i40e_txrx.c 56 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081
  1. /*******************************************************************************
  2. *
  3. * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
  4. * Copyright(c) 2013 - 2014 Intel Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along
  16. * with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * The full GNU General Public License is included in this distribution in
  19. * the file called "COPYING".
  20. *
  21. * Contact Information:
  22. * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  23. * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  24. *
  25. ******************************************************************************/
  26. #include <linux/prefetch.h>
  27. #include <net/busy_poll.h>
  28. #include "i40evf.h"
  29. #include "i40e_prototype.h"
  30. static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
  31. u32 td_tag)
  32. {
  33. return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
  34. ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
  35. ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
  36. ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
  37. ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
  38. }
  39. #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  40. /**
  41. * i40e_unmap_and_free_tx_resource - Release a Tx buffer
  42. * @ring: the ring that owns the buffer
  43. * @tx_buffer: the buffer to free
  44. **/
  45. static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
  46. struct i40e_tx_buffer *tx_buffer)
  47. {
  48. if (tx_buffer->skb) {
  49. dev_kfree_skb_any(tx_buffer->skb);
  50. if (dma_unmap_len(tx_buffer, len))
  51. dma_unmap_single(ring->dev,
  52. dma_unmap_addr(tx_buffer, dma),
  53. dma_unmap_len(tx_buffer, len),
  54. DMA_TO_DEVICE);
  55. } else if (dma_unmap_len(tx_buffer, len)) {
  56. dma_unmap_page(ring->dev,
  57. dma_unmap_addr(tx_buffer, dma),
  58. dma_unmap_len(tx_buffer, len),
  59. DMA_TO_DEVICE);
  60. }
  61. if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
  62. kfree(tx_buffer->raw_buf);
  63. tx_buffer->next_to_watch = NULL;
  64. tx_buffer->skb = NULL;
  65. dma_unmap_len_set(tx_buffer, len, 0);
  66. /* tx_buffer must be completely set up in the transmit path */
  67. }
  68. /**
  69. * i40evf_clean_tx_ring - Free any empty Tx buffers
  70. * @tx_ring: ring to be cleaned
  71. **/
  72. void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
  73. {
  74. unsigned long bi_size;
  75. u16 i;
  76. /* ring already cleared, nothing to do */
  77. if (!tx_ring->tx_bi)
  78. return;
  79. /* Free all the Tx ring sk_buffs */
  80. for (i = 0; i < tx_ring->count; i++)
  81. i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
  82. bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
  83. memset(tx_ring->tx_bi, 0, bi_size);
  84. /* Zero out the descriptor ring */
  85. memset(tx_ring->desc, 0, tx_ring->size);
  86. tx_ring->next_to_use = 0;
  87. tx_ring->next_to_clean = 0;
  88. if (!tx_ring->netdev)
  89. return;
  90. /* cleanup Tx queue statistics */
  91. netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
  92. tx_ring->queue_index));
  93. }
  94. /**
  95. * i40evf_free_tx_resources - Free Tx resources per queue
  96. * @tx_ring: Tx descriptor ring for a specific queue
  97. *
  98. * Free all transmit software resources
  99. **/
  100. void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
  101. {
  102. i40evf_clean_tx_ring(tx_ring);
  103. kfree(tx_ring->tx_bi);
  104. tx_ring->tx_bi = NULL;
  105. if (tx_ring->desc) {
  106. dma_free_coherent(tx_ring->dev, tx_ring->size,
  107. tx_ring->desc, tx_ring->dma);
  108. tx_ring->desc = NULL;
  109. }
  110. }
  111. /**
  112. * i40e_get_head - Retrieve head from head writeback
  113. * @tx_ring: tx ring to fetch head of
  114. *
  115. * Returns value of Tx ring head based on value stored
  116. * in head write-back location
  117. **/
  118. static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
  119. {
  120. void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
  121. return le32_to_cpu(*(volatile __le32 *)head);
  122. }
  123. #define WB_STRIDE 0x3
  124. /**
  125. * i40e_clean_tx_irq - Reclaim resources after transmit completes
  126. * @tx_ring: tx ring to clean
  127. * @budget: how many cleans we're allowed
  128. *
  129. * Returns true if there's any budget left (e.g. the clean is finished)
  130. **/
  131. static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
  132. {
  133. u16 i = tx_ring->next_to_clean;
  134. struct i40e_tx_buffer *tx_buf;
  135. struct i40e_tx_desc *tx_head;
  136. struct i40e_tx_desc *tx_desc;
  137. unsigned int total_packets = 0;
  138. unsigned int total_bytes = 0;
  139. tx_buf = &tx_ring->tx_bi[i];
  140. tx_desc = I40E_TX_DESC(tx_ring, i);
  141. i -= tx_ring->count;
  142. tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
  143. do {
  144. struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
  145. /* if next_to_watch is not set then there is no work pending */
  146. if (!eop_desc)
  147. break;
  148. /* prevent any other reads prior to eop_desc */
  149. smp_rmb();
  150. /* we have caught up to head, no work left to do */
  151. if (tx_head == tx_desc)
  152. break;
  153. /* clear next_to_watch to prevent false hangs */
  154. tx_buf->next_to_watch = NULL;
  155. /* update the statistics for this packet */
  156. total_bytes += tx_buf->bytecount;
  157. total_packets += tx_buf->gso_segs;
  158. /* free the skb */
  159. dev_kfree_skb_any(tx_buf->skb);
  160. /* unmap skb header data */
  161. dma_unmap_single(tx_ring->dev,
  162. dma_unmap_addr(tx_buf, dma),
  163. dma_unmap_len(tx_buf, len),
  164. DMA_TO_DEVICE);
  165. /* clear tx_buffer data */
  166. tx_buf->skb = NULL;
  167. dma_unmap_len_set(tx_buf, len, 0);
  168. /* unmap remaining buffers */
  169. while (tx_desc != eop_desc) {
  170. tx_buf++;
  171. tx_desc++;
  172. i++;
  173. if (unlikely(!i)) {
  174. i -= tx_ring->count;
  175. tx_buf = tx_ring->tx_bi;
  176. tx_desc = I40E_TX_DESC(tx_ring, 0);
  177. }
  178. /* unmap any remaining paged data */
  179. if (dma_unmap_len(tx_buf, len)) {
  180. dma_unmap_page(tx_ring->dev,
  181. dma_unmap_addr(tx_buf, dma),
  182. dma_unmap_len(tx_buf, len),
  183. DMA_TO_DEVICE);
  184. dma_unmap_len_set(tx_buf, len, 0);
  185. }
  186. }
  187. /* move us one more past the eop_desc for start of next pkt */
  188. tx_buf++;
  189. tx_desc++;
  190. i++;
  191. if (unlikely(!i)) {
  192. i -= tx_ring->count;
  193. tx_buf = tx_ring->tx_bi;
  194. tx_desc = I40E_TX_DESC(tx_ring, 0);
  195. }
  196. prefetch(tx_desc);
  197. /* update budget accounting */
  198. budget--;
  199. } while (likely(budget));
  200. i += tx_ring->count;
  201. tx_ring->next_to_clean = i;
  202. u64_stats_update_begin(&tx_ring->syncp);
  203. tx_ring->stats.bytes += total_bytes;
  204. tx_ring->stats.packets += total_packets;
  205. u64_stats_update_end(&tx_ring->syncp);
  206. tx_ring->q_vector->tx.total_bytes += total_bytes;
  207. tx_ring->q_vector->tx.total_packets += total_packets;
  208. netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
  209. tx_ring->queue_index),
  210. total_packets, total_bytes);
  211. #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
  212. if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
  213. (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
  214. /* Make sure that anybody stopping the queue after this
  215. * sees the new next_to_clean.
