i40e_txrx.c 80 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912
  1. /*******************************************************************************
  2. *
  3. * Intel Ethernet Controller XL710 Family Linux Driver
  4. * Copyright(c) 2013 - 2014 Intel Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along
  16. * with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * The full GNU General Public License is included in this distribution in
  19. * the file called "COPYING".
  20. *
  21. * Contact Information:
  22. * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  23. * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  24. *
  25. ******************************************************************************/
  26. #include <linux/prefetch.h>
  27. #include <net/busy_poll.h>
  28. #include "i40e.h"
  29. #include "i40e_prototype.h"
  30. static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
  31. u32 td_tag)
  32. {
  33. return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
  34. ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
  35. ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
  36. ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
  37. ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
  38. }
  39. #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  40. #define I40E_FD_CLEAN_DELAY 10
  41. /**
  42. * i40e_program_fdir_filter - Program a Flow Director filter
  43. * @fdir_data: Packet data that will be filter parameters
  44. * @raw_packet: the pre-allocated packet buffer for FDir
  45. * @pf: The PF pointer
  46. * @add: True for add/update, False for remove
  47. **/
  48. int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet,
  49. struct i40e_pf *pf, bool add)
  50. {
  51. struct i40e_filter_program_desc *fdir_desc;
  52. struct i40e_tx_buffer *tx_buf, *first;
  53. struct i40e_tx_desc *tx_desc;
  54. struct i40e_ring *tx_ring;
  55. unsigned int fpt, dcc;
  56. struct i40e_vsi *vsi;
  57. struct device *dev;
  58. dma_addr_t dma;
  59. u32 td_cmd = 0;
  60. u16 delay = 0;
  61. u16 i;
  62. /* find existing FDIR VSI */
  63. vsi = NULL;
  64. for (i = 0; i < pf->num_alloc_vsi; i++)
  65. if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
  66. vsi = pf->vsi[i];
  67. if (!vsi)
  68. return -ENOENT;
  69. tx_ring = vsi->tx_rings[0];
  70. dev = tx_ring->dev;
  71. /* we need two descriptors to add/del a filter and we can wait */
  72. do {
  73. if (I40E_DESC_UNUSED(tx_ring) > 1)
  74. break;
  75. msleep_interruptible(1);
  76. delay++;
  77. } while (delay < I40E_FD_CLEAN_DELAY);
  78. if (!(I40E_DESC_UNUSED(tx_ring) > 1))
  79. return -EAGAIN;
  80. dma = dma_map_single(dev, raw_packet,
  81. I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
  82. if (dma_mapping_error(dev, dma))
  83. goto dma_fail;
  84. /* grab the next descriptor */
  85. i = tx_ring->next_to_use;
  86. fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
  87. first = &tx_ring->tx_bi[i];
  88. memset(first, 0, sizeof(struct i40e_tx_buffer));
  89. tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
  90. fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
  91. I40E_TXD_FLTR_QW0_QINDEX_MASK;
  92. fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) &
  93. I40E_TXD_FLTR_QW0_FLEXOFF_MASK;
  94. fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) &
  95. I40E_TXD_FLTR_QW0_PCTYPE_MASK;
  96. /* Use LAN VSI Id if not programmed by user */
  97. if (fdir_data->dest_vsi == 0)
  98. fpt |= (pf->vsi[pf->lan_vsi]->id) <<
  99. I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
  100. else
  101. fpt |= ((u32)fdir_data->dest_vsi <<
  102. I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) &
  103. I40E_TXD_FLTR_QW0_DEST_VSI_MASK;
  104. dcc = I40E_TX_DESC_DTYPE_FILTER_PROG;
  105. if (add)
  106. dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
  107. I40E_TXD_FLTR_QW1_PCMD_SHIFT;
  108. else
  109. dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
  110. I40E_TXD_FLTR_QW1_PCMD_SHIFT;
  111. dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) &
  112. I40E_TXD_FLTR_QW1_DEST_MASK;
  113. dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) &
  114. I40E_TXD_FLTR_QW1_FD_STATUS_MASK;
  115. if (fdir_data->cnt_index != 0) {
  116. dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
  117. dcc |= ((u32)fdir_data->cnt_index <<
  118. I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
  119. I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
  120. }
  121. fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt);
  122. fdir_desc->rsvd = cpu_to_le32(0);
  123. fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc);
  124. fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
  125. /* Now program a dummy descriptor */
  126. i = tx_ring->next_to_use;
  127. tx_desc = I40E_TX_DESC(tx_ring, i);
  128. tx_buf = &tx_ring->tx_bi[i];
  129. tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
  130. memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
  131. /* record length, and DMA address */
  132. dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
  133. dma_unmap_addr_set(tx_buf, dma, dma);
  134. tx_desc->buffer_addr = cpu_to_le64(dma);
  135. td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
  136. tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
  137. tx_buf->raw_buf = (void *)raw_packet;
  138. tx_desc->cmd_type_offset_bsz =
  139. build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
  140. /* Force memory writes to complete before letting h/w
  141. * know there are new descriptors to fetch.
  142. */
  143. wmb();
  144. /* Mark the data descriptor to be watched */
  145. first->next_to_watch = tx_desc;
  146. writel(tx_ring->next_to_use, tx_ring->tail);
  147. return 0;
  148. dma_fail:
  149. return -1;
  150. }
  151. #define IP_HEADER_OFFSET 14
  152. #define I40E_UDPIP_DUMMY_PACKET_LEN 42
  153. /**
  154. * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
  155. * @vsi: pointer to the targeted VSI
  156. * @fd_data: the flow director data required for the FDir descriptor
  157. * @add: true adds a filter, false removes it
  158. *
  159. * Returns 0 if the filters were successfully added or removed
  160. **/
  161. static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
  162. struct i40e_fdir_filter *fd_data,
  163. bool add)
  164. {
  165. struct i40e_pf *pf = vsi->back;
  166. struct udphdr *udp;
  167. struct iphdr *ip;
  168. bool err = false;
  169. u8 *raw_packet;
  170. int ret;
  171. static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
  172. 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
  173. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
  174. raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
  175. if (!raw_packet)
  176. return -ENOMEM;
  177. memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
  178. ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
  179. udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
  180. + sizeof(struct iphdr));
  181. ip->daddr = fd_data->dst_ip[0];
  182. udp->dest = fd_data->dst_port;
  183. ip->saddr = fd_data->src_ip[0];
  184. udp->source = fd_data->src_port;
  185. fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
  186. ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
  187. if (ret) {
  188. dev_info(&pf->pdev->dev,
  189. "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
  190. fd_data->pctype, fd_data->fd_id, ret);
  191. err = true;
  192. } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
  193. if (add)
  194. dev_info(&pf->pdev->dev,
  195. "Filter OK for PCTYPE %d loc = %d\n",
  196. fd_data->pctype, fd_data->fd_id);
  197. else
  198. dev_info(&pf->pdev->dev,
  199. "Filter deleted for PCTYPE %d loc = %d\n",
  200. fd_data->pctype, fd_data->fd_id);
  201. }
  202. if (err)
  203. kfree(raw_packet);
  204. return err ? -EOPNOTSUPP : 0;
  205. }
  206. #define I40E_TCPIP_DUMMY_PACKET_LEN 54
  207. /**
  208. * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
  209. * @vsi: pointer to the targeted VSI
  210. * @fd_data: the flow director data required for the FDir descriptor
  211. * @add: true adds a filter, false removes it
  212. *
  213. * Returns 0 if the filters were successfully added or removed
  214. **/
  215. static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
  216. struct i40e_fdir_filter *fd_data,
  217. bool add)
  218. {
  219. struct i40e_pf *pf = vsi->back;
  220. struct tcphdr *tcp;
  221. struct iphdr *ip;
  222. bool err = false;
  223. u8 *raw_packet;
  224. int ret;
  225. /* Dummy packet */
  226. static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
  227. 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
  228. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
  229. 0x0, 0x72, 0, 0, 0, 0};
  230. raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
  231. if (!raw_packet)
  232. return -ENOMEM;
  233. memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
  234. ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
  235. tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
  236. + sizeof(struct iphdr));
  237. ip->daddr = fd_data->dst_ip[0];
  238. tcp->dest = fd_data->dst_port;
  239. ip->saddr = fd_data->src_ip[0];
  240. tcp->source = fd_data->src_port;
  241. if (add) {
  242. pf->fd_tcp_rule++;
  243. if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) {
  244. if (I40E_DEBUG_FD & pf->hw.debug_mask)
  245. dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
  246. pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
  247. }
  248. } else {
  249. pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
  250. (pf->fd_tcp_rule - 1) : 0;
  251. if (pf->fd_tcp_rule == 0) {
  252. pf->flags |= I40E_FLAG_FD_ATR_ENABLED;
  253. if (I40E_DEBUG_FD & pf->hw.debug_mask)
  254. dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
  255. }
  256. }
  257. fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
  258. ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
  259. if (ret) {
  260. dev_info(&pf->pdev->dev,
  261. "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
  262. fd_data->pctype, fd_data->fd_id, ret);
  263. err = true;
  264. } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
  265. if (add)
  266. dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
  267. fd_data->pctype, fd_data->fd_id);
  268. else
  269. dev_info(&pf->pdev->dev,
  270. "Filter deleted for PCTYPE %d loc = %d\n",
  271. fd_data->pctype, fd_data->fd_id);
  272. }
  273. if (err)
  274. kfree(raw_packet);
  275. return err ? -EOPNOTSUPP : 0;
  276. }
  277. /**
  278. * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
  279. * a specific flow spec
  280. * @vsi: pointer to the targeted VSI
  281. * @fd_data: the flow director data required for the FDir descriptor
  282. * @add: true adds a filter, false removes it
  283. *
  284. * Always returns -EOPNOTSUPP
  285. **/
  286. static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
  287. struct i40e_fdir_filter *fd_data,
  288. bool add)
  289. {
  290. return -EOPNOTSUPP;
  291. }
  292. #define I40E_IP_DUMMY_PACKET_LEN 34
  293. /**
  294. * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
  295. * a specific flow spec
  296. * @vsi: pointer to the targeted VSI
  297. * @fd_data: the flow director data required for the FDir descriptor
  298. * @add: true adds a filter, false removes it
  299. *
  300. * Returns 0 if the filters were successfully added or removed
  301. **/
  302. static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
  303. struct i40e_fdir_filter *fd_data,
  304. bool add)
  305. {
  306. struct i40e_pf *pf = vsi->back;
  307. struct iphdr *ip;
  308. bool err = false;
  309. u8 *raw_packet;
  310. int ret;
  311. int i;
  312. static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
  313. 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
  314. 0, 0, 0, 0};
  315. for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
  316. i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
  317. raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
  318. if (!raw_packet)
  319. return -ENOMEM;
  320. memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
  321. ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
  322. ip->saddr = fd_data->src_ip[0];
  323. ip->daddr = fd_data->dst_ip[0];
  324. ip->protocol = 0;
  325. fd_data->pctype = i;
  326. ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
  327. if (ret) {
  328. dev_info(&pf->pdev->dev,
  329. "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
  330. fd_data->pctype, fd_data->fd_id, ret);
  331. err = true;
  332. } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
  333. if (add)
  334. dev_info(&pf->pdev->dev,
  335. "Filter OK for PCTYPE %d loc = %d\n",
  336. fd_data->pctype, fd_data->fd_id);
  337. else
  338. dev_info(&pf->pdev->dev,
  339. "Filter deleted for PCTYPE %d loc = %d\n",
  340. fd_data->pctype, fd_data->fd_id);
  341. }
  342. }
  343. if (err)
  344. kfree(raw_packet);
  345. return err ? -EOPNOTSUPP : 0;
  346. }
  347. /**
  348. * i40e_add_del_fdir - Build raw packets to add/del fdir filter
  349. * @vsi: pointer to the targeted VSI
  350. * @cmd: command to get or set RX flow classification rules
  351. * @add: true adds a filter, false removes it
  352. *
  353. **/
  354. int i40e_add_del_fdir(struct i40e_vsi *vsi,
  355. struct i40e_fdir_filter *input, bool add)
  356. {
  357. struct i40e_pf *pf = vsi->back;
  358. int ret;
  359. switch (input->flow_type & ~FLOW_EXT) {
  360. case TCP_V4_FLOW:
  361. ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
  362. break;
  363. case UDP_V4_FLOW:
  364. ret = i40e_add_del_fdir_udpv4(vsi, input, add);
  365. break;
  366. case SCTP_V4_FLOW:
  367. ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
  368. break;
  369. case IPV4_FLOW:
  370. ret = i40e_add_del_fdir_ipv4(vsi, input, add);
  371. break;
  372. case IP_USER_FLOW:
  373. switch (input->ip4_proto) {
  374. case IPPROTO_TCP:
  375. ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
  376. break;
  377. case IPPROTO_UDP:
  378. ret = i40e_add_del_fdir_udpv4(vsi, input, add);
  379. break;
  380. case IPPROTO_SCTP:
  381. ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
  382. break;
  383. default:
  384. ret = i40e_add_del_fdir_ipv4(vsi, input, add);
  385. break;
  386. }
  387. break;
  388. default:
  389. dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
  390. input->flow_type);
  391. ret = -EINVAL;
  392. }
  393. /* The buffer allocated here is freed by the i40e_clean_tx_ring() */
  394. return ret;
  395. }
  396. /**
  397. * i40e_fd_handle_status - check the Programming Status for FD
  398. * @rx_ring: the Rx ring for this descriptor
  399. * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
  400. * @prog_id: the id originally used for programming
  401. *
  402. * This is used to verify if the FD programming or invalidation
  403. * requested by SW to the HW is successful or not and take actions accordingly.
