bcmsdh.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382
  1. /*
  2. * Copyright (c) 2010 Broadcom Corporation
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  11. * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
  13. * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
  14. * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. /* ****************** SDIO CARD Interface Functions **************************/
  17. #include <linux/types.h>
  18. #include <linux/netdevice.h>
  19. #include <linux/pci.h>
  20. #include <linux/pci_ids.h>
  21. #include <linux/sched.h>
  22. #include <linux/completion.h>
  23. #include <linux/scatterlist.h>
  24. #include <linux/mmc/sdio.h>
  25. #include <linux/mmc/core.h>
  26. #include <linux/mmc/sdio_func.h>
  27. #include <linux/mmc/card.h>
  28. #include <linux/mmc/host.h>
  29. #include <linux/platform_device.h>
  30. #include <linux/platform_data/brcmfmac-sdio.h>
  31. #include <linux/pm_runtime.h>
  32. #include <linux/suspend.h>
  33. #include <linux/errno.h>
  34. #include <linux/module.h>
  35. #include <linux/acpi.h>
  36. #include <net/cfg80211.h>
  37. #include <defs.h>
  38. #include <brcm_hw_ids.h>
  39. #include <brcmu_utils.h>
  40. #include <brcmu_wifi.h>
  41. #include <chipcommon.h>
  42. #include <soc.h>
  43. #include "chip.h"
  44. #include "bus.h"
  45. #include "debug.h"
  46. #include "sdio.h"
  47. #include "of.h"
  48. #define SDIOH_API_ACCESS_RETRY_LIMIT 2
  49. #define DMA_ALIGN_MASK 0x03
  50. #define SDIO_FUNC1_BLOCKSIZE 64
  51. #define SDIO_FUNC2_BLOCKSIZE 512
  52. /* Maximum milliseconds to wait for F2 to come up */
  53. #define SDIO_WAIT_F2RDY 3000
  54. #define BRCMF_DEFAULT_TXGLOM_SIZE 32 /* max tx frames in glom chain */
  55. #define BRCMF_DEFAULT_RXGLOM_SIZE 32 /* max rx frames in glom chain */
  56. struct brcmf_sdiod_freezer {
  57. atomic_t freezing;
  58. atomic_t thread_count;
  59. u32 frozen_count;
  60. wait_queue_head_t thread_freeze;
  61. struct completion resumed;
  62. };
  63. static int brcmf_sdiod_txglomsz = BRCMF_DEFAULT_TXGLOM_SIZE;
  64. module_param_named(txglomsz, brcmf_sdiod_txglomsz, int, 0);
  65. MODULE_PARM_DESC(txglomsz, "maximum tx packet chain size [SDIO]");
  66. static irqreturn_t brcmf_sdiod_oob_irqhandler(int irq, void *dev_id)
  67. {
  68. struct brcmf_bus *bus_if = dev_get_drvdata(dev_id);
  69. struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio;
  70. brcmf_dbg(INTR, "OOB intr triggered\n");
  71. /* out-of-band interrupt is level-triggered which won't
  72. * be cleared until dpc
  73. */
  74. if (sdiodev->irq_en) {
  75. disable_irq_nosync(irq);
  76. sdiodev->irq_en = false;
  77. }
  78. brcmf_sdio_isr(sdiodev->bus);
  79. return IRQ_HANDLED;
  80. }
  81. static void brcmf_sdiod_ib_irqhandler(struct sdio_func *func)