  216. */
  217. smp_mb();
  218. if (__netif_subqueue_stopped(tx_ring->netdev,
  219. tx_ring->queue_index) &&
  220. !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
  221. netif_wake_subqueue(tx_ring->netdev,
  222. tx_ring->queue_index);
  223. ++tx_ring->tx_stats.restart_queue;
  224. }
  225. }
  226. return !!budget;
  227. }
  228. /**
  229. * i40evf_force_wb -Arm hardware to do a wb on noncache aligned descriptors
  230. * @vsi: the VSI we care about
  231. * @q_vector: the vector on which to force writeback
  232. *
  233. **/
  234. static void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
  235. {
  236. u16 flags = q_vector->tx.ring[0].flags;
  237. if (flags & I40E_TXR_FLAGS_WB_ON_ITR) {
  238. u32 val;
  239. if (q_vector->arm_wb_state)
  240. return;
  241. val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK;
  242. wr32(&vsi->back->hw,
  243. I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
  244. vsi->base_vector - 1),
  245. val);
  246. q_vector->arm_wb_state = true;
  247. } else {
  248. u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
  249. I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
  250. I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
  251. I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK;
  252. /* allow 00 to be written to the index */
  253. wr32(&vsi->back->hw,
  254. I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
  255. vsi->base_vector - 1), val);
  256. }
  257. }
  258. /**
  259. * i40e_set_new_dynamic_itr - Find new ITR level
  260. * @rc: structure containing ring performance data
  261. *
  262. * Returns true if ITR changed, false if not
  263. *
  264. * Stores a new ITR value based on packets and byte counts during
  265. * the last interrupt. The advantage of per interrupt computation
  266. * is faster updates and more accurate ITR for the current traffic
  267. * pattern. Constants in this function were computed based on
  268. * theoretical maximum wire speed and thresholds were set based on
  269. * testing data as well as attempting to minimize response time
  270. * while increasing bulk throughput.
  271. **/
  272. static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
  273. {
  274. enum i40e_latency_range new_latency_range = rc->latency_range;
  275. struct i40e_q_vector *qv = rc->ring->q_vector;
  276. u32 new_itr = rc->itr;
  277. int bytes_per_int;
  278. int usecs;
  279. if (rc->total_packets == 0 || !rc->itr)
  280. return false;
  281. /* simple throttlerate management
  282. * 0-10MB/s lowest (50000 ints/s)
  283. * 10-20MB/s low (20000 ints/s)
  284. * 20-1249MB/s bulk (18000 ints/s)
  285. * > 40000 Rx packets per second (8000 ints/s)
  286. *
  287. * The math works out because the divisor is in 10^(-6) which
  288. * turns the bytes/us input value into MB/s values, but
  289. * make sure to use usecs, as the register values written
  290. * are in 2 usec increments in the ITR registers, and make sure
  291. * to use the smoothed values that the countdown timer gives us.
  292. */
  293. usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
  294. bytes_per_int = rc->total_bytes / usecs;
  295. switch (new_latency_range) {
  296. case I40E_LOWEST_LATENCY:
  297. if (bytes_per_int > 10)
  298. new_latency_range = I40E_LOW_LATENCY;
  299. break;
  300. case I40E_LOW_LATENCY:
  301. if (bytes_per_int > 20)
  302. new_latency_range = I40E_BULK_LATENCY;
  303. else if (bytes_per_int <= 10)
  304. new_latency_range = I40E_LOWEST_LATENCY;
  305. break;
  306. case I40E_BULK_LATENCY:
  307. case I40E_ULTRA_LATENCY:
  308. default:
  309. if (bytes_per_int <= 20)
  310. new_latency_range = I40E_LOW_LATENCY;
  311. break;
  312. }
  313. /* this is to adjust RX more aggressively when streaming small
  314. * packets. The value of 40000 was picked as it is just beyond
  315. * what the hardware can receive per second if in low latency
  316. * mode.
  317. */
  318. #define RX_ULTRA_PACKET_RATE 40000
  319. if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
  320. (&qv->rx == rc))
  321. new_latency_range = I40E_ULTRA_LATENCY;
  322. rc->latency_range = new_latency_range;
  323. switch (new_latency_range) {
  324. case I40E_LOWEST_LATENCY:
  325. new_itr = I40E_ITR_50K;
  326. break;
  327. case I40E_LOW_LATENCY:
  328. new_itr = I40E_ITR_20K;
  329. break;
  330. case I40E_BULK_LATENCY:
  331. new_itr = I40E_ITR_18K;
  332. break;
  333. case I40E_ULTRA_LATENCY:
  334. new_itr = I40E_ITR_8K;
  335. break;
  336. default:
  337. break;
  338. }
  339. rc->total_bytes = 0;
  340. rc->total_packets = 0;
  341. if (new_itr != rc->itr) {
  342. rc->itr = new_itr;
  343. return true;
  344. }
  345. return false;
  346. }
  347. /*
  348. * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
  349. * @tx_ring: the tx ring to set up
  350. *
  351. * Return 0 on success, negative on error
  352. **/
  353. int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
  354. {
  355. struct device *dev = tx_ring->dev;
  356. int bi_size;
  357. if (!dev)
  358. return -ENOMEM;
  359. /* warn if we are about to overwrite the pointer */
  360. WARN_ON(tx_ring->tx_bi);
  361. bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
  362. tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
  363. if (!tx_ring->tx_bi)
  364. goto err;
  365. /* round up to nearest 4K */
  366. tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
  367. /* add u32 for head writeback, align after this takes care of
  368. * guaranteeing this is at least one cache line in size
  369. */
  370. tx_ring->size += sizeof(u32);
  371. tx_ring->size = ALIGN(tx_ring->size, 4096);
  372. tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
  373. &tx_ring->dma, GFP_KERNEL);
  374. if (!tx_ring->desc) {
  375. dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
  376. tx_ring->size);
  377. goto err;
  378. }
  379. tx_ring->next_to_use = 0;
  380. tx_ring->next_to_clean = 0;
  381. return 0;
  382. err:
  383. kfree(tx_ring->tx_bi);
  384. tx_ring->tx_bi = NULL;
  385. return -ENOMEM;
  386. }
  387. /**
  388. * i40evf_clean_rx_ring - Free Rx buffers
  389. * @rx_ring: ring to be cleaned
  390. **/
  391. void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
  392. {
  393. struct device *dev = rx_ring->dev;
  394. struct i40e_rx_buffer *rx_bi;
  395. unsigned long bi_size;
  396. u16 i;
  397. /* ring already cleared, nothing to do */
  398. if (!rx_ring->rx_bi)
  399. return;
  400. if (ring_is_ps_enabled(rx_ring)) {
  401. int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
  402. rx_bi = &rx_ring->rx_bi[0];
  403. if (rx_bi->hdr_buf) {
  404. dma_free_coherent(dev,
  405. bufsz,
  406. rx_bi->hdr_buf,
  407. rx_bi->dma);
  408. for (i = 0; i < rx_ring->count; i++) {
  409. rx_bi = &rx_ring->rx_bi[i];
  410. rx_bi->dma = 0;
  411. rx_bi->hdr_buf = NULL;
  412. }
  413. }
  414. }
  415. /* Free all the Rx ring sk_buffs */
  416. for (i = 0; i < rx_ring->count; i++) {
  417. rx_bi = &rx_ring->rx_bi[i];
  418. if (rx_bi->dma) {
  419. dma_unmap_single(dev,
  420. rx_bi->dma,
  421. rx_ring->rx_buf_len,
  422. DMA_FROM_DEVICE);
  423. rx_bi->dma = 0;
  424. }
  425. if (rx_bi->skb) {
  426. dev_kfree_skb(rx_bi->skb);
  427. rx_bi->skb = NULL;
  428. }
  429. if (rx_bi->page) {
  430. if (rx_bi->page_dma) {
  431. dma_unmap_page(dev,
  432. rx_bi->page_dma,
  433. PAGE_SIZE / 2,
  434. DMA_FROM_DEVICE);
  435. rx_bi->page_dma = 0;
  436. }
  437. __free_page(rx_bi->page);
  438. rx_bi->page = NULL;
  439. rx_bi->page_offset = 0;
  440. }
  441. }
  442. bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
  443. memset(rx_ring->rx_bi, 0, bi_size);
  444. /* Zero out the descriptor ring */
  445. memset(rx_ring->desc, 0, rx_ring->size);
  446. rx_ring->next_to_clean = 0;
  447. rx_ring->next_to_use = 0;
  448. }
  449. /**
  450. * i40evf_free_rx_resources - Free Rx resources
  451. * @rx_ring: ring to clean the resources from
  452. *
  453. * Free all receive software resources
  454. **/
  455. void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
  456. {
  457. i40evf_clean_rx_ring(rx_ring);
  458. kfree(rx_ring->rx_bi);
  459. rx_ring->rx_bi = NULL;
  460. if (rx_ring->desc) {
  461. dma_free_coherent(rx_ring->dev, rx_ring->size,
  462. rx_ring->desc, rx_ring->dma);
  463. rx_ring->desc = NULL;
  464. }
  465. }
  466. /**
  467. * i40evf_alloc_rx_headers - allocate rx header buffers
  468. * @rx_ring: ring to alloc buffers
  469. *
  470. * Allocate rx header buffers for the entire ring. As these are static,
  471. * this is only called when setting up a new ring.