  404. **/
  405. static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
  406. union i40e_rx_desc *rx_desc, u8 prog_id)
  407. {
  408. struct i40e_pf *pf = rx_ring->vsi->back;
  409. struct pci_dev *pdev = pf->pdev;
  410. u32 fcnt_prog, fcnt_avail;
  411. u32 error;
  412. u64 qw;
  413. qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
  414. error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
  415. I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
  416. if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
  417. pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
  418. if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
  419. (I40E_DEBUG_FD & pf->hw.debug_mask))
  420. dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
  421. pf->fd_inv);
  422. /* Check if the programming error is for ATR.
  423. * If so, auto disable ATR and set a state for
  424. * flush in progress. Next time we come here if flush is in
  425. * progress do nothing, once flush is complete the state will
  426. * be cleared.
  427. */
  428. if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
  429. return;
  430. pf->fd_add_err++;
  431. /* store the current atr filter count */
  432. pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
  433. if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
  434. (pf->auto_disable_flags & I40E_FLAG_FD_SB_ENABLED)) {
  435. pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
  436. set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
  437. }
  438. /* filter programming failed most likely due to table full */
  439. fcnt_prog = i40e_get_global_fd_count(pf);
  440. fcnt_avail = pf->fdir_pf_filter_count;
  441. /* If ATR is running fcnt_prog can quickly change,
  442. * if we are very close to full, it makes sense to disable
  443. * FD ATR/SB and then re-enable it when there is room.
  444. */
  445. if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
  446. if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
  447. !(pf->auto_disable_flags &
  448. I40E_FLAG_FD_SB_ENABLED)) {
  449. if (I40E_DEBUG_FD & pf->hw.debug_mask)
  450. dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
  451. pf->auto_disable_flags |=
  452. I40E_FLAG_FD_SB_ENABLED;
  453. }
  454. } else {
  455. dev_info(&pdev->dev,
  456. "FD filter programming failed due to incorrect filter parameters\n");
  457. }
  458. } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
  459. if (I40E_DEBUG_FD & pf->hw.debug_mask)
  460. dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
  461. rx_desc->wb.qword0.hi_dword.fd_id);
  462. }
  463. }
  464. /**
  465. * i40e_unmap_and_free_tx_resource - Release a Tx buffer
  466. * @ring: the ring that owns the buffer
  467. * @tx_buffer: the buffer to free
  468. **/
  469. static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
  470. struct i40e_tx_buffer *tx_buffer)
  471. {
  472. if (tx_buffer->skb) {
  473. dev_kfree_skb_any(tx_buffer->skb);
  474. if (dma_unmap_len(tx_buffer, len))
  475. dma_unmap_single(ring->dev,
  476. dma_unmap_addr(tx_buffer, dma),
  477. dma_unmap_len(tx_buffer, len),
  478. DMA_TO_DEVICE);
  479. } else if (dma_unmap_len(tx_buffer, len)) {
  480. dma_unmap_page(ring->dev,
  481. dma_unmap_addr(tx_buffer, dma),
  482. dma_unmap_len(tx_buffer, len),
  483. DMA_TO_DEVICE);
  484. }
  485. if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
  486. kfree(tx_buffer->raw_buf);
  487. tx_buffer->next_to_watch = NULL;
  488. tx_buffer->skb = NULL;
  489. dma_unmap_len_set(tx_buffer, len, 0);
  490. /* tx_buffer must be completely set up in the transmit path */
  491. }
  492. /**
  493. * i40e_clean_tx_ring - Free any empty Tx buffers
  494. * @tx_ring: ring to be cleaned
  495. **/
  496. void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
  497. {
  498. unsigned long bi_size;
  499. u16 i;
  500. /* ring already cleared, nothing to do */
  501. if (!tx_ring->tx_bi)
  502. return;
  503. /* Free all the Tx ring sk_buffs */
  504. for (i = 0; i < tx_ring->count; i++)
  505. i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
  506. bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
  507. memset(tx_ring->tx_bi, 0, bi_size);
  508. /* Zero out the descriptor ring */
  509. memset(tx_ring->desc, 0, tx_ring->size);
  510. tx_ring->next_to_use = 0;
  511. tx_ring->next_to_clean = 0;
  512. if (!tx_ring->netdev)
  513. return;
  514. /* cleanup Tx queue statistics */
  515. netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
  516. tx_ring->queue_index));
  517. }
  518. /**
  519. * i40e_free_tx_resources - Free Tx resources per queue
  520. * @tx_ring: Tx descriptor ring for a specific queue
  521. *
  522. * Free all transmit software resources
  523. **/
  524. void i40e_free_tx_resources(struct i40e_ring *tx_ring)
  525. {
  526. i40e_clean_tx_ring(tx_ring);
  527. kfree(tx_ring->tx_bi);
  528. tx_ring->tx_bi = NULL;
  529. if (tx_ring->desc) {
  530. dma_free_coherent(tx_ring->dev, tx_ring->size,
  531. tx_ring->desc, tx_ring->dma);
  532. tx_ring->desc = NULL;
  533. }
  534. }
  535. /**
  536. * i40e_get_tx_pending - how many tx descriptors not processed
  537. * @tx_ring: the ring of descriptors
  538. *
  539. * Since there is no access to the ring head register
  540. * in XL710, we need to use our local copies
  541. **/
  542. u32 i40e_get_tx_pending(struct i40e_ring *ring)
  543. {
  544. u32 head, tail;
  545. head = i40e_get_head(ring);
  546. tail = readl(ring->tail);
  547. if (head != tail)
  548. return (head < tail) ?
  549. tail - head : (tail + ring->count - head);
  550. return 0;
  551. }
  552. #define WB_STRIDE 0x3
  553. /**
  554. * i40e_clean_tx_irq - Reclaim resources after transmit completes
  555. * @tx_ring: tx ring to clean
  556. * @budget: how many cleans we're allowed
  557. *
  558. * Returns true if there's any budget left (e.g. the clean is finished)
  559. **/
  560. static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
  561. {
  562. u16 i = tx_ring->next_to_clean;
  563. struct i40e_tx_buffer *tx_buf;
  564. struct i40e_tx_desc *tx_head;
  565. struct i40e_tx_desc *tx_desc;
  566. unsigned int total_packets = 0;
  567. unsigned int total_bytes = 0;
  568. tx_buf = &tx_ring->tx_bi[i];
  569. tx_desc = I40E_TX_DESC(tx_ring, i);
  570. i -= tx_ring->count;
  571. tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
  572. do {
  573. struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
  574. /* if next_to_watch is not set then there is no work pending */
  575. if (!eop_desc)
  576. break;
  577. /* prevent any other reads prior to eop_desc */
  578. smp_rmb();
  579. /* we have caught up to head, no work left to do */
  580. if (tx_head == tx_desc)
  581. break;
  582. /* clear next_to_watch to prevent false hangs */
  583. tx_buf->next_to_watch = NULL;
  584. /* update the statistics for this packet */
  585. total_bytes += tx_buf->bytecount;
  586. total_packets += tx_buf->gso_segs;
  587. /* free the skb */
  588. dev_consume_skb_any(tx_buf->skb);
  589. /* unmap skb header data */
  590. dma_unmap_single(tx_ring->dev,
  591. dma_unmap_addr(tx_buf, dma),
  592. dma_unmap_len(tx_buf, len),
  593. DMA_TO_DEVICE);
  594. /* clear tx_buffer data */
  595. tx_buf->skb = NULL;
  596. dma_unmap_len_set(tx_buf, len, 0);
  597. /* unmap remaining buffers */
  598. while (tx_desc != eop_desc) {
  599. tx_buf++;
  600. tx_desc++;
  601. i++;
  602. if (unlikely(!i)) {
  603. i -= tx_ring->count;
  604. tx_buf = tx_ring->tx_bi;
  605. tx_desc = I40E_TX_DESC(tx_ring, 0);
  606. }
  607. /* unmap any remaining paged data */
  608. if (dma_unmap_len(tx_buf, len)) {
  609. dma_unmap_page(tx_ring->dev,
  610. dma_unmap_addr(tx_buf, dma),
  611. dma_unmap_len(tx_buf, len),
  612. DMA_TO_DEVICE);
  613. dma_unmap_len_set(tx_buf, len, 0);
  614. }
  615. }
  616. /* move us one more past the eop_desc for start of next pkt */
  617. tx_buf++;
  618. tx_desc++;
  619. i++;
  620. if (unlikely(!i)) {
  621. i -= tx_ring->count;
  622. tx_buf = tx_ring->tx_bi;
  623. tx_desc = I40E_TX_DESC(tx_ring, 0);
  624. }
  625. prefetch(tx_desc);
  626. /* update budget accounting */
  627. budget--;
  628. } while (likely(budget));
  629. i += tx_ring->count;
  630. tx_ring->next_to_clean = i;
  631. u64_stats_update_begin(&tx_ring->syncp);
  632. tx_ring->stats.bytes += total_bytes;
  633. tx_ring->stats.packets += total_packets;
  634. u64_stats_update_end(&tx_ring->syncp);
  635. tx_ring->q_vector->tx.total_bytes += total_bytes;
  636. tx_ring->q_vector->tx.total_packets += total_packets;
  637. if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
  638. unsigned int j = 0;
  639. /* check to see if there are < 4 descriptors
  640. * waiting to be written back, then kick the hardware to force
  641. * them to be written back in case we stay in NAPI.
  642. * In this mode on X722 we do not enable Interrupt.
  643. */
  644. j = i40e_get_tx_pending(tx_ring);
  645. if (budget &&
  646. ((j / (WB_STRIDE + 1)) == 0) && (j != 0) &&
  647. !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
  648. (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
  649. tx_ring->arm_wb = true;
  650. }
  651. netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
  652. tx_ring->queue_index),
  653. total_packets, total_bytes);
  654. #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
  655. if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
  656. (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
  657. /* Make sure that anybody stopping the queue after this
  658. * sees the new next_to_clean.
