siena.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047
  1. /****************************************************************************
  2. * Driver for Solarflare network controllers and boards
  3. * Copyright 2005-2006 Fen Systems Ltd.
  4. * Copyright 2006-2013 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #include <linux/bitops.h>
  11. #include <linux/delay.h>
  12. #include <linux/pci.h>
  13. #include <linux/module.h>
  14. #include <linux/slab.h>
  15. #include <linux/random.h>
  16. #include "net_driver.h"
  17. #include "bitfield.h"
  18. #include "efx.h"
  19. #include "nic.h"
  20. #include "farch_regs.h"
  21. #include "io.h"
  22. #include "phy.h"
  23. #include "workarounds.h"
  24. #include "mcdi.h"
  25. #include "mcdi_pcol.h"
  26. #include "selftest.h"
  27. #include "siena_sriov.h"
  28. /* Hardware control for SFC9000 family including SFL9021 (aka Siena). */
  29. static void siena_init_wol(struct efx_nic *efx);
  30. static void siena_push_irq_moderation(struct efx_channel *channel)
  31. {
  32. efx_dword_t timer_cmd;
  33. if (channel->irq_moderation)
  34. EFX_POPULATE_DWORD_2(timer_cmd,
  35. FRF_CZ_TC_TIMER_MODE,
  36. FFE_CZ_TIMER_MODE_INT_HLDOFF,
  37. FRF_CZ_TC_TIMER_VAL,
  38. channel->irq_moderation - 1);
  39. else
  40. EFX_POPULATE_DWORD_2(timer_cmd,
  41. FRF_CZ_TC_TIMER_MODE,
  42. FFE_CZ_TIMER_MODE_DIS,
  43. FRF_CZ_TC_TIMER_VAL, 0);
  44. efx_writed_page_locked(channel->efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
  45. channel->channel);
  46. }
  47. void siena_prepare_flush(struct efx_nic *efx)
  48. {
  49. if (efx->fc_disable++ == 0)
  50. efx_mcdi_set_mac(efx);
  51. }
  52. void siena_finish_flush(struct efx_nic *efx)
  53. {
  54. if (--efx->fc_disable == 0)
  55. efx_mcdi_set_mac(efx);
  56. }
  57. static const struct efx_farch_register_test siena_register_tests[] = {
  58. { FR_AZ_ADR_REGION,
  59. EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
  60. { FR_CZ_USR_EV_CFG,
  61. EFX_OWORD32(0x000103FF, 0x00000000, 0x00000000, 0x00000000) },
  62. { FR_AZ_RX_CFG,
  63. EFX_OWORD32(0xFFFFFFFE, 0xFFFFFFFF, 0x0003FFFF, 0x00000000) },
  64. { FR_AZ_TX_CFG,
  65. EFX_OWORD32(0x7FFF0037, 0xFFFF8000, 0xFFFFFFFF, 0x03FFFFFF) },
  66. { FR_AZ_TX_RESERVED,
  67. EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
  68. { FR_AZ_SRM_TX_DC_CFG,
  69. EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
  70. { FR_AZ_RX_DC_CFG,
  71. EFX_OWORD32(0x00000003, 0x00000000, 0x00000000, 0x00000000) },
  72. { FR_AZ_RX_DC_PF_WM,
  73. EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
  74. { FR_BZ_DP_CTRL,
  75. EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
  76. { FR_BZ_RX_RSS_TKEY,
  77. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
  78. { FR_CZ_RX_RSS_IPV6_REG1,
  79. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
  80. { FR_CZ_RX_RSS_IPV6_REG2,
  81. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
  82. { FR_CZ_RX_RSS_IPV6_REG3,
  83. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0x00000007, 0x00000000) },
  84. };
  85. static int siena_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
  86. {
  87. enum reset_type reset_method = RESET_TYPE_ALL;
  88. int rc, rc2;
  89. efx_reset_down(efx, reset_method);
  90. /* Reset the chip immediately so that it is completely
  91. * quiescent regardless of what any VF driver does.
  92. */
  93. rc = efx_mcdi_reset(efx, reset_method);
  94. if (rc)
  95. goto out;
  96. tests->registers =
  97. efx_farch_test_registers(efx, siena_register_tests,
  98. ARRAY_SIZE(siena_register_tests))
  99. ? -1 : 1;
  100. rc = efx_mcdi_reset(efx, reset_method);
  101. out:
  102. rc2 = efx_reset_up(efx, reset_method, rc == 0);
  103. return rc ? rc : rc2;
  104. }
  105. /**************************************************************************
  106. *
  107. * PTP
  108. *
  109. **************************************************************************
  110. */
  111. static void siena_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
  112. {
  113. _efx_writed(efx, cpu_to_le32(host_time),
  114. FR_CZ_MC_TREG_SMEM + MC_SMEM_P0_PTP_TIME_OFST);
  115. }
  116. static int siena_ptp_set_ts_config(struct efx_nic *efx,
  117. struct hwtstamp_config *init)
  118. {
  119. int rc;
  120. switch (init->rx_filter) {
  121. case HWTSTAMP_FILTER_NONE:
  122. /* if TX timestamping is still requested then leave PTP on */
  123. return efx_ptp_change_mode(efx,
