = -1;
  227. module_param(debug, int, 0);
  228. MODULE_PARM_DESC(debug, "Message level (0=none,...,16=all)");
  229. /*
  230. * Reset the transmit and receive units; mask and clear all interrupts.
  231. * hw - Struct containing variables accessed by shared code
  232. * return : 0 or idle status (if error)
  233. */
  234. static s32 atl1_reset_hw(struct atl1_hw *hw)
  235. {
  236. struct pci_dev *pdev = hw->back->pdev;
  237. struct atl1_adapter *adapter = hw->back;
  238. u32 icr;
  239. int i;
  240. /*
  241. * Clear Interrupt mask to stop board from generating
  242. * interrupts & Clear any pending interrupt events
  243. */
  244. /*
  245. * atlx_irq_disable(adapter);
  246. * iowrite32(0xffffffff, hw->hw_addr + REG_ISR);
  247. */
  248. /*
  249. * Issue Soft Reset to the MAC. This will reset the chip's
  250. * transmit, receive, DMA. It will not effect
  251. * the current PCI configuration. The global reset bit is self-
  252. * clearing, and should clear within a microsecond.
  253. */
  254. iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL);
  255. ioread32(hw->hw_addr + REG_MASTER_CTRL);
  256. iowrite16(1, hw->hw_addr + REG_PHY_ENABLE);
  257. ioread16(hw->hw_addr + REG_PHY_ENABLE);
  258. /* delay about 1ms */
  259. msleep(1);
  260. /* Wait at least 10ms for All module to be Idle */
  261. for (i = 0; i < 10; i++) {
  262. icr = ioread32(hw->hw_addr + REG_IDLE_STATUS);
  263. if (!icr)
  264. break;
  265. /* delay 1 ms */
  266. msleep(1);
  267. /* FIXME: still the right way to do this? */
  268. cpu_relax();
  269. }
  270. if (icr) {
  271. if (netif_msg_hw(adapter))
  272. dev_dbg(&pdev->dev, "ICR = 0x%x\n", icr);
  273. return icr;
  274. }
  275. return 0;
  276. }
  277. /* function about EEPROM
  278. *
  279. * check_eeprom_exist
  280. * return 0 if eeprom exist
  281. */
  282. static int atl1_check_eeprom_exist(struct atl1_hw *hw)
  283. {
  284. u32 value;
  285. value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
  286. if (value & SPI_FLASH_CTRL_EN_VPD) {
  287. value &= ~SPI_FLASH_CTRL_EN_VPD;
  288. iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
  289. }
  290. value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST);
  291. return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
  292. }
  293. static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value)
  294. {
  295. int i;
  296. u32 control;
  297. if (offset & 3)
  298. /* address do not align */
  299. return false;
  300. iowrite32(0, hw->hw_addr + REG_VPD_DATA);
  301. control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
  302. iowrite32(control, hw->hw_addr + REG_VPD_CAP);
  303. ioread32(hw->hw_addr + REG_VPD_CAP);
  304. for (i = 0; i < 10; i++) {
  305. msleep(2);
  306. control = ioread32(hw->hw_addr + REG_VPD_CAP);
  307. if (control & VPD_CAP_VPD_FLAG)
  308. break;
  309. }
  310. if (control & VPD_CAP_VPD_FLAG) {
  311. *p_value = ioread32(hw->hw_addr + REG_VPD_DATA);
  312. return true;
  313. }
  314. /* timeout */
  315. return false;
  316. }
  317. /*
  318. * Reads the value from a PHY register
  319. * hw - Struct containing variables accessed by shared code
  320. * reg_addr - address of the PHY register to read
  321. */
  322. static s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data)
  323. {
  324. u32 val;
  325. int i;
  326. val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
  327. MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 <<
  328. MDIO_CLK_SEL_SHIFT;
  329. iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
  330. ioread32(hw->hw_addr + REG_MDIO_CTRL);
  331. for (i = 0; i < MDIO_WAIT_TIMES; i++) {
  332. udelay(2);
  333. val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
  334. if (!(val & (MDIO_START | MDIO_BUSY)))
  335. break;
  336. }
  337. if (!(val & (MDIO_START | MDIO_BUSY))) {
  338. *phy_data = (u16) val;
  339. return 0;
  340. }
  341. return ATLX_ERR_PHY;
  342. }
  343. #define CUSTOM_SPI_CS_SETUP 2
  344. #define CUSTOM_SPI_CLK_HI 2
  345. #define CUSTOM_SPI_CLK_LO 2
  346. #define CUSTOM_SPI_CS_HOLD 2
  347. #define CUSTOM_SPI_CS_HI 3
  348. static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf)
  349. {
  350. int i;
  351. u32 value;
  352. iowrite32(0, hw->hw_addr + REG_SPI_DATA);
  353. iowrite32(addr, hw->hw_addr + REG_SPI_ADDR);
  354. value = SPI_FLASH_CTRL_WAIT_READY |
  355. (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
  356. SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI &
  357. SPI_FLASH_CTRL_CLK_HI_MASK) <<
  358. SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO &
  359. SPI_FLASH_CTRL_CLK_LO_MASK) <<
  360. SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD &
  361. SPI_FLASH_CTRL_CS_HOLD_MASK) <<
  362. SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI &
  363. SPI_FLASH_CTRL_CS_HI_MASK) <<
  364. SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) <<
  365. SPI_FLASH_CTRL_INS_SHIFT;
  366. iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
  367. value |= SPI_FLASH_CTRL_START;
  368. iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
  369. ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
  370. for (i = 0; i < 10; i++) {
  371. msleep(1);
  372. value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
  373. if (!(value & SPI_FLASH_CTRL_START))
  374. break;
  375. }
  376. if (value & SPI_FLASH_CTRL_START)
  377. return false;
  378. *buf = ioread32(hw->hw_addr + REG_SPI_DATA);
  379. return true;
  380. }
  381. /*
  382. * get_permanent_address
  383. * return 0 if get valid mac address,
  384. */
  385. static int atl1_get_permanent_address(struct atl1_hw *hw)
  386. {
  387. u32 addr[2];
  388. u32 i, control;
  389. u16 reg;
  390. u8 eth_addr[ETH_ALEN];
  391. bool key_valid;
  392. if (is_valid_ether_addr(hw->perm_mac_addr))
  393. return 0;
  394. /* init */
  395. addr[0] = addr[1] = 0;
  396. if (!atl1_check_eeprom_exist(hw)) {
  397. reg = 0;
  398. key_valid = false;
  399. /* Read out all EEPROM content */
  400. i = 0;
  401. while (1) {
  402. if (atl1_read_eeprom(hw, i + 0x100, &control)) {
  403. if (key_valid) {
  404. if (reg == REG_MAC_STA_ADDR)
  405. addr[0] = control;
  406. else if (reg == (REG_MAC_STA_ADDR + 4))
  407. addr[1] = control;
  408. key_valid = false;
  409. } else if ((control & 0xff) == 0x5A) {
  410. key_valid = true;
  411. reg = (u16) (control >> 16);
  412. } else
  413. break;
  414. } else
  415. /* read error */
  416. break;
  417. i += 4;
  418. }
  419. *(u32 *) &eth_addr[2] = swab32(addr[0]);
  420. *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
  421. if (is_valid_ether_addr(eth_addr)) {
  422. memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
  423. return 0;
  424. }
  425. }
  426. /* see if SPI FLAGS exist ? */
  427. addr[0] = addr[1] = 0;
  428. reg = 0;
  429. key_valid = false;
  430. i = 0;
  431. while (1) {
  432. if (atl1_spi_read(hw, i + 0x1f000, &control)) {
  433. if (key_valid) {
  434. if (reg == REG_MAC_STA_ADDR)
  435. addr[0] = control;
  436. else if (reg == (REG_MAC_STA_ADDR + 4))
  437. addr[1] = control;
  438. key_valid = false;
  439. } else if ((control & 0xff) == 0x5A) {
  440. key_valid = true;
  441. reg = (u16) (control >> 16);
  442. } else
  443. /* data end */
  444. break;
  445. } else
  446. /* read error */
  447. break;
  448. i += 4;
  449. }
  450. *(u32 *) &eth_addr[2] = swab32(addr[0]);
  451. *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
  452. if (is_valid_ether_addr(eth_addr)) {
  453. memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
  454. return 0;
  455. }
  456. /*
  457. * On some motherboards, the MAC address is written by the
  458. * BIOS directly to the MAC register during POST, and is
  459. * not stored in eeprom. If all else thus far has failed
  460. * to fetch the permanent MAC address, try reading it directly.
  461. */
  462. addr[0] = ioread32(hw->hw_addr + REG_MAC_STA_ADDR);
  463. addr[1] = ioread16(hw->hw_addr + (REG_MAC_STA_ADDR + 4));
  464. *(u32 *) &eth_addr[2] = swab32(addr[0]);
  465. *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
  466. if (is_valid_ether_addr(eth_addr)) {
  467. memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
  468. return 0;
  469. }
  470. return 1;
  471. }
  472. /*
  473. * Reads the adapter's MAC address from the EEPROM
  474. * hw - Struct containing variables accessed by shared code
  475. */
  476. static s32 atl1_read_mac_addr(struct atl1_hw *hw)
  477. {
  478. s32 ret = 0;
  479. u16 i;
  480. if (atl1_get_permanent_address(hw)) {
  481. eth_random_addr(hw->perm_mac_addr);
  482. ret = 1;
  483. }
  484. for (i = 0; i < ETH_ALEN; i++)
  485. hw->mac_addr[i] = hw->perm_mac_addr[i];
  486. return ret;
  487. }
  488. /*
  489. * Hashes an address to determine its location in the multicast table
  490. * hw - Struct containing variables accessed by shared code
  491. * mc_addr - the multicast address to hash
  492. *
  493. * atl1_hash_mc_addr
  494. * purpose
  495. * set hash value for a multicast address
  496. * hash calcu processing :
  497. * 1. calcu 32bit CRC for multicast address
  498. * 2. reverse crc with MSB to LSB
  499. */
  500. static u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr)
  501. {
  502. u32 crc32, value = 0;
  503. int i;
  504. crc32 = ether_crc_le(6, mc_addr);
  505. for (i = 0; i < 32; i++)
  506. value |= (((crc32 >> i) & 1) << (31 - i));
  507. return value;
  508. }
  509. /*
  510. * Sets the bit in the multicast table corresponding to the hash value.
  511. * hw - Struct containing variables accessed by shared code
  512. * hash_value - Multicast address hash value
  513. */
  514. static void atl1_hash_set(struct atl1_hw *hw, u32 hash_value)
  515. {
  516. u32 hash_bit, hash_reg;
  517. u32 mta;
  518. /*
  519. * The HASH Table is a register array of 2 32-bit registers.
  520. * It is treated like an array of 64 bits. We want to set
  521. * bit BitArray[hash_value]. So we figure out what register
  522. * the bit is in, read it, OR in the new bit, then write
  523. * back the new value. The register is determined by the
  524. * upper 7 bits of the hash value and the bit within that
  525. * register are determined by the lower 5 bits of the value.
  526. */
  527. hash_reg = (hash_value >> 31) & 0x1;
  528. hash_bit = (hash_value >> 26) & 0x1F;
  529. mta = ioread32((hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
  530. mta |= (1 << hash_bit);
  531. iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
  532. }
  533. /*
  534. * Writes a value to a PHY register
  535. * hw - Struct containing variables accessed by shared code
  536. * reg_addr - address of the PHY register to write
  537. * data - data to write to the PHY
  538. */
  539. static s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data)
  540. {
  541. int i;
  542. u32 val;
  543. val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
  544. (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
  545. MDIO_SUP_PREAMBLE |
  546. MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
  547. iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
  548. ioread32(hw->hw_addr + REG_MDIO_CTRL);
  549. for (i = 0; i < MDIO_WAIT_TIMES; i++) {
  550. udelay(2);
  551. val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
  552. if (!(val & (MDIO_START | MDIO_BUSY)))
  553. break;
  554. }
  555. if (!(val & (MDIO_START | MDIO_BUSY)))
  556. return 0;
  557. return ATLX_ERR_PHY;
  558. }
  559. /*
  560. * Make L001's PHY out of Power Saving State (bug)
  561. * hw - Struct containing variables accessed by shared code
  562. * when power on, L001's PHY always on Power saving State
  563. * (Gigabit Link forbidden)
  564. */
  565. static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw)
  566. {
  567. s32 ret;
  568. ret = atl1_write_phy_reg(hw, 29, 0x0029);
  569. if (ret)
  570. return ret;
  571. return atl1_write_phy_reg(hw, 30, 0);
  572. }
  573. /*
  574. * Resets the PHY and make all config validate
  575. * hw - Struct containing variables accessed by shared code
  576. *
  577. * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
  578. */
  579. static s32 atl1_phy_reset(struct atl1_hw *hw)
  580. {
  581. struct pci_dev *pdev = hw->back->pdev;
  582. struct atl1_adapter *adapter = hw->back;
  583. s32 ret_val;
  584. u16 phy_data;
  585. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
  586. hw->media_type == MEDIA_TYPE_1000M_FULL)
  587. phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
  588. else {
  589. switch (hw->media_type) {
  590. case MEDIA_TYPE_100M_FULL:
  591. phy_data =
  592. MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
  593. MII_CR_RESET;
  594. break;
  595. case MEDIA_TYPE_100M_HALF:
  596. phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
  597. break;
  598. case MEDIA_TYPE_10M_FULL:
  599. phy_data =
  600. MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
  601. break;
  602. default:
  603. /* MEDIA_TYPE_10M_HALF: */
  604. phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
  605. break;
  606. }
  607. }
  608. ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data);
  609. if (ret_val) {
  610. u32 val;
  611. int i;
  612. /* pcie serdes link may be down! */
  613. if (netif_msg_hw(adapter))
  614. dev_dbg(&pdev->dev, "pcie phy link down\n");
  615. for (i = 0; i < 25; i++) {
  616. msleep(1);
  617. val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
  618. if (!(val & (MDIO_START | MDIO_BUSY)))
  619. break;
  620. }
  621. if ((val & (MDIO_START | MDIO_BUSY)) != 0) {
  622. if (netif_msg_hw(adapter))
  623. dev_warn(&pdev->dev,
  624. "pcie link down at least 25ms\n");
  625. return ret_val;
  626. }
  627. }
  628. return 0;
  629. }
  630. /*
  631. * Configures PHY autoneg and flow control advertisement settings
  632. * hw - Struct containing variables accessed by shared code
  633. */
  634. static s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw)
  635. {
  636. s32 ret_val;
  637. s16 mii_autoneg_adv_reg;
  638. s16 mii_1000t_ctrl_reg;
  639. /* Read the MII Auto-Neg Advertisement Register (Address 4). */
  640. mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
  641. /* Read the MII 1000Base-T Control Register (Address 9). */
  642. mii_1000t_ctrl_reg = MII_ATLX_CR_1000T_DEFAULT_CAP_MASK;
  643. /*
  644. * First we clear all the 10/100 mb speed bits in the Auto-Neg
  645. * Advertisement Register (Address 4) and the 1000 mb speed bits in
  646. * the 1000Base-T Control Register (Address 9).
  647. */
  648. mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
  649. mii_1000t_ctrl_reg &= ~MII_ATLX_CR_1000T_SPEED_MASK;
  650. /*
  651. * Need to parse media_type and set up
  652. * the appropriate PHY registers.