  659. */
  660. smp_mb();
  661. if (__netif_subqueue_stopped(tx_ring->netdev,
  662. tx_ring->queue_index) &&
  663. !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
  664. netif_wake_subqueue(tx_ring->netdev,
  665. tx_ring->queue_index);
  666. ++tx_ring->tx_stats.restart_queue;
  667. }
  668. }
  669. return !!budget;
  670. }
  671. /**
  672. * i40e_force_wb - Arm hardware to do a wb on noncache aligned descriptors
  673. * @vsi: the VSI we care about
  674. * @q_vector: the vector on which to force writeback
  675. *
  676. **/
  677. void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
  678. {
  679. u16 flags = q_vector->tx.ring[0].flags;
  680. if (flags & I40E_TXR_FLAGS_WB_ON_ITR) {
  681. u32 val;
  682. if (q_vector->arm_wb_state)
  683. return;
  684. val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK;
  685. wr32(&vsi->back->hw,
  686. I40E_PFINT_DYN_CTLN(q_vector->v_idx +
  687. vsi->base_vector - 1),
  688. val);
  689. q_vector->arm_wb_state = true;
  690. } else if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
  691. u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
  692. I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
  693. I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
  694. I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
  695. /* allow 00 to be written to the index */
  696. wr32(&vsi->back->hw,
  697. I40E_PFINT_DYN_CTLN(q_vector->v_idx +
  698. vsi->base_vector - 1), val);
  699. } else {
  700. u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
  701. I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
  702. I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
  703. I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
  704. /* allow 00 to be written to the index */
  705. wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
  706. }
  707. }
  708. /**
  709. * i40e_set_new_dynamic_itr - Find new ITR level
  710. * @rc: structure containing ring performance data
  711. *
  712. * Returns true if ITR changed, false if not
  713. *
  714. * Stores a new ITR value based on packets and byte counts during
  715. * the last interrupt. The advantage of per interrupt computation
  716. * is faster updates and more accurate ITR for the current traffic
  717. * pattern. Constants in this function were computed based on
  718. * theoretical maximum wire speed and thresholds were set based on
  719. * testing data as well as attempting to minimize response time
  720. * while increasing bulk throughput.
  721. **/
  722. static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
  723. {
  724. enum i40e_latency_range new_latency_range = rc->latency_range;
  725. struct i40e_q_vector *qv = rc->ring->q_vector;
  726. u32 new_itr = rc->itr;
  727. int bytes_per_int;
  728. int usecs;
  729. if (rc->total_packets == 0 || !rc->itr)
  730. return false;
  731. /* simple throttlerate management
  732. * 0-10MB/s lowest (50000 ints/s)
  733. * 10-20MB/s low (20000 ints/s)
  734. * 20-1249MB/s bulk (18000 ints/s)
  735. * > 40000 Rx packets per second (8000 ints/s)
  736. *
  737. * The math works out because the divisor is in 10^(-6) which
  738. * turns the bytes/us input value into MB/s values, but
  739. * make sure to use usecs, as the register values written
  740. * are in 2 usec increments in the ITR registers, and make sure
  741. * to use the smoothed values that the countdown timer gives us.
  742. */
  743. usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
  744. bytes_per_int = rc->total_bytes / usecs;
  745. switch (new_latency_range) {
  746. case I40E_LOWEST_LATENCY:
  747. if (bytes_per_int > 10)
  748. new_latency_range = I40E_LOW_LATENCY;
  749. break;
  750. case I40E_LOW_LATENCY:
  751. if (bytes_per_int > 20)
  752. new_latency_range = I40E_BULK_LATENCY;
  753. else if (bytes_per_int <= 10)
  754. new_latency_range = I40E_LOWEST_LATENCY;
  755. break;
  756. case I40E_BULK_LATENCY:
  757. case I40E_ULTRA_LATENCY:
  758. default:
  759. if (bytes_per_int <= 20)
  760. new_latency_range = I40E_LOW_LATENCY;
  761. break;
  762. }
  763. /* this is to adjust RX more aggressively when streaming small
  764. * packets. The value of 40000 was picked as it is just beyond
  765. * what the hardware can receive per second if in low latency
  766. * mode.
  767. */
  768. #define RX_ULTRA_PACKET_RATE 40000
  769. if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
  770. (&qv->rx == rc))
  771. new_latency_range = I40E_ULTRA_LATENCY;
  772. rc->latency_range = new_latency_range;
  773. switch (new_latency_range) {
  774. case I40E_LOWEST_LATENCY:
  775. new_itr = I40E_ITR_50K;
  776. break;
  777. case I40E_LOW_LATENCY:
  778. new_itr = I40E_ITR_20K;
  779. break;
  780. case I40E_BULK_LATENCY:
  781. new_itr = I40E_ITR_18K;
  782. break;
  783. case I40E_ULTRA_LATENCY:
  784. new_itr = I40E_ITR_8K;
  785. break;
  786. default:
  787. break;
  788. }
  789. rc->total_bytes = 0;
  790. rc->total_packets = 0;
  791. if (new_itr != rc->itr) {
  792. rc->itr = new_itr;
  793. return true;
  794. }
  795. return false;
  796. }
  797. /**
  798. * i40e_clean_programming_status - clean the programming status descriptor
  799. * @rx_ring: the rx ring that has this descriptor
  800. * @rx_desc: the rx descriptor written back by HW
  801. *
  802. * Flow director should handle FD_FILTER_STATUS to check its filter programming
  803. * status being successful or not and take actions accordingly. FCoE should
  804. * handle its context/filter programming/invalidation status and take actions.
  805. *
  806. **/
  807. static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
  808. union i40e_rx_desc *rx_desc)
  809. {
  810. u64 qw;
  811. u8 id;
  812. qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
  813. id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
  814. I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
  815. if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
  816. i40e_fd_handle_status(rx_ring, rx_desc, id);
  817. #ifdef I40E_FCOE
  818. else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
  819. (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
  820. i40e_fcoe_handle_status(rx_ring, rx_desc, id);
  821. #endif
  822. }
  823. /**
  824. * i40e_setup_tx_descriptors - Allocate the Tx descriptors
  825. * @tx_ring: the tx ring to set up
  826. *
  827. * Return 0 on success, negative on error
  828. **/
  829. int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
  830. {
  831. struct device *dev = tx_ring->dev;
  832. int bi_size;
  833. if (!dev)
  834. return -ENOMEM;
  835. /* warn if we are about to overwrite the pointer */
  836. WARN_ON(tx_ring->tx_bi);
  837. bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
  838. tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
  839. if (!tx_ring->tx_bi)
  840. goto err;
  841. /* round up to nearest 4K */
  842. tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
  843. /* add u32 for head writeback, align after this takes care of
  844. * guaranteeing this is at least one cache line in size
  845. */
  846. tx_ring->size += sizeof(u32);
  847. tx_ring->size = ALIGN(tx_ring->size, 4096);
  848. tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
  849. &tx_ring->dma, GFP_KERNEL);
  850. if (!tx_ring->desc) {
  851. dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
  852. tx_ring->size);
  853. goto err;
  854. }
  855. tx_ring->next_to_use = 0;
  856. tx_ring->next_to_clean = 0;
  857. return 0;
  858. err:
  859. kfree(tx_ring->tx_bi);
  860. tx_ring->tx_bi = NULL;
  861. return -ENOMEM;
  862. }
  863. /**
  864. * i40e_clean_rx_ring - Free Rx buffers
  865. * @rx_ring: ring to be cleaned
  866. **/
  867. void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
  868. {
  869. struct device *dev = rx_ring->dev;
  870. struct i40e_rx_buffer *rx_bi;
  871. unsigned long bi_size;
  872. u16 i;
  873. /* ring already cleared, nothing to do */
  874. if (!rx_ring->rx_bi)
  875. return;
  876. if (ring_is_ps_enabled(rx_ring)) {
  877. int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
  878. rx_bi = &rx_ring->rx_bi[0];
  879. if (rx_bi->hdr_buf) {
  880. dma_free_coherent(dev,
  881. bufsz,
  882. rx_bi->hdr_buf,
  883. rx_bi->dma);
  884. for (i = 0; i < rx_ring->count; i++) {
  885. rx_bi = &rx_ring->rx_bi[i];
  886. rx_bi->dma = 0;
  887. rx_bi->hdr_buf = NULL;
  888. }
  889. }
  890. }
  891. /* Free all the Rx ring sk_buffs */
  892. for (i = 0; i < rx_ring->count; i++) {
  893. rx_bi = &rx_ring->rx_bi[i];
  894. if (rx_bi->dma) {
  895. dma_unmap_single(dev,
  896. rx_bi->dma,
  897. rx_ring->rx_buf_len,
  898. DMA_FROM_DEVICE);
  899. rx_bi->dma = 0;
  900. }
  901. if (rx_bi->skb) {
  902. dev_kfree_skb(rx_bi->skb);
  903. rx_bi->skb = NULL;
  904. }
  905. if (rx_bi->page) {
  906. if (rx_bi->page_dma) {
  907. dma_unmap_page(dev,
  908. rx_bi->page_dma,
  909. PAGE_SIZE / 2,
  910. DMA_FROM_DEVICE);
  911. rx_bi->page_dma = 0;
  912. }
  913. __free_page(rx_bi->page);
  914. rx_bi->page = NULL;
  915. rx_bi->page_offset = 0;
  916. }
  917. }
  918. bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
  919. memset(rx_ring->rx_bi, 0, bi_size);
  920. /* Zero out the descriptor ring */
  921. memset(rx_ring->desc, 0, rx_ring->size);
  922. rx_ring->next_to_clean = 0;
  923. rx_ring->next_to_use = 0;
  924. }
  925. /**
  926. * i40e_free_rx_resources - Free Rx resources
  927. * @rx_ring: ring to clean the resources from
  928. *
  929. * Free all receive software resources
  930. **/
  931. void i40e_free_rx_resources(struct i40e_ring *rx_ring)
  932. {
  933. i40e_clean_rx_ring(rx_ring);
  934. kfree(rx_ring->rx_bi);
  935. rx_ring->rx_bi = NULL;
  936. if (rx_ring->desc) {
  937. dma_free_coherent(rx_ring->dev, rx_ring->size,
  938. rx_ring->desc, rx_ring->dma);
  939. rx_ring->desc = NULL;
  940. }
  941. }
  942. /**
  943. * i40e_alloc_rx_headers - allocate rx header buffers
  944. * @rx_ring: ring to alloc buffers
  945. *
  946. * Allocate rx header buffers for the entire ring. As these are static,
  947. * this is only called when setting up a new ring.
  948. **/
  949. void i40e_alloc_rx_headers(struct i40e_ring *rx_ring)
  950. {
  951. struct device *dev = rx_ring->dev;
  952. struct i40e_rx_buffer *rx_bi;
  953. dma_addr_t dma;
  954. void *buffer;
  955. int buf_size;
  956. int i;
  957. if (rx_ring->rx_bi[0].hdr_buf)
  958. return;
  959. /* Make sure the buffers don't cross cache line boundaries. */
  960. buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
  961. buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
  962. &dma, GFP_KERNEL);
  963. if (!buffer)
  964. return;
  965. for (i = 0; i < rx_ring->count; i++) {
  966. rx_bi = &rx_ring->rx_bi[i];
  967. rx_bi->dma = dma + (i * buf_size);
  968. rx_bi->hdr_buf = buffer + (i * buf_size);
  969. }
  970. }
  971. /**
  972. * i40e_setup_rx_descriptors - Allocate Rx descriptors
  973. * @rx_ring: Rx descriptor ring (for a specific queue) to setup
  974. *
  975. * Returns 0 on success, negative on failure
  976. **/
  977. int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
  978. {
  979. struct device *dev = rx_ring->dev;
  980. int bi_size;
  981. /* warn if we are about to overwrite the pointer */
  982. WARN_ON(rx_ring->rx_bi);
  983. bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
  984. rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
  985. if (!rx_ring->rx_bi)
  986. goto err;
  987. u64_stats_init(&rx_ring->syncp);
  988. /* Round up to nearest 4K */
  989. rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
  990. ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
  991. : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
  992. rx_ring->size = ALIGN(rx_ring->size, 4096);
  993. rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
  994. &rx_ring->dma, GFP_KERNEL);
  995. if (!rx_ring->desc) {
  996. dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
  997. rx_ring->size);
  998. goto err;
  999. }
  1000. rx_ring->next_to_clean = 0;
  1001. rx_ring->next_to_use = 0;
  1002. return 0;
  1003. err:
  1004. kfree(rx_ring->rx_bi);
  1005. rx_ring->rx_bi = NULL;
  1006. return -ENOMEM;
  1007. }
  1008. /**
  1009. * i40e_release_rx_desc - Store the new tail and head values
  1010. * @rx_ring: ring to bump
  1011. * @val: new head index
  1012. **/
  1013. static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
  1014. {
  1015. rx_ring->next_to_use = val;
  1016. /* Force memory writes to complete before letting h/w
  1017. * know there are new descriptors to fetch. (Only
  1018. * applicable for weak-ordered memory model archs,
  1019. * such as IA-64).