  82. {
  83. struct brcmf_bus *bus_if = dev_get_drvdata(&func->dev);
  84. struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio;
  85. brcmf_dbg(INTR, "IB intr triggered\n");
  86. brcmf_sdio_isr(sdiodev->bus);
  87. }
  88. /* dummy handler for SDIO function 2 interrupt */
  89. static void brcmf_sdiod_dummy_irqhandler(struct sdio_func *func)
  90. {
  91. }
  92. int brcmf_sdiod_intr_register(struct brcmf_sdio_dev *sdiodev)
  93. {
  94. int ret = 0;
  95. u8 data;
  96. u32 addr, gpiocontrol;
  97. unsigned long flags;
  98. if ((sdiodev->pdata) && (sdiodev->pdata->oob_irq_supported)) {
  99. brcmf_dbg(SDIO, "Enter, register OOB IRQ %d\n",
  100. sdiodev->pdata->oob_irq_nr);
  101. ret = request_irq(sdiodev->pdata->oob_irq_nr,
  102. brcmf_sdiod_oob_irqhandler,
  103. sdiodev->pdata->oob_irq_flags,
  104. "brcmf_oob_intr",
  105. &sdiodev->func[1]->dev);
  106. if (ret != 0) {
  107. brcmf_err("request_irq failed %d\n", ret);
  108. return ret;
  109. }
  110. sdiodev->oob_irq_requested = true;
  111. spin_lock_init(&sdiodev->irq_en_lock);
  112. spin_lock_irqsave(&sdiodev->irq_en_lock, flags);
  113. sdiodev->irq_en = true;
  114. spin_unlock_irqrestore(&sdiodev->irq_en_lock, flags);
  115. ret = enable_irq_wake(sdiodev->pdata->oob_irq_nr);
  116. if (ret != 0) {
  117. brcmf_err("enable_irq_wake failed %d\n", ret);
  118. return ret;
  119. }
  120. sdiodev->irq_wake = true;
  121. sdio_claim_host(sdiodev->func[1]);
  122. if (sdiodev->bus_if->chip == BRCM_CC_43362_CHIP_ID) {
  123. /* assign GPIO to SDIO core */
  124. addr = CORE_CC_REG(SI_ENUM_BASE, gpiocontrol);
  125. gpiocontrol = brcmf_sdiod_regrl(sdiodev, addr, &ret);
  126. gpiocontrol |= 0x2;
  127. brcmf_sdiod_regwl(sdiodev, addr, gpiocontrol, &ret);
  128. brcmf_sdiod_regwb(sdiodev, SBSDIO_GPIO_SELECT, 0xf,
  129. &ret);
  130. brcmf_sdiod_regwb(sdiodev, SBSDIO_GPIO_OUT, 0, &ret);
  131. brcmf_sdiod_regwb(sdiodev, SBSDIO_GPIO_EN, 0x2, &ret);
  132. }
  133. /* must configure SDIO_CCCR_IENx to enable irq */
  134. data = brcmf_sdiod_regrb(sdiodev, SDIO_CCCR_IENx, &ret);
  135. data |= 1 << SDIO_FUNC_1 | 1 << SDIO_FUNC_2 | 1;
  136. brcmf_sdiod_regwb(sdiodev, SDIO_CCCR_IENx, data, &ret);
  137. /* redirect, configure and enable io for interrupt signal */
  138. data = SDIO_SEPINT_MASK | SDIO_SEPINT_OE;
  139. if (sdiodev->pdata->oob_irq_flags & IRQF_TRIGGER_HIGH)
  140. data |= SDIO_SEPINT_ACT_HI;
  141. brcmf_sdiod_regwb(sdiodev, SDIO_CCCR_BRCM_SEPINT, data, &ret);
  142. sdio_release_host(sdiodev->func[1]);
  143. } else {
  144. brcmf_dbg(SDIO, "Entering\n");
  145. sdio_claim_host(sdiodev->func[1]);
  146. sdio_claim_irq(sdiodev->func[1], brcmf_sdiod_ib_irqhandler);
  147. sdio_claim_irq(sdiodev->func[2], brcmf_sdiod_dummy_irqhandler);
  148. sdio_release_host(sdiodev->func[1]);