  653. */
  654. switch (hw->media_type) {
  655. case MEDIA_TYPE_AUTO_SENSOR:
  656. mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS |
  657. MII_AR_10T_FD_CAPS |
  658. MII_AR_100TX_HD_CAPS |
  659. MII_AR_100TX_FD_CAPS);
  660. mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
  661. break;
  662. case MEDIA_TYPE_1000M_FULL:
  663. mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
  664. break;
  665. case MEDIA_TYPE_100M_FULL:
  666. mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
  667. break;
  668. case MEDIA_TYPE_100M_HALF:
  669. mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
  670. break;
  671. case MEDIA_TYPE_10M_FULL:
  672. mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
  673. break;
  674. default:
  675. mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
  676. break;
  677. }
  678. /* flow control fixed to enable all */
  679. mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
  680. hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
  681. hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
  682. ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
  683. if (ret_val)
  684. return ret_val;
  685. ret_val = atl1_write_phy_reg(hw, MII_ATLX_CR, mii_1000t_ctrl_reg);
  686. if (ret_val)
  687. return ret_val;
  688. return 0;
  689. }
  690. /*
  691. * Configures link settings.
  692. * hw - Struct containing variables accessed by shared code
  693. * Assumes the hardware has previously been reset and the
  694. * transmitter and receiver are not enabled.
  695. */
  696. static s32 atl1_setup_link(struct atl1_hw *hw)
  697. {
  698. struct pci_dev *pdev = hw->back->pdev;
  699. struct atl1_adapter *adapter = hw->back;
  700. s32 ret_val;
  701. /*
  702. * Options:
  703. * PHY will advertise value(s) parsed from
  704. * autoneg_advertised and fc
  705. * no matter what autoneg is , We will not wait link result.
  706. */
  707. ret_val = atl1_phy_setup_autoneg_adv(hw);
  708. if (ret_val) {
  709. if (netif_msg_link(adapter))
  710. dev_dbg(&pdev->dev,
  711. "error setting up autonegotiation\n");
  712. return ret_val;
  713. }
  714. /* SW.Reset , En-Auto-Neg if needed */
  715. ret_val = atl1_phy_reset(hw);
  716. if (ret_val) {
  717. if (netif_msg_link(adapter))
  718. dev_dbg(&pdev->dev, "error resetting phy\n");
  719. return ret_val;
  720. }
  721. hw->phy_configured = true;
  722. return ret_val;
  723. }
  724. static void atl1_init_flash_opcode(struct atl1_hw *hw)
  725. {
  726. if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
  727. /* Atmel */
  728. hw->flash_vendor = 0;
  729. /* Init OP table */
  730. iowrite8(flash_table[hw->flash_vendor].cmd_program,
  731. hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM);
  732. iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase,
  733. hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE);
  734. iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase,
  735. hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE);
  736. iowrite8(flash_table[hw->flash_vendor].cmd_rdid,
  737. hw->hw_addr + REG_SPI_FLASH_OP_RDID);
  738. iowrite8(flash_table[hw->flash_vendor].cmd_wren,
  739. hw->hw_addr + REG_SPI_FLASH_OP_WREN);
  740. iowrite8(flash_table[hw->flash_vendor].cmd_rdsr,
  741. hw->hw_addr + REG_SPI_FLASH_OP_RDSR);
  742. iowrite8(flash_table[hw->flash_vendor].cmd_wrsr,
  743. hw->hw_addr + REG_SPI_FLASH_OP_WRSR);
  744. iowrite8(flash_table[hw->flash_vendor].cmd_read,
  745. hw->hw_addr + REG_SPI_FLASH_OP_READ);
  746. }
  747. /*
  748. * Performs basic configuration of the adapter.
  749. * hw - Struct containing variables accessed by shared code
  750. * Assumes that the controller has previously been reset and is in a
  751. * post-reset uninitialized state. Initializes multicast table,
  752. * and Calls routines to setup link
  753. * Leaves the transmit and receive units disabled and uninitialized.
  754. */
  755. static s32 atl1_init_hw(struct atl1_hw *hw)
  756. {
  757. u32 ret_val = 0;
  758. /* Zero out the Multicast HASH table */
  759. iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE);
  760. /* clear the old settings from the multicast hash table */
  761. iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2));
  762. atl1_init_flash_opcode(hw);
  763. if (!hw->phy_configured) {
  764. /* enable GPHY LinkChange Interrupt */
  765. ret_val = atl1_write_phy_reg(hw, 18, 0xC00);
  766. if (ret_val)
  767. return ret_val;
  768. /* make PHY out of power-saving state */
  769. ret_val = atl1_phy_leave_power_saving(hw);
  770. if (ret_val)
  771. return ret_val;
  772. /* Call a subroutine to configure the link */
  773. ret_val = atl1_setup_link(hw);
  774. }
  775. return ret_val;
  776. }
  777. /*
  778. * Detects the current speed and duplex settings of the hardware.
  779. * hw - Struct containing variables accessed by shared code
  780. * speed - Speed of the connection
  781. * duplex - Duplex setting of the connection
  782. */
  783. static s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex)
  784. {
  785. struct pci_dev *pdev = hw->back->pdev;
  786. struct atl1_adapter *adapter = hw->back;
  787. s32 ret_val;
  788. u16 phy_data;
  789. /* ; --- Read PHY Specific Status Register (17) */
  790. ret_val = atl1_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
  791. if (ret_val)
  792. return ret_val;
  793. if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
  794. return ATLX_ERR_PHY_RES;
  795. switch (phy_data & MII_ATLX_PSSR_SPEED) {
  796. case MII_ATLX_PSSR_1000MBS:
  797. *speed = SPEED_1000;
  798. break;
  799. case MII_ATLX_PSSR_100MBS:
  800. *speed = SPEED_100;
  801. break;
  802. case MII_ATLX_PSSR_10MBS:
  803. *speed = SPEED_10;
  804. break;
  805. default:
  806. if (netif_msg_hw(adapter))
  807. dev_dbg(&pdev->dev, "error getting speed\n");
  808. return ATLX_ERR_PHY_SPEED;
  809. }
  810. if (phy_data & MII_ATLX_PSSR_DPLX)
  811. *duplex = FULL_DUPLEX;
  812. else
  813. *duplex = HALF_DUPLEX;
  814. return 0;
  815. }
  816. static void atl1_set_mac_addr(struct atl1_hw *hw)
  817. {
  818. u32 value;
  819. /*
  820. * 00-0B-6A-F6-00-DC
  821. * 0: 6AF600DC 1: 000B
  822. * low dword
  823. */
  824. value = (((u32) hw->mac_addr[2]) << 24) |
  825. (((u32) hw->mac_addr[3]) << 16) |
  826. (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5]));
  827. iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
  828. /* high dword */
  829. value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
  830. iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2));
  831. }
  832. /**
  833. * atl1_sw_init - Initialize general software structures (struct atl1_adapter)
  834. * @adapter: board private structure to initialize
  835. *
  836. * atl1_sw_init initializes the Adapter private data structure.
  837. * Fields are initialized based on PCI device information and
  838. * OS network device settings (MTU size).
  839. */
  840. static int atl1_sw_init(struct atl1_adapter *adapter)
  841. {
  842. struct atl1_hw *hw = &adapter->hw;
  843. struct net_device *netdev = adapter->netdev;
  844. hw->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
  845. hw->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
  846. adapter->wol = 0;
  847. device_set_wakeup_enable(&adapter->pdev->dev, false);
  848. adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7;
  849. adapter->ict = 50000; /* 100ms */
  850. adapter->link_speed = SPEED_0; /* hardware init */
  851. adapter->link_duplex = FULL_DUPLEX;
  852. hw->phy_configured = false;
  853. hw->preamble_len = 7;
  854. hw->ipgt = 0x60;
  855. hw->min_ifg = 0x50;
  856. hw->ipgr1 = 0x40;
  857. hw->ipgr2 = 0x60;
  858. hw->max_retry = 0xf;
  859. hw->lcol = 0x37;
  860. hw->jam_ipg = 7;
  861. hw->rfd_burst = 8;
  862. hw->rrd_burst = 8;
  863. hw->rfd_fetch_gap = 1;
  864. hw->rx_jumbo_th = adapter->rx_buffer_len / 8;
  865. hw->rx_jumbo_lkah = 1;
  866. hw->rrd_ret_timer = 16;
  867. hw->tpd_burst = 4;
  868. hw->tpd_fetch_th = 16;
  869. hw->txf_burst = 0x100;
  870. hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3;
  871. hw->tpd_fetch_gap = 1;
  872. hw->rcb_value = atl1_rcb_64;
  873. hw->dma_ord = atl1_dma_ord_enh;
  874. hw->dmar_block = atl1_dma_req_256;
  875. hw->dmaw_block = atl1_dma_req_256;
  876. hw->cmb_rrd = 4;
  877. hw->cmb_tpd = 4;
  878. hw->cmb_rx_timer = 1; /* about 2us */
  879. hw->cmb_tx_timer = 1; /* about 2us */
  880. hw->smb_timer = 100000; /* about 200ms */
  881. spin_lock_init(&adapter->lock);
  882. spin_lock_init(&adapter->mb_lock);
  883. return 0;
  884. }
  885. static int mdio_read(struct net_device *netdev, int phy_id, int reg_num)
  886. {
  887. struct atl1_adapter *adapter = netdev_priv(netdev);
  888. u16 result;
  889. atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result);
  890. return result;
  891. }
  892. static void mdio_write(struct net_device *netdev, int phy_id, int reg_num,
  893. int val)
  894. {
  895. struct atl1_adapter *adapter = netdev_priv(netdev);
  896. atl1_write_phy_reg(&adapter->hw, reg_num, val);
  897. }
  898. static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  899. {
  900. struct atl1_adapter *adapter = netdev_priv(netdev);
  901. unsigned long flags;
  902. int retval;
  903. if (!netif_running(netdev))
  904. return -EINVAL;
  905. spin_lock_irqsave(&adapter->lock, flags);
  906. retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL);
  907. spin_unlock_irqrestore(&adapter->lock, flags);
  908. return retval;
  909. }
  910. /**
  911. * atl1_setup_mem_resources - allocate Tx / RX descriptor resources
  912. * @adapter: board private structure
  913. *
  914. * Return 0 on success, negative on failure
  915. */
  916. static s32 atl1_setup_ring_resources(struct atl1_adapter *adapter)
  917. {
  918. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  919. struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
  920. struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
  921. struct atl1_ring_header *ring_header = &adapter->ring_header;
  922. struct pci_dev *pdev = adapter->pdev;
  923. int size;
  924. u8 offset = 0;
  925. size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count);
  926. tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL);
  927. if (unlikely(!tpd_ring->buffer_info)) {
  928. if (netif_msg_drv(adapter))
  929. dev_err(&pdev->dev, "kzalloc failed , size = D%d\n",
  930. size);
  931. goto err_nomem;
  932. }
  933. rfd_ring->buffer_info =
  934. (tpd_ring->buffer_info + tpd_ring->count);
  935. /*
  936. * real ring DMA buffer
  937. * each ring/block may need up to 8 bytes for alignment, hence the
  938. * additional 40 bytes tacked onto the end.
  939. */
  940. ring_header->size = size =
  941. sizeof(struct tx_packet_desc) * tpd_ring->count
  942. + sizeof(struct rx_free_desc) * rfd_ring->count
  943. + sizeof(struct rx_return_desc) * rrd_ring->count
  944. + sizeof(struct coals_msg_block)
  945. + sizeof(struct stats_msg_block)
  946. + 40;
  947. ring_header->desc = pci_alloc_consistent(pdev, ring_header->size,
  948. &ring_header->dma);
  949. if (unlikely(!ring_header->desc)) {
  950. if (netif_msg_drv(adapter))
  951. dev_err(&pdev->dev, "pci_alloc_consistent failed\n");
  952. goto err_nomem;
  953. }
  954. memset(ring_header->desc, 0, ring_header->size);
  955. /* init TPD ring */
  956. tpd_ring->dma = ring_header->dma;
  957. offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0;
  958. tpd_ring->dma += offset;
  959. tpd_ring->desc = (u8 *) ring_header->desc + offset;
  960. tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count;
  961. /* init RFD ring */
  962. rfd_ring->dma = tpd_ring->dma + tpd_ring->size;
  963. offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0;
  964. rfd_ring->dma += offset;
  965. rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset);
  966. rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count;
  967. /* init RRD ring */
  968. rrd_ring->dma = rfd_ring->dma + rfd_ring->size;
  969. offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0;
  970. rrd_ring->dma += offset;
  971. rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset);
  972. rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count;
  973. /* init CMB */
  974. adapter->cmb.dma = rrd_ring->dma + rrd_ring->size;
  975. offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0;
  976. adapter->cmb.dma += offset;
  977. adapter->cmb.cmb = (struct coals_msg_block *)
  978. ((u8 *) rrd_ring->desc + (rrd_ring->size + offset));
  979. /* init SMB */
  980. adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block);
  981. offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0;
  982. adapter->smb.dma += offset;
  983. adapter->smb.smb = (struct stats_msg_block *)
  984. ((u8 *) adapter->cmb.cmb +
  985. (sizeof(struct coals_msg_block) + offset));
  986. return 0;
  987. err_nomem:
  988. kfree(tpd_ring->buffer_info);
  989. return -ENOMEM;
  990. }
  991. static void atl1_init_ring_ptrs(struct atl1_adapter *adapter)
  992. {
  993. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  994. struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
  995. struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
  996. atomic_set(&tpd_ring->next_to_use, 0);
  997. atomic_set(&tpd_ring->next_to_clean, 0);
  998. rfd_ring->next_to_clean = 0;
  999. atomic_set(&rfd_ring->next_to_use, 0);
  1000. rrd_ring->next_to_use = 0;
  1001. atomic_set(&rrd_ring->next_to_clean, 0);
  1002. }
  1003. /**
  1004. * atl1_clean_rx_ring - Free RFD Buffers
  1005. * @adapter: board private structure
  1006. */
  1007. static void atl1_clean_rx_ring(struct atl1_adapter *adapter)
  1008. {
  1009. struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
  1010. struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
  1011. struct atl1_buffer *buffer_info;
  1012. struct pci_dev *pdev = adapter->pdev;
  1013. unsigned long size;
  1014. unsigned int i;
  1015. /* Free all the Rx ring sk_buffs */
  1016. for (i = 0; i < rfd_ring->count; i++) {
  1017. buffer_info = &rfd_ring->buffer_info[i];
  1018. if (buffer_info->dma) {
  1019. pci_unmap_page(pdev, buffer_info->dma,
  1020. buffer_info->length, PCI_DMA_FROMDEVICE);
  1021. buffer_info->dma = 0;
  1022. }
  1023. if (buffer_info->skb) {
  1024. dev_kfree_skb(buffer_info->skb);
  1025. buffer_info->skb = NULL;
  1026. }
  1027. }
  1028. size = sizeof(struct atl1_buffer) * rfd_ring->count;
  1029. memset(rfd_ring->buffer_info, 0, size);
  1030. /* Zero out the descriptor ring */
  1031. memset(rfd_ring->desc, 0, rfd_ring->size);
  1032. rfd_ring->next_to_clean = 0;
  1033. atomic_set(&rfd_ring->next_to_use, 0);
  1034. rrd_ring->next_to_use = 0;
  1035. atomic_set(&rrd_ring->next_to_clean, 0);
  1036. }
  1037. /**
  1038. * atl1_clean_tx_ring - Free Tx Buffers
  1039. * @adapter: board private structure
  1040. */
  1041. static void atl1_clean_tx_ring(struct atl1_adapter *adapter)
  1042. {
  1043. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  1044. struct atl1_buffer *buffer_info;
  1045. struct pci_dev *pdev = adapter->pdev;
  1046. unsigned long size;
  1047. unsigned int i;
  1048. /* Free all the Tx ring sk_buffs */
  1049. for (i = 0; i < tpd_ring->count; i++) {
  1050. buffer_info = &tpd_ring->buffer_info[i];
  1051. if (buffer_info->dma) {
  1052. pci_unmap_page(pdev, buffer_info->dma,
  1053. buffer_info->length, PCI_DMA_TODEVICE);
  1054. buffer_info->dma = 0;
  1055. }
  1056. }
  1057. for (i = 0; i < tpd_ring->count; i++) {
  1058. buffer_info = &tpd_ring->buffer_info[i];
  1059. if (buffer_info->skb) {
  1060. dev_kfree_skb_any(buffer_info->skb);
  1061. buffer_info->skb = NULL;
  1062. }
  1063. }
  1064. size = sizeof(struct atl1_buffer) * tpd_ring->count;
  1065. memset(tpd_ring->buffer_info, 0, size);
  1066. /* Zero out the descriptor ring */
  1067. memset(tpd_ring->desc, 0, tpd_ring->size);
  1068. atomic_set(&tpd_ring->next_to_use, 0);
  1069. atomic_set(&tpd_ring->next_to_clean, 0);
  1070. }
  1071. /**
  1072. * atl1_free_ring_resources - Free Tx / RX descriptor Resources
  1073. * @adapter: board private structure
  1074. *
  1075. * Free all transmit software resources
  1076. */
  1077. static void atl1_free_ring_resources(struct atl1_adapter *adapter)
  1078. {
  1079. struct pci_dev *pdev = adapter->pdev;
  1080. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  1081. struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
  1082. struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
  1083. struct atl1_ring_header *ring_header = &adapter->ring_header;
  1084. atl1_clean_tx_ring(adapter);
  1085. atl1_clean_rx_ring(adapter);
  1086. kfree(tpd_ring->buffer_info);
  1087. pci_free_consistent(pdev, ring_header->size, ring_header->desc,
  1088. ring_header->dma);
  1089. tpd_ring->buffer_info = NULL;
  1090. tpd_ring->desc = NULL;
  1091. tpd_ring->dma = 0;
  1092. rfd_ring->buffer_info = NULL;
  1093. rfd_ring->desc = NULL;
  1094. rfd_ring->dma = 0;
  1095. rrd_ring->desc = NULL;
  1096. rrd_ring->dma = 0;
  1097. adapter->cmb.dma = 0;
  1098. adapter->cmb.cmb = NULL;
  1099. adapter->smb.dma = 0;
  1100. adapter->smb.smb = NULL;
  1101. }
  1102. static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter)
  1103. {
  1104. u32 value;
  1105. struct atl1_hw *hw = &adapter->hw;
  1106. struct net_device *netdev = adapter->netdev;
  1107. /* Config MAC CTRL Register */
  1108. value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN;
  1109. /* duplex */
  1110. if (FULL_DUPLEX == adapter->link_duplex)
  1111. value |= MAC_CTRL_DUPLX;
  1112. /* speed */
  1113. value |= ((u32) ((SPEED_1000 == adapter->link_speed) ?