  124. init->tx_type != HWTSTAMP_TX_OFF,
  125. efx_ptp_get_mode(efx));
  126. case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
  127. case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
  128. case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
  129. init->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
  130. return efx_ptp_change_mode(efx, true, MC_CMD_PTP_MODE_V1);
  131. case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
  132. case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
  133. case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
  134. init->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
  135. rc = efx_ptp_change_mode(efx, true,
  136. MC_CMD_PTP_MODE_V2_ENHANCED);
  137. /* bug 33070 - old versions of the firmware do not support the
  138. * improved UUID filtering option. Similarly old versions of the
  139. * application do not expect it to be enabled. If the firmware
  140. * does not accept the enhanced mode, fall back to the standard
  141. * PTP v2 UUID filtering. */
  142. if (rc != 0)
  143. rc = efx_ptp_change_mode(efx, true, MC_CMD_PTP_MODE_V2);
  144. return rc;
  145. default:
  146. return -ERANGE;
  147. }
  148. }
  149. /**************************************************************************
  150. *
  151. * Device reset
  152. *
  153. **************************************************************************
  154. */
  155. static int siena_map_reset_flags(u32 *flags)
  156. {
  157. enum {
  158. SIENA_RESET_PORT = (ETH_RESET_DMA | ETH_RESET_FILTER |
  159. ETH_RESET_OFFLOAD | ETH_RESET_MAC |
  160. ETH_RESET_PHY),
  161. SIENA_RESET_MC = (SIENA_RESET_PORT |
  162. ETH_RESET_MGMT << ETH_RESET_SHARED_SHIFT),
  163. };
  164. if ((*flags & SIENA_RESET_MC) == SIENA_RESET_MC) {
  165. *flags &= ~SIENA_RESET_MC;
  166. return RESET_TYPE_WORLD;
  167. }
  168. if ((*flags & SIENA_RESET_PORT) == SIENA_RESET_PORT) {
  169. *flags &= ~SIENA_RESET_PORT;
  170. return RESET_TYPE_ALL;
  171. }
  172. /* no invisible reset implemented */
  173. return -EINVAL;
  174. }
  175. #ifdef CONFIG_EEH
  176. /* When a PCI device is isolated from the bus, a subsequent MMIO read is
  177. * required for the kernel EEH mechanisms to notice. As the Solarflare driver
  178. * was written to minimise MMIO read (for latency) then a periodic call to check
  179. * the EEH status of the device is required so that device recovery can happen
  180. * in a timely fashion.
  181. */
  182. static void siena_monitor(struct efx_nic *efx)
  183. {
  184. struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
  185. eeh_dev_check_failure(eehdev);
  186. }
  187. #endif
  188. static int siena_probe_nvconfig(struct efx_nic *efx)
  189. {
  190. u32 caps = 0;
  191. int rc;
  192. rc = efx_mcdi_get_board_cfg(efx, efx->net_dev->perm_addr, NULL, &caps);
  193. efx->timer_quantum_ns =
  194. (caps & (1 << MC_CMD_CAPABILITIES_TURBO_ACTIVE_LBN)) ?
  195. 3072 : 6144; /* 768 cycles */
  196. return rc;
  197. }
  198. static int siena_dimension_resources(struct efx_nic *efx)
  199. {
  200. /* Each port has a small block of internal SRAM dedicated to
  201. * the buffer table and descriptor caches. In theory we can
  202. * map both blocks to one port, but we don't.
  203. */
  204. efx_farch_dimension_resources(efx, FR_CZ_BUF_FULL_TBL_ROWS / 2);
  205. return 0;
  206. }
  207. static unsigned int siena_mem_map_size(struct efx_nic *efx)
  208. {
  209. return FR_CZ_MC_TREG_SMEM +
  210. FR_CZ_MC_TREG_SMEM_STEP * FR_CZ_MC_TREG_SMEM_ROWS;
  211. }
  212. static int siena_probe_nic(struct efx_nic *efx)
  213. {
  214. struct siena_nic_data *nic_data;
  215. efx_oword_t reg;
  216. int rc;
  217. /* Allocate storage for hardware specific data */
  218. nic_data = kzalloc(sizeof(struct siena_nic_data), GFP_KERNEL);
  219. if (!nic_data)
  220. return -ENOMEM;
  221. nic_data->efx = efx;
  222. efx->nic_data = nic_data;
  223. if (efx_farch_fpga_ver(efx) != 0) {
  224. netif_err(efx, probe, efx->net_dev,
  225. "Siena FPGA not supported\n");
  226. rc = -ENODEV;
  227. goto fail1;
  228. }
  229. efx->max_channels = EFX_MAX_CHANNELS;
  230. efx->max_tx_channels = EFX_MAX_CHANNELS;
  231. efx_reado(efx, &reg, FR_AZ_CS_DEBUG);
  232. efx->port_num = EFX_OWORD_FIELD(reg, FRF_CZ_CS_PORT_NUM) - 1;
  233. rc = efx_mcdi_init(efx);
  234. if (rc)
  235. goto fail1;
  236. /* Now we can reset the NIC */
  237. rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
  238. if (rc) {