  1020. */
  1021. wmb();
  1022. writel(val, rx_ring->tail);
  1023. }
  1024. /**
  1025. * i40e_alloc_rx_buffers_ps - Replace used receive buffers; packet split
  1026. * @rx_ring: ring to place buffers on
  1027. * @cleaned_count: number of buffers to replace
  1028. **/
  1029. void i40e_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
  1030. {
  1031. u16 i = rx_ring->next_to_use;
  1032. union i40e_rx_desc *rx_desc;
  1033. struct i40e_rx_buffer *bi;
  1034. /* do nothing if no valid netdev defined */
  1035. if (!rx_ring->netdev || !cleaned_count)
  1036. return;
  1037. while (cleaned_count--) {
  1038. rx_desc = I40E_RX_DESC(rx_ring, i);
  1039. bi = &rx_ring->rx_bi[i];
  1040. if (bi->skb) /* desc is in use */
  1041. goto no_buffers;
  1042. if (!bi->page) {
  1043. bi->page = alloc_page(GFP_ATOMIC);
  1044. if (!bi->page) {
  1045. rx_ring->rx_stats.alloc_page_failed++;
  1046. goto no_buffers;
  1047. }
  1048. }
  1049. if (!bi->page_dma) {
  1050. /* use a half page if we're re-using */
  1051. bi->page_offset ^= PAGE_SIZE / 2;
  1052. bi->page_dma = dma_map_page(rx_ring->dev,
  1053. bi->page,
  1054. bi->page_offset,
  1055. PAGE_SIZE / 2,
  1056. DMA_FROM_DEVICE);
  1057. if (dma_mapping_error(rx_ring->dev,
  1058. bi->page_dma)) {
  1059. rx_ring->rx_stats.alloc_page_failed++;
  1060. bi->page_dma = 0;
  1061. goto no_buffers;
  1062. }
  1063. }
  1064. dma_sync_single_range_for_device(rx_ring->dev,
  1065. bi->dma,
  1066. 0,
  1067. rx_ring->rx_hdr_len,
  1068. DMA_FROM_DEVICE);
  1069. /* Refresh the desc even if buffer_addrs didn't change
  1070. * because each write-back erases this info.
  1071. */
  1072. rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
  1073. rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
  1074. i++;
  1075. if (i == rx_ring->count)
  1076. i = 0;
  1077. }
  1078. no_buffers:
  1079. if (rx_ring->next_to_use != i)
  1080. i40e_release_rx_desc(rx_ring, i);
  1081. }
  1082. /**
  1083. * i40e_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
  1084. * @rx_ring: ring to place buffers on
  1085. * @cleaned_count: number of buffers to replace
  1086. **/
  1087. void i40e_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
  1088. {
  1089. u16 i = rx_ring->next_to_use;
  1090. union i40e_rx_desc *rx_desc;
  1091. struct i40e_rx_buffer *bi;
  1092. struct sk_buff *skb;
  1093. /* do nothing if no valid netdev defined */
  1094. if (!rx_ring->netdev || !cleaned_count)
  1095. return;
  1096. while (cleaned_count--) {
  1097. rx_desc = I40E_RX_DESC(rx_ring, i);
  1098. bi = &rx_ring->rx_bi[i];
  1099. skb = bi->skb;
  1100. if (!skb) {
  1101. skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
  1102. rx_ring->rx_buf_len);
  1103. if (!skb) {
  1104. rx_ring->rx_stats.alloc_buff_failed++;
  1105. goto no_buffers;
  1106. }
  1107. /* initialize queue mapping */
  1108. skb_record_rx_queue(skb, rx_ring->queue_index);
  1109. bi->skb = skb;
  1110. }
  1111. if (!bi->dma) {
  1112. bi->dma = dma_map_single(rx_ring->dev,
  1113. skb->data,
  1114. rx_ring->rx_buf_len,
  1115. DMA_FROM_DEVICE);
  1116. if (dma_mapping_error(rx_ring->dev, bi->dma)) {
  1117. rx_ring->rx_stats.alloc_buff_failed++;
  1118. bi->dma = 0;
  1119. goto no_buffers;
  1120. }
  1121. }
  1122. rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
  1123. rx_desc->read.hdr_addr = 0;
  1124. i++;
  1125. if (i == rx_ring->count)
  1126. i = 0;
  1127. }
  1128. no_buffers:
  1129. if (rx_ring->next_to_use != i)
  1130. i40e_release_rx_desc(rx_ring, i);
  1131. }
  1132. /**
  1133. * i40e_receive_skb - Send a completed packet up the stack
  1134. * @rx_ring: rx ring in play
  1135. * @skb: packet to send up
  1136. * @vlan_tag: vlan tag for packet
  1137. **/
  1138. static void i40e_receive_skb(struct i40e_ring *rx_ring,
  1139. struct sk_buff *skb, u16 vlan_tag)
  1140. {
  1141. struct i40e_q_vector *q_vector = rx_ring->q_vector;
  1142. if (vlan_tag & VLAN_VID_MASK)
  1143. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
  1144. napi_gro_receive(&q_vector->napi, skb);
  1145. }
  1146. /**
  1147. * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
  1148. * @vsi: the VSI we care about
  1149. * @skb: skb currently being received and modified
  1150. * @rx_status: status value of last descriptor in packet
  1151. * @rx_error: error value of last descriptor in packet
  1152. * @rx_ptype: ptype value of last descriptor in packet
  1153. **/
  1154. static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
  1155. struct sk_buff *skb,
  1156. u32 rx_status,
  1157. u32 rx_error,
  1158. u16 rx_ptype)
  1159. {
  1160. struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
  1161. bool ipv4 = false, ipv6 = false;
  1162. bool ipv4_tunnel, ipv6_tunnel;
  1163. __wsum rx_udp_csum;
  1164. struct iphdr *iph;
  1165. __sum16 csum;
  1166. ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
  1167. (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
  1168. ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
  1169. (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
  1170. skb->ip_summed = CHECKSUM_NONE;
  1171. /* Rx csum enabled and ip headers found? */
  1172. if (!(vsi->netdev->features & NETIF_F_RXCSUM))
  1173. return;
  1174. /* did the hardware decode the packet and checksum? */
  1175. if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
  1176. return;
  1177. /* both known and outer_ip must be set for the below code to work */
  1178. if (!(decoded.known && decoded.outer_ip))
  1179. return;
  1180. if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
  1181. decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
  1182. ipv4 = true;
  1183. else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
  1184. decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
  1185. ipv6 = true;
  1186. if (ipv4 &&
  1187. (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
  1188. BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
  1189. goto checksum_fail;
  1190. /* likely incorrect csum if alternate IP extension headers found */
  1191. if (ipv6 &&
  1192. rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
  1193. /* don't increment checksum err here, non-fatal err */
  1194. return;
  1195. /* there was some L4 error, count error and punt packet to the stack */
  1196. if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
  1197. goto checksum_fail;
  1198. /* handle packets that were not able to be checksummed due
  1199. * to arrival speed, in this case the stack can compute
  1200. * the csum.
  1201. */
  1202. if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
  1203. return;
  1204. /* If VXLAN traffic has an outer UDPv4 checksum we need to check
  1205. * it in the driver, hardware does not do it for us.
  1206. * Since L3L4P bit was set we assume a valid IHL value (>=5)
  1207. * so the total length of IPv4 header is IHL*4 bytes
  1208. * The UDP_0 bit *may* bet set if the *inner* header is UDP
  1209. */
  1210. if (!(vsi->back->flags & I40E_FLAG_OUTER_UDP_CSUM_CAPABLE) &&
  1211. (ipv4_tunnel)) {
  1212. skb->transport_header = skb->mac_header +
  1213. sizeof(struct ethhdr) +
  1214. (ip_hdr(skb)->ihl * 4);
  1215. /* Add 4 bytes for VLAN tagged packets */
  1216. skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
  1217. skb->protocol == htons(ETH_P_8021AD))
  1218. ? VLAN_HLEN : 0;
  1219. if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
  1220. (udp_hdr(skb)->check != 0)) {
  1221. rx_udp_csum = udp_csum(skb);
  1222. iph = ip_hdr(skb);
  1223. csum = csum_tcpudp_magic(
  1224. iph->saddr, iph->daddr,
  1225. (skb->len - skb_transport_offset(skb)),
  1226. IPPROTO_UDP, rx_udp_csum);
  1227. if (udp_hdr(skb)->check != csum)
  1228. goto checksum_fail;
  1229. } /* else its GRE and so no outer UDP header */
  1230. }
  1231. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1232. skb->csum_level = ipv4_tunnel || ipv6_tunnel;
  1233. return;
  1234. checksum_fail:
  1235. vsi->back->hw_csum_rx_error++;
  1236. }
  1237. /**
  1238. * i40e_ptype_to_htype - get a hash type
  1239. * @ptype: the ptype value from the descriptor
  1240. *
  1241. * Returns a hash type to be used by skb_set_hash
  1242. **/
  1243. static inline enum pkt_hash_types i40e_ptype_to_htype(u8 ptype)
  1244. {
  1245. struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
  1246. if (!decoded.known)
  1247. return PKT_HASH_TYPE_NONE;
  1248. if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
  1249. decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
  1250. return PKT_HASH_TYPE_L4;
  1251. else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
  1252. decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
  1253. return PKT_HASH_TYPE_L3;
  1254. else
  1255. return PKT_HASH_TYPE_L2;
  1256. }
  1257. /**
  1258. * i40e_rx_hash - set the hash value in the skb
  1259. * @ring: descriptor ring
  1260. * @rx_desc: specific descriptor
  1261. **/
  1262. static inline void i40e_rx_hash(struct i40e_ring *ring,
  1263. union i40e_rx_desc *rx_desc,
  1264. struct sk_buff *skb,
  1265. u8 rx_ptype)
  1266. {
  1267. u32 hash;
  1268. const __le64 rss_mask =
  1269. cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
  1270. I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
  1271. if (ring->netdev->features & NETIF_F_RXHASH)
  1272. return;
  1273. if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
  1274. hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
  1275. skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
  1276. }
  1277. }
  1278. /**
  1279. * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
  1280. * @rx_ring: rx ring to clean
  1281. * @budget: how many cleans we're allowed
  1282. *
  1283. * Returns true if there's any budget left (e.g. the clean is finished)
  1284. **/
  1285. static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, int budget)
  1286. {
  1287. unsigned int total_rx_bytes = 0, total_rx_packets = 0;
  1288. u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
  1289. u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
  1290. const int current_node = numa_mem_id();
  1291. struct i40e_vsi *vsi = rx_ring->vsi;
  1292. u16 i = rx_ring->next_to_clean;
  1293. union i40e_rx_desc *rx_desc;
  1294. u32 rx_error, rx_status;
  1295. u8 rx_ptype;
  1296. u64 qword;
  1297. if (budget <= 0)
  1298. return 0;
  1299. do {
  1300. struct i40e_rx_buffer *rx_bi;
  1301. struct sk_buff *skb;
  1302. u16 vlan_tag;
  1303. /* return some buffers to hardware, one at a time is too slow */
  1304. if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
  1305. i40e_alloc_rx_buffers_ps(rx_ring, cleaned_count);
  1306. cleaned_count = 0;
  1307. }
  1308. i = rx_ring->next_to_clean;
  1309. rx_desc = I40E_RX_DESC(rx_ring, i);
  1310. qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
  1311. rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
  1312. I40E_RXD_QW1_STATUS_SHIFT;
  1313. if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
  1314. break;
  1315. /* This memory barrier is needed to keep us from reading
  1316. * any other fields out of the rx_desc until we know the
  1317. * DD bit is set.