  1114. MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) <<
  1115. MAC_CTRL_SPEED_SHIFT);
  1116. /* flow control */
  1117. value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
  1118. /* PAD & CRC */
  1119. value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
  1120. /* preamble length */
  1121. value |= (((u32) adapter->hw.preamble_len
  1122. & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
  1123. /* vlan */
  1124. __atlx_vlan_mode(netdev->features, &value);
  1125. /* rx checksum
  1126. if (adapter->rx_csum)
  1127. value |= MAC_CTRL_RX_CHKSUM_EN;
  1128. */
  1129. /* filter mode */
  1130. value |= MAC_CTRL_BC_EN;
  1131. if (netdev->flags & IFF_PROMISC)
  1132. value |= MAC_CTRL_PROMIS_EN;
  1133. else if (netdev->flags & IFF_ALLMULTI)
  1134. value |= MAC_CTRL_MC_ALL_EN;
  1135. /* value |= MAC_CTRL_LOOPBACK; */
  1136. iowrite32(value, hw->hw_addr + REG_MAC_CTRL);
  1137. }
  1138. static u32 atl1_check_link(struct atl1_adapter *adapter)
  1139. {
  1140. struct atl1_hw *hw = &adapter->hw;
  1141. struct net_device *netdev = adapter->netdev;
  1142. u32 ret_val;
  1143. u16 speed, duplex, phy_data;
  1144. int reconfig = 0;
  1145. /* MII_BMSR must read twice */
  1146. atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
  1147. atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
  1148. if (!(phy_data & BMSR_LSTATUS)) {
  1149. /* link down */
  1150. if (netif_carrier_ok(netdev)) {
  1151. /* old link state: Up */
  1152. if (netif_msg_link(adapter))
  1153. dev_info(&adapter->pdev->dev, "link is down\n");
  1154. adapter->link_speed = SPEED_0;
  1155. netif_carrier_off(netdev);
  1156. }
  1157. return 0;
  1158. }
  1159. /* Link Up */
  1160. ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
  1161. if (ret_val)
  1162. return ret_val;
  1163. switch (hw->media_type) {
  1164. case MEDIA_TYPE_1000M_FULL:
  1165. if (speed != SPEED_1000 || duplex != FULL_DUPLEX)
  1166. reconfig = 1;
  1167. break;
  1168. case MEDIA_TYPE_100M_FULL:
  1169. if (speed != SPEED_100 || duplex != FULL_DUPLEX)
  1170. reconfig = 1;
  1171. break;
  1172. case MEDIA_TYPE_100M_HALF:
  1173. if (speed != SPEED_100 || duplex != HALF_DUPLEX)
  1174. reconfig = 1;
  1175. break;
  1176. case MEDIA_TYPE_10M_FULL:
  1177. if (speed != SPEED_10 || duplex != FULL_DUPLEX)
  1178. reconfig = 1;
  1179. break;
  1180. case MEDIA_TYPE_10M_HALF:
  1181. if (speed != SPEED_10 || duplex != HALF_DUPLEX)
  1182. reconfig = 1;
  1183. break;
  1184. }
  1185. /* link result is our setting */
  1186. if (!reconfig) {
  1187. if (adapter->link_speed != speed ||
  1188. adapter->link_duplex != duplex) {
  1189. adapter->link_speed = speed;
  1190. adapter->link_duplex = duplex;
  1191. atl1_setup_mac_ctrl(adapter);
  1192. if (netif_msg_link(adapter))
  1193. dev_info(&adapter->pdev->dev,
  1194. "%s link is up %d Mbps %s\n",
  1195. netdev->name, adapter->link_speed,
  1196. adapter->link_duplex == FULL_DUPLEX ?
  1197. "full duplex" : "half duplex");
  1198. }
  1199. if (!netif_carrier_ok(netdev)) {
  1200. /* Link down -> Up */
  1201. netif_carrier_on(netdev);
  1202. }
  1203. return 0;
  1204. }
  1205. /* change original link status */
  1206. if (netif_carrier_ok(netdev)) {
  1207. adapter->link_speed = SPEED_0;
  1208. netif_carrier_off(netdev);
  1209. netif_stop_queue(netdev);
  1210. }
  1211. if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR &&
  1212. hw->media_type != MEDIA_TYPE_1000M_FULL) {
  1213. switch (hw->media_type) {
  1214. case MEDIA_TYPE_100M_FULL:
  1215. phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
  1216. MII_CR_RESET;
  1217. break;
  1218. case MEDIA_TYPE_100M_HALF:
  1219. phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
  1220. break;
  1221. case MEDIA_TYPE_10M_FULL:
  1222. phy_data =
  1223. MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
  1224. break;
  1225. default:
  1226. /* MEDIA_TYPE_10M_HALF: */
  1227. phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
  1228. break;
  1229. }
  1230. atl1_write_phy_reg(hw, MII_BMCR, phy_data);
  1231. return 0;
  1232. }
  1233. /* auto-neg, insert timer to re-config phy */
  1234. if (!adapter->phy_timer_pending) {
  1235. adapter->phy_timer_pending = true;
  1236. mod_timer(&adapter->phy_config_timer,
  1237. round_jiffies(jiffies + 3 * HZ));
  1238. }
  1239. return 0;
  1240. }
  1241. static void set_flow_ctrl_old(struct atl1_adapter *adapter)
  1242. {
  1243. u32 hi, lo, value;
  1244. /* RFD Flow Control */
  1245. value = adapter->rfd_ring.count;
  1246. hi = value / 16;
  1247. if (hi < 2)
  1248. hi = 2;
  1249. lo = value * 7 / 8;
  1250. value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
  1251. ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
  1252. iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
  1253. /* RRD Flow Control */
  1254. value = adapter->rrd_ring.count;
  1255. lo = value / 16;
  1256. hi = value * 7 / 8;
  1257. if (lo < 2)
  1258. lo = 2;
  1259. value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
  1260. ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
  1261. iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
  1262. }
  1263. static void set_flow_ctrl_new(struct atl1_hw *hw)
  1264. {
  1265. u32 hi, lo, value;
  1266. /* RXF Flow Control */
  1267. value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN);
  1268. lo = value / 16;
  1269. if (lo < 192)
  1270. lo = 192;
  1271. hi = value * 7 / 8;
  1272. if (hi < lo)
  1273. hi = lo + 16;
  1274. value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
  1275. ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
  1276. iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
  1277. /* RRD Flow Control */
  1278. value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN);
  1279. lo = value / 8;
  1280. hi = value * 7 / 8;
  1281. if (lo < 2)
  1282. lo = 2;
  1283. if (hi < lo)
  1284. hi = lo + 3;
  1285. value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
  1286. ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
  1287. iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
  1288. }
  1289. /**
  1290. * atl1_configure - Configure Transmit&Receive Unit after Reset
  1291. * @adapter: board private structure
  1292. *
  1293. * Configure the Tx /Rx unit of the MAC after a reset.
  1294. */
  1295. static u32 atl1_configure(struct atl1_adapter *adapter)
  1296. {
  1297. struct atl1_hw *hw = &adapter->hw;
  1298. u32 value;
  1299. /* clear interrupt status */
  1300. iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR);
  1301. /* set MAC Address */
  1302. value = (((u32) hw->mac_addr[2]) << 24) |
  1303. (((u32) hw->mac_addr[3]) << 16) |
  1304. (((u32) hw->mac_addr[4]) << 8) |
  1305. (((u32) hw->mac_addr[5]));
  1306. iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
  1307. value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
  1308. iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4));
  1309. /* tx / rx ring */
  1310. /* HI base address */
  1311. iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32),
  1312. hw->hw_addr + REG_DESC_BASE_ADDR_HI);
  1313. /* LO base address */
  1314. iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL),
  1315. hw->hw_addr + REG_DESC_RFD_ADDR_LO);
  1316. iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL),
  1317. hw->hw_addr + REG_DESC_RRD_ADDR_LO);
  1318. iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL),
  1319. hw->hw_addr + REG_DESC_TPD_ADDR_LO);
  1320. iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL),
  1321. hw->hw_addr + REG_DESC_CMB_ADDR_LO);
  1322. iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL),
  1323. hw->hw_addr + REG_DESC_SMB_ADDR_LO);
  1324. /* element count */
  1325. value = adapter->rrd_ring.count;
  1326. value <<= 16;
  1327. value += adapter->rfd_ring.count;
  1328. iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE);
  1329. iowrite32(adapter->tpd_ring.count, hw->hw_addr +
  1330. REG_DESC_TPD_RING_SIZE);
  1331. /* Load Ptr */
  1332. iowrite32(1, hw->hw_addr + REG_LOAD_PTR);
  1333. /* config Mailbox */
  1334. value = ((atomic_read(&adapter->tpd_ring.next_to_use)
  1335. & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) |
  1336. ((atomic_read(&adapter->rrd_ring.next_to_clean)
  1337. & MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) |
  1338. ((atomic_read(&adapter->rfd_ring.next_to_use)
  1339. & MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT);
  1340. iowrite32(value, hw->hw_addr + REG_MAILBOX);
  1341. /* config IPG/IFG */
  1342. value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK)
  1343. << MAC_IPG_IFG_IPGT_SHIFT) |
  1344. (((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK)
  1345. << MAC_IPG_IFG_MIFG_SHIFT) |
  1346. (((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK)
  1347. << MAC_IPG_IFG_IPGR1_SHIFT) |
  1348. (((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK)
  1349. << MAC_IPG_IFG_IPGR2_SHIFT);
  1350. iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG);
  1351. /* config Half-Duplex Control */
  1352. value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
  1353. (((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK)
  1354. << MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
  1355. MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
  1356. (0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
  1357. (((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK)
  1358. << MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
  1359. iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL);
  1360. /* set Interrupt Moderator Timer */
  1361. iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT);
  1362. iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL);
  1363. /* set Interrupt Clear Timer */
  1364. iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER);
  1365. /* set max frame size hw will accept */
  1366. iowrite32(hw->max_frame_size, hw->hw_addr + REG_MTU);
  1367. /* jumbo size & rrd retirement timer */
  1368. value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK)
  1369. << RXQ_JMBOSZ_TH_SHIFT) |
  1370. (((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK)
  1371. << RXQ_JMBO_LKAH_SHIFT) |
  1372. (((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK)
  1373. << RXQ_RRD_TIMER_SHIFT);
  1374. iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM);
  1375. /* Flow Control */
  1376. switch (hw->dev_rev) {
  1377. case 0x8001:
  1378. case 0x9001:
  1379. case 0x9002:
  1380. case 0x9003:
  1381. set_flow_ctrl_old(adapter);
  1382. break;
  1383. default:
  1384. set_flow_ctrl_new(hw);
  1385. break;
  1386. }
  1387. /* config TXQ */
  1388. value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK)
  1389. << TXQ_CTRL_TPD_BURST_NUM_SHIFT) |
  1390. (((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK)
  1391. << TXQ_CTRL_TXF_BURST_NUM_SHIFT) |
  1392. (((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK)
  1393. << TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE |
  1394. TXQ_CTRL_EN;
  1395. iowrite32(value, hw->hw_addr + REG_TXQ_CTRL);
  1396. /* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */
  1397. value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK)
  1398. << TX_JUMBO_TASK_TH_SHIFT) |
  1399. (((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK)
  1400. << TX_TPD_MIN_IPG_SHIFT);
  1401. iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG);
  1402. /* config RXQ */
  1403. value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK)
  1404. << RXQ_CTRL_RFD_BURST_NUM_SHIFT) |
  1405. (((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK)
  1406. << RXQ_CTRL_RRD_BURST_THRESH_SHIFT) |
  1407. (((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK)
  1408. << RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) | RXQ_CTRL_CUT_THRU_EN |
  1409. RXQ_CTRL_EN;
  1410. iowrite32(value, hw->hw_addr + REG_RXQ_CTRL);
  1411. /* config DMA Engine */
  1412. value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
  1413. << DMA_CTRL_DMAR_BURST_LEN_SHIFT) |
  1414. ((((u32) hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
  1415. << DMA_CTRL_DMAW_BURST_LEN_SHIFT) | DMA_CTRL_DMAR_EN |
  1416. DMA_CTRL_DMAW_EN;
  1417. value |= (u32) hw->dma_ord;
  1418. if (atl1_rcb_128 == hw->rcb_value)
  1419. value |= DMA_CTRL_RCB_VALUE;
  1420. iowrite32(value, hw->hw_addr + REG_DMA_CTRL);
  1421. /* config CMB / SMB */
  1422. value = (hw->cmb_tpd > adapter->tpd_ring.count) ?
  1423. hw->cmb_tpd : adapter->tpd_ring.count;
  1424. value <<= 16;
  1425. value |= hw->cmb_rrd;
  1426. iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH);
  1427. value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16);
  1428. iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER);
  1429. iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER);
  1430. /* --- enable CMB / SMB */
  1431. value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN;
  1432. iowrite32(value, hw->hw_addr + REG_CSMB_CTRL);
  1433. value = ioread32(adapter->hw.hw_addr + REG_ISR);
  1434. if (unlikely((value & ISR_PHY_LINKDOWN) != 0))
  1435. value = 1; /* config failed */
  1436. else
  1437. value = 0;
  1438. /* clear all interrupt status */
  1439. iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR);
  1440. iowrite32(0, adapter->hw.hw_addr + REG_ISR);
  1441. return value;
  1442. }
  1443. /*
  1444. * atl1_pcie_patch - Patch for PCIE module
  1445. */
  1446. static void atl1_pcie_patch(struct atl1_adapter *adapter)
  1447. {
  1448. u32 value;
  1449. /* much vendor magic here */
  1450. value = 0x6500;
  1451. iowrite32(value, adapter->hw.hw_addr + 0x12FC);
  1452. /* pcie flow control mode change */
  1453. value = ioread32(adapter->hw.hw_addr + 0x1008);
  1454. value |= 0x8000;
  1455. iowrite32(value, adapter->hw.hw_addr + 0x1008);
  1456. }
  1457. /*
  1458. * When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400
  1459. * on PCI Command register is disable.
