ravb_main.c 49 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919
  1. /* Renesas Ethernet AVB device driver
  2. *
  3. * Copyright (C) 2014-2015 Renesas Electronics Corporation
  4. * Copyright (C) 2015 Renesas Solutions Corp.
  5. * Copyright (C) 2015 Cogent Embedded, Inc. <source@cogentembedded.com>
  6. *
  7. * Based on the SuperH Ethernet driver
  8. *
  9. * This program is free software; you can redistribute it and/or modify it
  10. * under the terms and conditions of the GNU General Public License version 2,
  11. * as published by the Free Software Foundation.
  12. */
  13. #include <linux/cache.h>
  14. #include <linux/clk.h>
  15. #include <linux/delay.h>
  16. #include <linux/dma-mapping.h>
  17. #include <linux/err.h>
  18. #include <linux/etherdevice.h>
  19. #include <linux/ethtool.h>
  20. #include <linux/if_vlan.h>
  21. #include <linux/kernel.h>
  22. #include <linux/list.h>
  23. #include <linux/module.h>
  24. #include <linux/net_tstamp.h>
  25. #include <linux/of.h>
  26. #include <linux/of_device.h>
  27. #include <linux/of_irq.h>
  28. #include <linux/of_mdio.h>
  29. #include <linux/of_net.h>
  30. #include <linux/pm_runtime.h>
  31. #include <linux/slab.h>
  32. #include <linux/spinlock.h>
  33. #include "ravb.h"
  34. #define RAVB_DEF_MSG_ENABLE \
  35. (NETIF_MSG_LINK | \
  36. NETIF_MSG_TIMER | \
  37. NETIF_MSG_RX_ERR | \
  38. NETIF_MSG_TX_ERR)
  39. int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
  40. {
  41. int i;
  42. for (i = 0; i < 10000; i++) {
  43. if ((ravb_read(ndev, reg) & mask) == value)
  44. return 0;
  45. udelay(10);
  46. }
  47. return -ETIMEDOUT;
  48. }
  49. static int ravb_config(struct net_device *ndev)
  50. {
  51. int error;
  52. /* Set config mode */
  53. ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_OPC) | CCC_OPC_CONFIG,
  54. CCC);
  55. /* Check if the operating mode is changed to the config mode */
  56. error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
  57. if (error)
  58. netdev_err(ndev, "failed to switch device to config mode\n");
  59. return error;
  60. }
  61. static void ravb_set_duplex(struct net_device *ndev)
  62. {
  63. struct ravb_private *priv = netdev_priv(ndev);
  64. u32 ecmr = ravb_read(ndev, ECMR);
  65. if (priv->duplex) /* Full */
  66. ecmr |= ECMR_DM;
  67. else /* Half */
  68. ecmr &= ~ECMR_DM;
  69. ravb_write(ndev, ecmr, ECMR);
  70. }
  71. static void ravb_set_rate(struct net_device *ndev)
  72. {
  73. struct ravb_private *priv = netdev_priv(ndev);
  74. switch (priv->speed) {
  75. case 100: /* 100BASE */
  76. ravb_write(ndev, GECMR_SPEED_100, GECMR);
  77. break;
  78. case 1000: /* 1000BASE */
  79. ravb_write(ndev, GECMR_SPEED_1000, GECMR);
  80. break;
  81. default:
  82. break;
  83. }
  84. }
  85. static void ravb_set_buffer_align(struct sk_buff *skb)
  86. {
  87. u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
  88. if (reserve)
  89. skb_reserve(skb, RAVB_ALIGN - reserve);
  90. }
  91. /* Get MAC address from the MAC address registers
  92. *
  93. * Ethernet AVB device doesn't have ROM for MAC address.
  94. * This function gets the MAC address that was used by a bootloader.
  95. */
  96. static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
  97. {
  98. if (mac) {
  99. ether_addr_copy(ndev->dev_addr, mac);
  100. } else {
  101. ndev->dev_addr[0] = (ravb_read(ndev, MAHR) >> 24);
  102. ndev->dev_addr[1] = (ravb_read(ndev, MAHR) >> 16) & 0xFF;
  103. ndev->dev_addr[2] = (ravb_read(ndev, MAHR) >> 8) & 0xFF;
  104. ndev->dev_addr[3] = (ravb_read(ndev, MAHR) >> 0) & 0xFF;
  105. ndev->dev_addr[4] = (ravb_read(ndev, MALR) >> 8) & 0xFF;
  106. ndev->dev_addr[5] = (ravb_read(ndev, MALR) >> 0) & 0xFF;
  107. }
  108. }
  109. static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
  110. {
  111. struct ravb_private *priv = container_of(ctrl, struct ravb_private,
  112. mdiobb);
  113. u32 pir = ravb_read(priv->ndev, PIR);
  114. if (set)
  115. pir |= mask;
  116. else
  117. pir &= ~mask;
  118. ravb_write(priv->ndev, pir, PIR);
  119. }
  120. /* MDC pin control */
  121. static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
  122. {
  123. ravb_mdio_ctrl(ctrl, PIR_MDC, level);
  124. }
  125. /* Data I/O pin control */
  126. static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
  127. {
  128. ravb_mdio_ctrl(ctrl, PIR_MMD, output);
  129. }
  130. /* Set data bit */
  131. static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
  132. {
  133. ravb_mdio_ctrl(ctrl, PIR_MDO, value);
  134. }
  135. /* Get data bit */
  136. static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
  137. {
  138. struct ravb_private *priv = container_of(ctrl, struct ravb_private,
  139. mdiobb);
  140. return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
  141. }
  142. /* MDIO bus control struct */
  143. static struct mdiobb_ops bb_ops = {
  144. .owner = THIS_MODULE,
  145. .set_mdc = ravb_set_mdc,
  146. .set_mdio_dir = ravb_set_mdio_dir,
  147. .set_mdio_data = ravb_set_mdio_data,
  148. .get_mdio_data = ravb_get_mdio_data,
  149. };
  150. /* Free TX skb function for AVB-IP */
  151. static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
  152. {
  153. struct ravb_private *priv = netdev_priv(ndev);
  154. struct net_device_stats *stats = &priv->stats[q];
  155. struct ravb_tx_desc *desc;
  156. int free_num = 0;
  157. int entry;
  158. u32 size;
  159. for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
  160. bool txed;
  161. entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
  162. NUM_TX_DESC);
  163. desc = &priv->tx_ring[q][entry];
  164. txed = desc->die_dt == DT_FEMPTY;
  165. if (free_txed_only && !txed)
  166. break;
  167. /* Descriptor type must be checked before all other reads */
  168. dma_rmb();
  169. size = le16_to_cpu(desc->ds_tagl) & TX_DS;
  170. /* Free the original skb. */
  171. if (priv->tx_skb[q][entry / NUM_TX_DESC]) {
  172. dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
  173. size, DMA_TO_DEVICE);
  174. /* Last packet descriptor? */
  175. if (entry % NUM_TX_DESC == NUM_TX_DESC - 1) {
  176. entry /= NUM_TX_DESC;
  177. dev_kfree_skb_any(priv->tx_skb[q][entry]);
  178. priv->tx_skb[q][entry] = NULL;
  179. if (txed)
  180. stats->tx_packets++;
  181. }
  182. free_num++;
  183. }
  184. if (txed)
  185. stats->tx_bytes += size;
  186. desc->die_dt = DT_EEMPTY;
  187. }
  188. return free_num;
  189. }
  190. /* Free skb's and DMA buffers for Ethernet AVB */
  191. static void ravb_ring_free(struct net_device *ndev, int q)
  192. {
  193. struct ravb_private *priv = netdev_priv(ndev);
  194. int ring_size;
  195. int i;
  196. if (priv->rx_ring[q]) {
  197. for (i = 0; i < priv->num_rx_ring[q]; i++) {
  198. struct ravb_ex_rx_desc *desc = &priv->rx_ring[q][i];
  199. if (!dma_mapping_error(ndev->dev.parent,
  200. le32_to_cpu(desc->dptr)))
  201. dma_unmap_single(ndev->dev.parent,
  202. le32_to_cpu(desc->dptr),
  203. PKT_BUF_SZ,
  204. DMA_FROM_DEVICE);
  205. }
  206. ring_size = sizeof(struct ravb_ex_rx_desc) *
  207. (priv->num_rx_ring[q] + 1);
  208. dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
  209. priv->rx_desc_dma[q]);
  210. priv->rx_ring[q] = NULL;
  211. }
  212. if (priv->tx_ring[q]) {
  213. ravb_tx_free(ndev, q, false);
  214. ring_size = sizeof(struct ravb_tx_desc) *
  215. (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
  216. dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
  217. priv->tx_desc_dma[q]);
  218. priv->tx_ring[q] = NULL;
  219. }
  220. /* Free RX skb ringbuffer */
  221. if (priv->rx_skb[q]) {
  222. for (i = 0; i < priv->num_rx_ring[q]; i++)
  223. dev_kfree_skb(priv->rx_skb[q][i]);
  224. }
  225. kfree(priv->rx_skb[q]);
  226. priv->rx_skb[q] = NULL;
  227. /* Free aligned TX buffers */
  228. kfree(priv->tx_align[q]);
  229. priv->tx_align[q] = NULL;
  230. /* Free TX skb ringbuffer.