  472. **/
  473. void i40evf_alloc_rx_headers(struct i40e_ring *rx_ring)
  474. {
  475. struct device *dev = rx_ring->dev;
  476. struct i40e_rx_buffer *rx_bi;
  477. dma_addr_t dma;
  478. void *buffer;
  479. int buf_size;
  480. int i;
  481. if (rx_ring->rx_bi[0].hdr_buf)
  482. return;
  483. /* Make sure the buffers don't cross cache line boundaries. */
  484. buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
  485. buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
  486. &dma, GFP_KERNEL);
  487. if (!buffer)
  488. return;
  489. for (i = 0; i < rx_ring->count; i++) {
  490. rx_bi = &rx_ring->rx_bi[i];
  491. rx_bi->dma = dma + (i * buf_size);
  492. rx_bi->hdr_buf = buffer + (i * buf_size);
  493. }
  494. }
  495. /**
  496. * i40evf_setup_rx_descriptors - Allocate Rx descriptors
  497. * @rx_ring: Rx descriptor ring (for a specific queue) to setup
  498. *
  499. * Returns 0 on success, negative on failure
  500. **/
  501. int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
  502. {
  503. struct device *dev = rx_ring->dev;
  504. int bi_size;
  505. /* warn if we are about to overwrite the pointer */
  506. WARN_ON(rx_ring->rx_bi);
  507. bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
  508. rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
  509. if (!rx_ring->rx_bi)
  510. goto err;
  511. u64_stats_init(&rx_ring->syncp);
  512. /* Round up to nearest 4K */
  513. rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
  514. ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
  515. : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
  516. rx_ring->size = ALIGN(rx_ring->size, 4096);
  517. rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
  518. &rx_ring->dma, GFP_KERNEL);
  519. if (!rx_ring->desc) {
  520. dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
  521. rx_ring->size);
  522. goto err;
  523. }
  524. rx_ring->next_to_clean = 0;
  525. rx_ring->next_to_use = 0;
  526. return 0;
  527. err:
  528. kfree(rx_ring->rx_bi);
  529. rx_ring->rx_bi = NULL;
  530. return -ENOMEM;
  531. }
  532. /**
  533. * i40e_release_rx_desc - Store the new tail and head values
  534. * @rx_ring: ring to bump
  535. * @val: new head index
  536. **/
  537. static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
  538. {
  539. rx_ring->next_to_use = val;
  540. /* Force memory writes to complete before letting h/w
  541. * know there are new descriptors to fetch. (Only
  542. * applicable for weak-ordered memory model archs,
  543. * such as IA-64).
  544. */
  545. wmb();
  546. writel(val, rx_ring->tail);
  547. }
  548. /**
  549. * i40evf_alloc_rx_buffers_ps - Replace used receive buffers; packet split
  550. * @rx_ring: ring to place buffers on
  551. * @cleaned_count: number of buffers to replace
  552. **/
  553. void i40evf_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
  554. {
  555. u16 i = rx_ring->next_to_use;
  556. union i40e_rx_desc *rx_desc;
  557. struct i40e_rx_buffer *bi;
  558. /* do nothing if no valid netdev defined */
  559. if (!rx_ring->netdev || !cleaned_count)
  560. return;
  561. while (cleaned_count--) {
  562. rx_desc = I40E_RX_DESC(rx_ring, i);
  563. bi = &rx_ring->rx_bi[i];
  564. if (bi->skb) /* desc is in use */
  565. goto no_buffers;
  566. if (!bi->page) {
  567. bi->page = alloc_page(GFP_ATOMIC);
  568. if (!bi->page) {
  569. rx_ring->rx_stats.alloc_page_failed++;
  570. goto no_buffers;
  571. }
  572. }
  573. if (!bi->page_dma) {
  574. /* use a half page if we're re-using */
  575. bi->page_offset ^= PAGE_SIZE / 2;
  576. bi->page_dma = dma_map_page(rx_ring->dev,
  577. bi->page,
  578. bi->page_offset,
  579. PAGE_SIZE / 2,
  580. DMA_FROM_DEVICE);
  581. if (dma_mapping_error(rx_ring->dev,
  582. bi->page_dma)) {
  583. rx_ring->rx_stats.alloc_page_failed++;
  584. bi->page_dma = 0;
  585. goto no_buffers;
  586. }
  587. }
  588. dma_sync_single_range_for_device(rx_ring->dev,
  589. bi->dma,
  590. 0,
  591. rx_ring->rx_hdr_len,
  592. DMA_FROM_DEVICE);
  593. /* Refresh the desc even if buffer_addrs didn't change
  594. * because each write-back erases this info.
  595. */
  596. rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
  597. rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
  598. i++;
  599. if (i == rx_ring->count)
  600. i = 0;
  601. }
  602. no_buffers:
  603. if (rx_ring->next_to_use != i)
  604. i40e_release_rx_desc(rx_ring, i);
  605. }
  606. /**
  607. * i40evf_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
  608. * @rx_ring: ring to place buffers on
  609. * @cleaned_count: number of buffers to replace
  610. **/
  611. void i40evf_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
  612. {
  613. u16 i = rx_ring->next_to_use;
  614. union i40e_rx_desc *rx_desc;
  615. struct i40e_rx_buffer *bi;
  616. struct sk_buff *skb;
  617. /* do nothing if no valid netdev defined */
  618. if (!rx_ring->netdev || !cleaned_count)
  619. return;
  620. while (cleaned_count--) {
  621. rx_desc = I40E_RX_DESC(rx_ring, i);
  622. bi = &rx_ring->rx_bi[i];
  623. skb = bi->skb;
  624. if (!skb) {
  625. skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
  626. rx_ring->rx_buf_len);
  627. if (!skb) {
  628. rx_ring->rx_stats.alloc_buff_failed++;
  629. goto no_buffers;
  630. }
  631. /* initialize queue mapping */
  632. skb_record_rx_queue(skb, rx_ring->queue_index);
  633. bi->skb = skb;
  634. }
  635. if (!bi->dma) {
  636. bi->dma = dma_map_single(rx_ring->dev,
  637. skb->data,
  638. rx_ring->rx_buf_len,
  639. DMA_FROM_DEVICE);
  640. if (dma_mapping_error(rx_ring->dev, bi->dma)) {
  641. rx_ring->rx_stats.alloc_buff_failed++;
  642. bi->dma = 0;
  643. goto no_buffers;
  644. }
  645. }
  646. rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
  647. rx_desc->read.hdr_addr = 0;
  648. i++;
  649. if (i == rx_ring->count)
  650. i = 0;
  651. }
  652. no_buffers:
  653. if (rx_ring->next_to_use != i)
  654. i40e_release_rx_desc(rx_ring, i);
  655. }
  656. /**
  657. * i40e_receive_skb - Send a completed packet up the stack
  658. * @rx_ring: rx ring in play
  659. * @skb: packet to send up
  660. * @vlan_tag: vlan tag for packet
  661. **/
  662. static void i40e_receive_skb(struct i40e_ring *rx_ring,
  663. struct sk_buff *skb, u16 vlan_tag)
  664. {
  665. struct i40e_q_vector *q_vector = rx_ring->q_vector;
  666. if (vlan_tag & VLAN_VID_MASK)
  667. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
  668. napi_gro_receive(&q_vector->napi, skb);
  669. }
  670. /**
  671. * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
  672. * @vsi: the VSI we care about
  673. * @skb: skb currently being received and modified
  674. * @rx_status: status value of last descriptor in packet
  675. * @rx_error: error value of last descriptor in packet
  676. * @rx_ptype: ptype value of last descriptor in packet
  677. **/
  678. static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
  679. struct sk_buff *skb,
  680. u32 rx_status,
  681. u32 rx_error,
  682. u16 rx_ptype)
  683. {
  684. struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
  685. bool ipv4 = false, ipv6 = false;
  686. bool ipv4_tunnel, ipv6_tunnel;
  687. __wsum rx_udp_csum;
  688. struct iphdr *iph;
  689. __sum16 csum;
  690. ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
  691. (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
  692. ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
  693. (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
  694. skb->ip_summed = CHECKSUM_NONE;
  695. /* Rx csum enabled and ip headers found? */
  696. if (!(vsi->netdev->features & NETIF_F_RXCSUM))
  697. return;
  698. /* did the hardware decode the packet and checksum? */
  699. if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
  700. return;
  701. /* both known and outer_ip must be set for the below code to work */
  702. if (!(decoded.known && decoded.outer_ip))
  703. return;
  704. if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
  705. decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
  706. ipv4 = true;
  707. else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
  708. decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
  709. ipv6 = true;
  710. if (ipv4 &&
  711. (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
  712. BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
  713. goto checksum_fail;
  714. /* likely incorrect csum if alternate IP extension headers found */
  715. if (ipv6 &&
  716. rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
  717. /* don't increment checksum err here, non-fatal err */
  718. return;
  719. /* there was some L4 error, count error and punt packet to the stack */
  720. if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
  721. goto checksum_fail;
  722. /* handle packets that were not able to be checksummed due
  723. * to arrival speed, in this case the stack can compute
  724. * the csum.