  239. netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
  240. goto fail3;
  241. }
  242. siena_init_wol(efx);
  243. /* Allocate memory for INT_KER */
  244. rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t),
  245. GFP_KERNEL);
  246. if (rc)
  247. goto fail4;
  248. BUG_ON(efx->irq_status.dma_addr & 0x0f);
  249. netif_dbg(efx, probe, efx->net_dev,
  250. "INT_KER at %llx (virt %p phys %llx)\n",
  251. (unsigned long long)efx->irq_status.dma_addr,
  252. efx->irq_status.addr,
  253. (unsigned long long)virt_to_phys(efx->irq_status.addr));
  254. /* Read in the non-volatile configuration */
  255. rc = siena_probe_nvconfig(efx);
  256. if (rc == -EINVAL) {
  257. netif_err(efx, probe, efx->net_dev,
  258. "NVRAM is invalid therefore using defaults\n");
  259. efx->phy_type = PHY_TYPE_NONE;
  260. efx->mdio.prtad = MDIO_PRTAD_NONE;
  261. } else if (rc) {
  262. goto fail5;
  263. }
  264. rc = efx_mcdi_mon_probe(efx);
  265. if (rc)
  266. goto fail5;
  267. #ifdef CONFIG_SFC_SRIOV
  268. efx_siena_sriov_probe(efx);
  269. #endif
  270. efx_ptp_defer_probe_with_channel(efx);
  271. return 0;
  272. fail5:
  273. efx_nic_free_buffer(efx, &efx->irq_status);
  274. fail4:
  275. fail3:
  276. efx_mcdi_fini(efx);
  277. fail1:
  278. kfree(efx->nic_data);
  279. return rc;
  280. }
  281. static int siena_rx_push_rss_config(struct efx_nic *efx, bool user,
  282. const u32 *rx_indir_table)
  283. {
  284. efx_oword_t temp;
  285. /* Set hash key for IPv4 */
  286. memcpy(&temp, efx->rx_hash_key, sizeof(temp));
  287. efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
  288. /* Enable IPv6 RSS */
  289. BUILD_BUG_ON(sizeof(efx->rx_hash_key) <
  290. 2 * sizeof(temp) + FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8 ||
  291. FRF_CZ_RX_RSS_IPV6_TKEY_HI_LBN != 0);
  292. memcpy(&temp, efx->rx_hash_key, sizeof(temp));
  293. efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG1);
  294. memcpy(&temp, efx->rx_hash_key + sizeof(temp), sizeof(temp));
  295. efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG2);
  296. EFX_POPULATE_OWORD_2(temp, FRF_CZ_RX_RSS_IPV6_THASH_ENABLE, 1,
  297. FRF_CZ_RX_RSS_IPV6_IP_THASH_ENABLE, 1);
  298. memcpy(&temp, efx->rx_hash_key + 2 * sizeof(temp),
  299. FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8);
  300. efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG3);
  301. memcpy(efx->rx_indir_table, rx_indir_table,
  302. sizeof(efx->rx_indir_table));
  303. efx_farch_rx_push_indir_table(efx);
  304. return 0;
  305. }
  306. /* This call performs hardware-specific global initialisation, such as
  307. * defining the descriptor cache sizes and number of RSS channels.
  308. * It does not set up any buffers, descriptor rings or event queues.
  309. */
  310. static int siena_init_nic(struct efx_nic *efx)
  311. {
  312. efx_oword_t temp;
  313. int rc;
  314. /* Recover from a failed assertion post-reset */
  315. rc = efx_mcdi_handle_assertion(efx);
  316. if (rc)
  317. return rc;
  318. /* Squash TX of packets of 16 bytes or less */
  319. efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
  320. EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
  321. efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
  322. /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
  323. * descriptors (which is bad).
  324. */
  325. efx_reado(efx, &temp, FR_AZ_TX_CFG);
  326. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
  327. EFX_SET_OWORD_FIELD(temp, FRF_CZ_TX_FILTER_EN_BIT, 1);
  328. efx_writeo(efx, &temp, FR_AZ_TX_CFG);
  329. efx_reado(efx, &temp, FR_AZ_RX_CFG);
  330. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_DESC_PUSH_EN, 0);
  331. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_INGR_EN, 1);
  332. /* Enable hash insertion. This is broken for the 'Falcon' hash
  333. * if IPv6 hashing is also enabled, so also select Toeplitz
  334. * TCP/IPv4 and IPv4 hashes. */
  335. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_HASH_INSRT_HDR, 1);
  336. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_HASH_ALG, 1);
  337. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_IP_HASH, 1);
  338. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_USR_BUF_SIZE,
  339. EFX_RX_USR_BUF_SIZE >> 5);
  340. efx_writeo(efx, &temp, FR_AZ_RX_CFG);
  341. siena_rx_push_rss_config(efx, false, efx->rx_indir_table);
  342. /* Enable event logging */
  343. rc = efx_mcdi_log_ctrl(efx, true, false, 0);
  344. if (rc)
  345. return rc;