  149. }
  150. return 0;
  151. }
  152. int brcmf_sdiod_intr_unregister(struct brcmf_sdio_dev *sdiodev)
  153. {
  154. brcmf_dbg(SDIO, "Entering\n");
  155. if ((sdiodev->pdata) && (sdiodev->pdata->oob_irq_supported)) {
  156. sdio_claim_host(sdiodev->func[1]);
  157. brcmf_sdiod_regwb(sdiodev, SDIO_CCCR_BRCM_SEPINT, 0, NULL);
  158. brcmf_sdiod_regwb(sdiodev, SDIO_CCCR_IENx, 0, NULL);
  159. sdio_release_host(sdiodev->func[1]);
  160. if (sdiodev->oob_irq_requested) {
  161. sdiodev->oob_irq_requested = false;
  162. if (sdiodev->irq_wake) {
  163. disable_irq_wake(sdiodev->pdata->oob_irq_nr);
  164. sdiodev->irq_wake = false;
  165. }
  166. free_irq(sdiodev->pdata->oob_irq_nr,
  167. &sdiodev->func[1]->dev);
  168. sdiodev->irq_en = false;
  169. }
  170. } else {
  171. sdio_claim_host(sdiodev->func[1]);
  172. sdio_release_irq(sdiodev->func[2]);
  173. sdio_release_irq(sdiodev->func[1]);
  174. sdio_release_host(sdiodev->func[1]);
  175. }
  176. return 0;
  177. }
  178. void brcmf_sdiod_change_state(struct brcmf_sdio_dev *sdiodev,
  179. enum brcmf_sdiod_state state)
  180. {
  181. if (sdiodev->state == BRCMF_SDIOD_NOMEDIUM ||
  182. state == sdiodev->state)
  183. return;
  184. brcmf_dbg(TRACE, "%d -> %d\n", sdiodev->state, state);
  185. switch (sdiodev->state) {
  186. case BRCMF_SDIOD_DATA:
  187. /* any other state means bus interface is down */
  188. brcmf_bus_change_state(sdiodev->bus_if, BRCMF_BUS_DOWN);
  189. break;
  190. case BRCMF_SDIOD_DOWN:
  191. /* transition from DOWN to DATA means bus interface is up */
  192. if (state == BRCMF_SDIOD_DATA)
  193. brcmf_bus_change_state(sdiodev->bus_if, BRCMF_BUS_UP);
  194. break;
  195. default:
  196. break;
  197. }
  198. sdiodev->state = state;
  199. }
  200. static inline int brcmf_sdiod_f0_writeb(struct sdio_func *func,
  201. uint regaddr, u8 byte)
  202. {
  203. int err_ret;
  204. /*
  205. * Can only directly write to some F0 registers.
  206. * Handle CCCR_IENx and CCCR_ABORT command
  207. * as a special case.
  208. */
  209. if ((regaddr == SDIO_CCCR_ABORT) ||
  210. (regaddr == SDIO_CCCR_IENx))
  211. sdio_writeb(func, byte, regaddr, &err_ret);
  212. else
  213. sdio_f0_writeb(func, byte, regaddr, &err_ret);
  214. return err_ret;
  215. }
  216. static int brcmf_sdiod_request_data(struct brcmf_sdio_dev *sdiodev, u8 fn,
  217. u32 addr, u8 regsz, void *data, bool write)
  218. {
  219. struct sdio_func *func;
  220. int ret;
  221. brcmf_dbg(SDIO, "rw=%d, func=%d, addr=0x%05x, nbytes=%d\n",
  222. write, fn, addr, regsz);
  223. /* only allow byte access on F0 */
  224. if (WARN_ON(regsz > 1 && !fn))
  225. return -EINVAL;
  226. func = sdiodev->func[fn];
  227. switch (regsz) {
  228. case sizeof(u8):
  229. if (write) {
  230. if (fn)