  231. * SKBs are freed by ravb_tx_free() call above.
  232. */
  233. kfree(priv->tx_skb[q]);
  234. priv->tx_skb[q] = NULL;
  235. }
  236. /* Format skb and descriptor buffer for Ethernet AVB */
  237. static void ravb_ring_format(struct net_device *ndev, int q)
  238. {
  239. struct ravb_private *priv = netdev_priv(ndev);
  240. struct ravb_ex_rx_desc *rx_desc;
  241. struct ravb_tx_desc *tx_desc;
  242. struct ravb_desc *desc;
  243. int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
  244. int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
  245. NUM_TX_DESC;
  246. dma_addr_t dma_addr;
  247. int i;
  248. priv->cur_rx[q] = 0;
  249. priv->cur_tx[q] = 0;
  250. priv->dirty_rx[q] = 0;
  251. priv->dirty_tx[q] = 0;
  252. memset(priv->rx_ring[q], 0, rx_ring_size);
  253. /* Build RX ring buffer */
  254. for (i = 0; i < priv->num_rx_ring[q]; i++) {
  255. /* RX descriptor */
  256. rx_desc = &priv->rx_ring[q][i];
  257. /* The size of the buffer should be on 16-byte boundary. */
  258. rx_desc->ds_cc = cpu_to_le16(ALIGN(PKT_BUF_SZ, 16));
  259. dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
  260. ALIGN(PKT_BUF_SZ, 16),
  261. DMA_FROM_DEVICE);
  262. /* We just set the data size to 0 for a failed mapping which
  263. * should prevent DMA from happening...
  264. */
  265. if (dma_mapping_error(ndev->dev.parent, dma_addr))
  266. rx_desc->ds_cc = cpu_to_le16(0);
  267. rx_desc->dptr = cpu_to_le32(dma_addr);
  268. rx_desc->die_dt = DT_FEMPTY;
  269. }
  270. rx_desc = &priv->rx_ring[q][i];
  271. rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
  272. rx_desc->die_dt = DT_LINKFIX; /* type */
  273. memset(priv->tx_ring[q], 0, tx_ring_size);
  274. /* Build TX ring buffer */
  275. for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
  276. i++, tx_desc++) {
  277. tx_desc->die_dt = DT_EEMPTY;
  278. tx_desc++;
  279. tx_desc->die_dt = DT_EEMPTY;
  280. }
  281. tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
  282. tx_desc->die_dt = DT_LINKFIX; /* type */
  283. /* RX descriptor base address for best effort */
  284. desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
  285. desc->die_dt = DT_LINKFIX; /* type */
  286. desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
  287. /* TX descriptor base address for best effort */
  288. desc = &priv->desc_bat[q];
  289. desc->die_dt = DT_LINKFIX; /* type */
  290. desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
  291. }
  292. /* Init skb and descriptor buffer for Ethernet AVB */
  293. static int ravb_ring_init(struct net_device *ndev, int q)
  294. {
  295. struct ravb_private *priv = netdev_priv(ndev);
  296. struct sk_buff *skb;
  297. int ring_size;
  298. int i;
  299. /* Allocate RX and TX skb rings */
  300. priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
  301. sizeof(*priv->rx_skb[q]), GFP_KERNEL);
  302. priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
  303. sizeof(*priv->tx_skb[q]), GFP_KERNEL);
  304. if (!priv->rx_skb[q] || !priv->tx_skb[q])
  305. goto error;
  306. for (i = 0; i < priv->num_rx_ring[q]; i++) {
  307. skb = netdev_alloc_skb(ndev, PKT_BUF_SZ + RAVB_ALIGN - 1);
  308. if (!skb)
  309. goto error;
  310. ravb_set_buffer_align(skb);
  311. priv->rx_skb[q][i] = skb;
  312. }
  313. /* Allocate rings for the aligned buffers */
  314. priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
  315. DPTR_ALIGN - 1, GFP_KERNEL);
  316. if (!priv->tx_align[q])
  317. goto error;
  318. /* Allocate all RX descriptors. */
  319. ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
  320. priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
  321. &priv->rx_desc_dma[q],
  322. GFP_KERNEL);
  323. if (!priv->rx_ring[q])
  324. goto error;
  325. priv->dirty_rx[q] = 0;
  326. /* Allocate all TX descriptors. */
  327. ring_size = sizeof(struct ravb_tx_desc) *
  328. (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
  329. priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
  330. &priv->tx_desc_dma[q],
  331. GFP_KERNEL);
  332. if (!priv->tx_ring[q])
  333. goto error;
  334. return 0;
  335. error:
  336. ravb_ring_free(ndev, q);
  337. return -ENOMEM;
  338. }
  339. /* E-MAC init function */
  340. static void ravb_emac_init(struct net_device *ndev)
  341. {
  342. struct ravb_private *priv = netdev_priv(ndev);
  343. u32 ecmr;
  344. /* Receive frame limit set register */
  345. ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
  346. /* PAUSE prohibition */
  347. ecmr = ravb_read(ndev, ECMR);
  348. ecmr &= ECMR_DM;
  349. ecmr |= ECMR_ZPF | (priv->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
  350. ravb_write(ndev, ecmr, ECMR);
  351. ravb_set_rate(ndev);
  352. /* Set MAC address */
  353. ravb_write(ndev,
  354. (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
  355. (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
  356. ravb_write(ndev,
  357. (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
  358. ravb_write(ndev, 1, MPR);
  359. /* E-MAC status register clear */
  360. ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
  361. /* E-MAC interrupt enable register */
  362. ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
  363. }
  364. /* Device init function for Ethernet AVB */
  365. static int ravb_dmac_init(struct net_device *ndev)
  366. {
  367. int error;
  368. /* Set CONFIG mode */
  369. error = ravb_config(ndev);
  370. if (error)
  371. return error;
  372. error = ravb_ring_init(ndev, RAVB_BE);
  373. if (error)
  374. return error;
  375. error = ravb_ring_init(ndev, RAVB_NC);
  376. if (error) {
  377. ravb_ring_free(ndev, RAVB_BE);
  378. return error;
  379. }
  380. /* Descriptor format */
  381. ravb_ring_format(ndev, RAVB_BE);
  382. ravb_ring_format(ndev, RAVB_NC);
  383. #if defined(__LITTLE_ENDIAN)
  384. ravb_write(ndev, ravb_read(ndev, CCC) & ~CCC_BOC, CCC);
  385. #else
  386. ravb_write(ndev, ravb_read(ndev, CCC) | CCC_BOC, CCC);
  387. #endif
  388. /* Set AVB RX */
  389. ravb_write(ndev, RCR_EFFS | RCR_ENCF | RCR_ETS0 | 0x18000000, RCR);
  390. /* Set FIFO size */
  391. ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00112200, TGC);
  392. /* Timestamp enable */
  393. ravb_write(ndev, TCCR_TFEN, TCCR);
  394. /* Interrupt enable: */
  395. /* Frame receive */
  396. ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
  397. /* Receive FIFO full error, descriptor empty */
  398. ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
  399. /* Frame transmitted, timestamp FIFO updated */
  400. ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