  1460. * The function enable this bit.
  1461. * Brackett, 2006/03/15
  1462. */
  1463. static void atl1_via_workaround(struct atl1_adapter *adapter)
  1464. {
  1465. unsigned long value;
  1466. value = ioread16(adapter->hw.hw_addr + PCI_COMMAND);
  1467. if (value & PCI_COMMAND_INTX_DISABLE)
  1468. value &= ~PCI_COMMAND_INTX_DISABLE;
  1469. iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND);
  1470. }
  1471. static void atl1_inc_smb(struct atl1_adapter *adapter)
  1472. {
  1473. struct net_device *netdev = adapter->netdev;
  1474. struct stats_msg_block *smb = adapter->smb.smb;
  1475. u64 new_rx_errors = smb->rx_frag +
  1476. smb->rx_fcs_err +
  1477. smb->rx_len_err +
  1478. smb->rx_sz_ov +
  1479. smb->rx_rxf_ov +
  1480. smb->rx_rrd_ov +
  1481. smb->rx_align_err;
  1482. u64 new_tx_errors = smb->tx_late_col +
  1483. smb->tx_abort_col +
  1484. smb->tx_underrun +
  1485. smb->tx_trunc;
  1486. /* Fill out the OS statistics structure */
  1487. adapter->soft_stats.rx_packets += smb->rx_ok + new_rx_errors;
  1488. adapter->soft_stats.tx_packets += smb->tx_ok + new_tx_errors;
  1489. adapter->soft_stats.rx_bytes += smb->rx_byte_cnt;
  1490. adapter->soft_stats.tx_bytes += smb->tx_byte_cnt;
  1491. adapter->soft_stats.multicast += smb->rx_mcast;
  1492. adapter->soft_stats.collisions += smb->tx_1_col +
  1493. smb->tx_2_col +
  1494. smb->tx_late_col +
  1495. smb->tx_abort_col;
  1496. /* Rx Errors */
  1497. adapter->soft_stats.rx_errors += new_rx_errors;
  1498. adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov;
  1499. adapter->soft_stats.rx_length_errors += smb->rx_len_err;
  1500. adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err;
  1501. adapter->soft_stats.rx_frame_errors += smb->rx_align_err;
  1502. adapter->soft_stats.rx_pause += smb->rx_pause;
  1503. adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov;
  1504. adapter->soft_stats.rx_trunc += smb->rx_sz_ov;
  1505. /* Tx Errors */
  1506. adapter->soft_stats.tx_errors += new_tx_errors;
  1507. adapter->soft_stats.tx_fifo_errors += smb->tx_underrun;
  1508. adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col;
  1509. adapter->soft_stats.tx_window_errors += smb->tx_late_col;
  1510. adapter->soft_stats.excecol += smb->tx_abort_col;
  1511. adapter->soft_stats.deffer += smb->tx_defer;
  1512. adapter->soft_stats.scc += smb->tx_1_col;
  1513. adapter->soft_stats.mcc += smb->tx_2_col;
  1514. adapter->soft_stats.latecol += smb->tx_late_col;
  1515. adapter->soft_stats.tx_underun += smb->tx_underrun;
  1516. adapter->soft_stats.tx_trunc += smb->tx_trunc;
  1517. adapter->soft_stats.tx_pause += smb->tx_pause;
  1518. netdev->stats.rx_bytes = adapter->soft_stats.rx_bytes;
  1519. netdev->stats.tx_bytes = adapter->soft_stats.tx_bytes;
  1520. netdev->stats.multicast = adapter->soft_stats.multicast;
  1521. netdev->stats.collisions = adapter->soft_stats.collisions;
  1522. netdev->stats.rx_errors = adapter->soft_stats.rx_errors;
  1523. netdev->stats.rx_length_errors =
  1524. adapter->soft_stats.rx_length_errors;
  1525. netdev->stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors;
  1526. netdev->stats.rx_frame_errors =
  1527. adapter->soft_stats.rx_frame_errors;
  1528. netdev->stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors;
  1529. netdev->stats.rx_dropped = adapter->soft_stats.rx_rrd_ov;
  1530. netdev->stats.tx_errors = adapter->soft_stats.tx_errors;
  1531. netdev->stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors;
  1532. netdev->stats.tx_aborted_errors =
  1533. adapter->soft_stats.tx_aborted_errors;
  1534. netdev->stats.tx_window_errors =
  1535. adapter->soft_stats.tx_window_errors;
  1536. netdev->stats.tx_carrier_errors =
  1537. adapter->soft_stats.tx_carrier_errors;
  1538. netdev->stats.rx_packets = adapter->soft_stats.rx_packets;
  1539. netdev->stats.tx_packets = adapter->soft_stats.tx_packets;
  1540. }
  1541. static void atl1_update_mailbox(struct atl1_adapter *adapter)
  1542. {
  1543. unsigned long flags;
  1544. u32 tpd_next_to_use;
  1545. u32 rfd_next_to_use;
  1546. u32 rrd_next_to_clean;
  1547. u32 value;
  1548. spin_lock_irqsave(&adapter->mb_lock, flags);
  1549. tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
  1550. rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use);
  1551. rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean);
  1552. value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
  1553. MB_RFD_PROD_INDX_SHIFT) |
  1554. ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
  1555. MB_RRD_CONS_INDX_SHIFT) |
  1556. ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
  1557. MB_TPD_PROD_INDX_SHIFT);
  1558. iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
  1559. spin_unlock_irqrestore(&adapter->mb_lock, flags);
  1560. }
  1561. static void atl1_clean_alloc_flag(struct atl1_adapter *adapter,
  1562. struct rx_return_desc *rrd, u16 offset)
  1563. {
  1564. struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
  1565. while (rfd_ring->next_to_clean != (rrd->buf_indx + offset)) {
  1566. rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced = 0;
  1567. if (++rfd_ring->next_to_clean == rfd_ring->count) {
  1568. rfd_ring->next_to_clean = 0;
  1569. }
  1570. }
  1571. }
  1572. static void atl1_update_rfd_index(struct atl1_adapter *adapter,
  1573. struct rx_return_desc *rrd)
  1574. {
  1575. u16 num_buf;
  1576. num_buf = (rrd->xsz.xsum_sz.pkt_size + adapter->rx_buffer_len - 1) /
  1577. adapter->rx_buffer_len;
  1578. if (rrd->num_buf == num_buf)
  1579. /* clean alloc flag for bad rrd */
  1580. atl1_clean_alloc_flag(adapter, rrd, num_buf);
  1581. }
  1582. static void atl1_rx_checksum(struct atl1_adapter *adapter,
  1583. struct rx_return_desc *rrd, struct sk_buff *skb)
  1584. {
  1585. struct pci_dev *pdev = adapter->pdev;
  1586. /*
  1587. * The L1 hardware contains a bug that erroneously sets the
  1588. * PACKET_FLAG_ERR and ERR_FLAG_L4_CHKSUM bits whenever a
  1589. * fragmented IP packet is received, even though the packet
  1590. * is perfectly valid and its checksum is correct. There's
  1591. * no way to distinguish between one of these good packets
  1592. * and a packet that actually contains a TCP/UDP checksum
  1593. * error, so all we can do is allow it to be handed up to
  1594. * the higher layers and let it be sorted out there.
  1595. */
  1596. skb_checksum_none_assert(skb);
  1597. if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
  1598. if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC |
  1599. ERR_FLAG_CODE | ERR_FLAG_OV)) {
  1600. adapter->hw_csum_err++;
  1601. if (netif_msg_rx_err(adapter))
  1602. dev_printk(KERN_DEBUG, &pdev->dev,
  1603. "rx checksum error\n");
  1604. return;
  1605. }
  1606. }
  1607. /* not IPv4 */
  1608. if (!(rrd->pkt_flg & PACKET_FLAG_IPV4))
  1609. /* checksum is invalid, but it's not an IPv4 pkt, so ok */
  1610. return;
  1611. /* IPv4 packet */
  1612. if (likely(!(rrd->err_flg &
  1613. (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) {
  1614. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1615. adapter->hw_csum_good++;
  1616. return;
  1617. }
  1618. }
  1619. /**
  1620. * atl1_alloc_rx_buffers - Replace used receive buffers
  1621. * @adapter: address of board private structure
  1622. */
  1623. static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter)
  1624. {
  1625. struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
  1626. struct pci_dev *pdev = adapter->pdev;
  1627. struct page *page;
  1628. unsigned long offset;
  1629. struct atl1_buffer *buffer_info, *next_info;
  1630. struct sk_buff *skb;
  1631. u16 num_alloc = 0;
  1632. u16 rfd_next_to_use, next_next;
  1633. struct rx_free_desc *rfd_desc;
  1634. next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use);
  1635. if (++next_next == rfd_ring->count)
  1636. next_next = 0;
  1637. buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
  1638. next_info = &rfd_ring->buffer_info[next_next];
  1639. while (!buffer_info->alloced && !next_info->alloced) {
  1640. if (buffer_info->skb) {
  1641. buffer_info->alloced = 1;
  1642. goto next;
  1643. }
  1644. rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use);
  1645. skb = netdev_alloc_skb_ip_align(adapter->netdev,
  1646. adapter->rx_buffer_len);
  1647. if (unlikely(!skb)) {
  1648. /* Better luck next round */
  1649. adapter->soft_stats.rx_dropped++;
  1650. break;
  1651. }
  1652. buffer_info->alloced = 1;
  1653. buffer_info->skb = skb;
  1654. buffer_info->length = (u16) adapter->rx_buffer_len;
  1655. page = virt_to_page(skb->data);
  1656. offset = (unsigned long)skb->data & ~PAGE_MASK;
  1657. buffer_info->dma = pci_map_page(pdev, page, offset,
  1658. adapter->rx_buffer_len,
  1659. PCI_DMA_FROMDEVICE);
  1660. rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
  1661. rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len);
  1662. rfd_desc->coalese = 0;
  1663. next:
  1664. rfd_next_to_use = next_next;
  1665. if (unlikely(++next_next == rfd_ring->count))
  1666. next_next = 0;
  1667. buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
  1668. next_info = &rfd_ring->buffer_info[next_next];
  1669. num_alloc++;
  1670. }
  1671. if (num_alloc) {
  1672. /*
  1673. * Force memory writes to complete before letting h/w
  1674. * know there are new descriptors to fetch. (Only
  1675. * applicable for weak-ordered memory model archs,
  1676. * such as IA-64).
  1677. */
  1678. wmb();
  1679. atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use);
  1680. }
  1681. return num_alloc;
  1682. }
  1683. static int atl1_intr_rx(struct atl1_adapter *adapter, int budget)
  1684. {
  1685. int i, count;
  1686. u16 length;
  1687. u16 rrd_next_to_clean;
  1688. u32 value;
  1689. struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
  1690. struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
  1691. struct atl1_buffer *buffer_info;
  1692. struct rx_return_desc *rrd;
  1693. struct sk_buff *skb;
  1694. count = 0;
  1695. rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean);
  1696. while (count < budget) {
  1697. rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean);
  1698. i = 1;
  1699. if (likely(rrd->xsz.valid)) { /* packet valid */
  1700. chk_rrd:
  1701. /* check rrd status */
  1702. if (likely(rrd->num_buf == 1))
  1703. goto rrd_ok;
  1704. else if (netif_msg_rx_err(adapter)) {
  1705. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1706. "unexpected RRD buffer count\n");
  1707. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1708. "rx_buf_len = %d\n",
  1709. adapter->rx_buffer_len);
  1710. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1711. "RRD num_buf = %d\n",
  1712. rrd->num_buf);
  1713. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1714. "RRD pkt_len = %d\n",
  1715. rrd->xsz.xsum_sz.pkt_size);
  1716. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1717. "RRD pkt_flg = 0x%08X\n",
  1718. rrd->pkt_flg);
  1719. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1720. "RRD err_flg = 0x%08X\n",
  1721. rrd->err_flg);
  1722. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1723. "RRD vlan_tag = 0x%08X\n",
  1724. rrd->vlan_tag);
  1725. }
  1726. /* rrd seems to be bad */
  1727. if (unlikely(i-- > 0)) {
  1728. /* rrd may not be DMAed completely */
  1729. udelay(1);
  1730. goto chk_rrd;
  1731. }
  1732. /* bad rrd */
  1733. if (netif_msg_rx_err(adapter))
  1734. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1735. "bad RRD\n");
  1736. /* see if update RFD index */
  1737. if (rrd->num_buf > 1)
  1738. atl1_update_rfd_index(adapter, rrd);
  1739. /* update rrd */
  1740. rrd->xsz.valid = 0;
  1741. if (++rrd_next_to_clean == rrd_ring->count)
  1742. rrd_next_to_clean = 0;
  1743. count++;
  1744. continue;
  1745. } else { /* current rrd still not be updated */
  1746. break;
  1747. }
  1748. rrd_ok:
  1749. /* clean alloc flag for bad rrd */
  1750. atl1_clean_alloc_flag(adapter, rrd, 0);
  1751. buffer_info = &rfd_ring->buffer_info[rrd->buf_indx];
  1752. if (++rfd_ring->next_to_clean == rfd_ring->count)
  1753. rfd_ring->next_to_clean = 0;
  1754. /* update rrd next to clean */
  1755. if (++rrd_next_to_clean == rrd_ring->count)
  1756. rrd_next_to_clean = 0;
  1757. count++;
  1758. if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
  1759. if (!(rrd->err_flg &
  1760. (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM
  1761. | ERR_FLAG_LEN))) {
  1762. /* packet error, don't need upstream */
  1763. buffer_info->alloced = 0;
  1764. rrd->xsz.valid = 0;
  1765. continue;
  1766. }
  1767. }
  1768. /* Good Receive */
  1769. pci_unmap_page(adapter->pdev, buffer_info->dma,
  1770. buffer_info->length, PCI_DMA_FROMDEVICE);
  1771. buffer_info->dma = 0;
  1772. skb = buffer_info->skb;
  1773. length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size);
  1774. skb_put(skb, length - ETH_FCS_LEN);
  1775. /* Receive Checksum Offload */
  1776. atl1_rx_checksum(adapter, rrd, skb);
  1777. skb->protocol = eth_type_trans(skb, adapter->netdev);
  1778. if (rrd->pkt_flg & PACKET_FLAG_VLAN_INS) {
  1779. u16 vlan_tag = (rrd->vlan_tag >> 4) |
  1780. ((rrd->vlan_tag & 7) << 13) |
  1781. ((rrd->vlan_tag & 8) << 9);
  1782. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
  1783. }
  1784. netif_receive_skb(skb);
  1785. /* let protocol layer free skb */
  1786. buffer_info->skb = NULL;
  1787. buffer_info->alloced = 0;
  1788. rrd->xsz.valid = 0;
  1789. }
  1790. atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean);
  1791. atl1_alloc_rx_buffers(adapter);
  1792. /* update mailbox ? */
  1793. if (count) {
  1794. u32 tpd_next_to_use;
  1795. u32 rfd_next_to_use;
  1796. spin_lock(&adapter->mb_lock);
  1797. tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
  1798. rfd_next_to_use =
  1799. atomic_read(&adapter->rfd_ring.next_to_use);
  1800. rrd_next_to_clean =
  1801. atomic_read(&adapter->rrd_ring.next_to_clean);
  1802. value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
  1803. MB_RFD_PROD_INDX_SHIFT) |
  1804. ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
  1805. MB_RRD_CONS_INDX_SHIFT) |
  1806. ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
  1807. MB_TPD_PROD_INDX_SHIFT);
  1808. iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
  1809. spin_unlock(&adapter->mb_lock);
  1810. }
  1811. return count;
  1812. }
  1813. static int atl1_intr_tx(struct atl1_adapter *adapter)
  1814. {
  1815. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  1816. struct atl1_buffer *buffer_info;
  1817. u16 sw_tpd_next_to_clean;
  1818. u16 cmb_tpd_next_to_clean;
  1819. int count = 0;
  1820. sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean);
  1821. cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx);
  1822. while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) {
  1823. buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean];
  1824. if (buffer_info->dma) {
  1825. pci_unmap_page(adapter->pdev, buffer_info->dma,
  1826. buffer_info->length, PCI_DMA_TODEVICE);
  1827. buffer_info->dma = 0;
  1828. }
  1829. if (buffer_info->skb) {
  1830. dev_kfree_skb_irq(buffer_info->skb);
  1831. buffer_info->skb = NULL;
  1832. }
  1833. if (++sw_tpd_next_to_clean == tpd_ring->count)
  1834. sw_tpd_next_to_clean = 0;
  1835. count++;
  1836. }
  1837. atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean);
  1838. if (netif_queue_stopped(adapter->netdev) &&
  1839. netif_carrier_ok(adapter->netdev))
  1840. netif_wake_queue(adapter->netdev);
  1841. return count;
  1842. }
  1843. static u16 atl1_tpd_avail(struct atl1_tpd_ring *tpd_ring)
  1844. {
  1845. u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean);
  1846. u16 next_to_use = atomic_read(&tpd_ring->next_to_use);
  1847. return (next_to_clean > next_to_use) ?