  1318. */
  1319. dma_rmb();
  1320. if (i40e_rx_is_programming_status(qword)) {
  1321. i40e_clean_programming_status(rx_ring, rx_desc);
  1322. I40E_RX_INCREMENT(rx_ring, i);
  1323. continue;
  1324. }
  1325. rx_bi = &rx_ring->rx_bi[i];
  1326. skb = rx_bi->skb;
  1327. if (likely(!skb)) {
  1328. skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
  1329. rx_ring->rx_hdr_len);
  1330. if (!skb) {
  1331. rx_ring->rx_stats.alloc_buff_failed++;
  1332. break;
  1333. }
  1334. /* initialize queue mapping */
  1335. skb_record_rx_queue(skb, rx_ring->queue_index);
  1336. /* we are reusing so sync this buffer for CPU use */
  1337. dma_sync_single_range_for_cpu(rx_ring->dev,
  1338. rx_bi->dma,
  1339. 0,
  1340. rx_ring->rx_hdr_len,
  1341. DMA_FROM_DEVICE);
  1342. }
  1343. rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
  1344. I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
  1345. rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
  1346. I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
  1347. rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
  1348. I40E_RXD_QW1_LENGTH_SPH_SHIFT;
  1349. rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
  1350. I40E_RXD_QW1_ERROR_SHIFT;
  1351. rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
  1352. rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
  1353. rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
  1354. I40E_RXD_QW1_PTYPE_SHIFT;
  1355. prefetch(rx_bi->page);
  1356. rx_bi->skb = NULL;
  1357. cleaned_count++;
  1358. if (rx_hbo || rx_sph) {
  1359. int len;
  1360. if (rx_hbo)
  1361. len = I40E_RX_HDR_SIZE;
  1362. else
  1363. len = rx_header_len;
  1364. memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
  1365. } else if (skb->len == 0) {
  1366. int len;
  1367. len = (rx_packet_len > skb_headlen(skb) ?
  1368. skb_headlen(skb) : rx_packet_len);
  1369. memcpy(__skb_put(skb, len),
  1370. rx_bi->page + rx_bi->page_offset,
  1371. len);
  1372. rx_bi->page_offset += len;
  1373. rx_packet_len -= len;
  1374. }
  1375. /* Get the rest of the data if this was a header split */
  1376. if (rx_packet_len) {
  1377. skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
  1378. rx_bi->page,
  1379. rx_bi->page_offset,
  1380. rx_packet_len);
  1381. skb->len += rx_packet_len;
  1382. skb->data_len += rx_packet_len;
  1383. skb->truesize += rx_packet_len;
  1384. if ((page_count(rx_bi->page) == 1) &&
  1385. (page_to_nid(rx_bi->page) == current_node))
  1386. get_page(rx_bi->page);
  1387. else
  1388. rx_bi->page = NULL;
  1389. dma_unmap_page(rx_ring->dev,
  1390. rx_bi->page_dma,
  1391. PAGE_SIZE / 2,
  1392. DMA_FROM_DEVICE);
  1393. rx_bi->page_dma = 0;
  1394. }
  1395. I40E_RX_INCREMENT(rx_ring, i);
  1396. if (unlikely(
  1397. !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
  1398. struct i40e_rx_buffer *next_buffer;
  1399. next_buffer = &rx_ring->rx_bi[i];
  1400. next_buffer->skb = skb;
  1401. rx_ring->rx_stats.non_eop_descs++;
  1402. continue;
  1403. }
  1404. /* ERR_MASK will only have valid bits if EOP set */
  1405. if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
  1406. dev_kfree_skb_any(skb);
  1407. continue;
  1408. }
  1409. i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
  1410. if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
  1411. i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
  1412. I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
  1413. I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
  1414. rx_ring->last_rx_timestamp = jiffies;
  1415. }
  1416. /* probably a little skewed due to removing CRC */
  1417. total_rx_bytes += skb->len;
  1418. total_rx_packets++;
  1419. skb->protocol = eth_type_trans(skb, rx_ring->netdev);
  1420. i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
  1421. vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
  1422. ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
  1423. : 0;
  1424. #ifdef I40E_FCOE
  1425. if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
  1426. dev_kfree_skb_any(skb);
  1427. continue;
  1428. }
  1429. #endif
  1430. skb_mark_napi_id(skb, &rx_ring->q_vector->napi);
  1431. i40e_receive_skb(rx_ring, skb, vlan_tag);
  1432. rx_desc->wb.qword1.status_error_len = 0;
  1433. } while (likely(total_rx_packets < budget));
  1434. u64_stats_update_begin(&rx_ring->syncp);
  1435. rx_ring->stats.packets += total_rx_packets;
  1436. rx_ring->stats.bytes += total_rx_bytes;
  1437. u64_stats_update_end(&rx_ring->syncp);
  1438. rx_ring->q_vector->rx.total_packets += total_rx_packets;
  1439. rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
  1440. return total_rx_packets;
  1441. }
  1442. /**
  1443. * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
  1444. * @rx_ring: rx ring to clean
  1445. * @budget: how many cleans we're allowed
  1446. *
  1447. * Returns number of packets cleaned
  1448. **/
  1449. static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
  1450. {
  1451. unsigned int total_rx_bytes = 0, total_rx_packets = 0;
  1452. u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
  1453. struct i40e_vsi *vsi = rx_ring->vsi;
  1454. union i40e_rx_desc *rx_desc;
  1455. u32 rx_error, rx_status;
  1456. u16 rx_packet_len;
  1457. u8 rx_ptype;
  1458. u64 qword;
  1459. u16 i;
  1460. do {
  1461. struct i40e_rx_buffer *rx_bi;
  1462. struct sk_buff *skb;
  1463. u16 vlan_tag;
  1464. /* return some buffers to hardware, one at a time is too slow */
  1465. if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
  1466. i40e_alloc_rx_buffers_1buf(rx_ring, cleaned_count);
  1467. cleaned_count = 0;
  1468. }
  1469. i = rx_ring->next_to_clean;
  1470. rx_desc = I40E_RX_DESC(rx_ring, i);
  1471. qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
  1472. rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
  1473. I40E_RXD_QW1_STATUS_SHIFT;
  1474. if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
  1475. break;
  1476. /* This memory barrier is needed to keep us from reading
  1477. * any other fields out of the rx_desc until we know the
  1478. * DD bit is set.
  1479. */
  1480. dma_rmb();
  1481. if (i40e_rx_is_programming_status(qword)) {
  1482. i40e_clean_programming_status(rx_ring, rx_desc);
  1483. I40E_RX_INCREMENT(rx_ring, i);
  1484. continue;
  1485. }
  1486. rx_bi = &rx_ring->rx_bi[i];
  1487. skb = rx_bi->skb;
  1488. prefetch(skb->data);
  1489. rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
  1490. I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
  1491. rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
  1492. I40E_RXD_QW1_ERROR_SHIFT;
  1493. rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
  1494. rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
  1495. I40E_RXD_QW1_PTYPE_SHIFT;
  1496. rx_bi->skb = NULL;
  1497. cleaned_count++;
  1498. /* Get the header and possibly the whole packet
  1499. * If this is an skb from previous receive dma will be 0
  1500. */
  1501. skb_put(skb, rx_packet_len);
  1502. dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
  1503. DMA_FROM_DEVICE);
  1504. rx_bi->dma = 0;
  1505. I40E_RX_INCREMENT(rx_ring, i);
  1506. if (unlikely(
  1507. !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
  1508. rx_ring->rx_stats.non_eop_descs++;
  1509. continue;
  1510. }
  1511. /* ERR_MASK will only have valid bits if EOP set */
  1512. if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
  1513. dev_kfree_skb_any(skb);
  1514. continue;
  1515. }
  1516. i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
  1517. if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
  1518. i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
  1519. I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
  1520. I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
  1521. rx_ring->last_rx_timestamp = jiffies;
  1522. }
  1523. /* probably a little skewed due to removing CRC */
  1524. total_rx_bytes += skb->len;
  1525. total_rx_packets++;
  1526. skb->protocol = eth_type_trans(skb, rx_ring->netdev);
  1527. i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
  1528. vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
  1529. ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
  1530. : 0;
  1531. #ifdef I40E_FCOE
  1532. if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
  1533. dev_kfree_skb_any(skb);
  1534. continue;
  1535. }
  1536. #endif
  1537. i40e_receive_skb(rx_ring, skb, vlan_tag);
  1538. rx_desc->wb.qword1.status_error_len = 0;
  1539. } while (likely(total_rx_packets < budget));
  1540. u64_stats_update_begin(&rx_ring->syncp);
  1541. rx_ring->stats.packets += total_rx_packets;
  1542. rx_ring->stats.bytes += total_rx_bytes;
  1543. u64_stats_update_end(&rx_ring->syncp);
  1544. rx_ring->q_vector->rx.total_packets += total_rx_packets;
  1545. rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
  1546. return total_rx_packets;
  1547. }
  1548. static u32 i40e_buildreg_itr(const int type, const u16 itr)
  1549. {
  1550. u32 val;
  1551. val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
  1552. I40E_PFINT_DYN_CTLN_CLEARPBA_MASK |
  1553. (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
  1554. (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);
  1555. return val;
  1556. }
  1557. /* a small macro to shorten up some long lines */
  1558. #define INTREG I40E_PFINT_DYN_CTLN
  1559. /**
  1560. * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
  1561. * @vsi: the VSI we care about
  1562. * @q_vector: q_vector for which itr is being updated and interrupt enabled
  1563. *
  1564. **/
  1565. static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
  1566. struct i40e_q_vector *q_vector)
  1567. {
  1568. struct i40e_hw *hw = &vsi->back->hw;
  1569. bool rx = false, tx = false;
  1570. u32 rxval, txval;
  1571. int vector;
  1572. vector = (q_vector->v_idx + vsi->base_vector);
  1573. /* avoid dynamic calculation if in countdown mode OR if
  1574. * all dynamic is disabled
  1575. */
  1576. rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
  1577. if (q_vector->itr_countdown > 0 ||
  1578. (!ITR_IS_DYNAMIC(vsi->rx_itr_setting) &&
  1579. !ITR_IS_DYNAMIC(vsi->tx_itr_setting))) {
  1580. goto enable_int;
  1581. }
  1582. if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
  1583. rx = i40e_set_new_dynamic_itr(&q_vector->rx);
  1584. rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
  1585. }
  1586. if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
  1587. tx = i40e_set_new_dynamic_itr(&q_vector->tx);
  1588. txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
  1589. }
  1590. if (rx || tx) {
  1591. /* get the higher of the two ITR adjustments and
  1592. * use the same value for both ITR registers
  1593. * when in adaptive mode (Rx and/or Tx)
  1594. */
  1595. u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
  1596. q_vector->tx.itr = q_vector->rx.itr = itr;
  1597. txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
  1598. tx = true;
  1599. rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
  1600. rx = true;
  1601. }
  1602. /* only need to enable the interrupt once, but need
  1603. * to possibly update both ITR values
  1604. */
  1605. if (rx) {
  1606. /* set the INTENA_MSK_MASK so that this first write
  1607. * won't actually enable the interrupt, instead just
  1608. * updating the ITR (it's bit 31 PF and VF)
  1609. */
  1610. rxval |= BIT(31);
  1611. /* don't check _DOWN because interrupt isn't being enabled */
  1612. wr32(hw, INTREG(vector - 1), rxval);
  1613. }
  1614. enable_int:
  1615. if (!test_bit(__I40E_DOWN, &vsi->state))
  1616. wr32(hw, INTREG(vector - 1), txval);
  1617. if (q_vector->itr_countdown)
  1618. q_vector->itr_countdown--;
  1619. else
  1620. q_vector->itr_countdown = ITR_COUNTDOWN_START;
  1621. }
  1622. /**
  1623. * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
  1624. * @napi: napi struct with our devices info in it
  1625. * @budget: amount of work driver is allowed to do this pass, in packets
  1626. *
  1627. * This function will clean all queues associated with a q_vector.