  401. /* Setting the control will start the AVB-DMAC process. */
  402. ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_OPC) | CCC_OPC_OPERATION,
  403. CCC);
  404. return 0;
  405. }
  406. static void ravb_get_tx_tstamp(struct net_device *ndev)
  407. {
  408. struct ravb_private *priv = netdev_priv(ndev);
  409. struct ravb_tstamp_skb *ts_skb, *ts_skb2;
  410. struct skb_shared_hwtstamps shhwtstamps;
  411. struct sk_buff *skb;
  412. struct timespec64 ts;
  413. u16 tag, tfa_tag;
  414. int count;
  415. u32 tfa2;
  416. count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
  417. while (count--) {
  418. tfa2 = ravb_read(ndev, TFA2);
  419. tfa_tag = (tfa2 & TFA2_TST) >> 16;
  420. ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
  421. ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
  422. ravb_read(ndev, TFA1);
  423. memset(&shhwtstamps, 0, sizeof(shhwtstamps));
  424. shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
  425. list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
  426. list) {
  427. skb = ts_skb->skb;
  428. tag = ts_skb->tag;
  429. list_del(&ts_skb->list);
  430. kfree(ts_skb);
  431. if (tag == tfa_tag) {
  432. skb_tstamp_tx(skb, &shhwtstamps);
  433. break;
  434. }
  435. }
  436. ravb_write(ndev, ravb_read(ndev, TCCR) | TCCR_TFR, TCCR);
  437. }
  438. }
  439. /* Packet receive function for Ethernet AVB */
  440. static bool ravb_rx(struct net_device *ndev, int *quota, int q)
  441. {
  442. struct ravb_private *priv = netdev_priv(ndev);
  443. int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
  444. int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
  445. priv->cur_rx[q];
  446. struct net_device_stats *stats = &priv->stats[q];
  447. struct ravb_ex_rx_desc *desc;
  448. struct sk_buff *skb;
  449. dma_addr_t dma_addr;
  450. struct timespec64 ts;
  451. u8 desc_status;
  452. u16 pkt_len;
  453. int limit;
  454. boguscnt = min(boguscnt, *quota);
  455. limit = boguscnt;
  456. desc = &priv->rx_ring[q][entry];
  457. while (desc->die_dt != DT_FEMPTY) {
  458. /* Descriptor type must be checked before all other reads */
  459. dma_rmb();
  460. desc_status = desc->msc;
  461. pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
  462. if (--boguscnt < 0)
  463. break;
  464. /* We use 0-byte descriptors to mark the DMA mapping errors */
  465. if (!pkt_len)
  466. continue;
  467. if (desc_status & MSC_MC)
  468. stats->multicast++;
  469. if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
  470. MSC_CEEF)) {
  471. stats->rx_errors++;
  472. if (desc_status & MSC_CRC)
  473. stats->rx_crc_errors++;
  474. if (desc_status & MSC_RFE)
  475. stats->rx_frame_errors++;
  476. if (desc_status & (MSC_RTLF | MSC_RTSF))
  477. stats->rx_length_errors++;
  478. if (desc_status & MSC_CEEF)
  479. stats->rx_missed_errors++;
  480. } else {
  481. u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
  482. skb = priv->rx_skb[q][entry];
  483. priv->rx_skb[q][entry] = NULL;
  484. dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
  485. ALIGN(PKT_BUF_SZ, 16),
  486. DMA_FROM_DEVICE);
  487. get_ts &= (q == RAVB_NC) ?
  488. RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
  489. ~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
  490. if (get_ts) {
  491. struct skb_shared_hwtstamps *shhwtstamps;
  492. shhwtstamps = skb_hwtstamps(skb);
  493. memset(shhwtstamps, 0, sizeof(*shhwtstamps));
  494. ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
  495. 32) | le32_to_cpu(desc->ts_sl);
  496. ts.tv_nsec = le32_to_cpu(desc->ts_n);
  497. shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
  498. }
  499. skb_put(skb, pkt_len);
  500. skb->protocol = eth_type_trans(skb, ndev);
  501. napi_gro_receive(&priv->napi[q], skb);
  502. stats->rx_packets++;
  503. stats->rx_bytes += pkt_len;
  504. }
  505. entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
  506. desc = &priv->rx_ring[q][entry];
  507. }
  508. /* Refill the RX ring buffers. */
  509. for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
  510. entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
  511. desc = &priv->rx_ring[q][entry];
  512. /* The size of the buffer should be on 16-byte boundary. */
  513. desc->ds_cc = cpu_to_le16(ALIGN(PKT_BUF_SZ, 16));
  514. if (!priv->rx_skb[q][entry]) {
  515. skb = netdev_alloc_skb(ndev,
  516. PKT_BUF_SZ + RAVB_ALIGN - 1);
  517. if (!skb)
  518. break; /* Better luck next round. */
  519. ravb_set_buffer_align(skb);
  520. dma_addr = dma_map_single(ndev->dev.parent, skb->data,
  521. le16_to_cpu(desc->ds_cc),
  522. DMA_FROM_DEVICE);
  523. skb_checksum_none_assert(skb);
  524. /* We just set the data size to 0 for a failed mapping
  525. * which should prevent DMA from happening...
  526. */
  527. if (dma_mapping_error(ndev->dev.parent, dma_addr))
  528. desc->ds_cc = cpu_to_le16(0);
  529. desc->dptr = cpu_to_le32(dma_addr);
  530. priv->rx_skb[q][entry] = skb;
  531. }
  532. /* Descriptor type must be set after all the above writes */
  533. dma_wmb();
  534. desc->die_dt = DT_FEMPTY;
  535. }
  536. *quota -= limit - (++boguscnt);
  537. return boguscnt <= 0;
  538. }
  539. static void ravb_rcv_snd_disable(struct net_device *ndev)
  540. {
  541. /* Disable TX and RX */
  542. ravb_write(ndev, ravb_read(ndev, ECMR) & ~(ECMR_RE | ECMR_TE), ECMR);
  543. }
  544. static void ravb_rcv_snd_enable(struct net_device *ndev)
  545. {
  546. /* Enable TX and RX */
  547. ravb_write(ndev, ravb_read(ndev, ECMR) | ECMR_RE | ECMR_TE, ECMR);
  548. }
  549. /* function for waiting dma process finished */
  550. static int ravb_stop_dma(struct net_device *ndev)
  551. {
  552. int error;
  553. /* Wait for stopping the hardware TX process */
  554. error = ravb_wait(ndev, TCCR,
  555. TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
  556. if (error)
  557. return error;
  558. error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
  559. 0);
  560. if (error)
  561. return error;
  562. /* Stop the E-MAC's RX/TX processes. */
  563. ravb_rcv_snd_disable(ndev);
  564. /* Wait for stopping the RX DMA process */
  565. error = ravb_wait(ndev, CSR, CSR_RPO, 0);
  566. if (error)
  567. return error;
  568. /* Stop AVB-DMAC process */
  569. return ravb_config(ndev);
  570. }
  571. /* E-MAC interrupt handler */
  572. static void ravb_emac_interrupt(struct net_device *ndev)
  573. {
  574. struct ravb_private *priv = netdev_priv(ndev);
  575. u32 ecsr, psr;
  576. ecsr = ravb_read(ndev, ECSR);
  577. ravb_write(ndev, ecsr, ECSR); /* clear interrupt */
  578. if (ecsr & ECSR_ICD)
  579. ndev->stats.tx_carrier_errors++;