  725. */
  726. if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
  727. return;
  728. /* If VXLAN traffic has an outer UDPv4 checksum we need to check
  729. * it in the driver, hardware does not do it for us.
  730. * Since L3L4P bit was set we assume a valid IHL value (>=5)
  731. * so the total length of IPv4 header is IHL*4 bytes
  732. * The UDP_0 bit *may* bet set if the *inner* header is UDP
  733. */
  734. if (ipv4_tunnel) {
  735. skb->transport_header = skb->mac_header +
  736. sizeof(struct ethhdr) +
  737. (ip_hdr(skb)->ihl * 4);
  738. /* Add 4 bytes for VLAN tagged packets */
  739. skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
  740. skb->protocol == htons(ETH_P_8021AD))
  741. ? VLAN_HLEN : 0;
  742. if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
  743. (udp_hdr(skb)->check != 0)) {
  744. rx_udp_csum = udp_csum(skb);
  745. iph = ip_hdr(skb);
  746. csum = csum_tcpudp_magic(iph->saddr, iph->daddr,
  747. (skb->len -
  748. skb_transport_offset(skb)),
  749. IPPROTO_UDP, rx_udp_csum);
  750. if (udp_hdr(skb)->check != csum)
  751. goto checksum_fail;
  752. } /* else its GRE and so no outer UDP header */
  753. }
  754. skb->ip_summed = CHECKSUM_UNNECESSARY;
  755. skb->csum_level = ipv4_tunnel || ipv6_tunnel;
  756. return;
  757. checksum_fail:
  758. vsi->back->hw_csum_rx_error++;
  759. }
  760. /**
  761. * i40e_ptype_to_htype - get a hash type
  762. * @ptype: the ptype value from the descriptor
  763. *
  764. * Returns a hash type to be used by skb_set_hash
  765. **/
  766. static inline enum pkt_hash_types i40e_ptype_to_htype(u8 ptype)
  767. {
  768. struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
  769. if (!decoded.known)
  770. return PKT_HASH_TYPE_NONE;
  771. if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
  772. decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
  773. return PKT_HASH_TYPE_L4;
  774. else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
  775. decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
  776. return PKT_HASH_TYPE_L3;
  777. else
  778. return PKT_HASH_TYPE_L2;
  779. }
  780. /**
  781. * i40e_rx_hash - set the hash value in the skb
  782. * @ring: descriptor ring
  783. * @rx_desc: specific descriptor
  784. **/
  785. static inline void i40e_rx_hash(struct i40e_ring *ring,
  786. union i40e_rx_desc *rx_desc,
  787. struct sk_buff *skb,
  788. u8 rx_ptype)
  789. {
  790. u32 hash;
  791. const __le64 rss_mask =
  792. cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
  793. I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
  794. if (ring->netdev->features & NETIF_F_RXHASH)
  795. return;
  796. if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
  797. hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
  798. skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
  799. }
  800. }
  801. /**
  802. * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
  803. * @rx_ring: rx ring to clean
  804. * @budget: how many cleans we're allowed
  805. *
  806. * Returns true if there's any budget left (e.g. the clean is finished)
  807. **/
  808. static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, int budget)
  809. {
  810. unsigned int total_rx_bytes = 0, total_rx_packets = 0;
  811. u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
  812. u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
  813. const int current_node = numa_mem_id();
  814. struct i40e_vsi *vsi = rx_ring->vsi;
  815. u16 i = rx_ring->next_to_clean;
  816. union i40e_rx_desc *rx_desc;
  817. u32 rx_error, rx_status;
  818. u8 rx_ptype;
  819. u64 qword;
  820. do {
  821. struct i40e_rx_buffer *rx_bi;
  822. struct sk_buff *skb;
  823. u16 vlan_tag;
  824. /* return some buffers to hardware, one at a time is too slow */
  825. if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
  826. i40evf_alloc_rx_buffers_ps(rx_ring, cleaned_count);
  827. cleaned_count = 0;
  828. }
  829. i = rx_ring->next_to_clean;
  830. rx_desc = I40E_RX_DESC(rx_ring, i);
  831. qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
  832. rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
  833. I40E_RXD_QW1_STATUS_SHIFT;
  834. if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
  835. break;
  836. /* This memory barrier is needed to keep us from reading
  837. * any other fields out of the rx_desc until we know the
  838. * DD bit is set.
  839. */
  840. dma_rmb();
  841. rx_bi = &rx_ring->rx_bi[i];
  842. skb = rx_bi->skb;
  843. if (likely(!skb)) {
  844. skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
  845. rx_ring->rx_hdr_len);
  846. if (!skb) {
  847. rx_ring->rx_stats.alloc_buff_failed++;
  848. break;
  849. }
  850. /* initialize queue mapping */
  851. skb_record_rx_queue(skb, rx_ring->queue_index);
  852. /* we are reusing so sync this buffer for CPU use */
  853. dma_sync_single_range_for_cpu(rx_ring->dev,
  854. rx_bi->dma,
  855. 0,
  856. rx_ring->rx_hdr_len,
  857. DMA_FROM_DEVICE);
  858. }
  859. rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
  860. I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
  861. rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
  862. I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
  863. rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
  864. I40E_RXD_QW1_LENGTH_SPH_SHIFT;
  865. rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
  866. I40E_RXD_QW1_ERROR_SHIFT;
  867. rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
  868. rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
  869. rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
  870. I40E_RXD_QW1_PTYPE_SHIFT;
  871. prefetch(rx_bi->page);
  872. rx_bi->skb = NULL;
  873. cleaned_count++;
  874. if (rx_hbo || rx_sph) {
  875. int len;
  876. if (rx_hbo)
  877. len = I40E_RX_HDR_SIZE;
  878. else
  879. len = rx_header_len;
  880. memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
  881. } else if (skb->len == 0) {
  882. int len;
  883. len = (rx_packet_len > skb_headlen(skb) ?
  884. skb_headlen(skb) : rx_packet_len);
  885. memcpy(__skb_put(skb, len),
  886. rx_bi->page + rx_bi->page_offset,
  887. len);
  888. rx_bi->page_offset += len;
  889. rx_packet_len -= len;
  890. }
  891. /* Get the rest of the data if this was a header split */
  892. if (rx_packet_len) {
  893. skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
  894. rx_bi->page,
  895. rx_bi->page_offset,
  896. rx_packet_len);
  897. skb->len += rx_packet_len;
  898. skb->data_len += rx_packet_len;
  899. skb->truesize += rx_packet_len;
  900. if ((page_count(rx_bi->page) == 1) &&
  901. (page_to_nid(rx_bi->page) == current_node))
  902. get_page(rx_bi->page);
  903. else
  904. rx_bi->page = NULL;
  905. dma_unmap_page(rx_ring->dev,
  906. rx_bi->page_dma,
  907. PAGE_SIZE / 2,
  908. DMA_FROM_DEVICE);
  909. rx_bi->page_dma = 0;
  910. }
  911. I40E_RX_INCREMENT(rx_ring, i);
  912. if (unlikely(
  913. !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
  914. struct i40e_rx_buffer *next_buffer;
  915. next_buffer = &rx_ring->rx_bi[i];
  916. next_buffer->skb = skb;
  917. rx_ring->rx_stats.non_eop_descs++;
  918. continue;
  919. }
  920. /* ERR_MASK will only have valid bits if EOP set */
  921. if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
  922. dev_kfree_skb_any(skb);
  923. continue;
  924. }
  925. i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
  926. /* probably a little skewed due to removing CRC */
  927. total_rx_bytes += skb->len;
  928. total_rx_packets++;
  929. skb->protocol = eth_type_trans(skb, rx_ring->netdev);
  930. i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
  931. vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
  932. ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
  933. : 0;
  934. #ifdef I40E_FCOE
  935. if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
  936. dev_kfree_skb_any(skb);
  937. continue;
  938. }
  939. #endif
  940. skb_mark_napi_id(skb, &rx_ring->q_vector->napi);
  941. i40e_receive_skb(rx_ring, skb, vlan_tag);
  942. rx_desc->wb.qword1.status_error_len = 0;
  943. } while (likely(total_rx_packets < budget));
  944. u64_stats_update_begin(&rx_ring->syncp);
  945. rx_ring->stats.packets += total_rx_packets;
  946. rx_ring->stats.bytes += total_rx_bytes;
  947. u64_stats_update_end(&rx_ring->syncp);
  948. rx_ring->q_vector->rx.total_packets += total_rx_packets;
  949. rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
  950. return total_rx_packets;
  951. }
  952. /**
  953. * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
  954. * @rx_ring: rx ring to clean
  955. * @budget: how many cleans we're allowed
  956. *
  957. * Returns number of packets cleaned
  958. **/
  959. static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
  960. {
  961. unsigned int total_rx_bytes = 0, total_rx_packets = 0;
  962. u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
  963. struct i40e_vsi *vsi = rx_ring->vsi;
  964. union i40e_rx_desc *rx_desc;
  965. u32 rx_error, rx_status;
  966. u16 rx_packet_len;
  967. u8 rx_ptype;
  968. u64 qword;
  969. u16 i;
  970. do {
  971. struct i40e_rx_buffer *rx_bi;
  972. struct sk_buff *skb;
  973. u16 vlan_tag;
  974. /* return some buffers to hardware, one at a time is too slow */
  975. if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
  976. i40evf_alloc_rx_buffers_1buf(rx_ring, cleaned_count);
  977. cleaned_count = 0;
  978. }
  979. i = rx_ring->next_to_clean;
  980. rx_desc = I40E_RX_DESC(rx_ring, i);
  981. qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
  982. rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
  983. I40E_RXD_QW1_STATUS_SHIFT;
  984. if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
  985. break;
  986. /* This memory barrier is needed to keep us from reading
  987. * any other fields out of the rx_desc until we know the
  988. * DD bit is set.