  346. /* Set destination of both TX and RX Flush events */
  347. EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
  348. efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
  349. EFX_POPULATE_OWORD_1(temp, FRF_CZ_USREV_DIS, 1);
  350. efx_writeo(efx, &temp, FR_CZ_USR_EV_CFG);
  351. efx_farch_init_common(efx);
  352. return 0;
  353. }
  354. static void siena_remove_nic(struct efx_nic *efx)
  355. {
  356. efx_mcdi_mon_remove(efx);
  357. efx_nic_free_buffer(efx, &efx->irq_status);
  358. efx_mcdi_reset(efx, RESET_TYPE_ALL);
  359. efx_mcdi_fini(efx);
  360. /* Tear down the private nic state */
  361. kfree(efx->nic_data);
  362. efx->nic_data = NULL;
  363. }
  364. #define SIENA_DMA_STAT(ext_name, mcdi_name) \
  365. [SIENA_STAT_ ## ext_name] = \
  366. { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
  367. #define SIENA_OTHER_STAT(ext_name) \
  368. [SIENA_STAT_ ## ext_name] = { #ext_name, 0, 0 }
  369. #define GENERIC_SW_STAT(ext_name) \
  370. [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
  371. static const struct efx_hw_stat_desc siena_stat_desc[SIENA_STAT_COUNT] = {
  372. SIENA_DMA_STAT(tx_bytes, TX_BYTES),
  373. SIENA_OTHER_STAT(tx_good_bytes),
  374. SIENA_DMA_STAT(tx_bad_bytes, TX_BAD_BYTES),
  375. SIENA_DMA_STAT(tx_packets, TX_PKTS),
  376. SIENA_DMA_STAT(tx_bad, TX_BAD_FCS_PKTS),
  377. SIENA_DMA_STAT(tx_pause, TX_PAUSE_PKTS),
  378. SIENA_DMA_STAT(tx_control, TX_CONTROL_PKTS),
  379. SIENA_DMA_STAT(tx_unicast, TX_UNICAST_PKTS),
  380. SIENA_DMA_STAT(tx_multicast, TX_MULTICAST_PKTS),
  381. SIENA_DMA_STAT(tx_broadcast, TX_BROADCAST_PKTS),
  382. SIENA_DMA_STAT(tx_lt64, TX_LT64_PKTS),
  383. SIENA_DMA_STAT(tx_64, TX_64_PKTS),
  384. SIENA_DMA_STAT(tx_65_to_127, TX_65_TO_127_PKTS),
  385. SIENA_DMA_STAT(tx_128_to_255, TX_128_TO_255_PKTS),
  386. SIENA_DMA_STAT(tx_256_to_511, TX_256_TO_511_PKTS),
  387. SIENA_DMA_STAT(tx_512_to_1023, TX_512_TO_1023_PKTS),
  388. SIENA_DMA_STAT(tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
  389. SIENA_DMA_STAT(tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
  390. SIENA_DMA_STAT(tx_gtjumbo, TX_GTJUMBO_PKTS),
  391. SIENA_OTHER_STAT(tx_collision),
  392. SIENA_DMA_STAT(tx_single_collision, TX_SINGLE_COLLISION_PKTS),
  393. SIENA_DMA_STAT(tx_multiple_collision, TX_MULTIPLE_COLLISION_PKTS),
  394. SIENA_DMA_STAT(tx_excessive_collision, TX_EXCESSIVE_COLLISION_PKTS),
  395. SIENA_DMA_STAT(tx_deferred, TX_DEFERRED_PKTS),
  396. SIENA_DMA_STAT(tx_late_collision, TX_LATE_COLLISION_PKTS),
  397. SIENA_DMA_STAT(tx_excessive_deferred, TX_EXCESSIVE_DEFERRED_PKTS),
  398. SIENA_DMA_STAT(tx_non_tcpudp, TX_NON_TCPUDP_PKTS),
  399. SIENA_DMA_STAT(tx_mac_src_error, TX_MAC_SRC_ERR_PKTS),
  400. SIENA_DMA_STAT(tx_ip_src_error, TX_IP_SRC_ERR_PKTS),
  401. SIENA_DMA_STAT(rx_bytes, RX_BYTES),
  402. SIENA_OTHER_STAT(rx_good_bytes),
  403. SIENA_DMA_STAT(rx_bad_bytes, RX_BAD_BYTES),
  404. SIENA_DMA_STAT(rx_packets, RX_PKTS),
  405. SIENA_DMA_STAT(rx_good, RX_GOOD_PKTS),
  406. SIENA_DMA_STAT(rx_bad, RX_BAD_FCS_PKTS),
  407. SIENA_DMA_STAT(rx_pause, RX_PAUSE_PKTS),
  408. SIENA_DMA_STAT(rx_control, RX_CONTROL_PKTS),
  409. SIENA_DMA_STAT(rx_unicast, RX_UNICAST_PKTS),
  410. SIENA_DMA_STAT(rx_multicast, RX_MULTICAST_PKTS),
  411. SIENA_DMA_STAT(rx_broadcast, RX_BROADCAST_PKTS),
  412. SIENA_DMA_STAT(rx_lt64, RX_UNDERSIZE_PKTS),
  413. SIENA_DMA_STAT(rx_64, RX_64_PKTS),
  414. SIENA_DMA_STAT(rx_65_to_127, RX_65_TO_127_PKTS),
  415. SIENA_DMA_STAT(rx_128_to_255, RX_128_TO_255_PKTS),
  416. SIENA_DMA_STAT(rx_256_to_511, RX_256_TO_511_PKTS),
  417. SIENA_DMA_STAT(rx_512_to_1023, RX_512_TO_1023_PKTS),
  418. SIENA_DMA_STAT(rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
  419. SIENA_DMA_STAT(rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
  420. SIENA_DMA_STAT(rx_gtjumbo, RX_GTJUMBO_PKTS),
  421. SIENA_DMA_STAT(rx_bad_gtjumbo, RX_JABBER_PKTS),
  422. SIENA_DMA_STAT(rx_overflow, RX_OVERFLOW_PKTS),
  423. SIENA_DMA_STAT(rx_false_carrier, RX_FALSE_CARRIER_PKTS),
  424. SIENA_DMA_STAT(rx_symbol_error, RX_SYMBOL_ERROR_PKTS),
  425. SIENA_DMA_STAT(rx_align_error, RX_ALIGN_ERROR_PKTS),
  426. SIENA_DMA_STAT(rx_length_error, RX_LENGTH_ERROR_PKTS),
  427. SIENA_DMA_STAT(rx_internal_error, RX_INTERNAL_ERROR_PKTS),
  428. SIENA_DMA_STAT(rx_nodesc_drop_cnt, RX_NODESC_DROPS),
  429. GENERIC_SW_STAT(rx_nodesc_trunc),
  430. GENERIC_SW_STAT(rx_noskb_drops),
  431. };
  432. static const unsigned long siena_stat_mask[] = {