  580. if (ecsr & ECSR_LCHNG) {
  581. /* Link changed */
  582. if (priv->no_avb_link)
  583. return;
  584. psr = ravb_read(ndev, PSR);
  585. if (priv->avb_link_active_low)
  586. psr ^= PSR_LMON;
  587. if (!(psr & PSR_LMON)) {
  588. /* DIsable RX and TX */
  589. ravb_rcv_snd_disable(ndev);
  590. } else {
  591. /* Enable RX and TX */
  592. ravb_rcv_snd_enable(ndev);
  593. }
  594. }
  595. }
  596. /* Error interrupt handler */
  597. static void ravb_error_interrupt(struct net_device *ndev)
  598. {
  599. struct ravb_private *priv = netdev_priv(ndev);
  600. u32 eis, ris2;
  601. eis = ravb_read(ndev, EIS);
  602. ravb_write(ndev, ~EIS_QFS, EIS);
  603. if (eis & EIS_QFS) {
  604. ris2 = ravb_read(ndev, RIS2);
  605. ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF), RIS2);
  606. /* Receive Descriptor Empty int */
  607. if (ris2 & RIS2_QFF0)
  608. priv->stats[RAVB_BE].rx_over_errors++;
  609. /* Receive Descriptor Empty int */
  610. if (ris2 & RIS2_QFF1)
  611. priv->stats[RAVB_NC].rx_over_errors++;
  612. /* Receive FIFO Overflow int */
  613. if (ris2 & RIS2_RFFF)
  614. priv->rx_fifo_errors++;
  615. }
  616. }
  617. static irqreturn_t ravb_interrupt(int irq, void *dev_id)
  618. {
  619. struct net_device *ndev = dev_id;
  620. struct ravb_private *priv = netdev_priv(ndev);
  621. irqreturn_t result = IRQ_NONE;
  622. u32 iss;
  623. spin_lock(&priv->lock);
  624. /* Get interrupt status */
  625. iss = ravb_read(ndev, ISS);
  626. /* Received and transmitted interrupts */
  627. if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
  628. u32 ris0 = ravb_read(ndev, RIS0);
  629. u32 ric0 = ravb_read(ndev, RIC0);
  630. u32 tis = ravb_read(ndev, TIS);
  631. u32 tic = ravb_read(ndev, TIC);
  632. int q;
  633. /* Timestamp updated */
  634. if (tis & TIS_TFUF) {
  635. ravb_write(ndev, ~TIS_TFUF, TIS);
  636. ravb_get_tx_tstamp(ndev);
  637. result = IRQ_HANDLED;
  638. }
  639. /* Network control and best effort queue RX/TX */
  640. for (q = RAVB_NC; q >= RAVB_BE; q--) {
  641. if (((ris0 & ric0) & BIT(q)) ||
  642. ((tis & tic) & BIT(q))) {
  643. if (napi_schedule_prep(&priv->napi[q])) {
  644. /* Mask RX and TX interrupts */
  645. ric0 &= ~BIT(q);
  646. tic &= ~BIT(q);
  647. ravb_write(ndev, ric0, RIC0);
  648. ravb_write(ndev, tic, TIC);
  649. __napi_schedule(&priv->napi[q]);
  650. } else {
  651. netdev_warn(ndev,
  652. "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
  653. ris0, ric0);
  654. netdev_warn(ndev,
  655. " tx status 0x%08x, tx mask 0x%08x.\n",
  656. tis, tic);
  657. }
  658. result = IRQ_HANDLED;
  659. }
  660. }
  661. }
  662. /* E-MAC status summary */
  663. if (iss & ISS_MS) {
  664. ravb_emac_interrupt(ndev);
  665. result = IRQ_HANDLED;
  666. }
  667. /* Error status summary */
  668. if (iss & ISS_ES) {
  669. ravb_error_interrupt(ndev);
  670. result = IRQ_HANDLED;
  671. }
  672. if (iss & ISS_CGIS)
  673. result = ravb_ptp_interrupt(ndev);
  674. mmiowb();
  675. spin_unlock(&priv->lock);
  676. return result;
  677. }
  678. static int ravb_poll(struct napi_struct *napi, int budget)
  679. {
  680. struct net_device *ndev = napi->dev;
  681. struct ravb_private *priv = netdev_priv(ndev);
  682. unsigned long flags;
  683. int q = napi - priv->napi;
  684. int mask = BIT(q);
  685. int quota = budget;
  686. u32 ris0, tis;
  687. for (;;) {
  688. tis = ravb_read(ndev, TIS);
  689. ris0 = ravb_read(ndev, RIS0);
  690. if (!((ris0 & mask) || (tis & mask)))
  691. break;
  692. /* Processing RX Descriptor Ring */
  693. if (ris0 & mask) {
  694. /* Clear RX interrupt */
  695. ravb_write(ndev, ~mask, RIS0);
  696. if (ravb_rx(ndev, &quota, q))
  697. goto out;
  698. }
  699. /* Processing TX Descriptor Ring */
  700. if (tis & mask) {
  701. spin_lock_irqsave(&priv->lock, flags);
  702. /* Clear TX interrupt */
  703. ravb_write(ndev, ~mask, TIS);
  704. ravb_tx_free(ndev, q, true);
  705. netif_wake_subqueue(ndev, q);
  706. mmiowb();
  707. spin_unlock_irqrestore(&priv->lock, flags);
  708. }
  709. }
  710. napi_complete(napi);
  711. /* Re-enable RX/TX interrupts */
  712. spin_lock_irqsave(&priv->lock, flags);
  713. ravb_write(ndev, ravb_read(ndev, RIC0) | mask, RIC0);
  714. ravb_write(ndev, ravb_read(ndev, TIC) | mask, TIC);
  715. mmiowb();
  716. spin_unlock_irqrestore(&priv->lock, flags);
  717. /* Receive error message handling */
  718. priv->rx_over_errors = priv->stats[RAVB_BE].rx_over_errors;
  719. priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
  720. if (priv->rx_over_errors != ndev->stats.rx_over_errors)
  721. ndev->stats.rx_over_errors = priv->rx_over_errors;
  722. if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
  723. ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
  724. out:
  725. return budget - quota;
  726. }
  727. /* PHY state control function */
  728. static void ravb_adjust_link(struct net_device *ndev)
  729. {
  730. struct ravb_private *priv = netdev_priv(ndev);
  731. struct phy_device *phydev = priv->phydev;
  732. bool new_state = false;
  733. if (phydev->link) {
  734. if (phydev->duplex != priv->duplex) {
  735. new_state = true;
  736. priv->duplex = phydev->duplex;
  737. ravb_set_duplex(ndev);
  738. }
  739. if (phydev->speed != priv->speed) {
  740. new_state = true;
  741. priv->speed = phydev->speed;
  742. ravb_set_rate(ndev);
  743. }
  744. if (!priv->link) {
  745. ravb_write(ndev, ravb_read(ndev, ECMR) & ~ECMR_TXF,
  746. ECMR);
  747. new_state = true;
  748. priv->link = phydev->link;
  749. if (priv->no_avb_link)
  750. ravb_rcv_snd_enable(ndev);
  751. }
  752. } else if (priv->link) {
  753. new_state = true;
  754. priv->link = 0;
  755. priv->speed = 0;
  756. priv->duplex = -1;
  757. if (priv->no_avb_link)
  758. ravb_rcv_snd_disable(ndev);
  759. }
  760. if (new_state && netif_msg_link(priv))
  761. phy_print_status(phydev);
  762. }
  763. /* PHY init function */
  764. static int ravb_phy_init(struct net_device *ndev)
  765. {
  766. struct device_node *np = ndev->dev.parent->of_node;
  767. struct ravb_private *priv = netdev_priv(ndev);
  768. struct phy_device *phydev;
  769. struct device_node *pn;
  770. priv->link = 0;
  771. priv->speed = 0;
  772. priv->duplex = -1;
  773. /* Try connecting to PHY */
  774. pn = of_parse_phandle(np, "phy-handle", 0);
  775. phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0,
  776. priv->phy_interface);
  777. if (!phydev) {
  778. netdev_err(ndev, "failed to connect PHY\n");
  779. return -ENOENT;
  780. }
  781. /* This driver only support 10/100Mbit speeds on Gen3
  782. * at this time.