  989. */
  990. dma_rmb();
  991. rx_bi = &rx_ring->rx_bi[i];
  992. skb = rx_bi->skb;
  993. prefetch(skb->data);
  994. rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
  995. I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
  996. rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
  997. I40E_RXD_QW1_ERROR_SHIFT;
  998. rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
  999. rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
  1000. I40E_RXD_QW1_PTYPE_SHIFT;
  1001. rx_bi->skb = NULL;
  1002. cleaned_count++;
  1003. /* Get the header and possibly the whole packet
  1004. * If this is an skb from previous receive dma will be 0
  1005. */
  1006. skb_put(skb, rx_packet_len);
  1007. dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
  1008. DMA_FROM_DEVICE);
  1009. rx_bi->dma = 0;
  1010. I40E_RX_INCREMENT(rx_ring, i);
  1011. if (unlikely(
  1012. !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
  1013. rx_ring->rx_stats.non_eop_descs++;
  1014. continue;
  1015. }
  1016. /* ERR_MASK will only have valid bits if EOP set */
  1017. if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
  1018. dev_kfree_skb_any(skb);
  1019. continue;
  1020. }
  1021. i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
  1022. /* probably a little skewed due to removing CRC */
  1023. total_rx_bytes += skb->len;
  1024. total_rx_packets++;
  1025. skb->protocol = eth_type_trans(skb, rx_ring->netdev);
  1026. i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
  1027. vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
  1028. ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
  1029. : 0;
  1030. i40e_receive_skb(rx_ring, skb, vlan_tag);
  1031. rx_desc->wb.qword1.status_error_len = 0;
  1032. } while (likely(total_rx_packets < budget));
  1033. u64_stats_update_begin(&rx_ring->syncp);
  1034. rx_ring->stats.packets += total_rx_packets;
  1035. rx_ring->stats.bytes += total_rx_bytes;
  1036. u64_stats_update_end(&rx_ring->syncp);
  1037. rx_ring->q_vector->rx.total_packets += total_rx_packets;
  1038. rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
  1039. return total_rx_packets;
  1040. }
  1041. static u32 i40e_buildreg_itr(const int type, const u16 itr)
  1042. {
  1043. u32 val;
  1044. val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
  1045. I40E_VFINT_DYN_CTLN1_CLEARPBA_MASK |
  1046. (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
  1047. (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);
  1048. return val;
  1049. }
  1050. /* a small macro to shorten up some long lines */
  1051. #define INTREG I40E_VFINT_DYN_CTLN1
  1052. /**
  1053. * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
  1054. * @vsi: the VSI we care about
  1055. * @q_vector: q_vector for which itr is being updated and interrupt enabled
  1056. *
  1057. **/
  1058. static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
  1059. struct i40e_q_vector *q_vector)
  1060. {
  1061. struct i40e_hw *hw = &vsi->back->hw;
  1062. bool rx = false, tx = false;
  1063. u32 rxval, txval;
  1064. int vector;
  1065. vector = (q_vector->v_idx + vsi->base_vector);
  1066. /* avoid dynamic calculation if in countdown mode OR if
  1067. * all dynamic is disabled
  1068. */
  1069. rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
  1070. if (q_vector->itr_countdown > 0 ||
  1071. (!ITR_IS_DYNAMIC(vsi->rx_itr_setting) &&
  1072. !ITR_IS_DYNAMIC(vsi->tx_itr_setting))) {
  1073. goto enable_int;
  1074. }
  1075. if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
  1076. rx = i40e_set_new_dynamic_itr(&q_vector->rx);
  1077. rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
  1078. }
  1079. if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
  1080. tx = i40e_set_new_dynamic_itr(&q_vector->tx);
  1081. txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
  1082. }
  1083. if (rx || tx) {
  1084. /* get the higher of the two ITR adjustments and
  1085. * use the same value for both ITR registers
  1086. * when in adaptive mode (Rx and/or Tx)
  1087. */
  1088. u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
  1089. q_vector->tx.itr = q_vector->rx.itr = itr;
  1090. txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
  1091. tx = true;
  1092. rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
  1093. rx = true;
  1094. }
  1095. /* only need to enable the interrupt once, but need
  1096. * to possibly update both ITR values
  1097. */
  1098. if (rx) {
  1099. /* set the INTENA_MSK_MASK so that this first write
  1100. * won't actually enable the interrupt, instead just
  1101. * updating the ITR (it's bit 31 PF and VF)
  1102. */
  1103. rxval |= BIT(31);
  1104. /* don't check _DOWN because interrupt isn't being enabled */
  1105. wr32(hw, INTREG(vector - 1), rxval);
  1106. }
  1107. enable_int:
  1108. if (!test_bit(__I40E_DOWN, &vsi->state))
  1109. wr32(hw, INTREG(vector - 1), txval);
  1110. if (q_vector->itr_countdown)
  1111. q_vector->itr_countdown--;
  1112. else
  1113. q_vector->itr_countdown = ITR_COUNTDOWN_START;
  1114. }
  1115. /**
  1116. * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
  1117. * @napi: napi struct with our devices info in it
  1118. * @budget: amount of work driver is allowed to do this pass, in packets
  1119. *
  1120. * This function will clean all queues associated with a q_vector.
  1121. *
  1122. * Returns the amount of work done
  1123. **/
  1124. int i40evf_napi_poll(struct napi_struct *napi, int budget)
  1125. {
  1126. struct i40e_q_vector *q_vector =
  1127. container_of(napi, struct i40e_q_vector, napi);
  1128. struct i40e_vsi *vsi = q_vector->vsi;
  1129. struct i40e_ring *ring;
  1130. bool clean_complete = true;
  1131. bool arm_wb = false;
  1132. int budget_per_ring;
  1133. int work_done = 0;
  1134. if (test_bit(__I40E_DOWN, &vsi->state)) {
  1135. napi_complete(napi);
  1136. return 0;
  1137. }
  1138. /* Since the actual Tx work is minimal, we can give the Tx a larger
  1139. * budget and be more aggressive about cleaning up the Tx descriptors.
  1140. */
  1141. i40e_for_each_ring(ring, q_vector->tx) {
  1142. clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
  1143. arm_wb |= ring->arm_wb;
  1144. ring->arm_wb = false;
  1145. }
  1146. /* Handle case where we are called by netpoll with a budget of 0 */
  1147. if (budget <= 0)
  1148. goto tx_only;
  1149. /* We attempt to distribute budget to each Rx queue fairly, but don't
  1150. * allow the budget to go below 1 because that would exit polling early.