  1848. next_to_clean - next_to_use - 1 :
  1849. tpd_ring->count + next_to_clean - next_to_use - 1;
  1850. }
  1851. static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb,
  1852. struct tx_packet_desc *ptpd)
  1853. {
  1854. u8 hdr_len, ip_off;
  1855. u32 real_len;
  1856. if (skb_shinfo(skb)->gso_size) {
  1857. int err;
  1858. err = skb_cow_head(skb, 0);
  1859. if (err < 0)
  1860. return err;
  1861. if (skb->protocol == htons(ETH_P_IP)) {
  1862. struct iphdr *iph = ip_hdr(skb);
  1863. real_len = (((unsigned char *)iph - skb->data) +
  1864. ntohs(iph->tot_len));
  1865. if (real_len < skb->len)
  1866. pskb_trim(skb, real_len);
  1867. hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
  1868. if (skb->len == hdr_len) {
  1869. iph->check = 0;
  1870. tcp_hdr(skb)->check =
  1871. ~csum_tcpudp_magic(iph->saddr,
  1872. iph->daddr, tcp_hdrlen(skb),
  1873. IPPROTO_TCP, 0);
  1874. ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
  1875. TPD_IPHL_SHIFT;
  1876. ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
  1877. TPD_TCPHDRLEN_MASK) <<
  1878. TPD_TCPHDRLEN_SHIFT;
  1879. ptpd->word3 |= 1 << TPD_IP_CSUM_SHIFT;
  1880. ptpd->word3 |= 1 << TPD_TCP_CSUM_SHIFT;
  1881. return 1;
  1882. }
  1883. iph->check = 0;
  1884. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  1885. iph->daddr, 0, IPPROTO_TCP, 0);
  1886. ip_off = (unsigned char *)iph -
  1887. (unsigned char *) skb_network_header(skb);
  1888. if (ip_off == 8) /* 802.3-SNAP frame */
  1889. ptpd->word3 |= 1 << TPD_ETHTYPE_SHIFT;
  1890. else if (ip_off != 0)
  1891. return -2;
  1892. ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
  1893. TPD_IPHL_SHIFT;
  1894. ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
  1895. TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT;
  1896. ptpd->word3 |= (skb_shinfo(skb)->gso_size &
  1897. TPD_MSS_MASK) << TPD_MSS_SHIFT;
  1898. ptpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT;
  1899. return 3;
  1900. }
  1901. }
  1902. return 0;
  1903. }
  1904. static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb,
  1905. struct tx_packet_desc *ptpd)
  1906. {
  1907. u8 css, cso;
  1908. if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
  1909. css = skb_checksum_start_offset(skb);
  1910. cso = css + (u8) skb->csum_offset;
  1911. if (unlikely(css & 0x1)) {
  1912. /* L1 hardware requires an even number here */
  1913. if (netif_msg_tx_err(adapter))
  1914. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1915. "payload offset not an even number\n");
  1916. return -1;
  1917. }
  1918. ptpd->word3 |= (css & TPD_PLOADOFFSET_MASK) <<
  1919. TPD_PLOADOFFSET_SHIFT;
  1920. ptpd->word3 |= (cso & TPD_CCSUMOFFSET_MASK) <<
  1921. TPD_CCSUMOFFSET_SHIFT;
  1922. ptpd->word3 |= 1 << TPD_CUST_CSUM_EN_SHIFT;
  1923. return true;
  1924. }
  1925. return 0;
  1926. }
  1927. static void atl1_tx_map(struct atl1_adapter *adapter, struct sk_buff *skb,
  1928. struct tx_packet_desc *ptpd)
  1929. {
  1930. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  1931. struct atl1_buffer *buffer_info;
  1932. u16 buf_len = skb->len;
  1933. struct page *page;
  1934. unsigned long offset;
  1935. unsigned int nr_frags;
  1936. unsigned int f;
  1937. int retval;
  1938. u16 next_to_use;
  1939. u16 data_len;
  1940. u8 hdr_len;
  1941. buf_len -= skb->data_len;
  1942. nr_frags = skb_shinfo(skb)->nr_frags;
  1943. next_to_use = atomic_read(&tpd_ring->next_to_use);
  1944. buffer_info = &tpd_ring->buffer_info[next_to_use];
  1945. BUG_ON(buffer_info->skb);
  1946. /* put skb in last TPD */
  1947. buffer_info->skb = NULL;
  1948. retval = (ptpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK;
  1949. if (retval) {
  1950. /* TSO */
  1951. hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
  1952. buffer_info->length = hdr_len;
  1953. page = virt_to_page(skb->data);
  1954. offset = (unsigned long)skb->data & ~PAGE_MASK;
  1955. buffer_info->dma = pci_map_page(adapter->pdev, page,
  1956. offset, hdr_len,
  1957. PCI_DMA_TODEVICE);
  1958. if (++next_to_use == tpd_ring->count)
  1959. next_to_use = 0;
  1960. if (buf_len > hdr_len) {
  1961. int i, nseg;
  1962. data_len = buf_len - hdr_len;
  1963. nseg = (data_len + ATL1_MAX_TX_BUF_LEN - 1) /
  1964. ATL1_MAX_TX_BUF_LEN;
  1965. for (i = 0; i < nseg; i++) {
  1966. buffer_info =
  1967. &tpd_ring->buffer_info[next_to_use];
  1968. buffer_info->skb = NULL;
  1969. buffer_info->length =
  1970. (ATL1_MAX_TX_BUF_LEN >=
  1971. data_len) ? ATL1_MAX_TX_BUF_LEN : data_len;
  1972. data_len -= buffer_info->length;
  1973. page = virt_to_page(skb->data +
  1974. (hdr_len + i * ATL1_MAX_TX_BUF_LEN));
  1975. offset = (unsigned long)(skb->data +
  1976. (hdr_len + i * ATL1_MAX_TX_BUF_LEN)) &
  1977. ~PAGE_MASK;
  1978. buffer_info->dma = pci_map_page(adapter->pdev,
  1979. page, offset, buffer_info->length,
  1980. PCI_DMA_TODEVICE);
  1981. if (++next_to_use == tpd_ring->count)
  1982. next_to_use = 0;
  1983. }
  1984. }
  1985. } else {
  1986. /* not TSO */
  1987. buffer_info->length = buf_len;
  1988. page = virt_to_page(skb->data);
  1989. offset = (unsigned long)skb->data & ~PAGE_MASK;
  1990. buffer_info->dma = pci_map_page(adapter->pdev, page,
  1991. offset, buf_len, PCI_DMA_TODEVICE);
  1992. if (++next_to_use == tpd_ring->count)
  1993. next_to_use = 0;
  1994. }
  1995. for (f = 0; f < nr_frags; f++) {
  1996. const struct skb_frag_struct *frag;
  1997. u16 i, nseg;
  1998. frag = &skb_shinfo(skb)->frags[f];
  1999. buf_len = skb_frag_size(frag);
  2000. nseg = (buf_len + ATL1_MAX_TX_BUF_LEN - 1) /
  2001. ATL1_MAX_TX_BUF_LEN;
  2002. for (i = 0; i < nseg; i++) {
  2003. buffer_info = &tpd_ring->buffer_info[next_to_use];
  2004. BUG_ON(buffer_info->skb);
  2005. buffer_info->skb = NULL;
  2006. buffer_info->length = (buf_len > ATL1_MAX_TX_BUF_LEN) ?
  2007. ATL1_MAX_TX_BUF_LEN : buf_len;
  2008. buf_len -= buffer_info->length;
  2009. buffer_info->dma = skb_frag_dma_map(&adapter->pdev->dev,
  2010. frag, i * ATL1_MAX_TX_BUF_LEN,
  2011. buffer_info->length, DMA_TO_DEVICE);
  2012. if (++next_to_use == tpd_ring->count)
  2013. next_to_use = 0;
  2014. }
  2015. }
  2016. /* last tpd's buffer-info */
  2017. buffer_info->skb = skb;
  2018. }
  2019. static void atl1_tx_queue(struct atl1_adapter *adapter, u16 count,
  2020. struct tx_packet_desc *ptpd)
  2021. {
  2022. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  2023. struct atl1_buffer *buffer_info;
  2024. struct tx_packet_desc *tpd;
  2025. u16 j;
  2026. u32 val;
  2027. u16 next_to_use = (u16) atomic_read(&tpd_ring->next_to_use);
  2028. for (j = 0; j < count; j++) {
  2029. buffer_info = &tpd_ring->buffer_info[next_to_use];
  2030. tpd = ATL1_TPD_DESC(&adapter->tpd_ring, next_to_use);
  2031. if (tpd != ptpd)
  2032. memcpy(tpd, ptpd, sizeof(struct tx_packet_desc));
  2033. tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
  2034. tpd->word2 &= ~(TPD_BUFLEN_MASK << TPD_BUFLEN_SHIFT);
  2035. tpd->word2 |= (cpu_to_le16(buffer_info->length) &
  2036. TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT;
  2037. /*
  2038. * if this is the first packet in a TSO chain, set
  2039. * TPD_HDRFLAG, otherwise, clear it.
  2040. */
  2041. val = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) &
  2042. TPD_SEGMENT_EN_MASK;
  2043. if (val) {
  2044. if (!j)
  2045. tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT;
  2046. else
  2047. tpd->word3 &= ~(1 << TPD_HDRFLAG_SHIFT);
  2048. }
  2049. if (j == (count - 1))
  2050. tpd->word3 |= 1 << TPD_EOP_SHIFT;
  2051. if (++next_to_use == tpd_ring->count)
  2052. next_to_use = 0;
  2053. }
  2054. /*
  2055. * Force memory writes to complete before letting h/w
  2056. * know there are new descriptors to fetch. (Only
  2057. * applicable for weak-ordered memory model archs,
  2058. * such as IA-64).
  2059. */
  2060. wmb();
  2061. atomic_set(&tpd_ring->next_to_use, next_to_use);
  2062. }
  2063. static netdev_tx_t atl1_xmit_frame(struct sk_buff *skb,
  2064. struct net_device *netdev)
  2065. {
  2066. struct atl1_adapter *adapter = netdev_priv(netdev);
  2067. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  2068. int len;
  2069. int tso;
  2070. int count = 1;
  2071. int ret_val;
  2072. struct tx_packet_desc *ptpd;
  2073. u16 vlan_tag;
  2074. unsigned int nr_frags = 0;
  2075. unsigned int mss = 0;
  2076. unsigned int f;
  2077. unsigned int proto_hdr_len;
  2078. len = skb_headlen(skb);
  2079. if (unlikely(skb->len <= 0)) {
  2080. dev_kfree_skb_any(skb);
  2081. return NETDEV_TX_OK;
  2082. }
  2083. nr_frags = skb_shinfo(skb)->nr_frags;
  2084. for (f = 0; f < nr_frags; f++) {
  2085. unsigned int f_size = skb_frag_size(&skb_shinfo(skb)->frags[f]);
  2086. count += (f_size + ATL1_MAX_TX_BUF_LEN - 1) /
  2087. ATL1_MAX_TX_BUF_LEN;
  2088. }
  2089. mss = skb_shinfo(skb)->gso_size;
  2090. if (mss) {
  2091. if (skb->protocol == htons(ETH_P_IP)) {
  2092. proto_hdr_len = (skb_transport_offset(skb) +
  2093. tcp_hdrlen(skb));
  2094. if (unlikely(proto_hdr_len > len)) {
  2095. dev_kfree_skb_any(skb);
  2096. return NETDEV_TX_OK;
  2097. }
  2098. /* need additional TPD ? */
  2099. if (proto_hdr_len != len)
  2100. count += (len - proto_hdr_len +
  2101. ATL1_MAX_TX_BUF_LEN - 1) /
  2102. ATL1_MAX_TX_BUF_LEN;
  2103. }
  2104. }
  2105. if (atl1_tpd_avail(&adapter->tpd_ring) < count) {
  2106. /* not enough descriptors */
  2107. netif_stop_queue(netdev);
  2108. if (netif_msg_tx_queued(adapter))
  2109. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  2110. "tx busy\n");
  2111. return NETDEV_TX_BUSY;
  2112. }
  2113. ptpd = ATL1_TPD_DESC(tpd_ring,
  2114. (u16) atomic_read(&tpd_ring->next_to_use));
  2115. memset(ptpd, 0, sizeof(struct tx_packet_desc));
  2116. if (skb_vlan_tag_present(skb)) {
  2117. vlan_tag = skb_vlan_tag_get(skb);
  2118. vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) |
  2119. ((vlan_tag >> 9) & 0x8);
  2120. ptpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT;
  2121. ptpd->word2 |= (vlan_tag & TPD_VLANTAG_MASK) <<
  2122. TPD_VLANTAG_SHIFT;
  2123. }
  2124. tso = atl1_tso(adapter, skb, ptpd);
  2125. if (tso < 0) {
  2126. dev_kfree_skb_any(skb);
  2127. return NETDEV_TX_OK;
  2128. }
  2129. if (!tso) {
  2130. ret_val = atl1_tx_csum(adapter, skb, ptpd);
  2131. if (ret_val < 0) {
  2132. dev_kfree_skb_any(skb);
  2133. return NETDEV_TX_OK;
  2134. }
  2135. }
  2136. atl1_tx_map(adapter, skb, ptpd);
  2137. atl1_tx_queue(adapter, count, ptpd);
  2138. atl1_update_mailbox(adapter);
  2139. mmiowb();
  2140. return NETDEV_TX_OK;
  2141. }
  2142. static int atl1_rings_clean(struct napi_struct *napi, int budget)
  2143. {
  2144. struct atl1_adapter *adapter = container_of(napi, struct atl1_adapter, napi);
  2145. int work_done = atl1_intr_rx(adapter, budget);
  2146. if (atl1_intr_tx(adapter))
  2147. work_done = budget;
  2148. /* Let's come again to process some more packets */
  2149. if (work_done >= budget)
  2150. return work_done;
  2151. napi_complete(napi);
  2152. /* re-enable Interrupt */
  2153. if (likely(adapter->int_enabled))
  2154. atlx_imr_set(adapter, IMR_NORMAL_MASK);
  2155. return work_done;
  2156. }
  2157. static inline int atl1_sched_rings_clean(struct atl1_adapter* adapter)
  2158. {
  2159. if (!napi_schedule_prep(&adapter->napi))
  2160. /* It is possible in case even the RX/TX ints are disabled via IMR
  2161. * register the ISR bits are set anyway (but do not produce IRQ).