  231. sdio_writeb(func, *(u8 *)data, addr, &ret);
  232. else
  233. ret = brcmf_sdiod_f0_writeb(func, addr,
  234. *(u8 *)data);
  235. } else {
  236. if (fn)
  237. *(u8 *)data = sdio_readb(func, addr, &ret);
  238. else
  239. *(u8 *)data = sdio_f0_readb(func, addr, &ret);
  240. }
  241. break;
  242. case sizeof(u16):
  243. if (write)
  244. sdio_writew(func, *(u16 *)data, addr, &ret);
  245. else
  246. *(u16 *)data = sdio_readw(func, addr, &ret);
  247. break;
  248. case sizeof(u32):
  249. if (write)
  250. sdio_writel(func, *(u32 *)data, addr, &ret);
  251. else
  252. *(u32 *)data = sdio_readl(func, addr, &ret);
  253. break;
  254. default:
  255. brcmf_err("invalid size: %d\n", regsz);
  256. break;
  257. }
  258. if (ret)
  259. brcmf_dbg(SDIO, "failed to %s data F%d@0x%05x, err: %d\n",
  260. write ? "write" : "read", fn, addr, ret);
  261. return ret;
  262. }
  263. static int brcmf_sdiod_regrw_helper(struct brcmf_sdio_dev *sdiodev, u32 addr,
  264. u8 regsz, void *data, bool write)
  265. {
  266. u8 func;
  267. s32 retry = 0;
  268. int ret;
  269. if (sdiodev->state == BRCMF_SDIOD_NOMEDIUM)
  270. return -ENOMEDIUM;
  271. /*
  272. * figure out how to read the register based on address range
  273. * 0x00 ~ 0x7FF: function 0 CCCR and FBR
  274. * 0x10000 ~ 0x1FFFF: function 1 miscellaneous registers
  275. * The rest: function 1 silicon backplane core registers
  276. */
  277. if ((addr & ~REG_F0_REG_MASK) == 0)
  278. func = SDIO_FUNC_0;
  279. else
  280. func = SDIO_FUNC_1;
  281. do {
  282. if (!write)
  283. memset(data, 0, regsz);
  284. /* for retry wait for 1 ms till bus get settled down */
  285. if (retry)
  286. usleep_range(1000, 2000);
  287. ret = brcmf_sdiod_request_data(sdiodev, func, addr, regsz,
  288. data, write);
  289. } while (ret != 0 && ret != -ENOMEDIUM &&
  290. retry++ < SDIOH_API_ACCESS_RETRY_LIMIT);
  291. if (ret == -ENOMEDIUM)
  292. brcmf_sdiod_change_state(sdiodev, BRCMF_SDIOD_NOMEDIUM);
  293. else if (ret != 0) {
  294. /*
  295. * SleepCSR register access can fail when
  296. * waking up the device so reduce this noise
  297. * in the logs.
  298. */
  299. if (addr != SBSDIO_FUNC1_SLEEPCSR)
  300. brcmf_err("failed to %s data F%d@0x%05x, err: %d\n",
  301. write ? "write" : "read", func, addr, ret);
  302. else
  303. brcmf_dbg(SDIO, "failed to %s data F%d@0x%05x, err: %d\n",
  304. write ? "write" : "read", func, addr, ret);
  305. }
  306. return ret;
  307. }
  308. static int
  309. brcmf_sdiod_set_sbaddr_window(struct brcmf_sdio_dev *sdiodev, u32 address)
  310. {
  311. int err = 0, i;
  312. u8 addr[3];
  313. if (sdiodev->state == BRCMF_SDIOD_NOMEDIUM)
  314. return -ENOMEDIUM;
  315. addr[0] = (address >> 8) & SBSDIO_SBADDRLOW_MASK;
  316. addr[1] = (address >> 16) & SBSDIO_SBADDRMID_MASK;