  1151. */
  1152. budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
  1153. i40e_for_each_ring(ring, q_vector->rx) {
  1154. int cleaned;
  1155. if (ring_is_ps_enabled(ring))
  1156. cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
  1157. else
  1158. cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
  1159. work_done += cleaned;
  1160. /* if we didn't clean as many as budgeted, we must be done */
  1161. clean_complete &= (budget_per_ring != cleaned);
  1162. }
  1163. /* If work not completed, return budget and polling will return */
  1164. if (!clean_complete) {
  1165. tx_only:
  1166. if (arm_wb)
  1167. i40evf_force_wb(vsi, q_vector);
  1168. return budget;
  1169. }
  1170. if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
  1171. q_vector->arm_wb_state = false;
  1172. /* Work is done so exit the polling mode and re-enable the interrupt */
  1173. napi_complete_done(napi, work_done);
  1174. i40e_update_enable_itr(vsi, q_vector);
  1175. return 0;
  1176. }
  1177. /**
  1178. * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
  1179. * @skb: send buffer
  1180. * @tx_ring: ring to send buffer on
  1181. * @flags: the tx flags to be set
  1182. *
  1183. * Checks the skb and set up correspondingly several generic transmit flags
  1184. * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
  1185. *
  1186. * Returns error code indicate the frame should be dropped upon error and the
  1187. * otherwise returns 0 to indicate the flags has been set properly.
  1188. **/
  1189. static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
  1190. struct i40e_ring *tx_ring,
  1191. u32 *flags)
  1192. {
  1193. __be16 protocol = skb->protocol;
  1194. u32 tx_flags = 0;
  1195. if (protocol == htons(ETH_P_8021Q) &&
  1196. !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
  1197. /* When HW VLAN acceleration is turned off by the user the
  1198. * stack sets the protocol to 8021q so that the driver
  1199. * can take any steps required to support the SW only
  1200. * VLAN handling. In our case the driver doesn't need
  1201. * to take any further steps so just set the protocol
  1202. * to the encapsulated ethertype.
  1203. */
  1204. skb->protocol = vlan_get_protocol(skb);
  1205. goto out;
  1206. }
  1207. /* if we have a HW VLAN tag being added, default to the HW one */
  1208. if (skb_vlan_tag_present(skb)) {
  1209. tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
  1210. tx_flags |= I40E_TX_FLAGS_HW_VLAN;
  1211. /* else if it is a SW VLAN, check the next protocol and store the tag */
  1212. } else if (protocol == htons(ETH_P_8021Q)) {
  1213. struct vlan_hdr *vhdr, _vhdr;
  1214. vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
  1215. if (!vhdr)
  1216. return -EINVAL;
  1217. protocol = vhdr->h_vlan_encapsulated_proto;
  1218. tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
  1219. tx_flags |= I40E_TX_FLAGS_SW_VLAN;
  1220. }
  1221. out:
  1222. *flags = tx_flags;
  1223. return 0;
  1224. }
  1225. /**
  1226. * i40e_tso - set up the tso context descriptor
  1227. * @tx_ring: ptr to the ring to send
  1228. * @skb: ptr to the skb we're sending
  1229. * @hdr_len: ptr to the size of the packet header
  1230. * @cd_tunneling: ptr to context descriptor bits
  1231. *
  1232. * Returns 0 if no TSO can happen, 1 if tso is going, or error
  1233. **/
  1234. static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
  1235. u8 *hdr_len, u64 *cd_type_cmd_tso_mss,
  1236. u32 *cd_tunneling)
  1237. {
  1238. u32 cd_cmd, cd_tso_len, cd_mss;
  1239. struct ipv6hdr *ipv6h;
  1240. struct tcphdr *tcph;
  1241. struct iphdr *iph;
  1242. u32 l4len;
  1243. int err;
  1244. if (!skb_is_gso(skb))
  1245. return 0;
  1246. err = skb_cow_head(skb, 0);
  1247. if (err < 0)
  1248. return err;
  1249. iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
  1250. ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
  1251. if (iph->version == 4) {
  1252. tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
  1253. iph->tot_len = 0;
  1254. iph->check = 0;
  1255. tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
  1256. 0, IPPROTO_TCP, 0);
  1257. } else if (ipv6h->version == 6) {
  1258. tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
  1259. ipv6h->payload_len = 0;
  1260. tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
  1261. 0, IPPROTO_TCP, 0);
  1262. }
  1263. l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
  1264. *hdr_len = (skb->encapsulation
  1265. ? (skb_inner_transport_header(skb) - skb->data)
  1266. : skb_transport_offset(skb)) + l4len;
  1267. /* find the field values */
  1268. cd_cmd = I40E_TX_CTX_DESC_TSO;
  1269. cd_tso_len = skb->len - *hdr_len;
  1270. cd_mss = skb_shinfo(skb)->gso_size;
  1271. *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
  1272. ((u64)cd_tso_len <<
  1273. I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
  1274. ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
  1275. return 1;
  1276. }
  1277. /**
  1278. * i40e_tx_enable_csum - Enable Tx checksum offloads
  1279. * @skb: send buffer
  1280. * @tx_flags: pointer to Tx flags currently set
  1281. * @td_cmd: Tx descriptor command bits to set
  1282. * @td_offset: Tx descriptor header offsets to set
  1283. * @cd_tunneling: ptr to context desc bits
  1284. **/
  1285. static void i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
  1286. u32 *td_cmd, u32 *td_offset,
  1287. struct i40e_ring *tx_ring,
  1288. u32 *cd_tunneling)
  1289. {
  1290. struct ipv6hdr *this_ipv6_hdr;
  1291. unsigned int this_tcp_hdrlen;
  1292. struct iphdr *this_ip_hdr;
  1293. u32 network_hdr_len;
  1294. u8 l4_hdr = 0;
  1295. struct udphdr *oudph;
  1296. struct iphdr *oiph;
  1297. u32 l4_tunnel = 0;
  1298. if (skb->encapsulation) {
  1299. switch (ip_hdr(skb)->protocol) {
  1300. case IPPROTO_UDP:
  1301. oudph = udp_hdr(skb);
  1302. oiph = ip_hdr(skb);
  1303. l4_tunnel = I40E_TXD_CTX_UDP_TUNNELING;
  1304. *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
  1305. break;
  1306. default:
  1307. return;
  1308. }
  1309. network_hdr_len = skb_inner_network_header_len(skb);
  1310. this_ip_hdr = inner_ip_hdr(skb);
  1311. this_ipv6_hdr = inner_ipv6_hdr(skb);
  1312. this_tcp_hdrlen = inner_tcp_hdrlen(skb);
  1313. if (*tx_flags & I40E_TX_FLAGS_IPV4) {
  1314. if (*tx_flags & I40E_TX_FLAGS_TSO) {
  1315. *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
  1316. ip_hdr(skb)->check = 0;
  1317. } else {
  1318. *cd_tunneling |=
  1319. I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
  1320. }
  1321. } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
  1322. *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
  1323. if (*tx_flags & I40E_TX_FLAGS_TSO)
  1324. ip_hdr(skb)->check = 0;
  1325. }
  1326. /* Now set the ctx descriptor fields */
  1327. *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
  1328. I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
  1329. l4_tunnel |
  1330. ((skb_inner_network_offset(skb) -
  1331. skb_transport_offset(skb)) >> 1) <<
  1332. I40E_TXD_CTX_QW0_NATLEN_SHIFT;
  1333. if (this_ip_hdr->version == 6) {
  1334. *tx_flags &= ~I40E_TX_FLAGS_IPV4;
  1335. *tx_flags |= I40E_TX_FLAGS_IPV6;
  1336. }
  1337. if ((tx_ring->flags & I40E_TXR_FLAGS_OUTER_UDP_CSUM) &&
  1338. (l4_tunnel == I40E_TXD_CTX_UDP_TUNNELING) &&
  1339. (*cd_tunneling & I40E_TXD_CTX_QW0_EXT_IP_MASK)) {
  1340. oudph->check = ~csum_tcpudp_magic(oiph->saddr,
  1341. oiph->daddr,
  1342. (skb->len - skb_transport_offset(skb)),
  1343. IPPROTO_UDP, 0);
  1344. *cd_tunneling |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
  1345. }
  1346. } else {
  1347. network_hdr_len = skb_network_header_len(skb);
  1348. this_ip_hdr = ip_hdr(skb);
  1349. this_ipv6_hdr = ipv6_hdr(skb);
  1350. this_tcp_hdrlen = tcp_hdrlen(skb);
  1351. }
  1352. /* Enable IP checksum offloads */
  1353. if (*tx_flags & I40E_TX_FLAGS_IPV4) {
  1354. l4_hdr = this_ip_hdr->protocol;
  1355. /* the stack computes the IP header already, the only time we
  1356. * need the hardware to recompute it is in the case of TSO.