  2162. * To handle such situation the napi functions used to check is
  2163. * something scheduled or not.
  2164. */
  2165. return 0;
  2166. __napi_schedule(&adapter->napi);
  2167. /*
  2168. * Disable RX/TX ints via IMR register if it is
  2169. * allowed. NAPI handler must reenable them in same
  2170. * way.
  2171. */
  2172. if (!adapter->int_enabled)
  2173. return 1;
  2174. atlx_imr_set(adapter, IMR_NORXTX_MASK);
  2175. return 1;
  2176. }
  2177. /**
  2178. * atl1_intr - Interrupt Handler
  2179. * @irq: interrupt number
  2180. * @data: pointer to a network interface device structure
  2181. */
  2182. static irqreturn_t atl1_intr(int irq, void *data)
  2183. {
  2184. struct atl1_adapter *adapter = netdev_priv(data);
  2185. u32 status;
  2186. status = adapter->cmb.cmb->int_stats;
  2187. if (!status)
  2188. return IRQ_NONE;
  2189. /* clear CMB interrupt status at once,
  2190. * but leave rx/tx interrupt status in case it should be dropped
  2191. * only if rx/tx processing queued. In other case interrupt
  2192. * can be lost.
  2193. */
  2194. adapter->cmb.cmb->int_stats = status & (ISR_CMB_TX | ISR_CMB_RX);
  2195. if (status & ISR_GPHY) /* clear phy status */
  2196. atlx_clear_phy_int(adapter);
  2197. /* clear ISR status, and Enable CMB DMA/Disable Interrupt */
  2198. iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR);
  2199. /* check if SMB intr */
  2200. if (status & ISR_SMB)
  2201. atl1_inc_smb(adapter);
  2202. /* check if PCIE PHY Link down */
  2203. if (status & ISR_PHY_LINKDOWN) {
  2204. if (netif_msg_intr(adapter))
  2205. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  2206. "pcie phy link down %x\n", status);
  2207. if (netif_running(adapter->netdev)) { /* reset MAC */
  2208. atlx_irq_disable(adapter);
  2209. schedule_work(&adapter->reset_dev_task);
  2210. return IRQ_HANDLED;
  2211. }
  2212. }
  2213. /* check if DMA read/write error ? */
  2214. if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
  2215. if (netif_msg_intr(adapter))
  2216. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  2217. "pcie DMA r/w error (status = 0x%x)\n",
  2218. status);
  2219. atlx_irq_disable(adapter);
  2220. schedule_work(&adapter->reset_dev_task);
  2221. return IRQ_HANDLED;
  2222. }
  2223. /* link event */
  2224. if (status & ISR_GPHY) {
  2225. adapter->soft_stats.tx_carrier_errors++;
  2226. atl1_check_for_link(adapter);
  2227. }
  2228. /* transmit or receive event */
  2229. if (status & (ISR_CMB_TX | ISR_CMB_RX) &&
  2230. atl1_sched_rings_clean(adapter))
  2231. adapter->cmb.cmb->int_stats = adapter->cmb.cmb->int_stats &
  2232. ~(ISR_CMB_TX | ISR_CMB_RX);
  2233. /* rx exception */
  2234. if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN |
  2235. ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
  2236. ISR_HOST_RRD_OV))) {
  2237. if (netif_msg_intr(adapter))
  2238. dev_printk(KERN_DEBUG,
  2239. &adapter->pdev->dev,
  2240. "rx exception, ISR = 0x%x\n",
  2241. status);
  2242. atl1_sched_rings_clean(adapter);
  2243. }
  2244. /* re-enable Interrupt */
  2245. iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR);
  2246. return IRQ_HANDLED;
  2247. }
  2248. /**
  2249. * atl1_phy_config - Timer Call-back
  2250. * @data: pointer to netdev cast into an unsigned long
  2251. */
  2252. static void atl1_phy_config(unsigned long data)
  2253. {
  2254. struct atl1_adapter *adapter = (struct atl1_adapter *)data;
  2255. struct atl1_hw *hw = &adapter->hw;
  2256. unsigned long flags;
  2257. spin_lock_irqsave(&adapter->lock, flags);
  2258. adapter->phy_timer_pending = false;
  2259. atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
  2260. atl1_write_phy_reg(hw, MII_ATLX_CR, hw->mii_1000t_ctrl_reg);
  2261. atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN);
  2262. spin_unlock_irqrestore(&adapter->lock, flags);
  2263. }
  2264. /*
  2265. * Orphaned vendor comment left intact here:
  2266. * <vendor comment>
  2267. * If TPD Buffer size equal to 0, PCIE DMAR_TO_INT
  2268. * will assert. We do soft reset <0x1400=1> according
  2269. * with the SPEC. BUT, it seemes that PCIE or DMA
  2270. * state-machine will not be reset. DMAR_TO_INT will
  2271. * assert again and again.
  2272. * </vendor comment>
  2273. */
  2274. static int atl1_reset(struct atl1_adapter *adapter)
  2275. {
  2276. int ret;
  2277. ret = atl1_reset_hw(&adapter->hw);
  2278. if (ret)
  2279. return ret;
  2280. return atl1_init_hw(&adapter->hw);
  2281. }
  2282. static s32 atl1_up(struct atl1_adapter *adapter)
  2283. {
  2284. struct net_device *netdev = adapter->netdev;
  2285. int err;
  2286. int irq_flags = 0;
  2287. /* hardware has been reset, we need to reload some things */
  2288. atlx_set_multi(netdev);
  2289. atl1_init_ring_ptrs(adapter);
  2290. atlx_restore_vlan(adapter);
  2291. err = atl1_alloc_rx_buffers(adapter);
  2292. if (unlikely(!err))
  2293. /* no RX BUFFER allocated */
  2294. return -ENOMEM;
  2295. if (unlikely(atl1_configure(adapter))) {
  2296. err = -EIO;
  2297. goto err_up;
  2298. }
  2299. err = pci_enable_msi(adapter->pdev);
  2300. if (err) {
  2301. if (netif_msg_ifup(adapter))
  2302. dev_info(&adapter->pdev->dev,
  2303. "Unable to enable MSI: %d\n", err);
  2304. irq_flags |= IRQF_SHARED;
  2305. }
  2306. err = request_irq(adapter->pdev->irq, atl1_intr, irq_flags,
  2307. netdev->name, netdev);
  2308. if (unlikely(err))
  2309. goto err_up;
  2310. napi_enable(&adapter->napi);
  2311. atlx_irq_enable(adapter);
  2312. atl1_check_link(adapter);
  2313. netif_start_queue(netdev);
  2314. return 0;
  2315. err_up:
  2316. pci_disable_msi(adapter->pdev);
  2317. /* free rx_buffers */
  2318. atl1_clean_rx_ring(adapter);
  2319. return err;
  2320. }
  2321. static void atl1_down(struct atl1_adapter *adapter)
  2322. {
  2323. struct net_device *netdev = adapter->netdev;
  2324. napi_disable(&adapter->napi);
  2325. netif_stop_queue(netdev);
  2326. del_timer_sync(&adapter->phy_config_timer);
  2327. adapter->phy_timer_pending = false;
  2328. atlx_irq_disable(adapter);
  2329. free_irq(adapter->pdev->irq, netdev);
  2330. pci_disable_msi(adapter->pdev);
  2331. atl1_reset_hw(&adapter->hw);
  2332. adapter->cmb.cmb->int_stats = 0;
  2333. adapter->link_speed = SPEED_0;
  2334. adapter->link_duplex = -1;
  2335. netif_carrier_off(netdev);
  2336. atl1_clean_tx_ring(adapter);
  2337. atl1_clean_rx_ring(adapter);
  2338. }
  2339. static void atl1_reset_dev_task(struct work_struct *work)
  2340. {
  2341. struct atl1_adapter *adapter =
  2342. container_of(work, struct atl1_adapter, reset_dev_task);
  2343. struct net_device *netdev = adapter->netdev;
  2344. netif_device_detach(netdev);
  2345. atl1_down(adapter);
  2346. atl1_up(adapter);
  2347. netif_device_attach(netdev);
  2348. }
  2349. /**
  2350. * atl1_change_mtu - Change the Maximum Transfer Unit
  2351. * @netdev: network interface device structure
  2352. * @new_mtu: new value for maximum frame size
  2353. *
  2354. * Returns 0 on success, negative on failure
  2355. */
  2356. static int atl1_change_mtu(struct net_device *netdev, int new_mtu)
  2357. {
  2358. struct atl1_adapter *adapter = netdev_priv(netdev);
  2359. int old_mtu = netdev->mtu;
  2360. int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
  2361. if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
  2362. (max_frame > MAX_JUMBO_FRAME_SIZE)) {
  2363. if (netif_msg_link(adapter))
  2364. dev_warn(&adapter->pdev->dev, "invalid MTU setting\n");
  2365. return -EINVAL;
  2366. }
  2367. adapter->hw.max_frame_size = max_frame;
  2368. adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3;
  2369. adapter->rx_buffer_len = (max_frame + 7) & ~7;
  2370. adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8;
  2371. netdev->mtu = new_mtu;
  2372. if ((old_mtu != new_mtu) && netif_running(netdev)) {
  2373. atl1_down(adapter);
  2374. atl1_up(adapter);
  2375. }
  2376. return 0;
  2377. }
  2378. /**
  2379. * atl1_open - Called when a network interface is made active
  2380. * @netdev: network interface device structure
  2381. *
  2382. * Returns 0 on success, negative value on failure
  2383. *
  2384. * The open entry point is called when a network interface is made
  2385. * active by the system (IFF_UP). At this point all resources needed
  2386. * for transmit and receive operations are allocated, the interrupt
  2387. * handler is registered with the OS, the watchdog timer is started,
  2388. * and the stack is notified that the interface is ready.
  2389. */
  2390. static int atl1_open(struct net_device *netdev)
  2391. {
  2392. struct atl1_adapter *adapter = netdev_priv(netdev);
  2393. int err;
  2394. netif_carrier_off(netdev);
  2395. /* allocate transmit descriptors */
  2396. err = atl1_setup_ring_resources(adapter);
  2397. if (err)
  2398. return err;
  2399. err = atl1_up(adapter);
  2400. if (err)
  2401. goto err_up;
  2402. return 0;
  2403. err_up:
  2404. atl1_reset(adapter);
  2405. return err;
  2406. }
  2407. /**
  2408. * atl1_close - Disables a network interface
  2409. * @netdev: network interface device structure
  2410. *
  2411. * Returns 0, this is not allowed to fail
  2412. *
  2413. * The close entry point is called when an interface is de-activated
  2414. * by the OS. The hardware is still under the drivers control, but
  2415. * needs to be disabled. A global MAC reset is issued to stop the
  2416. * hardware, and all transmit and receive resources are freed.
  2417. */
  2418. static int atl1_close(struct net_device *netdev)
  2419. {
  2420. struct atl1_adapter *adapter = netdev_priv(netdev);
  2421. atl1_down(adapter);
  2422. atl1_free_ring_resources(adapter);
  2423. return 0;
  2424. }
  2425. #ifdef CONFIG_PM_SLEEP
  2426. static int atl1_suspend(struct device *dev)
  2427. {
  2428. struct pci_dev *pdev = to_pci_dev(dev);
  2429. struct net_device *netdev = pci_get_drvdata(pdev);
  2430. struct atl1_adapter *adapter = netdev_priv(netdev);
  2431. struct atl1_hw *hw = &adapter->hw;
  2432. u32 ctrl = 0;
  2433. u32 wufc = adapter->wol;
  2434. u32 val;
  2435. u16 speed;
  2436. u16 duplex;
  2437. netif_device_detach(netdev);
  2438. if (netif_running(netdev))
  2439. atl1_down(adapter);
  2440. atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
  2441. atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
  2442. val = ctrl & BMSR_LSTATUS;
  2443. if (val)
  2444. wufc &= ~ATLX_WUFC_LNKC;
  2445. if (!wufc)
  2446. goto disable_wol;
  2447. if (val) {
  2448. val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
  2449. if (val) {
  2450. if (netif_msg_ifdown(adapter))
  2451. dev_printk(KERN_DEBUG, &pdev->dev,
  2452. "error getting speed/duplex\n");
  2453. goto disable_wol;
  2454. }
  2455. ctrl = 0;
  2456. /* enable magic packet WOL */
  2457. if (wufc & ATLX_WUFC_MAG)
  2458. ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
  2459. iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
  2460. ioread32(hw->hw_addr + REG_WOL_CTRL);
  2461. /* configure the mac */
  2462. ctrl = MAC_CTRL_RX_EN;
  2463. ctrl |= ((u32)((speed == SPEED_1000) ? MAC_CTRL_SPEED_1000 :
  2464. MAC_CTRL_SPEED_10_100) << MAC_CTRL_SPEED_SHIFT);
  2465. if (duplex == FULL_DUPLEX)
  2466. ctrl |= MAC_CTRL_DUPLX;
  2467. ctrl |= (((u32)adapter->hw.preamble_len &
  2468. MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
  2469. __atlx_vlan_mode(netdev->features, &ctrl);
  2470. if (wufc & ATLX_WUFC_MAG)
  2471. ctrl |= MAC_CTRL_BC_EN;
  2472. iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL);
  2473. ioread32(hw->hw_addr + REG_MAC_CTRL);
  2474. /* poke the PHY */
  2475. ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
  2476. ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
  2477. iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
  2478. ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
  2479. } else {
  2480. ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
  2481. iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
  2482. ioread32(hw->hw_addr + REG_WOL_CTRL);
  2483. iowrite32(0, hw->hw_addr + REG_MAC_CTRL);
  2484. ioread32(hw->hw_addr + REG_MAC_CTRL);
  2485. hw->phy_configured = false;
  2486. }
  2487. return 0;
  2488. disable_wol:
  2489. iowrite32(0, hw->hw_addr + REG_WOL_CTRL);
  2490. ioread32(hw->hw_addr + REG_WOL_CTRL);
  2491. ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
  2492. ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
  2493. iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
  2494. ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
  2495. hw->phy_configured = false;
  2496. return 0;
  2497. }
  2498. static int atl1_resume(struct device *dev)
  2499. {
  2500. struct pci_dev *pdev = to_pci_dev(dev);
  2501. struct net_device *netdev = pci_get_drvdata(pdev);
  2502. struct atl1_adapter *adapter = netdev_priv(netdev);
  2503. iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL);
  2504. atl1_reset_hw(&adapter->hw);
  2505. if (netif_running(netdev)) {
  2506. adapter->cmb.cmb->int_stats = 0;
  2507. atl1_up(adapter);
  2508. }
  2509. netif_device_attach(netdev);
  2510. return 0;
  2511. }
  2512. #endif
  2513. static SIMPLE_DEV_PM_OPS(atl1_pm_ops, atl1_suspend, atl1_resume);
  2514. static void atl1_shutdown(struct pci_dev *pdev)
  2515. {
  2516. struct net_device *netdev = pci_get_drvdata(pdev);
  2517. struct atl1_adapter *adapter = netdev_priv(netdev);
  2518. #ifdef CONFIG_PM_SLEEP
  2519. atl1_suspend(&pdev->dev);
  2520. #endif
  2521. pci_wake_from_d3(pdev, adapter->wol);
  2522. pci_set_power_state(pdev, PCI_D3hot);
  2523. }
  2524. #ifdef CONFIG_NET_POLL_CONTROLLER
  2525. static void atl1_poll_controller(struct net_device *netdev)
  2526. {
  2527. disable_irq(netdev->irq);
  2528. atl1_intr(netdev->irq, netdev);
  2529. enable_irq(netdev->irq);
  2530. }
  2531. #endif
  2532. static const struct net_device_ops atl1_netdev_ops = {
  2533. .ndo_open = atl1_open,
  2534. .ndo_stop = atl1_close,
  2535. .ndo_start_xmit = atl1_xmit_frame,
  2536. .ndo_set_rx_mode = atlx_set_multi,
  2537. .ndo_validate_addr = eth_validate_addr,
  2538. .ndo_set_mac_address = atl1_set_mac,
  2539. .ndo_change_mtu = atl1_change_mtu,
  2540. .ndo_fix_features = atlx_fix_features,
  2541. .ndo_set_features = atlx_set_features,
  2542. .ndo_do_ioctl = atlx_ioctl,
  2543. .ndo_tx_timeout = atlx_tx_timeout,
  2544. #ifdef CONFIG_NET_POLL_CONTROLLER
  2545. .ndo_poll_controller = atl1_poll_controller,
  2546. #endif
  2547. };
  2548. /**
  2549. * atl1_probe - Device Initialization Routine
  2550. * @pdev: PCI device information struct
  2551. * @ent: entry in atl1_pci_tbl
  2552. *
  2553. * Returns 0 on success, negative on failure
  2554. *
  2555. * atl1_probe initializes an adapter identified by a pci_dev structure.