  433. [0 ... BITS_TO_LONGS(SIENA_STAT_COUNT) - 1] = ~0UL,
  434. };
  435. static size_t siena_describe_nic_stats(struct efx_nic *efx, u8 *names)
  436. {
  437. return efx_nic_describe_stats(siena_stat_desc, SIENA_STAT_COUNT,
  438. siena_stat_mask, names);
  439. }
  440. static int siena_try_update_nic_stats(struct efx_nic *efx)
  441. {
  442. struct siena_nic_data *nic_data = efx->nic_data;
  443. u64 *stats = nic_data->stats;
  444. __le64 *dma_stats;
  445. __le64 generation_start, generation_end;
  446. dma_stats = efx->stats_buffer.addr;
  447. generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
  448. if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
  449. return 0;
  450. rmb();
  451. efx_nic_update_stats(siena_stat_desc, SIENA_STAT_COUNT, siena_stat_mask,
  452. stats, efx->stats_buffer.addr, false);
  453. rmb();
  454. generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
  455. if (generation_end != generation_start)
  456. return -EAGAIN;
  457. /* Update derived statistics */
  458. efx_nic_fix_nodesc_drop_stat(efx,
  459. &stats[SIENA_STAT_rx_nodesc_drop_cnt]);
  460. efx_update_diff_stat(&stats[SIENA_STAT_tx_good_bytes],
  461. stats[SIENA_STAT_tx_bytes] -
  462. stats[SIENA_STAT_tx_bad_bytes]);
  463. stats[SIENA_STAT_tx_collision] =
  464. stats[SIENA_STAT_tx_single_collision] +
  465. stats[SIENA_STAT_tx_multiple_collision] +
  466. stats[SIENA_STAT_tx_excessive_collision] +
  467. stats[SIENA_STAT_tx_late_collision];
  468. efx_update_diff_stat(&stats[SIENA_STAT_rx_good_bytes],
  469. stats[SIENA_STAT_rx_bytes] -
  470. stats[SIENA_STAT_rx_bad_bytes]);
  471. efx_update_sw_stats(efx, stats);
  472. return 0;
  473. }
  474. static size_t siena_update_nic_stats(struct efx_nic *efx, u64 *full_stats,
  475. struct rtnl_link_stats64 *core_stats)
  476. {
  477. struct siena_nic_data *nic_data = efx->nic_data;
  478. u64 *stats = nic_data->stats;
  479. int retry;
  480. /* If we're unlucky enough to read statistics wduring the DMA, wait
  481. * up to 10ms for it to finish (typically takes <500us) */
  482. for (retry = 0; retry < 100; ++retry) {
  483. if (siena_try_update_nic_stats(efx) == 0)
  484. break;
  485. udelay(100);
  486. }
  487. if (full_stats)
  488. memcpy(full_stats, stats, sizeof(u64) * SIENA_STAT_COUNT);
  489. if (core_stats) {
  490. core_stats->rx_packets = stats[SIENA_STAT_rx_packets];
  491. core_stats->tx_packets = stats[SIENA_STAT_tx_packets];
  492. core_stats->rx_bytes = stats[SIENA_STAT_rx_bytes];
  493. core_stats->tx_bytes = stats[SIENA_STAT_tx_bytes];
  494. core_stats->rx_dropped = stats[SIENA_STAT_rx_nodesc_drop_cnt] +
  495. stats[GENERIC_STAT_rx_nodesc_trunc] +
  496. stats[GENERIC_STAT_rx_noskb_drops];
  497. core_stats->multicast = stats[SIENA_STAT_rx_multicast];
  498. core_stats->collisions = stats[SIENA_STAT_tx_collision];
  499. core_stats->rx_length_errors =
  500. stats[SIENA_STAT_rx_gtjumbo] +
  501. stats[SIENA_STAT_rx_length_error];
  502. core_stats->rx_crc_errors = stats[SIENA_STAT_rx_bad];
  503. core_stats->rx_frame_errors = stats[SIENA_STAT_rx_align_error];
  504. core_stats->rx_fifo_errors = stats[SIENA_STAT_rx_overflow];
  505. core_stats->tx_window_errors =
  506. stats[SIENA_STAT_tx_late_collision];
  507. core_stats->rx_errors = (core_stats->rx_length_errors +
  508. core_stats->rx_crc_errors +
  509. core_stats->rx_frame_errors +
  510. stats[SIENA_STAT_rx_symbol_error]);
  511. core_stats->tx_errors = (core_stats->tx_window_errors +
  512. stats[SIENA_STAT_tx_bad]);
  513. }
  514. return SIENA_STAT_COUNT;
  515. }
  516. static int siena_mac_reconfigure(struct efx_nic *efx)
  517. {
  518. MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_MCAST_HASH_IN_LEN);
  519. int rc;
  520. BUILD_BUG_ON(MC_CMD_SET_MCAST_HASH_IN_LEN !=
  521. MC_CMD_SET_MCAST_HASH_IN_HASH0_OFST +
  522. sizeof(efx->multicast_hash));
  523. efx_farch_filter_sync_rx_mode(efx);
  524. WARN_ON(!mutex_is_locked(&efx->mac_lock));
  525. rc = efx_mcdi_set_mac(efx);
  526. if (rc != 0)
  527. return rc;
  528. memcpy(MCDI_PTR(inbuf, SET_MCAST_HASH_IN_HASH0),
  529. efx->multicast_hash.byte, sizeof(efx->multicast_hash));
  530. return efx_mcdi_rpc(efx, MC_CMD_SET_MCAST_HASH,
  531. inbuf, sizeof(inbuf), NULL, 0, NULL);
  532. }
  533. /**************************************************************************
  534. *
  535. * Wake on LAN
  536. *
  537. **************************************************************************
  538. */