  1357. */
  1358. if (*tx_flags & I40E_TX_FLAGS_TSO) {
  1359. *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
  1360. this_ip_hdr->check = 0;
  1361. } else {
  1362. *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
  1363. }
  1364. /* Now set the td_offset for IP header length */
  1365. *td_offset = (network_hdr_len >> 2) <<
  1366. I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
  1367. } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
  1368. l4_hdr = this_ipv6_hdr->nexthdr;
  1369. *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
  1370. /* Now set the td_offset for IP header length */
  1371. *td_offset = (network_hdr_len >> 2) <<
  1372. I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
  1373. }
  1374. /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
  1375. *td_offset |= (skb_network_offset(skb) >> 1) <<
  1376. I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
  1377. /* Enable L4 checksum offloads */
  1378. switch (l4_hdr) {
  1379. case IPPROTO_TCP:
  1380. /* enable checksum offloads */
  1381. *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
  1382. *td_offset |= (this_tcp_hdrlen >> 2) <<
  1383. I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
  1384. break;
  1385. case IPPROTO_SCTP:
  1386. /* enable SCTP checksum offload */
  1387. *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
  1388. *td_offset |= (sizeof(struct sctphdr) >> 2) <<
  1389. I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
  1390. break;
  1391. case IPPROTO_UDP:
  1392. /* enable UDP checksum offload */
  1393. *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
  1394. *td_offset |= (sizeof(struct udphdr) >> 2) <<
  1395. I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
  1396. break;
  1397. default:
  1398. break;
  1399. }
  1400. }
  1401. /**
  1402. * i40e_create_tx_ctx Build the Tx context descriptor
  1403. * @tx_ring: ring to create the descriptor on
  1404. * @cd_type_cmd_tso_mss: Quad Word 1
  1405. * @cd_tunneling: Quad Word 0 - bits 0-31
  1406. * @cd_l2tag2: Quad Word 0 - bits 32-63
  1407. **/
  1408. static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
  1409. const u64 cd_type_cmd_tso_mss,
  1410. const u32 cd_tunneling, const u32 cd_l2tag2)
  1411. {
  1412. struct i40e_tx_context_desc *context_desc;
  1413. int i = tx_ring->next_to_use;
  1414. if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
  1415. !cd_tunneling && !cd_l2tag2)
  1416. return;
  1417. /* grab the next descriptor */
  1418. context_desc = I40E_TX_CTXTDESC(tx_ring, i);
  1419. i++;
  1420. tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  1421. /* cpu_to_le32 and assign to struct fields */
  1422. context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
  1423. context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
  1424. context_desc->rsvd = cpu_to_le16(0);
  1425. context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
  1426. }
  1427. /**
  1428. * i40e_chk_linearize - Check if there are more than 8 fragments per packet
  1429. * @skb: send buffer
  1430. * @tx_flags: collected send information
  1431. *
  1432. * Note: Our HW can't scatter-gather more than 8 fragments to build
  1433. * a packet on the wire and so we need to figure out the cases where we
  1434. * need to linearize the skb.
  1435. **/
  1436. static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags)
  1437. {
  1438. struct skb_frag_struct *frag;
  1439. bool linearize = false;
  1440. unsigned int size = 0;
  1441. u16 num_frags;
  1442. u16 gso_segs;
  1443. num_frags = skb_shinfo(skb)->nr_frags;
  1444. gso_segs = skb_shinfo(skb)->gso_segs;
  1445. if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
  1446. u16 j = 0;
  1447. if (num_frags < (I40E_MAX_BUFFER_TXD))
  1448. goto linearize_chk_done;
  1449. /* try the simple math, if we have too many frags per segment */
  1450. if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
  1451. I40E_MAX_BUFFER_TXD) {
  1452. linearize = true;
  1453. goto linearize_chk_done;
  1454. }
  1455. frag = &skb_shinfo(skb)->frags[0];
  1456. /* we might still have more fragments per segment */
  1457. do {
  1458. size += skb_frag_size(frag);
  1459. frag++; j++;
  1460. if ((size >= skb_shinfo(skb)->gso_size) &&
  1461. (j < I40E_MAX_BUFFER_TXD)) {
  1462. size = (size % skb_shinfo(skb)->gso_size);
  1463. j = (size) ? 1 : 0;
  1464. }
  1465. if (j == I40E_MAX_BUFFER_TXD) {
  1466. linearize = true;
  1467. break;
  1468. }
  1469. num_frags--;
  1470. } while (num_frags);
  1471. } else {
  1472. if (num_frags >= I40E_MAX_BUFFER_TXD)
  1473. linearize = true;
  1474. }
  1475. linearize_chk_done:
  1476. return linearize;
  1477. }
  1478. /**
  1479. * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
  1480. * @tx_ring: the ring to be checked
  1481. * @size: the size buffer we want to assure is available
  1482. *
  1483. * Returns -EBUSY if a stop is needed, else 0
  1484. **/
  1485. static inline int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
  1486. {
  1487. netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
  1488. /* Memory barrier before checking head and tail */
  1489. smp_mb();
  1490. /* Check again in a case another CPU has just made room available. */
  1491. if (likely(I40E_DESC_UNUSED(tx_ring) < size))
  1492. return -EBUSY;
  1493. /* A reprieve! - use start_queue because it doesn't call schedule */
  1494. netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
  1495. ++tx_ring->tx_stats.restart_queue;
  1496. return 0;
  1497. }
  1498. /**
  1499. * i40evf_maybe_stop_tx - 1st level check for tx stop conditions
  1500. * @tx_ring: the ring to be checked
  1501. * @size: the size buffer we want to assure is available
  1502. *
  1503. * Returns 0 if stop is not needed
  1504. **/
  1505. static inline int i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
  1506. {
  1507. if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
  1508. return 0;
  1509. return __i40evf_maybe_stop_tx(tx_ring, size);
  1510. }
  1511. /**
  1512. * i40evf_tx_map - Build the Tx descriptor
  1513. * @tx_ring: ring to send buffer on
  1514. * @skb: send buffer
  1515. * @first: first buffer info buffer to use
  1516. * @tx_flags: collected send information
  1517. * @hdr_len: size of the packet header
  1518. * @td_cmd: the command field in the descriptor
  1519. * @td_offset: offset for checksum or crc
  1520. **/
  1521. static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
  1522. struct i40e_tx_buffer *first, u32 tx_flags,
  1523. const u8 hdr_len, u32 td_cmd, u32 td_offset)
  1524. {
  1525. unsigned int data_len = skb->data_len;
  1526. unsigned int size = skb_headlen(skb);
  1527. struct skb_frag_struct *frag;
  1528. struct i40e_tx_buffer *tx_bi;
  1529. struct i40e_tx_desc *tx_desc;
  1530. u16 i = tx_ring->next_to_use;
  1531. u32 td_tag = 0;
  1532. dma_addr_t dma;
  1533. u16 gso_segs;
  1534. u16 desc_count = 0;
  1535. bool tail_bump = true;
  1536. bool do_rs = false;
  1537. if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
  1538. td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
  1539. td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
  1540. I40E_TX_FLAGS_VLAN_SHIFT;
  1541. }
  1542. if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
  1543. gso_segs = skb_shinfo(skb)->gso_segs;
  1544. else
  1545. gso_segs = 1;
  1546. /* multiply data chunks by size of headers */
  1547. first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
  1548. first->gso_segs = gso_segs;
  1549. first->skb = skb;
  1550. first->tx_flags = tx_flags;
  1551. dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
  1552. tx_desc = I40E_TX_DESC(tx_ring, i);
  1553. tx_bi = first;
  1554. for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
  1555. if (dma_mapping_error(tx_ring->dev, dma))
  1556. goto dma_error;
  1557. /* record length, and DMA address */
  1558. dma_unmap_len_set(tx_bi, len, size);
  1559. dma_unmap_addr_set(tx_bi, dma, dma);
  1560. tx_desc->buffer_addr = cpu_to_le64(dma);
  1561. while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
  1562. tx_desc->cmd_type_offset_bsz =
  1563. build_ctob(td_cmd, td_offset,
  1564. I40E_MAX_DATA_PER_TXD, td_tag);
  1565. tx_desc++;
  1566. i++;
  1567. desc_count++;
  1568. if (i == tx_ring->count) {
  1569. tx_desc = I40E_TX_DESC(tx_ring, 0);
  1570. i = 0;
  1571. }
  1572. dma += I40E_MAX_DATA_PER_TXD;
  1573. size -= I40E_MAX_DATA_PER_TXD;
  1574. tx_desc->buffer_addr = cpu_to_le64(dma);
  1575. }
  1576. if (likely(!data_len))
  1577. break;
  1578. tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
  1579. size, td_tag);
  1580. tx_desc++;
  1581. i++;
  1582. desc_count++;
  1583. if (i == tx_ring->count) {
  1584. tx_desc = I40E_TX_DESC(tx_ring, 0);
  1585. i = 0;
  1586. }
  1587. size = skb_frag_size(frag);
  1588. data_len -= size;
  1589. dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
  1590. DMA_TO_DEVICE);
  1591. tx_bi = &tx_ring->tx_bi[i];
  1592. }
  1593. #define WB_STRIDE 0x3
  1594. /* set next_to_watch value indicating a packet is present */
  1595. first->next_to_watch = tx_desc;
  1596. i++;
  1597. if (i == tx_ring->count)
  1598. i = 0;
  1599. tx_ring->next_to_use = i;
  1600. netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
  1601. tx_ring->queue_index),
  1602. first->bytecount);
  1603. i40evf_maybe_stop_tx(tx_ring, DESC_NEEDED);
  1604. /* Algorithm to optimize tail and RS bit setting:
  1605. * if xmit_more is supported
  1606. * if xmit_more is true
  1607. * do not update tail and do not mark RS bit.