  783. */
  784. if (priv->chip_id == RCAR_GEN3) {
  785. int err;
  786. err = phy_set_max_speed(phydev, SPEED_100);
  787. if (err) {
  788. netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
  789. phy_disconnect(phydev);
  790. return err;
  791. }
  792. netdev_info(ndev, "limited PHY to 100Mbit/s\n");
  793. }
  794. /* 10BASE is not supported */
  795. phydev->supported &= ~PHY_10BT_FEATURES;
  796. netdev_info(ndev, "attached PHY %d (IRQ %d) to driver %s\n",
  797. phydev->addr, phydev->irq, phydev->drv->name);
  798. priv->phydev = phydev;
  799. return 0;
  800. }
  801. /* PHY control start function */
  802. static int ravb_phy_start(struct net_device *ndev)
  803. {
  804. struct ravb_private *priv = netdev_priv(ndev);
  805. int error;
  806. error = ravb_phy_init(ndev);
  807. if (error)
  808. return error;
  809. phy_start(priv->phydev);
  810. return 0;
  811. }
  812. static int ravb_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
  813. {
  814. struct ravb_private *priv = netdev_priv(ndev);
  815. int error = -ENODEV;
  816. unsigned long flags;
  817. if (priv->phydev) {
  818. spin_lock_irqsave(&priv->lock, flags);
  819. error = phy_ethtool_gset(priv->phydev, ecmd);
  820. spin_unlock_irqrestore(&priv->lock, flags);
  821. }
  822. return error;
  823. }
  824. static int ravb_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
  825. {
  826. struct ravb_private *priv = netdev_priv(ndev);
  827. unsigned long flags;
  828. int error;
  829. if (!priv->phydev)
  830. return -ENODEV;
  831. spin_lock_irqsave(&priv->lock, flags);
  832. /* Disable TX and RX */
  833. ravb_rcv_snd_disable(ndev);
  834. error = phy_ethtool_sset(priv->phydev, ecmd);
  835. if (error)
  836. goto error_exit;
  837. if (ecmd->duplex == DUPLEX_FULL)
  838. priv->duplex = 1;
  839. else
  840. priv->duplex = 0;
  841. ravb_set_duplex(ndev);
  842. error_exit:
  843. mdelay(1);
  844. /* Enable TX and RX */
  845. ravb_rcv_snd_enable(ndev);
  846. mmiowb();
  847. spin_unlock_irqrestore(&priv->lock, flags);
  848. return error;
  849. }
  850. static int ravb_nway_reset(struct net_device *ndev)
  851. {
  852. struct ravb_private *priv = netdev_priv(ndev);
  853. int error = -ENODEV;
  854. unsigned long flags;
  855. if (priv->phydev) {
  856. spin_lock_irqsave(&priv->lock, flags);
  857. error = phy_start_aneg(priv->phydev);
  858. spin_unlock_irqrestore(&priv->lock, flags);
  859. }
  860. return error;
  861. }
  862. static u32 ravb_get_msglevel(struct net_device *ndev)
  863. {
  864. struct ravb_private *priv = netdev_priv(ndev);
  865. return priv->msg_enable;
  866. }
  867. static void ravb_set_msglevel(struct net_device *ndev, u32 value)
  868. {
  869. struct ravb_private *priv = netdev_priv(ndev);
  870. priv->msg_enable = value;
  871. }
  872. static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
  873. "rx_queue_0_current",
  874. "tx_queue_0_current",
  875. "rx_queue_0_dirty",
  876. "tx_queue_0_dirty",
  877. "rx_queue_0_packets",
  878. "tx_queue_0_packets",
  879. "rx_queue_0_bytes",
  880. "tx_queue_0_bytes",
  881. "rx_queue_0_mcast_packets",
  882. "rx_queue_0_errors",
  883. "rx_queue_0_crc_errors",
  884. "rx_queue_0_frame_errors",
  885. "rx_queue_0_length_errors",
  886. "rx_queue_0_missed_errors",
  887. "rx_queue_0_over_errors",
  888. "rx_queue_1_current",
  889. "tx_queue_1_current",
  890. "rx_queue_1_dirty",
  891. "tx_queue_1_dirty",
  892. "rx_queue_1_packets",
  893. "tx_queue_1_packets",
  894. "rx_queue_1_bytes",
  895. "tx_queue_1_bytes",
  896. "rx_queue_1_mcast_packets",
  897. "rx_queue_1_errors",
  898. "rx_queue_1_crc_errors",
  899. "rx_queue_1_frame_errors",
  900. "rx_queue_1_length_errors",
  901. "rx_queue_1_missed_errors",
  902. "rx_queue_1_over_errors",
  903. };
  904. #define RAVB_STATS_LEN ARRAY_SIZE(ravb_gstrings_stats)
  905. static int ravb_get_sset_count(struct net_device *netdev, int sset)
  906. {
  907. switch (sset) {
  908. case ETH_SS_STATS:
  909. return RAVB_STATS_LEN;
  910. default:
  911. return -EOPNOTSUPP;
  912. }
  913. }
  914. static void ravb_get_ethtool_stats(struct net_device *ndev,
  915. struct ethtool_stats *stats, u64 *data)
  916. {
  917. struct ravb_private *priv = netdev_priv(ndev);
  918. int i = 0;
  919. int q;
  920. /* Device-specific stats */
  921. for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
  922. struct net_device_stats *stats = &priv->stats[q];
  923. data[i++] = priv->cur_rx[q];
  924. data[i++] = priv->cur_tx[q];
  925. data[i++] = priv->dirty_rx[q];
  926. data[i++] = priv->dirty_tx[q];
  927. data[i++] = stats->rx_packets;
  928. data[i++] = stats->tx_packets;
  929. data[i++] = stats->rx_bytes;
  930. data[i++] = stats->tx_bytes;
  931. data[i++] = stats->multicast;
  932. data[i++] = stats->rx_errors;
  933. data[i++] = stats->rx_crc_errors;
  934. data[i++] = stats->rx_frame_errors;
  935. data[i++] = stats->rx_length_errors;
  936. data[i++] = stats->rx_missed_errors;
  937. data[i++] = stats->rx_over_errors;
  938. }
  939. }
  940. static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
  941. {
  942. switch (stringset) {
  943. case ETH_SS_STATS:
  944. memcpy(data, *ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
  945. break;
  946. }
  947. }
  948. static void ravb_get_ringparam(struct net_device *ndev,
  949. struct ethtool_ringparam *ring)
  950. {
  951. struct ravb_private *priv = netdev_priv(ndev);
  952. ring->rx_max_pending = BE_RX_RING_MAX;
  953. ring->tx_max_pending = BE_TX_RING_MAX;
  954. ring->rx_pending = priv->num_rx_ring[RAVB_BE];
  955. ring->tx_pending = priv->num_tx_ring[RAVB_BE];
  956. }
  957. static int ravb_set_ringparam(struct net_device *ndev,
  958. struct ethtool_ringparam *ring)
  959. {
  960. struct ravb_private *priv = netdev_priv(ndev);
  961. int error;
  962. if (ring->tx_pending > BE_TX_RING_MAX ||
  963. ring->rx_pending > BE_RX_RING_MAX ||
  964. ring->tx_pending < BE_TX_RING_MIN ||
  965. ring->rx_pending < BE_RX_RING_MIN)
  966. return -EINVAL;
  967. if (ring->rx_mini_pending || ring->rx_jumbo_pending)
  968. return -EINVAL;
  969. if (netif_running(ndev)) {
  970. netif_device_detach(ndev);
  971. /* Stop PTP Clock driver */
  972. ravb_ptp_stop(ndev);
  973. /* Wait for DMA stopping */
  974. error = ravb_stop_dma(ndev);
  975. if (error) {
  976. netdev_err(ndev,
  977. "cannot set ringparam! Any AVB processes are still running?\n");
  978. return error;
  979. }
  980. synchronize_irq(ndev->irq);
  981. /* Free all the skb's in the RX queue and the DMA buffers. */
  982. ravb_ring_free(ndev, RAVB_BE);
  983. ravb_ring_free(ndev, RAVB_NC);
  984. }
  985. /* Set new parameters */
  986. priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
  987. priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
  988. if (netif_running(ndev)) {
  989. error = ravb_dmac_init(ndev);
  990. if (error) {
  991. netdev_err(ndev,
  992. "%s: ravb_dmac_init() failed, error %d\n",
  993. __func__, error);
  994. return error;
  995. }
  996. ravb_emac_init(ndev);
  997. /* Initialise PTP Clock driver */
  998. ravb_ptp_init(ndev, priv->pdev);
  999. netif_device_attach(ndev);
  1000. }
  1001. return 0;
  1002. }
  1003. static int ravb_get_ts_info(struct net_device *ndev,
  1004. struct ethtool_ts_info *info)
  1005. {
  1006. struct ravb_private *priv = netdev_priv(ndev);
  1007. info->so_timestamping =
  1008. SOF_TIMESTAMPING_TX_SOFTWARE |
  1009. SOF_TIMESTAMPING_RX_SOFTWARE |
  1010. SOF_TIMESTAMPING_SOFTWARE |
  1011. SOF_TIMESTAMPING_TX_HARDWARE |
  1012. SOF_TIMESTAMPING_RX_HARDWARE |
  1013. SOF_TIMESTAMPING_RAW_HARDWARE;
  1014. info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