  317. addr[2] = (address >> 24) & SBSDIO_SBADDRHIGH_MASK;
  318. for (i = 0; i < 3; i++) {
  319. err = brcmf_sdiod_regrw_helper(sdiodev,
  320. SBSDIO_FUNC1_SBADDRLOW + i,
  321. sizeof(u8), &addr[i], true);
  322. if (err) {
  323. brcmf_err("failed at addr: 0x%0x\n",
  324. SBSDIO_FUNC1_SBADDRLOW + i);
  325. break;
  326. }
  327. }
  328. return err;
  329. }
  330. static int
  331. brcmf_sdiod_addrprep(struct brcmf_sdio_dev *sdiodev, uint width, u32 *addr)
  332. {
  333. uint bar0 = *addr & ~SBSDIO_SB_OFT_ADDR_MASK;
  334. int err = 0;
  335. if (bar0 != sdiodev->sbwad) {
  336. err = brcmf_sdiod_set_sbaddr_window(sdiodev, bar0);
  337. if (err)
  338. return err;
  339. sdiodev->sbwad = bar0;
  340. }
  341. *addr &= SBSDIO_SB_OFT_ADDR_MASK;
  342. if (width == 4)
  343. *addr |= SBSDIO_SB_ACCESS_2_4B_FLAG;
  344. return 0;
  345. }
  346. u8 brcmf_sdiod_regrb(struct brcmf_sdio_dev *sdiodev, u32 addr, int *ret)
  347. {
  348. u8 data;
  349. int retval;
  350. brcmf_dbg(SDIO, "addr:0x%08x\n", addr);
  351. retval = brcmf_sdiod_regrw_helper(sdiodev, addr, sizeof(data), &data,
  352. false);
  353. brcmf_dbg(SDIO, "data:0x%02x\n", data);
  354. if (ret)
  355. *ret = retval;
  356. return data;
  357. }
  358. u32 brcmf_sdiod_regrl(struct brcmf_sdio_dev *sdiodev, u32 addr, int *ret)
  359. {
  360. u32 data;
  361. int retval;
  362. brcmf_dbg(SDIO, "addr:0x%08x\n", addr);
  363. retval = brcmf_sdiod_addrprep(sdiodev, sizeof(data), &addr);
  364. if (retval)
  365. goto done;
  366. retval = brcmf_sdiod_regrw_helper(sdiodev, addr, sizeof(data), &data,
  367. false);
  368. brcmf_dbg(SDIO, "data:0x%08x\n", data);
  369. done:
  370. if (ret)
  371. *ret = retval;
  372. return data;
  373. }
  374. void brcmf_sdiod_regwb(struct brcmf_sdio_dev *sdiodev, u32 addr,
  375. u8 data, int *ret)
  376. {
  377. int retval;
  378. brcmf_dbg(SDIO, "addr:0x%08x, data:0x%02x\n", addr, data);
  379. retval = brcmf_sdiod_regrw_helper(sdiodev, addr, sizeof(data), &data,
  380. true);
  381. if (ret)
  382. *ret = retval;
  383. }
  384. void brcmf_sdiod_regwl(struct brcmf_sdio_dev *sdiodev, u32 addr,
  385. u32 data, int *ret)
  386. {
  387. int retval;
  388. brcmf_dbg(SDIO, "addr:0x%08x, data:0x%08x\n", addr, data);
  389. retval = brcmf_sdiod_addrprep(sdiodev, sizeof(data), &addr);
  390. if (retval)
  391. goto done;
  392. retval = brcmf_sdiod_regrw_helper(sdiodev, addr, sizeof(data), &data,
  393. true);
  394. done:
  395. if (ret)
  396. *ret = retval;
  397. }
  398. static int brcmf_sdiod_buffrw(struct brcmf_sdio_dev *sdiodev, uint fn,
  399. bool write, u32 addr, struct sk_buff *pkt)
  400. {
  401. unsigned int req_sz;
  402. int err;
  403. /* Single skb use the standard mmc interface */
  404. req_sz = pkt->len + 3;
  405. req_sz &= (uint)~3;