  1628. *
  1629. * Returns the amount of work done
  1630. **/
  1631. int i40e_napi_poll(struct napi_struct *napi, int budget)
  1632. {
  1633. struct i40e_q_vector *q_vector =
  1634. container_of(napi, struct i40e_q_vector, napi);
  1635. struct i40e_vsi *vsi = q_vector->vsi;
  1636. struct i40e_ring *ring;
  1637. bool clean_complete = true;
  1638. bool arm_wb = false;
  1639. int budget_per_ring;
  1640. int work_done = 0;
  1641. if (test_bit(__I40E_DOWN, &vsi->state)) {
  1642. napi_complete(napi);
  1643. return 0;
  1644. }
  1645. /* Since the actual Tx work is minimal, we can give the Tx a larger
  1646. * budget and be more aggressive about cleaning up the Tx descriptors.
  1647. */
  1648. i40e_for_each_ring(ring, q_vector->tx) {
  1649. clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
  1650. arm_wb |= ring->arm_wb;
  1651. ring->arm_wb = false;
  1652. }
  1653. /* Handle case where we are called by netpoll with a budget of 0 */
  1654. if (budget <= 0)
  1655. goto tx_only;
  1656. /* We attempt to distribute budget to each Rx queue fairly, but don't
  1657. * allow the budget to go below 1 because that would exit polling early.
  1658. */
  1659. budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
  1660. i40e_for_each_ring(ring, q_vector->rx) {
  1661. int cleaned;
  1662. if (ring_is_ps_enabled(ring))
  1663. cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
  1664. else
  1665. cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
  1666. work_done += cleaned;
  1667. /* if we didn't clean as many as budgeted, we must be done */
  1668. clean_complete &= (budget_per_ring != cleaned);
  1669. }
  1670. /* If work not completed, return budget and polling will return */
  1671. if (!clean_complete) {
  1672. tx_only:
  1673. if (arm_wb)
  1674. i40e_force_wb(vsi, q_vector);
  1675. return budget;
  1676. }
  1677. if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
  1678. q_vector->arm_wb_state = false;
  1679. /* Work is done so exit the polling mode and re-enable the interrupt */
  1680. napi_complete_done(napi, work_done);
  1681. if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
  1682. i40e_update_enable_itr(vsi, q_vector);
  1683. } else { /* Legacy mode */
  1684. struct i40e_hw *hw = &vsi->back->hw;
  1685. /* We re-enable the queue 0 cause, but
  1686. * don't worry about dynamic_enable
  1687. * because we left it on for the other
  1688. * possible interrupts during napi
  1689. */
  1690. u32 qval = rd32(hw, I40E_QINT_RQCTL(0)) |
  1691. I40E_QINT_RQCTL_CAUSE_ENA_MASK;
  1692. wr32(hw, I40E_QINT_RQCTL(0), qval);
  1693. qval = rd32(hw, I40E_QINT_TQCTL(0)) |
  1694. I40E_QINT_TQCTL_CAUSE_ENA_MASK;
  1695. wr32(hw, I40E_QINT_TQCTL(0), qval);
  1696. i40e_irq_dynamic_enable_icr0(vsi->back);
  1697. }
  1698. return 0;
  1699. }
  1700. /**
  1701. * i40e_atr - Add a Flow Director ATR filter
  1702. * @tx_ring: ring to add programming descriptor to
  1703. * @skb: send buffer
  1704. * @tx_flags: send tx flags
  1705. * @protocol: wire protocol
  1706. **/
  1707. static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
  1708. u32 tx_flags, __be16 protocol)
  1709. {
  1710. struct i40e_filter_program_desc *fdir_desc;
  1711. struct i40e_pf *pf = tx_ring->vsi->back;
  1712. union {
  1713. unsigned char *network;
  1714. struct iphdr *ipv4;
  1715. struct ipv6hdr *ipv6;
  1716. } hdr;
  1717. struct tcphdr *th;
  1718. unsigned int hlen;
  1719. u32 flex_ptype, dtype_cmd;
  1720. u16 i;
  1721. /* make sure ATR is enabled */
  1722. if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
  1723. return;
  1724. if ((pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
  1725. return;
  1726. /* if sampling is disabled do nothing */
  1727. if (!tx_ring->atr_sample_rate)
  1728. return;
  1729. if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
  1730. return;
  1731. if (!(tx_flags & I40E_TX_FLAGS_VXLAN_TUNNEL)) {
  1732. /* snag network header to get L4 type and address */
  1733. hdr.network = skb_network_header(skb);
  1734. /* Currently only IPv4/IPv6 with TCP is supported
  1735. * access ihl as u8 to avoid unaligned access on ia64
  1736. */
  1737. if (tx_flags & I40E_TX_FLAGS_IPV4)
  1738. hlen = (hdr.network[0] & 0x0F) << 2;
  1739. else if (protocol == htons(ETH_P_IPV6))
  1740. hlen = sizeof(struct ipv6hdr);
  1741. else
  1742. return;
  1743. } else {
  1744. hdr.network = skb_inner_network_header(skb);
  1745. hlen = skb_inner_network_header_len(skb);
  1746. }
  1747. /* Currently only IPv4/IPv6 with TCP is supported
  1748. * Note: tx_flags gets modified to reflect inner protocols in
  1749. * tx_enable_csum function if encap is enabled.
  1750. */
  1751. if ((tx_flags & I40E_TX_FLAGS_IPV4) &&
  1752. (hdr.ipv4->protocol != IPPROTO_TCP))
  1753. return;
  1754. else if ((tx_flags & I40E_TX_FLAGS_IPV6) &&
  1755. (hdr.ipv6->nexthdr != IPPROTO_TCP))
  1756. return;
  1757. th = (struct tcphdr *)(hdr.network + hlen);
  1758. /* Due to lack of space, no more new filters can be programmed */
  1759. if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
  1760. return;
  1761. if (pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) {
  1762. /* HW ATR eviction will take care of removing filters on FIN
  1763. * and RST packets.
  1764. */
  1765. if (th->fin || th->rst)
  1766. return;
  1767. }
  1768. tx_ring->atr_count++;
  1769. /* sample on all syn/fin/rst packets or once every atr sample rate */
  1770. if (!th->fin &&
  1771. !th->syn &&
  1772. !th->rst &&
  1773. (tx_ring->atr_count < tx_ring->atr_sample_rate))
  1774. return;
  1775. tx_ring->atr_count = 0;
  1776. /* grab the next descriptor */
  1777. i = tx_ring->next_to_use;
  1778. fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
  1779. i++;
  1780. tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  1781. flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
  1782. I40E_TXD_FLTR_QW0_QINDEX_MASK;
  1783. flex_ptype |= (protocol == htons(ETH_P_IP)) ?
  1784. (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
  1785. I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
  1786. (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
  1787. I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
  1788. flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
  1789. dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
  1790. dtype_cmd |= (th->fin || th->rst) ?
  1791. (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
  1792. I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
  1793. (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
  1794. I40E_TXD_FLTR_QW1_PCMD_SHIFT);
  1795. dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
  1796. I40E_TXD_FLTR_QW1_DEST_SHIFT;
  1797. dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
  1798. I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
  1799. dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
  1800. if (!(tx_flags & I40E_TX_FLAGS_VXLAN_TUNNEL))
  1801. dtype_cmd |=
  1802. ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
  1803. I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
  1804. I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
  1805. else
  1806. dtype_cmd |=
  1807. ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
  1808. I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
  1809. I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
  1810. if (pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE)
  1811. dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
  1812. fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
  1813. fdir_desc->rsvd = cpu_to_le32(0);
  1814. fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
  1815. fdir_desc->fd_id = cpu_to_le32(0);
  1816. }
  1817. /**
  1818. * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
  1819. * @skb: send buffer
  1820. * @tx_ring: ring to send buffer on
  1821. * @flags: the tx flags to be set
  1822. *
  1823. * Checks the skb and set up correspondingly several generic transmit flags
  1824. * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
  1825. *
  1826. * Returns error code indicate the frame should be dropped upon error and the
  1827. * otherwise returns 0 to indicate the flags has been set properly.
  1828. **/
  1829. #ifdef I40E_FCOE
  1830. inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
  1831. struct i40e_ring *tx_ring,
  1832. u32 *flags)
  1833. #else
  1834. static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
  1835. struct i40e_ring *tx_ring,
  1836. u32 *flags)
  1837. #endif
  1838. {
  1839. __be16 protocol = skb->protocol;
  1840. u32 tx_flags = 0;
  1841. if (protocol == htons(ETH_P_8021Q) &&
  1842. !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
  1843. /* When HW VLAN acceleration is turned off by the user the
  1844. * stack sets the protocol to 8021q so that the driver
  1845. * can take any steps required to support the SW only
  1846. * VLAN handling. In our case the driver doesn't need
  1847. * to take any further steps so just set the protocol
  1848. * to the encapsulated ethertype.