  1015. info->rx_filters =
  1016. (1 << HWTSTAMP_FILTER_NONE) |
  1017. (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
  1018. (1 << HWTSTAMP_FILTER_ALL);
  1019. info->phc_index = ptp_clock_index(priv->ptp.clock);
  1020. return 0;
  1021. }
  1022. static const struct ethtool_ops ravb_ethtool_ops = {
  1023. .get_settings = ravb_get_settings,
  1024. .set_settings = ravb_set_settings,
  1025. .nway_reset = ravb_nway_reset,
  1026. .get_msglevel = ravb_get_msglevel,
  1027. .set_msglevel = ravb_set_msglevel,
  1028. .get_link = ethtool_op_get_link,
  1029. .get_strings = ravb_get_strings,
  1030. .get_ethtool_stats = ravb_get_ethtool_stats,
  1031. .get_sset_count = ravb_get_sset_count,
  1032. .get_ringparam = ravb_get_ringparam,
  1033. .set_ringparam = ravb_set_ringparam,
  1034. .get_ts_info = ravb_get_ts_info,
  1035. };
  1036. /* Network device open function for Ethernet AVB */
  1037. static int ravb_open(struct net_device *ndev)
  1038. {
  1039. struct ravb_private *priv = netdev_priv(ndev);
  1040. int error;
  1041. napi_enable(&priv->napi[RAVB_BE]);
  1042. napi_enable(&priv->napi[RAVB_NC]);
  1043. error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED, ndev->name,
  1044. ndev);
  1045. if (error) {
  1046. netdev_err(ndev, "cannot request IRQ\n");
  1047. goto out_napi_off;
  1048. }
  1049. if (priv->chip_id == RCAR_GEN3) {
  1050. error = request_irq(priv->emac_irq, ravb_interrupt,
  1051. IRQF_SHARED, ndev->name, ndev);
  1052. if (error) {
  1053. netdev_err(ndev, "cannot request IRQ\n");
  1054. goto out_free_irq;
  1055. }
  1056. }
  1057. /* Device init */
  1058. error = ravb_dmac_init(ndev);
  1059. if (error)
  1060. goto out_free_irq2;
  1061. ravb_emac_init(ndev);
  1062. /* Initialise PTP Clock driver */
  1063. ravb_ptp_init(ndev, priv->pdev);
  1064. netif_tx_start_all_queues(ndev);
  1065. /* PHY control start */
  1066. error = ravb_phy_start(ndev);
  1067. if (error)
  1068. goto out_ptp_stop;
  1069. return 0;
  1070. out_ptp_stop:
  1071. /* Stop PTP Clock driver */
  1072. ravb_ptp_stop(ndev);
  1073. out_free_irq2:
  1074. if (priv->chip_id == RCAR_GEN3)
  1075. free_irq(priv->emac_irq, ndev);
  1076. out_free_irq:
  1077. free_irq(ndev->irq, ndev);
  1078. out_napi_off:
  1079. napi_disable(&priv->napi[RAVB_NC]);
  1080. napi_disable(&priv->napi[RAVB_BE]);
  1081. return error;
  1082. }
  1083. /* Timeout function for Ethernet AVB */
  1084. static void ravb_tx_timeout(struct net_device *ndev)
  1085. {
  1086. struct ravb_private *priv = netdev_priv(ndev);
  1087. netif_err(priv, tx_err, ndev,
  1088. "transmit timed out, status %08x, resetting...\n",
  1089. ravb_read(ndev, ISS));
  1090. /* tx_errors count up */
  1091. ndev->stats.tx_errors++;
  1092. schedule_work(&priv->work);
  1093. }
  1094. static void ravb_tx_timeout_work(struct work_struct *work)
  1095. {
  1096. struct ravb_private *priv = container_of(work, struct ravb_private,
  1097. work);
  1098. struct net_device *ndev = priv->ndev;
  1099. netif_tx_stop_all_queues(ndev);
  1100. /* Stop PTP Clock driver */
  1101. ravb_ptp_stop(ndev);
  1102. /* Wait for DMA stopping */
  1103. ravb_stop_dma(ndev);
  1104. ravb_ring_free(ndev, RAVB_BE);
  1105. ravb_ring_free(ndev, RAVB_NC);
  1106. /* Device init */
  1107. ravb_dmac_init(ndev);
  1108. ravb_emac_init(ndev);
  1109. /* Initialise PTP Clock driver */
  1110. ravb_ptp_init(ndev, priv->pdev);
  1111. netif_tx_start_all_queues(ndev);
  1112. }
  1113. /* Packet transmit function for Ethernet AVB */
  1114. static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  1115. {
  1116. struct ravb_private *priv = netdev_priv(ndev);
  1117. u16 q = skb_get_queue_mapping(skb);
  1118. struct ravb_tstamp_skb *ts_skb;
  1119. struct ravb_tx_desc *desc;
  1120. unsigned long flags;
  1121. u32 dma_addr;
  1122. void *buffer;
  1123. u32 entry;
  1124. u32 len;
  1125. spin_lock_irqsave(&priv->lock, flags);
  1126. if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
  1127. NUM_TX_DESC) {
  1128. netif_err(priv, tx_queued, ndev,
  1129. "still transmitting with the full ring!\n");
  1130. netif_stop_subqueue(ndev, q);
  1131. spin_unlock_irqrestore(&priv->lock, flags);
  1132. return NETDEV_TX_BUSY;
  1133. }
  1134. entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * NUM_TX_DESC);
  1135. priv->tx_skb[q][entry / NUM_TX_DESC] = skb;
  1136. if (skb_put_padto(skb, ETH_ZLEN))
  1137. goto drop;
  1138. buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
  1139. entry / NUM_TX_DESC * DPTR_ALIGN;
  1140. len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
  1141. /* Zero length DMA descriptors are problematic as they seem to
  1142. * terminate DMA transfers. Avoid them by simply using a length of
  1143. * DPTR_ALIGN (4) when skb data is aligned to DPTR_ALIGN.
  1144. *
  1145. * As skb is guaranteed to have at least ETH_ZLEN (60) bytes of
  1146. * data by the call to skb_put_padto() above this is safe with
  1147. * respect to both the length of the first DMA descriptor (len)
  1148. * overflowing the available data and the length of the second DMA
  1149. * descriptor (skb->len - len) being negative.
  1150. */
  1151. if (len == 0)
  1152. len = DPTR_ALIGN;
  1153. memcpy(buffer, skb->data, len);
  1154. dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
  1155. if (dma_mapping_error(ndev->dev.parent, dma_addr))
  1156. goto drop;
  1157. desc = &priv->tx_ring[q][entry];
  1158. desc->ds_tagl = cpu_to_le16(len);
  1159. desc->dptr = cpu_to_le32(dma_addr);
  1160. buffer = skb->data + len;
  1161. len = skb->len - len;
  1162. dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
  1163. if (dma_mapping_error(ndev->dev.parent, dma_addr))
  1164. goto unmap;
  1165. desc++;
  1166. desc->ds_tagl = cpu_to_le16(len);
  1167. desc->dptr = cpu_to_le32(dma_addr);
  1168. /* TX timestamp required */
  1169. if (q == RAVB_NC) {
  1170. ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
  1171. if (!ts_skb) {
  1172. desc--;
  1173. dma_unmap_single(ndev->dev.parent, dma_addr, len,
  1174. DMA_TO_DEVICE);
  1175. goto unmap;
  1176. }
  1177. ts_skb->skb = skb;
  1178. ts_skb->tag = priv->ts_skb_tag++;
  1179. priv->ts_skb_tag &= 0x3ff;
  1180. list_add_tail(&ts_skb->list, &priv->ts_skb_list);
  1181. /* TAG and timestamp required flag */
  1182. skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
  1183. skb_tx_timestamp(skb);
  1184. desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
  1185. desc->ds_tagl |= le16_to_cpu(ts_skb->tag << 12);
  1186. }
  1187. /* Descriptor type must be set after all the above writes */
  1188. dma_wmb();
  1189. desc->die_dt = DT_FEND;
  1190. desc--;
  1191. desc->die_dt = DT_FSTART;
  1192. ravb_write(ndev, ravb_read(ndev, TCCR) | (TCCR_TSRQ0 << q), TCCR);
  1193. priv->cur_tx[q] += NUM_TX_DESC;
  1194. if (priv->cur_tx[q] - priv->dirty_tx[q] >
  1195. (priv->num_tx_ring[q] - 1) * NUM_TX_DESC &&
  1196. !ravb_tx_free(ndev, q, true))
  1197. netif_stop_subqueue(ndev, q);
  1198. exit:
  1199. mmiowb();
  1200. spin_unlock_irqrestore(&priv->lock, flags);
  1201. return NETDEV_TX_OK;
  1202. unmap:
  1203. dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
  1204. le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
  1205. drop:
  1206. dev_kfree_skb_any(skb);
  1207. priv->tx_skb[q][entry / NUM_TX_DESC] = NULL;
  1208. goto exit;
  1209. }
  1210. static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
  1211. void *accel_priv, select_queue_fallback_t fallback)
  1212. {
  1213. /* If skb needs TX timestamp, it is handled in network control queue */
  1214. return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