  539. static void siena_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
  540. {
  541. struct siena_nic_data *nic_data = efx->nic_data;
  542. wol->supported = WAKE_MAGIC;
  543. if (nic_data->wol_filter_id != -1)
  544. wol->wolopts = WAKE_MAGIC;
  545. else
  546. wol->wolopts = 0;
  547. memset(&wol->sopass, 0, sizeof(wol->sopass));
  548. }
  549. static int siena_set_wol(struct efx_nic *efx, u32 type)
  550. {
  551. struct siena_nic_data *nic_data = efx->nic_data;
  552. int rc;
  553. if (type & ~WAKE_MAGIC)
  554. return -EINVAL;
  555. if (type & WAKE_MAGIC) {
  556. if (nic_data->wol_filter_id != -1)
  557. efx_mcdi_wol_filter_remove(efx,
  558. nic_data->wol_filter_id);
  559. rc = efx_mcdi_wol_filter_set_magic(efx, efx->net_dev->dev_addr,
  560. &nic_data->wol_filter_id);
  561. if (rc)
  562. goto fail;
  563. pci_wake_from_d3(efx->pci_dev, true);
  564. } else {
  565. rc = efx_mcdi_wol_filter_reset(efx);
  566. nic_data->wol_filter_id = -1;
  567. pci_wake_from_d3(efx->pci_dev, false);
  568. if (rc)
  569. goto fail;
  570. }
  571. return 0;
  572. fail:
  573. netif_err(efx, hw, efx->net_dev, "%s failed: type=%d rc=%d\n",
  574. __func__, type, rc);
  575. return rc;
  576. }
  577. static void siena_init_wol(struct efx_nic *efx)
  578. {
  579. struct siena_nic_data *nic_data = efx->nic_data;
  580. int rc;
  581. rc = efx_mcdi_wol_filter_get_magic(efx, &nic_data->wol_filter_id);
  582. if (rc != 0) {
  583. /* If it failed, attempt to get into a synchronised
  584. * state with MC by resetting any set WoL filters */
  585. efx_mcdi_wol_filter_reset(efx);
  586. nic_data->wol_filter_id = -1;
  587. } else if (nic_data->wol_filter_id != -1) {
  588. pci_wake_from_d3(efx->pci_dev, true);
  589. }
  590. }
  591. /**************************************************************************
  592. *
  593. * MCDI
  594. *
  595. **************************************************************************
  596. */
  597. #define MCDI_PDU(efx) \
  598. (efx_port_num(efx) ? MC_SMEM_P1_PDU_OFST : MC_SMEM_P0_PDU_OFST)
  599. #define MCDI_DOORBELL(efx) \
  600. (efx_port_num(efx) ? MC_SMEM_P1_DOORBELL_OFST : MC_SMEM_P0_DOORBELL_OFST)
  601. #define MCDI_STATUS(efx) \
  602. (efx_port_num(efx) ? MC_SMEM_P1_STATUS_OFST : MC_SMEM_P0_STATUS_OFST)
  603. static void siena_mcdi_request(struct efx_nic *efx,
  604. const efx_dword_t *hdr, size_t hdr_len,
  605. const efx_dword_t *sdu, size_t sdu_len)
  606. {
  607. unsigned pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx);
  608. unsigned doorbell = FR_CZ_MC_TREG_SMEM + MCDI_DOORBELL(efx);
  609. unsigned int i;
  610. unsigned int inlen_dw = DIV_ROUND_UP(sdu_len, 4);
  611. EFX_BUG_ON_PARANOID(hdr_len != 4);
  612. efx_writed(efx, hdr, pdu);
  613. for (i = 0; i < inlen_dw; i++)
  614. efx_writed(efx, &sdu[i], pdu + hdr_len + 4 * i);
  615. /* Ensure the request is written out before the doorbell */
  616. wmb();
  617. /* ring the doorbell with a distinctive value */
  618. _efx_writed(efx, (__force __le32) 0x45789abc, doorbell);
  619. }
  620. static bool siena_mcdi_poll_response(struct efx_nic *efx)
  621. {
  622. unsigned int pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx);
  623. efx_dword_t hdr;
  624. efx_readd(efx, &hdr, pdu);
  625. /* All 1's indicates that shared memory is in reset (and is
  626. * not a valid hdr). Wait for it to come out reset before
  627. * completing the command
  628. */
  629. return EFX_DWORD_FIELD(hdr, EFX_DWORD_0) != 0xffffffff &&
  630. EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
  631. }
  632. static void siena_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
  633. size_t offset, size_t outlen)
  634. {
  635. unsigned int pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx);
  636. unsigned int outlen_dw = DIV_ROUND_UP(outlen, 4);
  637. int i;
  638. for (i = 0; i < outlen_dw; i++)
  639. efx_readd(efx, &outbuf[i], pdu + offset + 4 * i);
  640. }
  641. static int siena_mcdi_poll_reboot(struct efx_nic *efx)
  642. {
  643. struct siena_nic_data *nic_data = efx->nic_data;
  644. unsigned int addr = FR_CZ_MC_TREG_SMEM + MCDI_STATUS(efx);
  645. efx_dword_t reg;
  646. u32 value;
  647. efx_readd(efx, &reg, addr);
  648. value = EFX_DWORD_FIELD(reg, EFX_DWORD_0);
  649. if (value == 0)
  650. return 0;
  651. EFX_ZERO_DWORD(reg);
  652. efx_writed(efx, &reg, addr);
  653. /* MAC statistics have been cleared on the NIC; clear the local
  654. * copies that we update with efx_update_diff_stat().