  1849. */
  1850. skb->protocol = vlan_get_protocol(skb);
  1851. goto out;
  1852. }
  1853. /* if we have a HW VLAN tag being added, default to the HW one */
  1854. if (skb_vlan_tag_present(skb)) {
  1855. tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
  1856. tx_flags |= I40E_TX_FLAGS_HW_VLAN;
  1857. /* else if it is a SW VLAN, check the next protocol and store the tag */
  1858. } else if (protocol == htons(ETH_P_8021Q)) {
  1859. struct vlan_hdr *vhdr, _vhdr;
  1860. vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
  1861. if (!vhdr)
  1862. return -EINVAL;
  1863. protocol = vhdr->h_vlan_encapsulated_proto;
  1864. tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
  1865. tx_flags |= I40E_TX_FLAGS_SW_VLAN;
  1866. }
  1867. if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
  1868. goto out;
  1869. /* Insert 802.1p priority into VLAN header */
  1870. if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
  1871. (skb->priority != TC_PRIO_CONTROL)) {
  1872. tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
  1873. tx_flags |= (skb->priority & 0x7) <<
  1874. I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
  1875. if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
  1876. struct vlan_ethhdr *vhdr;
  1877. int rc;
  1878. rc = skb_cow_head(skb, 0);
  1879. if (rc < 0)
  1880. return rc;
  1881. vhdr = (struct vlan_ethhdr *)skb->data;
  1882. vhdr->h_vlan_TCI = htons(tx_flags >>
  1883. I40E_TX_FLAGS_VLAN_SHIFT);
  1884. } else {
  1885. tx_flags |= I40E_TX_FLAGS_HW_VLAN;
  1886. }
  1887. }
  1888. out:
  1889. *flags = tx_flags;
  1890. return 0;
  1891. }
  1892. /**
  1893. * i40e_tso - set up the tso context descriptor
  1894. * @tx_ring: ptr to the ring to send
  1895. * @skb: ptr to the skb we're sending
  1896. * @hdr_len: ptr to the size of the packet header
  1897. * @cd_type_cmd_tso_mss: ptr to u64 object
  1898. * @cd_tunneling: ptr to context descriptor bits
  1899. *
  1900. * Returns 0 if no TSO can happen, 1 if tso is going, or error
  1901. **/
  1902. static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
  1903. u8 *hdr_len, u64 *cd_type_cmd_tso_mss,
  1904. u32 *cd_tunneling)
  1905. {
  1906. u32 cd_cmd, cd_tso_len, cd_mss;
  1907. struct ipv6hdr *ipv6h;
  1908. struct tcphdr *tcph;
  1909. struct iphdr *iph;
  1910. u32 l4len;
  1911. int err;
  1912. if (!skb_is_gso(skb))
  1913. return 0;
  1914. err = skb_cow_head(skb, 0);
  1915. if (err < 0)
  1916. return err;
  1917. iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
  1918. ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
  1919. if (iph->version == 4) {
  1920. tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
  1921. iph->tot_len = 0;
  1922. iph->check = 0;
  1923. tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
  1924. 0, IPPROTO_TCP, 0);
  1925. } else if (ipv6h->version == 6) {
  1926. tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
  1927. ipv6h->payload_len = 0;
  1928. tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
  1929. 0, IPPROTO_TCP, 0);
  1930. }
  1931. l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
  1932. *hdr_len = (skb->encapsulation
  1933. ? (skb_inner_transport_header(skb) - skb->data)
  1934. : skb_transport_offset(skb)) + l4len;
  1935. /* find the field values */
  1936. cd_cmd = I40E_TX_CTX_DESC_TSO;
  1937. cd_tso_len = skb->len - *hdr_len;
  1938. cd_mss = skb_shinfo(skb)->gso_size;
  1939. *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
  1940. ((u64)cd_tso_len <<
  1941. I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
  1942. ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
  1943. return 1;
  1944. }
  1945. /**
  1946. * i40e_tsyn - set up the tsyn context descriptor
  1947. * @tx_ring: ptr to the ring to send
  1948. * @skb: ptr to the skb we're sending
  1949. * @tx_flags: the collected send information
  1950. * @cd_type_cmd_tso_mss: ptr to u64 object
  1951. *
  1952. * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
  1953. **/
  1954. static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
  1955. u32 tx_flags, u64 *cd_type_cmd_tso_mss)
  1956. {
  1957. struct i40e_pf *pf;
  1958. if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
  1959. return 0;
  1960. /* Tx timestamps cannot be sampled when doing TSO */
  1961. if (tx_flags & I40E_TX_FLAGS_TSO)
  1962. return 0;
  1963. /* only timestamp the outbound packet if the user has requested it and
  1964. * we are not already transmitting a packet to be timestamped
  1965. */
  1966. pf = i40e_netdev_to_pf(tx_ring->netdev);
  1967. if (!(pf->flags & I40E_FLAG_PTP))
  1968. return 0;
  1969. if (pf->ptp_tx &&
  1970. !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
  1971. skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
  1972. pf->ptp_tx_skb = skb_get(skb);
  1973. } else {
  1974. return 0;
  1975. }
  1976. *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
  1977. I40E_TXD_CTX_QW1_CMD_SHIFT;
  1978. return 1;
  1979. }
  1980. /**
  1981. * i40e_tx_enable_csum - Enable Tx checksum offloads
  1982. * @skb: send buffer
  1983. * @tx_flags: pointer to Tx flags currently set
  1984. * @td_cmd: Tx descriptor command bits to set
  1985. * @td_offset: Tx descriptor header offsets to set
  1986. * @tx_ring: Tx descriptor ring
  1987. * @cd_tunneling: ptr to context desc bits
  1988. **/
  1989. static void i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
  1990. u32 *td_cmd, u32 *td_offset,
  1991. struct i40e_ring *tx_ring,
  1992. u32 *cd_tunneling)
  1993. {
  1994. struct ipv6hdr *this_ipv6_hdr;
  1995. unsigned int this_tcp_hdrlen;
  1996. struct iphdr *this_ip_hdr;
  1997. u32 network_hdr_len;
  1998. u8 l4_hdr = 0;
  1999. struct udphdr *oudph;
  2000. struct iphdr *oiph;
  2001. u32 l4_tunnel = 0;
  2002. if (skb->encapsulation) {
  2003. switch (ip_hdr(skb)->protocol) {
  2004. case IPPROTO_UDP:
  2005. oudph = udp_hdr(skb);
  2006. oiph = ip_hdr(skb);
  2007. l4_tunnel = I40E_TXD_CTX_UDP_TUNNELING;
  2008. *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
  2009. break;
  2010. case IPPROTO_GRE:
  2011. l4_tunnel = I40E_TXD_CTX_GRE_TUNNELING;
  2012. break;
  2013. default:
  2014. return;
  2015. }
  2016. network_hdr_len = skb_inner_network_header_len(skb);
  2017. this_ip_hdr = inner_ip_hdr(skb);
  2018. this_ipv6_hdr = inner_ipv6_hdr(skb);
  2019. this_tcp_hdrlen = inner_tcp_hdrlen(skb);
  2020. if (*tx_flags & I40E_TX_FLAGS_IPV4) {
  2021. if (*tx_flags & I40E_TX_FLAGS_TSO) {
  2022. *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
  2023. ip_hdr(skb)->check = 0;
  2024. } else {
  2025. *cd_tunneling |=
  2026. I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
  2027. }
  2028. } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
  2029. *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
  2030. if (*tx_flags & I40E_TX_FLAGS_TSO)
  2031. ip_hdr(skb)->check = 0;
  2032. }
  2033. /* Now set the ctx descriptor fields */
  2034. *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
  2035. I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
  2036. l4_tunnel |
  2037. ((skb_inner_network_offset(skb) -
  2038. skb_transport_offset(skb)) >> 1) <<
  2039. I40E_TXD_CTX_QW0_NATLEN_SHIFT;
  2040. if (this_ip_hdr->version == 6) {
  2041. *tx_flags &= ~I40E_TX_FLAGS_IPV4;
  2042. *tx_flags |= I40E_TX_FLAGS_IPV6;
  2043. }
  2044. if ((tx_ring->flags & I40E_TXR_FLAGS_OUTER_UDP_CSUM) &&
  2045. (l4_tunnel == I40E_TXD_CTX_UDP_TUNNELING) &&
  2046. (*cd_tunneling & I40E_TXD_CTX_QW0_EXT_IP_MASK)) {
  2047. oudph->check = ~csum_tcpudp_magic(oiph->saddr,
  2048. oiph->daddr,
  2049. (skb->len - skb_transport_offset(skb)),
  2050. IPPROTO_UDP, 0);
  2051. *cd_tunneling |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
  2052. }
  2053. } else {
  2054. network_hdr_len = skb_network_header_len(skb);
  2055. this_ip_hdr = ip_hdr(skb);
  2056. this_ipv6_hdr = ipv6_hdr(skb);
  2057. this_tcp_hdrlen = tcp_hdrlen(skb);
  2058. }
  2059. /* Enable IP checksum offloads */
  2060. if (*tx_flags & I40E_TX_FLAGS_IPV4) {
  2061. l4_hdr = this_ip_hdr->protocol;
  2062. /* the stack computes the IP header already, the only time we
  2063. * need the hardware to recompute it is in the case of TSO.
  2064. */
  2065. if (*tx_flags & I40E_TX_FLAGS_TSO) {
  2066. *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
  2067. this_ip_hdr->check = 0;
  2068. } else {
  2069. *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
  2070. }
  2071. /* Now set the td_offset for IP header length */
  2072. *td_offset = (network_hdr_len >> 2) <<
  2073. I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
  2074. } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
  2075. l4_hdr = this_ipv6_hdr->nexthdr;
  2076. *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
  2077. /* Now set the td_offset for IP header length */
  2078. *td_offset = (network_hdr_len >> 2) <<
  2079. I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
  2080. }
  2081. /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
  2082. *td_offset |= (skb_network_offset(skb) >> 1) <<
  2083. I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
  2084. /* Enable L4 checksum offloads */
  2085. switch (l4_hdr) {
  2086. case IPPROTO_TCP:
  2087. /* enable checksum offloads */
  2088. *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
  2089. *td_offset |= (this_tcp_hdrlen >> 2) <<
  2090. I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
  2091. break;
  2092. case IPPROTO_SCTP:
  2093. /* enable SCTP checksum offload */
  2094. *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
  2095. *td_offset |= (sizeof(struct sctphdr) >> 2) <<
  2096. I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
  2097. break;
  2098. case IPPROTO_UDP:
  2099. /* enable UDP checksum offload */
  2100. *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
  2101. *td_offset |= (sizeof(struct udphdr) >> 2) <<
  2102. I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
  2103. break;
  2104. default:
  2105. break;
  2106. }
  2107. }
  2108. /**
  2109. * i40e_create_tx_ctx Build the Tx context descriptor
  2110. * @tx_ring: ring to create the descriptor on
  2111. * @cd_type_cmd_tso_mss: Quad Word 1
  2112. * @cd_tunneling: Quad Word 0 - bits 0-31
  2113. * @cd_l2tag2: Quad Word 0 - bits 32-63
  2114. **/
  2115. static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
  2116. const u64 cd_type_cmd_tso_mss,
  2117. const u32 cd_tunneling, const u32 cd_l2tag2)
  2118. {
  2119. struct i40e_tx_context_desc *context_desc;
  2120. int i = tx_ring->next_to_use;
  2121. if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
  2122. !cd_tunneling && !cd_l2tag2)
  2123. return;
  2124. /* grab the next descriptor */
  2125. context_desc = I40E_TX_CTXTDESC(tx_ring, i);
  2126. i++;
  2127. tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  2128. /* cpu_to_le32 and assign to struct fields */
  2129. context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
  2130. context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
  2131. context_desc->rsvd = cpu_to_le16(0);
  2132. context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
  2133. }
  2134. /**
  2135. * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
  2136. * @tx_ring: the ring to be checked
  2137. * @size: the size buffer we want to assure is available
  2138. *
  2139. * Returns -EBUSY if a stop is needed, else 0
  2140. **/
  2141. static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
  2142. {
  2143. netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
  2144. /* Memory barrier before checking head and tail */
  2145. smp_mb();
  2146. /* Check again in a case another CPU has just made room available. */
  2147. if (likely(I40E_DESC_UNUSED(tx_ring) < size))
  2148. return -EBUSY;
  2149. /* A reprieve! - use start_queue because it doesn't call schedule */
  2150. netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
  2151. ++tx_ring->tx_stats.restart_queue;
  2152. return 0;
  2153. }
  2154. /**
  2155. * i40e_maybe_stop_tx - 1st level check for tx stop conditions
  2156. * @tx_ring: the ring to be checked
  2157. * @size: the size buffer we want to assure is available
  2158. *
  2159. * Returns 0 if stop is not needed
  2160. **/
  2161. #ifdef I40E_FCOE
  2162. inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
  2163. #else
  2164. static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
  2165. #endif
  2166. {
  2167. if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
  2168. return 0;
  2169. return __i40e_maybe_stop_tx(tx_ring, size);
  2170. }
  2171. /**
  2172. * i40e_chk_linearize - Check if there are more than 8 fragments per packet
  2173. * @skb: send buffer
  2174. * @tx_flags: collected send information
  2175. *
  2176. * Note: Our HW can't scatter-gather more than 8 fragments to build
  2177. * a packet on the wire and so we need to figure out the cases where we
  2178. * need to linearize the skb.