  406. if (write)
  407. err = sdio_memcpy_toio(sdiodev->func[fn], addr,
  408. ((u8 *)(pkt->data)), req_sz);
  409. else if (fn == 1)
  410. err = sdio_memcpy_fromio(sdiodev->func[fn], ((u8 *)(pkt->data)),
  411. addr, req_sz);
  412. else
  413. /* function 2 read is FIFO operation */
  414. err = sdio_readsb(sdiodev->func[fn], ((u8 *)(pkt->data)), addr,
  415. req_sz);
  416. if (err == -ENOMEDIUM)
  417. brcmf_sdiod_change_state(sdiodev, BRCMF_SDIOD_NOMEDIUM);
  418. return err;
  419. }
  420. /**
  421. * brcmf_sdiod_sglist_rw - SDIO interface function for block data access
  422. * @sdiodev: brcmfmac sdio device
  423. * @fn: SDIO function number
  424. * @write: direction flag
  425. * @addr: dongle memory address as source/destination
  426. * @pkt: skb pointer
  427. *
  428. * This function takes the respbonsibility as the interface function to MMC
  429. * stack for block data access. It assumes that the skb passed down by the
  430. * caller has already been padded and aligned.
  431. */
  432. static int brcmf_sdiod_sglist_rw(struct brcmf_sdio_dev *sdiodev, uint fn,
  433. bool write, u32 addr,
  434. struct sk_buff_head *pktlist)
  435. {
  436. unsigned int req_sz, func_blk_sz, sg_cnt, sg_data_sz, pkt_offset;
  437. unsigned int max_req_sz, orig_offset, dst_offset;
  438. unsigned short max_seg_cnt, seg_sz;
  439. unsigned char *pkt_data, *orig_data, *dst_data;
  440. struct sk_buff *pkt_next = NULL, *local_pkt_next;
  441. struct sk_buff_head local_list, *target_list;
  442. struct mmc_request mmc_req;
  443. struct mmc_command mmc_cmd;
  444. struct mmc_data mmc_dat;
  445. struct scatterlist *sgl;
  446. int ret = 0;
  447. if (!pktlist->qlen)
  448. return -EINVAL;
  449. target_list = pktlist;
  450. /* for host with broken sg support, prepare a page aligned list */
  451. __skb_queue_head_init(&local_list);
  452. if (sdiodev->pdata && sdiodev->pdata->broken_sg_support && !write) {
  453. req_sz = 0;
  454. skb_queue_walk(pktlist, pkt_next)
  455. req_sz += pkt_next->len;
  456. req_sz = ALIGN(req_sz, sdiodev->func[fn]->cur_blksize);
  457. while (req_sz > PAGE_SIZE) {
  458. pkt_next = brcmu_pkt_buf_get_skb(PAGE_SIZE);
  459. if (pkt_next == NULL) {
  460. ret = -ENOMEM;
  461. goto exit;
  462. }
  463. __skb_queue_tail(&local_list, pkt_next);
  464. req_sz -= PAGE_SIZE;
  465. }
  466. pkt_next = brcmu_pkt_buf_get_skb(req_sz);
  467. if (pkt_next == NULL) {
  468. ret = -ENOMEM;
  469. goto exit;
  470. }
  471. __skb_queue_tail(&local_list, pkt_next);
  472. target_list = &local_list;
  473. }
  474. func_blk_sz = sdiodev->func[fn]->cur_blksize;
  475. max_req_sz = sdiodev->max_request_size;
  476. max_seg_cnt = min_t(unsigned short, sdiodev->max_segment_count,
  477. target_list->qlen);
  478. seg_sz = target_list->qlen;