  1215. RAVB_BE;
  1216. }
  1217. static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
  1218. {
  1219. struct ravb_private *priv = netdev_priv(ndev);
  1220. struct net_device_stats *nstats, *stats0, *stats1;
  1221. nstats = &ndev->stats;
  1222. stats0 = &priv->stats[RAVB_BE];
  1223. stats1 = &priv->stats[RAVB_NC];
  1224. nstats->tx_dropped += ravb_read(ndev, TROCR);
  1225. ravb_write(ndev, 0, TROCR); /* (write clear) */
  1226. nstats->collisions += ravb_read(ndev, CDCR);
  1227. ravb_write(ndev, 0, CDCR); /* (write clear) */
  1228. nstats->tx_carrier_errors += ravb_read(ndev, LCCR);
  1229. ravb_write(ndev, 0, LCCR); /* (write clear) */
  1230. nstats->tx_carrier_errors += ravb_read(ndev, CERCR);
  1231. ravb_write(ndev, 0, CERCR); /* (write clear) */
  1232. nstats->tx_carrier_errors += ravb_read(ndev, CEECR);
  1233. ravb_write(ndev, 0, CEECR); /* (write clear) */
  1234. nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
  1235. nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
  1236. nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
  1237. nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
  1238. nstats->multicast = stats0->multicast + stats1->multicast;
  1239. nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
  1240. nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
  1241. nstats->rx_frame_errors =
  1242. stats0->rx_frame_errors + stats1->rx_frame_errors;
  1243. nstats->rx_length_errors =
  1244. stats0->rx_length_errors + stats1->rx_length_errors;
  1245. nstats->rx_missed_errors =
  1246. stats0->rx_missed_errors + stats1->rx_missed_errors;
  1247. nstats->rx_over_errors =
  1248. stats0->rx_over_errors + stats1->rx_over_errors;
  1249. return nstats;
  1250. }
  1251. /* Update promiscuous bit */
  1252. static void ravb_set_rx_mode(struct net_device *ndev)
  1253. {
  1254. struct ravb_private *priv = netdev_priv(ndev);
  1255. unsigned long flags;
  1256. u32 ecmr;
  1257. spin_lock_irqsave(&priv->lock, flags);
  1258. ecmr = ravb_read(ndev, ECMR);
  1259. if (ndev->flags & IFF_PROMISC)
  1260. ecmr |= ECMR_PRM;
  1261. else
  1262. ecmr &= ~ECMR_PRM;
  1263. ravb_write(ndev, ecmr, ECMR);
  1264. mmiowb();
  1265. spin_unlock_irqrestore(&priv->lock, flags);
  1266. }
  1267. /* Device close function for Ethernet AVB */
  1268. static int ravb_close(struct net_device *ndev)
  1269. {
  1270. struct ravb_private *priv = netdev_priv(ndev);
  1271. struct ravb_tstamp_skb *ts_skb, *ts_skb2;
  1272. netif_tx_stop_all_queues(ndev);
  1273. /* Disable interrupts by clearing the interrupt masks. */
  1274. ravb_write(ndev, 0, RIC0);
  1275. ravb_write(ndev, 0, RIC1);
  1276. ravb_write(ndev, 0, RIC2);
  1277. ravb_write(ndev, 0, TIC);
  1278. /* Stop PTP Clock driver */
  1279. ravb_ptp_stop(ndev);
  1280. /* Set the config mode to stop the AVB-DMAC's processes */
  1281. if (ravb_stop_dma(ndev) < 0)
  1282. netdev_err(ndev,
  1283. "device will be stopped after h/w processes are done.\n");
  1284. /* Clear the timestamp list */
  1285. list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
  1286. list_del(&ts_skb->list);
  1287. kfree(ts_skb);
  1288. }
  1289. /* PHY disconnect */
  1290. if (priv->phydev) {
  1291. phy_stop(priv->phydev);
  1292. phy_disconnect(priv->phydev);
  1293. priv->phydev = NULL;
  1294. }
  1295. free_irq(ndev->irq, ndev);
  1296. napi_disable(&priv->napi[RAVB_NC]);
  1297. napi_disable(&priv->napi[RAVB_BE]);
  1298. /* Free all the skb's in the RX queue and the DMA buffers. */
  1299. ravb_ring_free(ndev, RAVB_BE);
  1300. ravb_ring_free(ndev, RAVB_NC);
  1301. return 0;
  1302. }
  1303. static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
  1304. {
  1305. struct ravb_private *priv = netdev_priv(ndev);
  1306. struct hwtstamp_config config;
  1307. config.flags = 0;
  1308. config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
  1309. HWTSTAMP_TX_OFF;
  1310. if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_V2_L2_EVENT)
  1311. config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
  1312. else if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_ALL)
  1313. config.rx_filter = HWTSTAMP_FILTER_ALL;
  1314. else
  1315. config.rx_filter = HWTSTAMP_FILTER_NONE;
  1316. return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
  1317. -EFAULT : 0;
  1318. }
  1319. /* Control hardware time stamping */
  1320. static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
  1321. {
  1322. struct ravb_private *priv = netdev_priv(ndev);
  1323. struct hwtstamp_config config;
  1324. u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
  1325. u32 tstamp_tx_ctrl;
  1326. if (copy_from_user(&config, req->ifr_data, sizeof(config)))
  1327. return -EFAULT;
  1328. /* Reserved for future extensions */
  1329. if (config.flags)
  1330. return -EINVAL;
  1331. switch (config.tx_type) {
  1332. case HWTSTAMP_TX_OFF:
  1333. tstamp_tx_ctrl = 0;
  1334. break;
  1335. case HWTSTAMP_TX_ON:
  1336. tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
  1337. break;
  1338. default:
  1339. return -ERANGE;
  1340. }
  1341. switch (config.rx_filter) {
  1342. case HWTSTAMP_FILTER_NONE:
  1343. tstamp_rx_ctrl = 0;
  1344. break;
  1345. case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
  1346. tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
  1347. break;
  1348. default:
  1349. config.rx_filter = HWTSTAMP_FILTER_ALL;
  1350. tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
  1351. }
  1352. priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
  1353. priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
  1354. return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
  1355. -EFAULT : 0;
  1356. }
  1357. /* ioctl to device function */
  1358. static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
  1359. {
  1360. struct ravb_private *priv = netdev_priv(ndev);
  1361. struct phy_device *phydev = priv->phydev;
  1362. if (!netif_running(ndev))
  1363. return -EINVAL;
  1364. if (!phydev)
  1365. return -ENODEV;
  1366. switch (cmd) {
  1367. case SIOCGHWTSTAMP:
  1368. return ravb_hwtstamp_get(ndev, req);
  1369. case SIOCSHWTSTAMP:
  1370. return ravb_hwtstamp_set(ndev, req);
  1371. }
  1372. return phy_mii_ioctl(phydev, req, cmd);
  1373. }
  1374. static const struct net_device_ops ravb_netdev_ops = {
  1375. .ndo_open = ravb_open,
  1376. .ndo_stop = ravb_close,
  1377. .ndo_start_xmit = ravb_start_xmit,
  1378. .ndo_select_queue = ravb_select_queue,
  1379. .ndo_get_stats = ravb_get_stats,
  1380. .ndo_set_rx_mode = ravb_set_rx_mode,
  1381. .ndo_tx_timeout = ravb_tx_timeout,
  1382. .ndo_do_ioctl = ravb_do_ioctl,
  1383. .ndo_validate_addr = eth_validate_addr,
  1384. .ndo_set_mac_address = eth_mac_addr,
  1385. .ndo_change_mtu = eth_change_mtu,
  1386. };
  1387. /* MDIO bus init function */
  1388. static int ravb_mdio_init(struct ravb_private *priv)
  1389. {
  1390. struct platform_device *pdev = priv->pdev;
  1391. struct device *dev = &pdev->dev;
  1392. int error;
  1393. /* Bitbang init */
  1394. priv->mdiobb.ops = &bb_ops;
  1395. /* MII controller setting */
  1396. priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
  1397. if (!priv->mii_bus)
  1398. return -ENOMEM;
  1399. /* Hook up MII support for ethtool */
  1400. priv->mii_bus->name = "ravb_mii";
  1401. priv->mii_bus->parent = dev;
  1402. snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
  1403. pdev->name, pdev->id);
  1404. /* Register MDIO bus */
  1405. error = of_mdiobus_register(priv->mii_bus, dev->of_node);
  1406. if (error)
  1407. goto out_free_bus;
  1408. return 0;
  1409. out_free_bus:
  1410. free_mdio_bitbang(priv->mii_bus);
  1411. return error;