  2179. **/
  2180. static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags)
  2181. {
  2182. struct skb_frag_struct *frag;
  2183. bool linearize = false;
  2184. unsigned int size = 0;
  2185. u16 num_frags;
  2186. u16 gso_segs;
  2187. num_frags = skb_shinfo(skb)->nr_frags;
  2188. gso_segs = skb_shinfo(skb)->gso_segs;
  2189. if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
  2190. u16 j = 0;
  2191. if (num_frags < (I40E_MAX_BUFFER_TXD))
  2192. goto linearize_chk_done;
  2193. /* try the simple math, if we have too many frags per segment */
  2194. if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
  2195. I40E_MAX_BUFFER_TXD) {
  2196. linearize = true;
  2197. goto linearize_chk_done;
  2198. }
  2199. frag = &skb_shinfo(skb)->frags[0];
  2200. /* we might still have more fragments per segment */
  2201. do {
  2202. size += skb_frag_size(frag);
  2203. frag++; j++;
  2204. if ((size >= skb_shinfo(skb)->gso_size) &&
  2205. (j < I40E_MAX_BUFFER_TXD)) {
  2206. size = (size % skb_shinfo(skb)->gso_size);
  2207. j = (size) ? 1 : 0;
  2208. }
  2209. if (j == I40E_MAX_BUFFER_TXD) {
  2210. linearize = true;
  2211. break;
  2212. }
  2213. num_frags--;
  2214. } while (num_frags);
  2215. } else {
  2216. if (num_frags >= I40E_MAX_BUFFER_TXD)
  2217. linearize = true;
  2218. }
  2219. linearize_chk_done:
  2220. return linearize;
  2221. }
  2222. /**
  2223. * i40e_tx_map - Build the Tx descriptor
  2224. * @tx_ring: ring to send buffer on
  2225. * @skb: send buffer
  2226. * @first: first buffer info buffer to use
  2227. * @tx_flags: collected send information
  2228. * @hdr_len: size of the packet header
  2229. * @td_cmd: the command field in the descriptor
  2230. * @td_offset: offset for checksum or crc
  2231. **/
  2232. #ifdef I40E_FCOE
  2233. inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
  2234. struct i40e_tx_buffer *first, u32 tx_flags,
  2235. const u8 hdr_len, u32 td_cmd, u32 td_offset)
  2236. #else
  2237. static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
  2238. struct i40e_tx_buffer *first, u32 tx_flags,
  2239. const u8 hdr_len, u32 td_cmd, u32 td_offset)
  2240. #endif
  2241. {
  2242. unsigned int data_len = skb->data_len;
  2243. unsigned int size = skb_headlen(skb);
  2244. struct skb_frag_struct *frag;
  2245. struct i40e_tx_buffer *tx_bi;
  2246. struct i40e_tx_desc *tx_desc;
  2247. u16 i = tx_ring->next_to_use;
  2248. u32 td_tag = 0;
  2249. dma_addr_t dma;
  2250. u16 gso_segs;
  2251. u16 desc_count = 0;
  2252. bool tail_bump = true;
  2253. bool do_rs = false;
  2254. if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
  2255. td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
  2256. td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
  2257. I40E_TX_FLAGS_VLAN_SHIFT;
  2258. }
  2259. if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
  2260. gso_segs = skb_shinfo(skb)->gso_segs;
  2261. else
  2262. gso_segs = 1;
  2263. /* multiply data chunks by size of headers */
  2264. first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
  2265. first->gso_segs = gso_segs;
  2266. first->skb = skb;
  2267. first->tx_flags = tx_flags;
  2268. dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
  2269. tx_desc = I40E_TX_DESC(tx_ring, i);
  2270. tx_bi = first;
  2271. for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
  2272. if (dma_mapping_error(tx_ring->dev, dma))
  2273. goto dma_error;
  2274. /* record length, and DMA address */
  2275. dma_unmap_len_set(tx_bi, len, size);
  2276. dma_unmap_addr_set(tx_bi, dma, dma);
  2277. tx_desc->buffer_addr = cpu_to_le64(dma);
  2278. while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
  2279. tx_desc->cmd_type_offset_bsz =
  2280. build_ctob(td_cmd, td_offset,
  2281. I40E_MAX_DATA_PER_TXD, td_tag);
  2282. tx_desc++;
  2283. i++;
  2284. desc_count++;
  2285. if (i == tx_ring->count) {
  2286. tx_desc = I40E_TX_DESC(tx_ring, 0);
  2287. i = 0;
  2288. }
  2289. dma += I40E_MAX_DATA_PER_TXD;
  2290. size -= I40E_MAX_DATA_PER_TXD;
  2291. tx_desc->buffer_addr = cpu_to_le64(dma);
  2292. }
  2293. if (likely(!data_len))
  2294. break;
  2295. tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
  2296. size, td_tag);
  2297. tx_desc++;
  2298. i++;
  2299. desc_count++;
  2300. if (i == tx_ring->count) {
  2301. tx_desc = I40E_TX_DESC(tx_ring, 0);
  2302. i = 0;
  2303. }
  2304. size = skb_frag_size(frag);
  2305. data_len -= size;
  2306. dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
  2307. DMA_TO_DEVICE);
  2308. tx_bi = &tx_ring->tx_bi[i];
  2309. }
  2310. /* set next_to_watch value indicating a packet is present */
  2311. first->next_to_watch = tx_desc;
  2312. i++;
  2313. if (i == tx_ring->count)
  2314. i = 0;
  2315. tx_ring->next_to_use = i;
  2316. netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
  2317. tx_ring->queue_index),
  2318. first->bytecount);
  2319. i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
  2320. /* Algorithm to optimize tail and RS bit setting:
  2321. * if xmit_more is supported
  2322. * if xmit_more is true
  2323. * do not update tail and do not mark RS bit.
  2324. * if xmit_more is false and last xmit_more was false
  2325. * if every packet spanned less than 4 desc
  2326. * then set RS bit on 4th packet and update tail
  2327. * on every packet
  2328. * else
  2329. * update tail and set RS bit on every packet.
  2330. * if xmit_more is false and last_xmit_more was true
  2331. * update tail and set RS bit.
  2332. *
  2333. * Optimization: wmb to be issued only in case of tail update.
  2334. * Also optimize the Descriptor WB path for RS bit with the same
  2335. * algorithm.
  2336. *
  2337. * Note: If there are less than 4 packets
  2338. * pending and interrupts were disabled the service task will
  2339. * trigger a force WB.
  2340. */
  2341. if (skb->xmit_more &&
  2342. !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
  2343. tx_ring->queue_index))) {
  2344. tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
  2345. tail_bump = false;
  2346. } else if (!skb->xmit_more &&
  2347. !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
  2348. tx_ring->queue_index)) &&
  2349. (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
  2350. (tx_ring->packet_stride < WB_STRIDE) &&
  2351. (desc_count < WB_STRIDE)) {
  2352. tx_ring->packet_stride++;
  2353. } else {
  2354. tx_ring->packet_stride = 0;
  2355. tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
  2356. do_rs = true;
  2357. }
  2358. if (do_rs)
  2359. tx_ring->packet_stride = 0;
  2360. tx_desc->cmd_type_offset_bsz =
  2361. build_ctob(td_cmd, td_offset, size, td_tag) |
  2362. cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
  2363. I40E_TX_DESC_CMD_EOP) <<
  2364. I40E_TXD_QW1_CMD_SHIFT);
  2365. /* notify HW of packet */
  2366. if (!tail_bump)
  2367. prefetchw(tx_desc + 1);
  2368. if (tail_bump) {
  2369. /* Force memory writes to complete before letting h/w
  2370. * know there are new descriptors to fetch. (Only
  2371. * applicable for weak-ordered memory model archs,
  2372. * such as IA-64).
  2373. */
  2374. wmb();
  2375. writel(i, tx_ring->tail);
  2376. }
  2377. return;
  2378. dma_error:
  2379. dev_info(tx_ring->dev, "TX DMA map failed\n");
  2380. /* clear dma mappings for failed tx_bi map */
  2381. for (;;) {
  2382. tx_bi = &tx_ring->tx_bi[i];
  2383. i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
  2384. if (tx_bi == first)
  2385. break;
  2386. if (i == 0)
  2387. i = tx_ring->count;
  2388. i--;
  2389. }
  2390. tx_ring->next_to_use = i;
  2391. }
  2392. /**
  2393. * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
  2394. * @skb: send buffer
  2395. * @tx_ring: ring to send buffer on
  2396. *
  2397. * Returns number of data descriptors needed for this skb. Returns 0 to indicate
  2398. * there is not enough descriptors available in this ring since we need at least
  2399. * one descriptor.
  2400. **/
  2401. #ifdef I40E_FCOE
  2402. inline int i40e_xmit_descriptor_count(struct sk_buff *skb,
  2403. struct i40e_ring *tx_ring)
  2404. #else
  2405. static inline int i40e_xmit_descriptor_count(struct sk_buff *skb,
  2406. struct i40e_ring *tx_ring)
  2407. #endif
  2408. {
  2409. unsigned int f;
  2410. int count = 0;
  2411. /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
  2412. * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
  2413. * + 4 desc gap to avoid the cache line where head is,
  2414. * + 1 desc for context descriptor,
  2415. * otherwise try next time
  2416. */
  2417. for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
  2418. count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
  2419. count += TXD_USE_COUNT(skb_headlen(skb));
  2420. if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
  2421. tx_ring->tx_stats.tx_busy++;
  2422. return 0;
  2423. }
  2424. return count;
  2425. }
  2426. /**
  2427. * i40e_xmit_frame_ring - Sends buffer on Tx ring
  2428. * @skb: send buffer
  2429. * @tx_ring: ring to send buffer on
  2430. *
  2431. * Returns NETDEV_TX_OK if sent, else an error code
  2432. **/
  2433. static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
  2434. struct i40e_ring *tx_ring)
  2435. {
  2436. u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
  2437. u32 cd_tunneling = 0, cd_l2tag2 = 0;
  2438. struct i40e_tx_buffer *first;
  2439. u32 td_offset = 0;
  2440. u32 tx_flags = 0;
  2441. __be16 protocol;
  2442. u32 td_cmd = 0;
  2443. u8 hdr_len = 0;
  2444. int tsyn;
  2445. int tso;
  2446. if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
  2447. return NETDEV_TX_BUSY;
  2448. /* prepare the xmit flags */
  2449. if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
  2450. goto out_drop;
  2451. /* obtain protocol of skb */
  2452. protocol = vlan_get_protocol(skb);
  2453. /* record the location of the first descriptor for this packet */
  2454. first = &tx_ring->tx_bi[tx_ring->next_to_use];
  2455. /* setup IPv4/IPv6 offloads */
  2456. if (protocol == htons(ETH_P_IP))
  2457. tx_flags |= I40E_TX_FLAGS_IPV4;
  2458. else if (protocol == htons(ETH_P_IPV6))
  2459. tx_flags |= I40E_TX_FLAGS_IPV6;
  2460. tso = i40e_tso(tx_ring, skb, &hdr_len,
  2461. &cd_type_cmd_tso_mss, &cd_tunneling);
  2462. if (tso < 0)
  2463. goto out_drop;
  2464. else if (tso)
  2465. tx_flags |= I40E_TX_FLAGS_TSO;
  2466. tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
  2467. if (tsyn)
  2468. tx_flags |= I40E_TX_FLAGS_TSYN;
  2469. if (i40e_chk_linearize(skb, tx_flags)) {
  2470. if (skb_linearize(skb))
  2471. goto out_drop;
  2472. tx_ring->tx_stats.tx_linearize++;
  2473. }
  2474. skb_tx_timestamp(skb);
  2475. /* always enable CRC insertion offload */
  2476. td_cmd |= I40E_TX_DESC_CMD_ICRC;
  2477. /* Always offload the checksum, since it's in the data descriptor */
  2478. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  2479. tx_flags |= I40E_TX_FLAGS_CSUM;
  2480. i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
  2481. tx_ring, &cd_tunneling);
  2482. }
  2483. i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
  2484. cd_tunneling, cd_l2tag2);
  2485. /* Add Flow Director ATR if it's enabled.
  2486. *
  2487. * NOTE: this must always be directly before the data descriptor.
  2488. */
  2489. i40e_atr(tx_ring, skb, tx_flags, protocol);
  2490. i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
  2491. td_cmd, td_offset);
  2492. return NETDEV_TX_OK;
  2493. out_drop:
  2494. dev_kfree_skb_any(skb);
  2495. return NETDEV_TX_OK;
  2496. }
  2497. /**
  2498. * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
  2499. * @skb: send buffer
  2500. * @netdev: network interface device structure
  2501. *
  2502. * Returns NETDEV_TX_OK if sent, else an error code
  2503. **/
  2504. netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
  2505. {
  2506. struct i40e_netdev_priv *np = netdev_priv(netdev);
  2507. struct i40e_vsi *vsi = np->vsi;
  2508. struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
  2509. /* hardware can't handle really short frames, hardware padding works
  2510. * beyond this point
  2511. */
  2512. if (skb_put_padto(skb, I40E_MIN_TX_LEN))
  2513. return NETDEV_TX_OK;
  2514. return i40e_xmit_frame_ring(skb, tx_ring);
  2515. }