  1608. * if xmit_more is false and last xmit_more was false
  1609. * if every packet spanned less than 4 desc
  1610. * then set RS bit on 4th packet and update tail
  1611. * on every packet
  1612. * else
  1613. * update tail and set RS bit on every packet.
  1614. * if xmit_more is false and last_xmit_more was true
  1615. * update tail and set RS bit.
  1616. * else (kernel < 3.18)
  1617. * if every packet spanned less than 4 desc
  1618. * then set RS bit on 4th packet and update tail
  1619. * on every packet
  1620. * else
  1621. * set RS bit on EOP for every packet and update tail
  1622. *
  1623. * Optimization: wmb to be issued only in case of tail update.
  1624. * Also optimize the Descriptor WB path for RS bit with the same
  1625. * algorithm.
  1626. *
  1627. * Note: If there are less than 4 packets
  1628. * pending and interrupts were disabled the service task will
  1629. * trigger a force WB.
  1630. */
  1631. if (skb->xmit_more &&
  1632. !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
  1633. tx_ring->queue_index))) {
  1634. tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
  1635. tail_bump = false;
  1636. } else if (!skb->xmit_more &&
  1637. !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
  1638. tx_ring->queue_index)) &&
  1639. (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
  1640. (tx_ring->packet_stride < WB_STRIDE) &&
  1641. (desc_count < WB_STRIDE)) {
  1642. tx_ring->packet_stride++;
  1643. } else {
  1644. tx_ring->packet_stride = 0;
  1645. tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
  1646. do_rs = true;
  1647. }
  1648. if (do_rs)
  1649. tx_ring->packet_stride = 0;
  1650. tx_desc->cmd_type_offset_bsz =
  1651. build_ctob(td_cmd, td_offset, size, td_tag) |
  1652. cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
  1653. I40E_TX_DESC_CMD_EOP) <<
  1654. I40E_TXD_QW1_CMD_SHIFT);
  1655. /* notify HW of packet */
  1656. if (!tail_bump)
  1657. prefetchw(tx_desc + 1);
  1658. if (tail_bump) {
  1659. /* Force memory writes to complete before letting h/w
  1660. * know there are new descriptors to fetch. (Only
  1661. * applicable for weak-ordered memory model archs,
  1662. * such as IA-64).
  1663. */
  1664. wmb();
  1665. writel(i, tx_ring->tail);
  1666. }
  1667. return;
  1668. dma_error:
  1669. dev_info(tx_ring->dev, "TX DMA map failed\n");
  1670. /* clear dma mappings for failed tx_bi map */
  1671. for (;;) {
  1672. tx_bi = &tx_ring->tx_bi[i];
  1673. i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
  1674. if (tx_bi == first)
  1675. break;
  1676. if (i == 0)
  1677. i = tx_ring->count;
  1678. i--;
  1679. }
  1680. tx_ring->next_to_use = i;
  1681. }
  1682. /**
  1683. * i40evf_xmit_descriptor_count - calculate number of tx descriptors needed
  1684. * @skb: send buffer
  1685. * @tx_ring: ring to send buffer on
  1686. *
  1687. * Returns number of data descriptors needed for this skb. Returns 0 to indicate
  1688. * there is not enough descriptors available in this ring since we need at least
  1689. * one descriptor.
  1690. **/
  1691. static inline int i40evf_xmit_descriptor_count(struct sk_buff *skb,
  1692. struct i40e_ring *tx_ring)
  1693. {
  1694. unsigned int f;
  1695. int count = 0;
  1696. /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
  1697. * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
  1698. * + 4 desc gap to avoid the cache line where head is,
  1699. * + 1 desc for context descriptor,
  1700. * otherwise try next time
  1701. */
  1702. for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
  1703. count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
  1704. count += TXD_USE_COUNT(skb_headlen(skb));
  1705. if (i40evf_maybe_stop_tx(tx_ring, count + 4 + 1)) {
  1706. tx_ring->tx_stats.tx_busy++;
  1707. return 0;
  1708. }
  1709. return count;
  1710. }
  1711. /**
  1712. * i40e_xmit_frame_ring - Sends buffer on Tx ring
  1713. * @skb: send buffer
  1714. * @tx_ring: ring to send buffer on
  1715. *
  1716. * Returns NETDEV_TX_OK if sent, else an error code
  1717. **/
  1718. static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
  1719. struct i40e_ring *tx_ring)
  1720. {
  1721. u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
  1722. u32 cd_tunneling = 0, cd_l2tag2 = 0;
  1723. struct i40e_tx_buffer *first;
  1724. u32 td_offset = 0;
  1725. u32 tx_flags = 0;
  1726. __be16 protocol;
  1727. u32 td_cmd = 0;
  1728. u8 hdr_len = 0;
  1729. int tso;
  1730. if (0 == i40evf_xmit_descriptor_count(skb, tx_ring))
  1731. return NETDEV_TX_BUSY;
  1732. /* prepare the xmit flags */
  1733. if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
  1734. goto out_drop;
  1735. /* obtain protocol of skb */
  1736. protocol = vlan_get_protocol(skb);
  1737. /* record the location of the first descriptor for this packet */
  1738. first = &tx_ring->tx_bi[tx_ring->next_to_use];
  1739. /* setup IPv4/IPv6 offloads */
  1740. if (protocol == htons(ETH_P_IP))
  1741. tx_flags |= I40E_TX_FLAGS_IPV4;
  1742. else if (protocol == htons(ETH_P_IPV6))
  1743. tx_flags |= I40E_TX_FLAGS_IPV6;
  1744. tso = i40e_tso(tx_ring, skb, &hdr_len,
  1745. &cd_type_cmd_tso_mss, &cd_tunneling);
  1746. if (tso < 0)
  1747. goto out_drop;
  1748. else if (tso)
  1749. tx_flags |= I40E_TX_FLAGS_TSO;
  1750. if (i40e_chk_linearize(skb, tx_flags)) {
  1751. if (skb_linearize(skb))
  1752. goto out_drop;
  1753. tx_ring->tx_stats.tx_linearize++;
  1754. }
  1755. skb_tx_timestamp(skb);
  1756. /* always enable CRC insertion offload */
  1757. td_cmd |= I40E_TX_DESC_CMD_ICRC;
  1758. /* Always offload the checksum, since it's in the data descriptor */
  1759. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  1760. tx_flags |= I40E_TX_FLAGS_CSUM;
  1761. i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
  1762. tx_ring, &cd_tunneling);
  1763. }
  1764. i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
  1765. cd_tunneling, cd_l2tag2);
  1766. i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
  1767. td_cmd, td_offset);
  1768. return NETDEV_TX_OK;
  1769. out_drop:
  1770. dev_kfree_skb_any(skb);
  1771. return NETDEV_TX_OK;
  1772. }
  1773. /**
  1774. * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
  1775. * @skb: send buffer
  1776. * @netdev: network interface device structure
  1777. *
  1778. * Returns NETDEV_TX_OK if sent, else an error code
  1779. **/
  1780. netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
  1781. {
  1782. struct i40evf_adapter *adapter = netdev_priv(netdev);
  1783. struct i40e_ring *tx_ring = adapter->tx_rings[skb->queue_mapping];
  1784. /* hardware can't handle really short frames, hardware padding works
  1785. * beyond this point
  1786. */
  1787. if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
  1788. if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
  1789. return NETDEV_TX_OK;
  1790. skb->len = I40E_MIN_TX_LEN;
  1791. skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
  1792. }
  1793. return i40e_xmit_frame_ring(skb, tx_ring);
  1794. }