  479. pkt_offset = 0;
  480. pkt_next = target_list->next;
  481. memset(&mmc_req, 0, sizeof(struct mmc_request));
  482. memset(&mmc_cmd, 0, sizeof(struct mmc_command));
  483. memset(&mmc_dat, 0, sizeof(struct mmc_data));
  484. mmc_dat.sg = sdiodev->sgtable.sgl;
  485. mmc_dat.blksz = func_blk_sz;
  486. mmc_dat.flags = write ? MMC_DATA_WRITE : MMC_DATA_READ;
  487. mmc_cmd.opcode = SD_IO_RW_EXTENDED;
  488. mmc_cmd.arg = write ? 1<<31 : 0; /* write flag */
  489. mmc_cmd.arg |= (fn & 0x7) << 28; /* SDIO func num */
  490. mmc_cmd.arg |= 1<<27; /* block mode */
  491. /* for function 1 the addr will be incremented */
  492. mmc_cmd.arg |= (fn == 1) ? 1<<26 : 0;
  493. mmc_cmd.flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_ADTC;
  494. mmc_req.cmd = &mmc_cmd;
  495. mmc_req.data = &mmc_dat;
  496. while (seg_sz) {
  497. req_sz = 0;
  498. sg_cnt = 0;
  499. sgl = sdiodev->sgtable.sgl;
  500. /* prep sg table */
  501. while (pkt_next != (struct sk_buff *)target_list) {
  502. pkt_data = pkt_next->data + pkt_offset;
  503. sg_data_sz = pkt_next->len - pkt_offset;
  504. if (sg_data_sz > sdiodev->max_segment_size)
  505. sg_data_sz = sdiodev->max_segment_size;
  506. if (sg_data_sz > max_req_sz - req_sz)
  507. sg_data_sz = max_req_sz - req_sz;
  508. sg_set_buf(sgl, pkt_data, sg_data_sz);
  509. sg_cnt++;
  510. sgl = sg_next(sgl);
  511. req_sz += sg_data_sz;
  512. pkt_offset += sg_data_sz;
  513. if (pkt_offset == pkt_next->len) {
  514. pkt_offset = 0;
  515. pkt_next = pkt_next->next;
  516. }
  517. if (req_sz >= max_req_sz || sg_cnt >= max_seg_cnt)
  518. break;
  519. }
  520. seg_sz -= sg_cnt;
  521. if (req_sz % func_blk_sz != 0) {
  522. brcmf_err("sg request length %u is not %u aligned\n",
  523. req_sz, func_blk_sz);
  524. ret = -ENOTBLK;
  525. goto exit;
  526. }
  527. mmc_dat.sg_len = sg_cnt;
  528. mmc_dat.blocks = req_sz / func_blk_sz;
  529. mmc_cmd.arg |= (addr & 0x1FFFF) << 9; /* address */
  530. mmc_cmd.arg |= mmc_dat.blocks & 0x1FF; /* block count */
  531. /* incrementing addr for function 1 */
  532. if (fn == 1)
  533. addr += req_sz;
  534. mmc_set_data_timeout(&mmc_dat, sdiodev->func[fn]->card);
  535. mmc_wait_for_req(sdiodev->func[fn]->card->host, &mmc_req);
  536. ret = mmc_cmd.error ? mmc_cmd.error : mmc_dat.error;
  537. if (ret == -ENOMEDIUM) {
  538. brcmf_sdiod_change_state(sdiodev, BRCMF_SDIOD_NOMEDIUM);
  539. break;
  540. } else if (ret != 0) {
  541. brcmf_err("CMD53 sg block %s failed %d\n",
  542. write ? "write" : "read", ret);
  543. ret = -EIO;
  544. break;
  545. }
  546. }
  547. if (sdiodev->pdata && sdiodev->pdata->broken_sg_support && !write) {
  548. local_pkt_next = local_list.next;
  549. orig_offset = 0;
  550. skb_queue_walk(pktlist, pkt_next) {
  551. dst_offset = 0;