  655. */
  656. nic_data->stats[SIENA_STAT_tx_good_bytes] = 0;
  657. nic_data->stats[SIENA_STAT_rx_good_bytes] = 0;
  658. if (value == MC_STATUS_DWORD_ASSERT)
  659. return -EINTR;
  660. else
  661. return -EIO;
  662. }
  663. /**************************************************************************
  664. *
  665. * MTD
  666. *
  667. **************************************************************************
  668. */
  669. #ifdef CONFIG_SFC_MTD
  670. struct siena_nvram_type_info {
  671. int port;
  672. const char *name;
  673. };
  674. static const struct siena_nvram_type_info siena_nvram_types[] = {
  675. [MC_CMD_NVRAM_TYPE_DISABLED_CALLISTO] = { 0, "sfc_dummy_phy" },
  676. [MC_CMD_NVRAM_TYPE_MC_FW] = { 0, "sfc_mcfw" },
  677. [MC_CMD_NVRAM_TYPE_MC_FW_BACKUP] = { 0, "sfc_mcfw_backup" },
  678. [MC_CMD_NVRAM_TYPE_STATIC_CFG_PORT0] = { 0, "sfc_static_cfg" },
  679. [MC_CMD_NVRAM_TYPE_STATIC_CFG_PORT1] = { 1, "sfc_static_cfg" },
  680. [MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT0] = { 0, "sfc_dynamic_cfg" },
  681. [MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT1] = { 1, "sfc_dynamic_cfg" },
  682. [MC_CMD_NVRAM_TYPE_EXP_ROM] = { 0, "sfc_exp_rom" },
  683. [MC_CMD_NVRAM_TYPE_EXP_ROM_CFG_PORT0] = { 0, "sfc_exp_rom_cfg" },
  684. [MC_CMD_NVRAM_TYPE_EXP_ROM_CFG_PORT1] = { 1, "sfc_exp_rom_cfg" },
  685. [MC_CMD_NVRAM_TYPE_PHY_PORT0] = { 0, "sfc_phy_fw" },
  686. [MC_CMD_NVRAM_TYPE_PHY_PORT1] = { 1, "sfc_phy_fw" },
  687. [MC_CMD_NVRAM_TYPE_FPGA] = { 0, "sfc_fpga" },
  688. };
  689. static int siena_mtd_probe_partition(struct efx_nic *efx,
  690. struct efx_mcdi_mtd_partition *part,
  691. unsigned int type)
  692. {
  693. const struct siena_nvram_type_info *info;
  694. size_t size, erase_size;
  695. bool protected;
  696. int rc;
  697. if (type >= ARRAY_SIZE(siena_nvram_types) ||
  698. siena_nvram_types[type].name == NULL)
  699. return -ENODEV;
  700. info = &siena_nvram_types[type];
  701. if (info->port != efx_port_num(efx))
  702. return -ENODEV;
  703. rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
  704. if (rc)
  705. return rc;
  706. if (protected)
  707. return -ENODEV; /* hide it */
  708. part->nvram_type = type;
  709. part->common.dev_type_name = "Siena NVRAM manager";
  710. part->common.type_name = info->name;
  711. part->common.mtd.type = MTD_NORFLASH;
  712. part->common.mtd.flags = MTD_CAP_NORFLASH;
  713. part->common.mtd.size = size;
  714. part->common.mtd.erasesize = erase_size;
  715. return 0;
  716. }
  717. static int siena_mtd_get_fw_subtypes(struct efx_nic *efx,
  718. struct efx_mcdi_mtd_partition *parts,
  719. size_t n_parts)
  720. {
  721. uint16_t fw_subtype_list[
  722. MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM];
  723. size_t i;
  724. int rc;
  725. rc = efx_mcdi_get_board_cfg(efx, NULL, fw_subtype_list, NULL);
  726. if (rc)
  727. return rc;
  728. for (i = 0; i < n_parts; i++)
  729. parts[i].fw_subtype = fw_subtype_list[parts[i].nvram_type];
  730. return 0;
  731. }
  732. static int siena_mtd_probe(struct efx_nic *efx)
  733. {
  734. struct efx_mcdi_mtd_partition *parts;
  735. u32 nvram_types;
  736. unsigned int type;
  737. size_t n_parts;
  738. int rc;
  739. ASSERT_RTNL();
  740. rc = efx_mcdi_nvram_types(efx, &nvram_types);
  741. if (rc)
  742. return rc;
  743. parts = kcalloc(hweight32(nvram_types), sizeof(*parts), GFP_KERNEL);
  744. if (!parts)
  745. return -ENOMEM;
  746. type = 0;
  747. n_parts = 0;
  748. while (nvram_types != 0) {
  749. if (nvram_types & 1) {
  750. rc = siena_mtd_probe_partition(efx, &parts[n_parts],
  751. type);
  752. if (rc == 0)
  753. n_parts++;
  754. else if (rc != -ENODEV)
  755. goto fail;
  756. }
  757. type++;
  758. nvram_types >>= 1;
  759. }
  760. rc = siena_mtd_get_fw_subtypes(efx, parts, n_parts);
  761. if (rc)
  762. goto fail;
  763. rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
  764. fail:
  765. if (rc)
  766. kfree(parts);
  767. return rc;
  768. }
  769. #endif /* CONFIG_SFC_MTD */
  770. /**************************************************************************
  771. *
  772. * Revision-dependent attributes used by efx.c and nic.c
  773. *
  774. **************************************************************************
  775. */
  776. const struct efx_nic_type siena_a0_nic_type = {
  777. .is_vf = false,
  778. .mem_bar = EFX_MEM_BAR,
  779. .mem_map_size = siena_mem_map_size,
  780. .probe = siena_probe_nic,
  781. .remove = siena_remove_nic,
  782. .init = siena_init_nic,
  783. .dimension_resources = siena_dimension_resources,
  784. .fini = efx_port_dummy_op_void,
  785. #ifdef CONFIG_EEH
  786. .monitor = siena_monitor,
  787. #else
  788. .monitor = NULL,
  789. #endif
  790. .map_reset_reason = efx_mcdi_map_reset_reason,
  791. .map_reset_flags = siena_map_reset_flags,
  792. .reset = efx_mcdi_reset,
  793. .probe_port = efx_mcdi_port_probe,
  794. .remove_port = efx_mcdi_port_remove,
  795. .fini_dmaq = efx_farch_fini_dmaq,
  796. .prepare_flush = siena_prepare_flush,