  2556. * The OS initialization, configuring of the adapter private structure,
  2557. * and a hardware reset occur.
  2558. */
  2559. static int atl1_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
  2560. {
  2561. struct net_device *netdev;
  2562. struct atl1_adapter *adapter;
  2563. static int cards_found = 0;
  2564. int err;
  2565. err = pci_enable_device(pdev);
  2566. if (err)
  2567. return err;
  2568. /*
  2569. * The atl1 chip can DMA to 64-bit addresses, but it uses a single
  2570. * shared register for the high 32 bits, so only a single, aligned,
  2571. * 4 GB physical address range can be used at a time.
  2572. *
  2573. * Supporting 64-bit DMA on this hardware is more trouble than it's
  2574. * worth. It is far easier to limit to 32-bit DMA than update
  2575. * various kernel subsystems to support the mechanics required by a
  2576. * fixed-high-32-bit system.
  2577. */
  2578. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  2579. if (err) {
  2580. dev_err(&pdev->dev, "no usable DMA configuration\n");
  2581. goto err_dma;
  2582. }
  2583. /*
  2584. * Mark all PCI regions associated with PCI device
  2585. * pdev as being reserved by owner atl1_driver_name
  2586. */
  2587. err = pci_request_regions(pdev, ATLX_DRIVER_NAME);
  2588. if (err)
  2589. goto err_request_regions;
  2590. /*
  2591. * Enables bus-mastering on the device and calls
  2592. * pcibios_set_master to do the needed arch specific settings
  2593. */
  2594. pci_set_master(pdev);
  2595. netdev = alloc_etherdev(sizeof(struct atl1_adapter));
  2596. if (!netdev) {
  2597. err = -ENOMEM;
  2598. goto err_alloc_etherdev;
  2599. }
  2600. SET_NETDEV_DEV(netdev, &pdev->dev);
  2601. pci_set_drvdata(pdev, netdev);
  2602. adapter = netdev_priv(netdev);
  2603. adapter->netdev = netdev;
  2604. adapter->pdev = pdev;
  2605. adapter->hw.back = adapter;
  2606. adapter->msg_enable = netif_msg_init(debug, atl1_default_msg);
  2607. adapter->hw.hw_addr = pci_iomap(pdev, 0, 0);
  2608. if (!adapter->hw.hw_addr) {
  2609. err = -EIO;
  2610. goto err_pci_iomap;
  2611. }
  2612. /* get device revision number */
  2613. adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr +
  2614. (REG_MASTER_CTRL + 2));
  2615. if (netif_msg_probe(adapter))
  2616. dev_info(&pdev->dev, "version %s\n", ATLX_DRIVER_VERSION);
  2617. /* set default ring resource counts */
  2618. adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD;
  2619. adapter->tpd_ring.count = ATL1_DEFAULT_TPD;
  2620. adapter->mii.dev = netdev;
  2621. adapter->mii.mdio_read = mdio_read;
  2622. adapter->mii.mdio_write = mdio_write;
  2623. adapter->mii.phy_id_mask = 0x1f;
  2624. adapter->mii.reg_num_mask = 0x1f;
  2625. netdev->netdev_ops = &atl1_netdev_ops;
  2626. netdev->watchdog_timeo = 5 * HZ;
  2627. netif_napi_add(netdev, &adapter->napi, atl1_rings_clean, 64);
  2628. netdev->ethtool_ops = &atl1_ethtool_ops;
  2629. adapter->bd_number = cards_found;
  2630. /* setup the private structure */
  2631. err = atl1_sw_init(adapter);
  2632. if (err)
  2633. goto err_common;
  2634. netdev->features = NETIF_F_HW_CSUM;
  2635. netdev->features |= NETIF_F_SG;
  2636. netdev->features |= (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX);
  2637. netdev->hw_features = NETIF_F_HW_CSUM | NETIF_F_SG | NETIF_F_TSO |
  2638. NETIF_F_HW_VLAN_CTAG_RX;
  2639. /* is this valid? see atl1_setup_mac_ctrl() */
  2640. netdev->features |= NETIF_F_RXCSUM;
  2641. /*
  2642. * patch for some L1 of old version,
  2643. * the final version of L1 may not need these
  2644. * patches
  2645. */
  2646. /* atl1_pcie_patch(adapter); */
  2647. /* really reset GPHY core */
  2648. iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
  2649. /*
  2650. * reset the controller to
  2651. * put the device in a known good starting state
  2652. */
  2653. if (atl1_reset_hw(&adapter->hw)) {
  2654. err = -EIO;
  2655. goto err_common;
  2656. }
  2657. /* copy the MAC address out of the EEPROM */
  2658. if (atl1_read_mac_addr(&adapter->hw)) {
  2659. /* mark random mac */
  2660. netdev->addr_assign_type = NET_ADDR_RANDOM;
  2661. }
  2662. memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
  2663. if (!is_valid_ether_addr(netdev->dev_addr)) {
  2664. err = -EIO;
  2665. goto err_common;
  2666. }
  2667. atl1_check_options(adapter);
  2668. /* pre-init the MAC, and setup link */
  2669. err = atl1_init_hw(&adapter->hw);
  2670. if (err) {
  2671. err = -EIO;
  2672. goto err_common;
  2673. }
  2674. atl1_pcie_patch(adapter);
  2675. /* assume we have no link for now */
  2676. netif_carrier_off(netdev);
  2677. setup_timer(&adapter->phy_config_timer, atl1_phy_config,
  2678. (unsigned long)adapter);
  2679. adapter->phy_timer_pending = false;
  2680. INIT_WORK(&adapter->reset_dev_task, atl1_reset_dev_task);
  2681. INIT_WORK(&adapter->link_chg_task, atlx_link_chg_task);
  2682. err = register_netdev(netdev);
  2683. if (err)
  2684. goto err_common;
  2685. cards_found++;
  2686. atl1_via_workaround(adapter);
  2687. return 0;
  2688. err_common:
  2689. pci_iounmap(pdev, adapter->hw.hw_addr);
  2690. err_pci_iomap:
  2691. free_netdev(netdev);
  2692. err_alloc_etherdev:
  2693. pci_release_regions(pdev);
  2694. err_dma:
  2695. err_request_regions:
  2696. pci_disable_device(pdev);
  2697. return err;
  2698. }
  2699. /**
  2700. * atl1_remove - Device Removal Routine
  2701. * @pdev: PCI device information struct
  2702. *
  2703. * atl1_remove is called by the PCI subsystem to alert the driver
  2704. * that it should release a PCI device. The could be caused by a
  2705. * Hot-Plug event, or because the driver is going to be removed from
  2706. * memory.
  2707. */
  2708. static void atl1_remove(struct pci_dev *pdev)
  2709. {
  2710. struct net_device *netdev = pci_get_drvdata(pdev);
  2711. struct atl1_adapter *adapter;
  2712. /* Device not available. Return. */
  2713. if (!netdev)
  2714. return;
  2715. adapter = netdev_priv(netdev);
  2716. /*
  2717. * Some atl1 boards lack persistent storage for their MAC, and get it
  2718. * from the BIOS during POST. If we've been messing with the MAC
  2719. * address, we need to save the permanent one.
  2720. */
  2721. if (!ether_addr_equal_unaligned(adapter->hw.mac_addr,
  2722. adapter->hw.perm_mac_addr)) {
  2723. memcpy(adapter->hw.mac_addr, adapter->hw.perm_mac_addr,
  2724. ETH_ALEN);
  2725. atl1_set_mac_addr(&adapter->hw);
  2726. }
  2727. iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
  2728. unregister_netdev(netdev);
  2729. pci_iounmap(pdev, adapter->hw.hw_addr);
  2730. pci_release_regions(pdev);
  2731. free_netdev(netdev);
  2732. pci_disable_device(pdev);
  2733. }
  2734. static struct pci_driver atl1_driver = {
  2735. .name = ATLX_DRIVER_NAME,
  2736. .id_table = atl1_pci_tbl,
  2737. .probe = atl1_probe,
  2738. .remove = atl1_remove,
  2739. .shutdown = atl1_shutdown,
  2740. .driver.pm = &atl1_pm_ops,
  2741. };
  2742. struct atl1_stats {
  2743. char stat_string[ETH_GSTRING_LEN];
  2744. int sizeof_stat;
  2745. int stat_offset;
  2746. };
  2747. #define ATL1_STAT(m) \
  2748. sizeof(((struct atl1_adapter *)0)->m), offsetof(struct atl1_adapter, m)
  2749. static struct atl1_stats atl1_gstrings_stats[] = {
  2750. {"rx_packets", ATL1_STAT(soft_stats.rx_packets)},
  2751. {"tx_packets", ATL1_STAT(soft_stats.tx_packets)},
  2752. {"rx_bytes", ATL1_STAT(soft_stats.rx_bytes)},
  2753. {"tx_bytes", ATL1_STAT(soft_stats.tx_bytes)},
  2754. {"rx_errors", ATL1_STAT(soft_stats.rx_errors)},
  2755. {"tx_errors", ATL1_STAT(soft_stats.tx_errors)},
  2756. {"multicast", ATL1_STAT(soft_stats.multicast)},
  2757. {"collisions", ATL1_STAT(soft_stats.collisions)},
  2758. {"rx_length_errors", ATL1_STAT(soft_stats.rx_length_errors)},
  2759. {"rx_over_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
  2760. {"rx_crc_errors", ATL1_STAT(soft_stats.rx_crc_errors)},
  2761. {"rx_frame_errors", ATL1_STAT(soft_stats.rx_frame_errors)},
  2762. {"rx_fifo_errors", ATL1_STAT(soft_stats.rx_fifo_errors)},
  2763. {"rx_missed_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
  2764. {"tx_aborted_errors", ATL1_STAT(soft_stats.tx_aborted_errors)},
  2765. {"tx_carrier_errors", ATL1_STAT(soft_stats.tx_carrier_errors)},
  2766. {"tx_fifo_errors", ATL1_STAT(soft_stats.tx_fifo_errors)},
  2767. {"tx_window_errors", ATL1_STAT(soft_stats.tx_window_errors)},
  2768. {"tx_abort_exce_coll", ATL1_STAT(soft_stats.excecol)},
  2769. {"tx_abort_late_coll", ATL1_STAT(soft_stats.latecol)},
  2770. {"tx_deferred_ok", ATL1_STAT(soft_stats.deffer)},
  2771. {"tx_single_coll_ok", ATL1_STAT(soft_stats.scc)},
  2772. {"tx_multi_coll_ok", ATL1_STAT(soft_stats.mcc)},
  2773. {"tx_underun", ATL1_STAT(soft_stats.tx_underun)},
  2774. {"tx_trunc", ATL1_STAT(soft_stats.tx_trunc)},
  2775. {"tx_pause", ATL1_STAT(soft_stats.tx_pause)},
  2776. {"rx_pause", ATL1_STAT(soft_stats.rx_pause)},
  2777. {"rx_rrd_ov", ATL1_STAT(soft_stats.rx_rrd_ov)},
  2778. {"rx_trunc", ATL1_STAT(soft_stats.rx_trunc)}
  2779. };
  2780. static void atl1_get_ethtool_stats(struct net_device *netdev,
  2781. struct ethtool_stats *stats, u64 *data)
  2782. {
  2783. struct atl1_adapter *adapter = netdev_priv(netdev);
  2784. int i;
  2785. char *p;
  2786. for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
  2787. p = (char *)adapter+atl1_gstrings_stats[i].stat_offset;
  2788. data[i] = (atl1_gstrings_stats[i].sizeof_stat ==
  2789. sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
  2790. }
  2791. }
  2792. static int atl1_get_sset_count(struct net_device *netdev, int sset)
  2793. {
  2794. switch (sset) {
  2795. case ETH_SS_STATS:
  2796. return ARRAY_SIZE(atl1_gstrings_stats);
  2797. default:
  2798. return -EOPNOTSUPP;
  2799. }
  2800. }
  2801. static int atl1_get_settings(struct net_device *netdev,
  2802. struct ethtool_cmd *ecmd)
  2803. {
  2804. struct atl1_adapter *adapter = netdev_priv(netdev);
  2805. struct atl1_hw *hw = &adapter->hw;
  2806. ecmd->supported = (SUPPORTED_10baseT_Half |
  2807. SUPPORTED_10baseT_Full |
  2808. SUPPORTED_100baseT_Half |
  2809. SUPPORTED_100baseT_Full |
  2810. SUPPORTED_1000baseT_Full |
  2811. SUPPORTED_Autoneg | SUPPORTED_TP);
  2812. ecmd->advertising = ADVERTISED_TP;
  2813. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
  2814. hw->media_type == MEDIA_TYPE_1000M_FULL) {
  2815. ecmd->advertising |= ADVERTISED_Autoneg;
  2816. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR) {
  2817. ecmd->advertising |= ADVERTISED_Autoneg;
  2818. ecmd->advertising |=
  2819. (ADVERTISED_10baseT_Half |
  2820. ADVERTISED_10baseT_Full |
  2821. ADVERTISED_100baseT_Half |
  2822. ADVERTISED_100baseT_Full |
  2823. ADVERTISED_1000baseT_Full);
  2824. } else
  2825. ecmd->advertising |= (ADVERTISED_1000baseT_Full);
  2826. }
  2827. ecmd->port = PORT_TP;
  2828. ecmd->phy_address = 0;
  2829. ecmd->transceiver = XCVR_INTERNAL;
  2830. if (netif_carrier_ok(adapter->netdev)) {
  2831. u16 link_speed, link_duplex;
  2832. atl1_get_speed_and_duplex(hw, &link_speed, &link_duplex);
  2833. ethtool_cmd_speed_set(ecmd, link_speed);
  2834. if (link_duplex == FULL_DUPLEX)
  2835. ecmd->duplex = DUPLEX_FULL;
  2836. else
  2837. ecmd->duplex = DUPLEX_HALF;
  2838. } else {
  2839. ethtool_cmd_speed_set(ecmd, SPEED_UNKNOWN);
  2840. ecmd->duplex = DUPLEX_UNKNOWN;
  2841. }
  2842. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
  2843. hw->media_type == MEDIA_TYPE_1000M_FULL)
  2844. ecmd->autoneg = AUTONEG_ENABLE;
  2845. else
  2846. ecmd->autoneg = AUTONEG_DISABLE;
  2847. return 0;
  2848. }
  2849. static int atl1_set_settings(struct net_device *netdev,
  2850. struct ethtool_cmd *ecmd)
  2851. {
  2852. struct atl1_adapter *adapter = netdev_priv(netdev);
  2853. struct atl1_hw *hw = &adapter->hw;
  2854. u16 phy_data;
  2855. int ret_val = 0;
  2856. u16 old_media_type = hw->media_type;
  2857. if (netif_running(adapter->netdev)) {
  2858. if (netif_msg_link(adapter))
  2859. dev_dbg(&adapter->pdev->dev,
  2860. "ethtool shutting down adapter\n");
  2861. atl1_down(adapter);
  2862. }
  2863. if (ecmd->autoneg == AUTONEG_ENABLE)
  2864. hw->media_type = MEDIA_TYPE_AUTO_SENSOR;
  2865. else {
  2866. u32 speed = ethtool_cmd_speed(ecmd);
  2867. if (speed == SPEED_1000) {