  1412. }
  1413. /* MDIO bus release function */
  1414. static int ravb_mdio_release(struct ravb_private *priv)
  1415. {
  1416. /* Unregister mdio bus */
  1417. mdiobus_unregister(priv->mii_bus);
  1418. /* Free bitbang info */
  1419. free_mdio_bitbang(priv->mii_bus);
  1420. return 0;
  1421. }
  1422. static const struct of_device_id ravb_match_table[] = {
  1423. { .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
  1424. { .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
  1425. { .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
  1426. { }
  1427. };
  1428. MODULE_DEVICE_TABLE(of, ravb_match_table);
  1429. static int ravb_probe(struct platform_device *pdev)
  1430. {
  1431. struct device_node *np = pdev->dev.of_node;
  1432. const struct of_device_id *match;
  1433. struct ravb_private *priv;
  1434. enum ravb_chip_id chip_id;
  1435. struct net_device *ndev;
  1436. int error, irq, q;
  1437. struct resource *res;
  1438. if (!np) {
  1439. dev_err(&pdev->dev,
  1440. "this driver is required to be instantiated from device tree\n");
  1441. return -EINVAL;
  1442. }
  1443. /* Get base address */
  1444. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1445. if (!res) {
  1446. dev_err(&pdev->dev, "invalid resource\n");
  1447. return -EINVAL;
  1448. }
  1449. ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
  1450. NUM_TX_QUEUE, NUM_RX_QUEUE);
  1451. if (!ndev)
  1452. return -ENOMEM;
  1453. pm_runtime_enable(&pdev->dev);
  1454. pm_runtime_get_sync(&pdev->dev);
  1455. /* The Ether-specific entries in the device structure. */
  1456. ndev->base_addr = res->start;
  1457. ndev->dma = -1;
  1458. match = of_match_device(of_match_ptr(ravb_match_table), &pdev->dev);
  1459. chip_id = (enum ravb_chip_id)match->data;
  1460. if (chip_id == RCAR_GEN3)
  1461. irq = platform_get_irq_byname(pdev, "ch22");
  1462. else
  1463. irq = platform_get_irq(pdev, 0);
  1464. if (irq < 0) {
  1465. error = irq;
  1466. goto out_release;
  1467. }
  1468. ndev->irq = irq;
  1469. SET_NETDEV_DEV(ndev, &pdev->dev);
  1470. priv = netdev_priv(ndev);
  1471. priv->ndev = ndev;
  1472. priv->pdev = pdev;
  1473. priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
  1474. priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
  1475. priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
  1476. priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
  1477. priv->addr = devm_ioremap_resource(&pdev->dev, res);
  1478. if (IS_ERR(priv->addr)) {
  1479. error = PTR_ERR(priv->addr);
  1480. goto out_release;
  1481. }
  1482. spin_lock_init(&priv->lock);
  1483. INIT_WORK(&priv->work, ravb_tx_timeout_work);
  1484. priv->phy_interface = of_get_phy_mode(np);
  1485. priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
  1486. priv->avb_link_active_low =
  1487. of_property_read_bool(np, "renesas,ether-link-active-low");
  1488. if (chip_id == RCAR_GEN3) {
  1489. irq = platform_get_irq_byname(pdev, "ch24");
  1490. if (irq < 0) {
  1491. error = irq;
  1492. goto out_release;
  1493. }
  1494. priv->emac_irq = irq;
  1495. }
  1496. priv->chip_id = chip_id;
  1497. /* Set function */
  1498. ndev->netdev_ops = &ravb_netdev_ops;
  1499. ndev->ethtool_ops = &ravb_ethtool_ops;
  1500. /* Set AVB config mode */
  1501. ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_OPC) | CCC_OPC_CONFIG,
  1502. CCC);
  1503. /* Set CSEL value */
  1504. ravb_write(ndev, (ravb_read(ndev, CCC) & ~CCC_CSEL) | CCC_CSEL_HPB,
  1505. CCC);
  1506. /* Set GTI value */
  1507. ravb_write(ndev, ((1000 << 20) / 130) & GTI_TIV, GTI);
  1508. /* Request GTI loading */
  1509. ravb_write(ndev, ravb_read(ndev, GCCR) | GCCR_LTI, GCCR);
  1510. /* Allocate descriptor base address table */
  1511. priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
  1512. priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
  1513. &priv->desc_bat_dma, GFP_KERNEL);
  1514. if (!priv->desc_bat) {
  1515. dev_err(&pdev->dev,
  1516. "Cannot allocate desc base address table (size %d bytes)\n",
  1517. priv->desc_bat_size);
  1518. error = -ENOMEM;
  1519. goto out_release;
  1520. }
  1521. for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
  1522. priv->desc_bat[q].die_dt = DT_EOS;
  1523. ravb_write(ndev, priv->desc_bat_dma, DBAT);
  1524. /* Initialise HW timestamp list */
  1525. INIT_LIST_HEAD(&priv->ts_skb_list);
  1526. /* Debug message level */
  1527. priv->msg_enable = RAVB_DEF_MSG_ENABLE;
  1528. /* Read and set MAC address */
  1529. ravb_read_mac_address(ndev, of_get_mac_address(np));
  1530. if (!is_valid_ether_addr(ndev->dev_addr)) {
  1531. dev_warn(&pdev->dev,
  1532. "no valid MAC address supplied, using a random one\n");
  1533. eth_hw_addr_random(ndev);
  1534. }
  1535. /* MDIO bus init */
  1536. error = ravb_mdio_init(priv);
  1537. if (error) {
  1538. dev_err(&pdev->dev, "failed to initialize MDIO\n");
  1539. goto out_dma_free;
  1540. }
  1541. netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
  1542. netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
  1543. /* Network device register */
  1544. error = register_netdev(ndev);
  1545. if (error)
  1546. goto out_napi_del;
  1547. /* Print device information */
  1548. netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
  1549. (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
  1550. platform_set_drvdata(pdev, ndev);
  1551. return 0;
  1552. out_napi_del:
  1553. netif_napi_del(&priv->napi[RAVB_NC]);
  1554. netif_napi_del(&priv->napi[RAVB_BE]);
  1555. ravb_mdio_release(priv);
  1556. out_dma_free:
  1557. dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
  1558. priv->desc_bat_dma);
  1559. out_release:
  1560. if (ndev)
  1561. free_netdev(ndev);
  1562. pm_runtime_put(&pdev->dev);
  1563. pm_runtime_disable(&pdev->dev);
  1564. return error;
  1565. }
  1566. static int ravb_remove(struct platform_device *pdev)
  1567. {
  1568. struct net_device *ndev = platform_get_drvdata(pdev);
  1569. struct ravb_private *priv = netdev_priv(ndev);
  1570. dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
  1571. priv->desc_bat_dma);
  1572. /* Set reset mode */
  1573. ravb_write(ndev, CCC_OPC_RESET, CCC);
  1574. pm_runtime_put_sync(&pdev->dev);
  1575. unregister_netdev(ndev);
  1576. netif_napi_del(&priv->napi[RAVB_NC]);
  1577. netif_napi_del(&priv->napi[RAVB_BE]);
  1578. ravb_mdio_release(priv);
  1579. pm_runtime_disable(&pdev->dev);
  1580. free_netdev(ndev);
  1581. platform_set_drvdata(pdev, NULL);
  1582. return 0;
  1583. }
  1584. #ifdef CONFIG_PM
  1585. static int ravb_runtime_nop(struct device *dev)
  1586. {
  1587. /* Runtime PM callback shared between ->runtime_suspend()
  1588. * and ->runtime_resume(). Simply returns success.
  1589. *
  1590. * This driver re-initializes all registers after
  1591. * pm_runtime_get_sync() anyway so there is no need
  1592. * to save and restore registers here.
  1593. */
  1594. return 0;
  1595. }
  1596. static const struct dev_pm_ops ravb_dev_pm_ops = {
  1597. .runtime_suspend = ravb_runtime_nop,
  1598. .runtime_resume = ravb_runtime_nop,
  1599. };
  1600. #define RAVB_PM_OPS (&ravb_dev_pm_ops)
  1601. #else
  1602. #define RAVB_PM_OPS NULL
  1603. #endif
  1604. static struct platform_driver ravb_driver = {
  1605. .probe = ravb_probe,
  1606. .remove = ravb_remove,
  1607. .driver = {
  1608. .name = "ravb",
  1609. .pm = RAVB_PM_OPS,
  1610. .of_match_table = ravb_match_table,
  1611. },
  1612. };
  1613. module_platform_driver(ravb_driver);
  1614. MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
  1615. MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
  1616. MODULE_LICENSE("GPL v2");