  797. .finish_flush = siena_finish_flush,
  798. .prepare_flr = efx_port_dummy_op_void,
  799. .finish_flr = efx_farch_finish_flr,
  800. .describe_stats = siena_describe_nic_stats,
  801. .update_stats = siena_update_nic_stats,
  802. .start_stats = efx_mcdi_mac_start_stats,
  803. .pull_stats = efx_mcdi_mac_pull_stats,
  804. .stop_stats = efx_mcdi_mac_stop_stats,
  805. .set_id_led = efx_mcdi_set_id_led,
  806. .push_irq_moderation = siena_push_irq_moderation,
  807. .reconfigure_mac = siena_mac_reconfigure,
  808. .check_mac_fault = efx_mcdi_mac_check_fault,
  809. .reconfigure_port = efx_mcdi_port_reconfigure,
  810. .get_wol = siena_get_wol,
  811. .set_wol = siena_set_wol,
  812. .resume_wol = siena_init_wol,
  813. .test_chip = siena_test_chip,
  814. .test_nvram = efx_mcdi_nvram_test_all,
  815. .mcdi_request = siena_mcdi_request,
  816. .mcdi_poll_response = siena_mcdi_poll_response,
  817. .mcdi_read_response = siena_mcdi_read_response,
  818. .mcdi_poll_reboot = siena_mcdi_poll_reboot,
  819. .irq_enable_master = efx_farch_irq_enable_master,
  820. .irq_test_generate = efx_farch_irq_test_generate,
  821. .irq_disable_non_ev = efx_farch_irq_disable_master,
  822. .irq_handle_msi = efx_farch_msi_interrupt,
  823. .irq_handle_legacy = efx_farch_legacy_interrupt,
  824. .tx_probe = efx_farch_tx_probe,
  825. .tx_init = efx_farch_tx_init,
  826. .tx_remove = efx_farch_tx_remove,
  827. .tx_write = efx_farch_tx_write,
  828. .rx_push_rss_config = siena_rx_push_rss_config,
  829. .rx_probe = efx_farch_rx_probe,
  830. .rx_init = efx_farch_rx_init,
  831. .rx_remove = efx_farch_rx_remove,
  832. .rx_write = efx_farch_rx_write,
  833. .rx_defer_refill = efx_farch_rx_defer_refill,
  834. .ev_probe = efx_farch_ev_probe,
  835. .ev_init = efx_farch_ev_init,
  836. .ev_fini = efx_farch_ev_fini,
  837. .ev_remove = efx_farch_ev_remove,
  838. .ev_process = efx_farch_ev_process,
  839. .ev_read_ack = efx_farch_ev_read_ack,
  840. .ev_test_generate = efx_farch_ev_test_generate,
  841. .filter_table_probe = efx_farch_filter_table_probe,
  842. .filter_table_restore = efx_farch_filter_table_restore,
  843. .filter_table_remove = efx_farch_filter_table_remove,
  844. .filter_update_rx_scatter = efx_farch_filter_update_rx_scatter,
  845. .filter_insert = efx_farch_filter_insert,
  846. .filter_remove_safe = efx_farch_filter_remove_safe,
  847. .filter_get_safe = efx_farch_filter_get_safe,
  848. .filter_clear_rx = efx_farch_filter_clear_rx,
  849. .filter_count_rx_used = efx_farch_filter_count_rx_used,
  850. .filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
  851. .filter_get_rx_ids = efx_farch_filter_get_rx_ids,
  852. #ifdef CONFIG_RFS_ACCEL
  853. .filter_rfs_insert = efx_farch_filter_rfs_insert,
  854. .filter_rfs_expire_one = efx_farch_filter_rfs_expire_one,
  855. #endif
  856. #ifdef CONFIG_SFC_MTD
  857. .mtd_probe = siena_mtd_probe,
  858. .mtd_rename = efx_mcdi_mtd_rename,
  859. .mtd_read = efx_mcdi_mtd_read,
  860. .mtd_erase = efx_mcdi_mtd_erase,
  861. .mtd_write = efx_mcdi_mtd_write,
  862. .mtd_sync = efx_mcdi_mtd_sync,
  863. #endif
  864. .ptp_write_host_time = siena_ptp_write_host_time,
  865. .ptp_set_ts_config = siena_ptp_set_ts_config,
  866. #ifdef CONFIG_SFC_SRIOV
  867. .sriov_configure = efx_siena_sriov_configure,
  868. .sriov_init = efx_siena_sriov_init,
  869. .sriov_fini = efx_siena_sriov_fini,
  870. .sriov_wanted = efx_siena_sriov_wanted,
  871. .sriov_reset = efx_siena_sriov_reset,
  872. .sriov_flr = efx_siena_sriov_flr,
  873. .sriov_set_vf_mac = efx_siena_sriov_set_vf_mac,
  874. .sriov_set_vf_vlan = efx_siena_sriov_set_vf_vlan,
  875. .sriov_set_vf_spoofchk = efx_siena_sriov_set_vf_spoofchk,
  876. .sriov_get_vf_config = efx_siena_sriov_get_vf_config,
  877. .vswitching_probe = efx_port_dummy_op_int,
  878. .vswitching_restore = efx_port_dummy_op_int,
  879. .vswitching_remove = efx_port_dummy_op_void,
  880. .set_mac_address = efx_siena_sriov_mac_address_changed,
  881. #endif
  882. .revision = EFX_REV_SIENA_A0,
  883. .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
  884. .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
  885. .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
  886. .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
  887. .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
  888. .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
  889. .rx_prefix_size = FS_BZ_RX_PREFIX_SIZE,
  890. .rx_hash_offset = FS_BZ_RX_PREFIX_HASH_OFST,
  891. .rx_buffer_padding = 0,
  892. .can_rx_scatter = true,
  893. .max_interrupt_mode = EFX_INT_MODE_MSIX,
  894. .timer_period_max = 1 << FRF_CZ_TC_TIMER_VAL_WIDTH,
  895. .offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
  896. NETIF_F_RXHASH | NETIF_F_NTUPLE),
  897. .mcdi_max_ver = 1,
  898. .max_rx_ip_filters = FR_BZ_RX_FILTER_TBL0_ROWS,
  899. .hwtstamp_filters = (1 << HWTSTAMP_FILTER_NONE |
  900. 1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT |
  901. 1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT),
  902. };