  2868. if (ecmd->duplex != DUPLEX_FULL) {
  2869. if (netif_msg_link(adapter))
  2870. dev_warn(&adapter->pdev->dev,
  2871. "1000M half is invalid\n");
  2872. ret_val = -EINVAL;
  2873. goto exit_sset;
  2874. }
  2875. hw->media_type = MEDIA_TYPE_1000M_FULL;
  2876. } else if (speed == SPEED_100) {
  2877. if (ecmd->duplex == DUPLEX_FULL)
  2878. hw->media_type = MEDIA_TYPE_100M_FULL;
  2879. else
  2880. hw->media_type = MEDIA_TYPE_100M_HALF;
  2881. } else {
  2882. if (ecmd->duplex == DUPLEX_FULL)
  2883. hw->media_type = MEDIA_TYPE_10M_FULL;
  2884. else
  2885. hw->media_type = MEDIA_TYPE_10M_HALF;
  2886. }
  2887. }
  2888. switch (hw->media_type) {
  2889. case MEDIA_TYPE_AUTO_SENSOR:
  2890. ecmd->advertising =
  2891. ADVERTISED_10baseT_Half |
  2892. ADVERTISED_10baseT_Full |
  2893. ADVERTISED_100baseT_Half |
  2894. ADVERTISED_100baseT_Full |
  2895. ADVERTISED_1000baseT_Full |
  2896. ADVERTISED_Autoneg | ADVERTISED_TP;
  2897. break;
  2898. case MEDIA_TYPE_1000M_FULL:
  2899. ecmd->advertising =
  2900. ADVERTISED_1000baseT_Full |
  2901. ADVERTISED_Autoneg | ADVERTISED_TP;
  2902. break;
  2903. default:
  2904. ecmd->advertising = 0;
  2905. break;
  2906. }
  2907. if (atl1_phy_setup_autoneg_adv(hw)) {
  2908. ret_val = -EINVAL;
  2909. if (netif_msg_link(adapter))
  2910. dev_warn(&adapter->pdev->dev,
  2911. "invalid ethtool speed/duplex setting\n");
  2912. goto exit_sset;
  2913. }
  2914. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
  2915. hw->media_type == MEDIA_TYPE_1000M_FULL)
  2916. phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
  2917. else {
  2918. switch (hw->media_type) {
  2919. case MEDIA_TYPE_100M_FULL:
  2920. phy_data =
  2921. MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
  2922. MII_CR_RESET;
  2923. break;
  2924. case MEDIA_TYPE_100M_HALF:
  2925. phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
  2926. break;
  2927. case MEDIA_TYPE_10M_FULL:
  2928. phy_data =
  2929. MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
  2930. break;
  2931. default:
  2932. /* MEDIA_TYPE_10M_HALF: */
  2933. phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
  2934. break;
  2935. }
  2936. }
  2937. atl1_write_phy_reg(hw, MII_BMCR, phy_data);
  2938. exit_sset:
  2939. if (ret_val)
  2940. hw->media_type = old_media_type;
  2941. if (netif_running(adapter->netdev)) {
  2942. if (netif_msg_link(adapter))
  2943. dev_dbg(&adapter->pdev->dev,
  2944. "ethtool starting adapter\n");
  2945. atl1_up(adapter);
  2946. } else if (!ret_val) {
  2947. if (netif_msg_link(adapter))
  2948. dev_dbg(&adapter->pdev->dev,
  2949. "ethtool resetting adapter\n");
  2950. atl1_reset(adapter);
  2951. }
  2952. return ret_val;
  2953. }
  2954. static void atl1_get_drvinfo(struct net_device *netdev,
  2955. struct ethtool_drvinfo *drvinfo)
  2956. {
  2957. struct atl1_adapter *adapter = netdev_priv(netdev);
  2958. strlcpy(drvinfo->driver, ATLX_DRIVER_NAME, sizeof(drvinfo->driver));
  2959. strlcpy(drvinfo->version, ATLX_DRIVER_VERSION,
  2960. sizeof(drvinfo->version));
  2961. strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
  2962. sizeof(drvinfo->bus_info));
  2963. }
  2964. static void atl1_get_wol(struct net_device *netdev,
  2965. struct ethtool_wolinfo *wol)
  2966. {
  2967. struct atl1_adapter *adapter = netdev_priv(netdev);
  2968. wol->supported = WAKE_MAGIC;
  2969. wol->wolopts = 0;
  2970. if (adapter->wol & ATLX_WUFC_MAG)
  2971. wol->wolopts |= WAKE_MAGIC;
  2972. }
  2973. static int atl1_set_wol(struct net_device *netdev,
  2974. struct ethtool_wolinfo *wol)
  2975. {
  2976. struct atl1_adapter *adapter = netdev_priv(netdev);
  2977. if (wol->wolopts & (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
  2978. WAKE_ARP | WAKE_MAGICSECURE))
  2979. return -EOPNOTSUPP;
  2980. adapter->wol = 0;
  2981. if (wol->wolopts & WAKE_MAGIC)
  2982. adapter->wol |= ATLX_WUFC_MAG;
  2983. device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
  2984. return 0;
  2985. }
  2986. static u32 atl1_get_msglevel(struct net_device *netdev)
  2987. {
  2988. struct atl1_adapter *adapter = netdev_priv(netdev);
  2989. return adapter->msg_enable;
  2990. }
  2991. static void atl1_set_msglevel(struct net_device *netdev, u32 value)
  2992. {
  2993. struct atl1_adapter *adapter = netdev_priv(netdev);
  2994. adapter->msg_enable = value;
  2995. }
  2996. static int atl1_get_regs_len(struct net_device *netdev)
  2997. {
  2998. return ATL1_REG_COUNT * sizeof(u32);
  2999. }
  3000. static void atl1_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
  3001. void *p)
  3002. {
  3003. struct atl1_adapter *adapter = netdev_priv(netdev);
  3004. struct atl1_hw *hw = &adapter->hw;
  3005. unsigned int i;
  3006. u32 *regbuf = p;
  3007. for (i = 0; i < ATL1_REG_COUNT; i++) {
  3008. /*
  3009. * This switch statement avoids reserved regions
  3010. * of register space.
  3011. */
  3012. switch (i) {
  3013. case 6 ... 9:
  3014. case 14:
  3015. case 29 ... 31:
  3016. case 34 ... 63:
  3017. case 75 ... 127:
  3018. case 136 ... 1023:
  3019. case 1027 ... 1087:
  3020. case 1091 ... 1151:
  3021. case 1194 ... 1195:
  3022. case 1200 ... 1201:
  3023. case 1206 ... 1213:
  3024. case 1216 ... 1279:
  3025. case 1290 ... 1311:
  3026. case 1323 ... 1343:
  3027. case 1358 ... 1359:
  3028. case 1368 ... 1375:
  3029. case 1378 ... 1383:
  3030. case 1388 ... 1391:
  3031. case 1393 ... 1395:
  3032. case 1402 ... 1403:
  3033. case 1410 ... 1471:
  3034. case 1522 ... 1535:
  3035. /* reserved region; don't read it */
  3036. regbuf[i] = 0;
  3037. break;
  3038. default:
  3039. /* unreserved region */
  3040. regbuf[i] = ioread32(hw->hw_addr + (i * sizeof(u32)));
  3041. }
  3042. }
  3043. }
  3044. static void atl1_get_ringparam(struct net_device *netdev,
  3045. struct ethtool_ringparam *ring)
  3046. {
  3047. struct atl1_adapter *adapter = netdev_priv(netdev);
  3048. struct atl1_tpd_ring *txdr = &adapter->tpd_ring;
  3049. struct atl1_rfd_ring *rxdr = &adapter->rfd_ring;
  3050. ring->rx_max_pending = ATL1_MAX_RFD;
  3051. ring->tx_max_pending = ATL1_MAX_TPD;
  3052. ring->rx_pending = rxdr->count;
  3053. ring->tx_pending = txdr->count;
  3054. }
  3055. static int atl1_set_ringparam(struct net_device *netdev,
  3056. struct ethtool_ringparam *ring)
  3057. {
  3058. struct atl1_adapter *adapter = netdev_priv(netdev);
  3059. struct atl1_tpd_ring *tpdr = &adapter->tpd_ring;
  3060. struct atl1_rrd_ring *rrdr = &adapter->rrd_ring;
  3061. struct atl1_rfd_ring *rfdr = &adapter->rfd_ring;
  3062. struct atl1_tpd_ring tpd_old, tpd_new;
  3063. struct atl1_rfd_ring rfd_old, rfd_new;
  3064. struct atl1_rrd_ring rrd_old, rrd_new;
  3065. struct atl1_ring_header rhdr_old, rhdr_new;
  3066. struct atl1_smb smb;
  3067. struct atl1_cmb cmb;
  3068. int err;
  3069. tpd_old = adapter->tpd_ring;
  3070. rfd_old = adapter->rfd_ring;
  3071. rrd_old = adapter->rrd_ring;
  3072. rhdr_old = adapter->ring_header;
  3073. if (netif_running(adapter->netdev))
  3074. atl1_down(adapter);
  3075. rfdr->count = (u16) max(ring->rx_pending, (u32) ATL1_MIN_RFD);
  3076. rfdr->count = rfdr->count > ATL1_MAX_RFD ? ATL1_MAX_RFD :
  3077. rfdr->count;
  3078. rfdr->count = (rfdr->count + 3) & ~3;
  3079. rrdr->count = rfdr->count;
  3080. tpdr->count = (u16) max(ring->tx_pending, (u32) ATL1_MIN_TPD);
  3081. tpdr->count = tpdr->count > ATL1_MAX_TPD ? ATL1_MAX_TPD :
  3082. tpdr->count;
  3083. tpdr->count = (tpdr->count + 3) & ~3;
  3084. if (netif_running(adapter->netdev)) {
  3085. /* try to get new resources before deleting old */
  3086. err = atl1_setup_ring_resources(adapter);
  3087. if (err)
  3088. goto err_setup_ring;
  3089. /*
  3090. * save the new, restore the old in order to free it,
  3091. * then restore the new back again
  3092. */
  3093. rfd_new = adapter->rfd_ring;
  3094. rrd_new = adapter->rrd_ring;
  3095. tpd_new = adapter->tpd_ring;
  3096. rhdr_new = adapter->ring_header;
  3097. adapter->rfd_ring = rfd_old;
  3098. adapter->rrd_ring = rrd_old;
  3099. adapter->tpd_ring = tpd_old;
  3100. adapter->ring_header = rhdr_old;
  3101. /*
  3102. * Save SMB and CMB, since atl1_free_ring_resources
  3103. * will clear them.
  3104. */
  3105. smb = adapter->smb;
  3106. cmb = adapter->cmb;
  3107. atl1_free_ring_resources(adapter);
  3108. adapter->rfd_ring = rfd_new;
  3109. adapter->rrd_ring = rrd_new;
  3110. adapter->tpd_ring = tpd_new;
  3111. adapter->ring_header = rhdr_new;
  3112. adapter->smb = smb;
  3113. adapter->cmb = cmb;
  3114. err = atl1_up(adapter);
  3115. if (err)
  3116. return err;
  3117. }
  3118. return 0;
  3119. err_setup_ring:
  3120. adapter->rfd_ring = rfd_old;
  3121. adapter->rrd_ring = rrd_old;
  3122. adapter->tpd_ring = tpd_old;
  3123. adapter->ring_header = rhdr_old;
  3124. atl1_up(adapter);
  3125. return err;
  3126. }
  3127. static void atl1_get_pauseparam(struct net_device *netdev,
  3128. struct ethtool_pauseparam *epause)
  3129. {
  3130. struct atl1_adapter *adapter = netdev_priv(netdev);
  3131. struct atl1_hw *hw = &adapter->hw;
  3132. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
  3133. hw->media_type == MEDIA_TYPE_1000M_FULL) {
  3134. epause->autoneg = AUTONEG_ENABLE;
  3135. } else {
  3136. epause->autoneg = AUTONEG_DISABLE;
  3137. }
  3138. epause->rx_pause = 1;
  3139. epause->tx_pause = 1;
  3140. }
  3141. static int atl1_set_pauseparam(struct net_device *netdev,
  3142. struct ethtool_pauseparam *epause)
  3143. {
  3144. struct atl1_adapter *adapter = netdev_priv(netdev);
  3145. struct atl1_hw *hw = &adapter->hw;
  3146. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
  3147. hw->media_type == MEDIA_TYPE_1000M_FULL) {
  3148. epause->autoneg = AUTONEG_ENABLE;
  3149. } else {
  3150. epause->autoneg = AUTONEG_DISABLE;
  3151. }
  3152. epause->rx_pause = 1;
  3153. epause->tx_pause = 1;
  3154. return 0;
  3155. }
  3156. static void atl1_get_strings(struct net_device *netdev, u32 stringset,
  3157. u8 *data)
  3158. {
  3159. u8 *p = data;
  3160. int i;
  3161. switch (stringset) {
  3162. case ETH_SS_STATS:
  3163. for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
  3164. memcpy(p, atl1_gstrings_stats[i].stat_string,
  3165. ETH_GSTRING_LEN);
  3166. p += ETH_GSTRING_LEN;
  3167. }
  3168. break;
  3169. }
  3170. }
  3171. static int atl1_nway_reset(struct net_device *netdev)
  3172. {
  3173. struct atl1_adapter *adapter = netdev_priv(netdev);
  3174. struct atl1_hw *hw = &adapter->hw;
  3175. if (netif_running(netdev)) {
  3176. u16 phy_data;
  3177. atl1_down(adapter);
  3178. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
  3179. hw->media_type == MEDIA_TYPE_1000M_FULL) {
  3180. phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
  3181. } else {
  3182. switch (hw->media_type) {
  3183. case MEDIA_TYPE_100M_FULL:
  3184. phy_data = MII_CR_FULL_DUPLEX |
  3185. MII_CR_SPEED_100 | MII_CR_RESET;
  3186. break;
  3187. case MEDIA_TYPE_100M_HALF:
  3188. phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
  3189. break;
  3190. case MEDIA_TYPE_10M_FULL:
  3191. phy_data = MII_CR_FULL_DUPLEX |
  3192. MII_CR_SPEED_10 | MII_CR_RESET;
  3193. break;
  3194. default:
  3195. /* MEDIA_TYPE_10M_HALF */
  3196. phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
  3197. }
  3198. }
  3199. atl1_write_phy_reg(hw, MII_BMCR, phy_data);
  3200. atl1_up(adapter);
  3201. }
  3202. return 0;
  3203. }
  3204. static const struct ethtool_ops atl1_ethtool_ops = {
  3205. .get_settings = atl1_get_settings,
  3206. .set_settings = atl1_set_settings,
  3207. .get_drvinfo = atl1_get_drvinfo,
  3208. .get_wol = atl1_get_wol,
  3209. .set_wol = atl1_set_wol,
  3210. .get_msglevel = atl1_get_msglevel,
  3211. .set_msglevel = atl1_set_msglevel,
  3212. .get_regs_len = atl1_get_regs_len,
  3213. .get_regs = atl1_get_regs,
  3214. .get_ringparam = atl1_get_ringparam,
  3215. .set_ringparam = atl1_set_ringparam,
  3216. .get_pauseparam = atl1_get_pauseparam,
  3217. .set_pauseparam = atl1_set_pauseparam,
  3218. .get_link = ethtool_op_get_link,
  3219. .get_strings = atl1_get_strings,
  3220. .nway_reset = atl1_nway_reset,
  3221. .get_ethtool_stats = atl1_get_ethtool_stats,
  3222. .get_sset_count = atl1_get_sset_count,
  3223. };
  3224. module_pci_driver(atl1_driver);