  552. do {
  553. req_sz = local_pkt_next->len - orig_offset;
  554. req_sz = min_t(uint, pkt_next->len - dst_offset,
  555. req_sz);
  556. orig_data = local_pkt_next->data + orig_offset;
  557. dst_data = pkt_next->data + dst_offset;
  558. memcpy(dst_data, orig_data, req_sz);
  559. orig_offset += req_sz;
  560. dst_offset += req_sz;
  561. if (orig_offset == local_pkt_next->len) {
  562. orig_offset = 0;
  563. local_pkt_next = local_pkt_next->next;
  564. }
  565. if (dst_offset == pkt_next->len)
  566. break;
  567. } while (!skb_queue_empty(&local_list));
  568. }
  569. }
  570. exit:
  571. sg_init_table(sdiodev->sgtable.sgl, sdiodev->sgtable.orig_nents);
  572. while ((pkt_next = __skb_dequeue(&local_list)) != NULL)
  573. brcmu_pkt_buf_free_skb(pkt_next);
  574. return ret;
  575. }
  576. int brcmf_sdiod_recv_buf(struct brcmf_sdio_dev *sdiodev, u8 *buf, uint nbytes)
  577. {
  578. struct sk_buff *mypkt;
  579. int err;
  580. mypkt = brcmu_pkt_buf_get_skb(nbytes);
  581. if (!mypkt) {
  582. brcmf_err("brcmu_pkt_buf_get_skb failed: len %d\n",
  583. nbytes);
  584. return -EIO;
  585. }
  586. err = brcmf_sdiod_recv_pkt(sdiodev, mypkt);
  587. if (!err)
  588. memcpy(buf, mypkt->data, nbytes);
  589. brcmu_pkt_buf_free_skb(mypkt);
  590. return err;
  591. }
  592. int brcmf_sdiod_recv_pkt(struct brcmf_sdio_dev *sdiodev, struct sk_buff *pkt)
  593. {
  594. u32 addr = sdiodev->sbwad;
  595. int err = 0;
  596. brcmf_dbg(SDIO, "addr = 0x%x, size = %d\n", addr, pkt->len);
  597. err = brcmf_sdiod_addrprep(sdiodev, 4, &addr);
  598. if (err)
  599. goto done;
  600. err = brcmf_sdiod_buffrw(sdiodev, SDIO_FUNC_2, false, addr, pkt);
  601. done:
  602. return err;
  603. }
  604. int brcmf_sdiod_recv_chain(struct brcmf_sdio_dev *sdiodev,
  605. struct sk_buff_head *pktq, uint totlen)
  606. {
  607. struct sk_buff *glom_skb = NULL;
  608. struct sk_buff *skb;
  609. u32 addr = sdiodev->sbwad;
  610. int err = 0;
  611. brcmf_dbg(SDIO, "addr = 0x%x, size = %d\n",
  612. addr, pktq->qlen);
  613. err = brcmf_sdiod_addrprep(sdiodev, 4, &addr);
  614. if (err)
  615. goto done;
  616. if (pktq->qlen == 1)
  617. err = brcmf_sdiod_buffrw(sdiodev, SDIO_FUNC_2, false, addr,
  618. pktq->next);
  619. else if (!sdiodev->sg_support) {
  620. glom_skb = brcmu_pkt_buf_get_skb(totlen);
  621. if (!glom_skb)
  622. return -ENOMEM;
  623. err = brcmf_sdiod_buffrw(sdiodev, SDIO_FUNC_2, false, addr,
  624. glom_skb);
  625. if (err)
  626. goto done;
  627. skb_queue_walk(pktq, skb) {
  628. memcpy(skb->data, glom_skb->data, skb->len);
  629. skb_pull(glom_skb, skb->len);
  630. }
  631. } else
  632. err = brcmf_sdiod_sglist_rw(sdiodev, SDIO_FUNC_2, false, addr,
  633. pktq);
  634. done:
  635. brcmu_pkt_buf_free_skb(glom_skb);
  636. return err;
  637. }
  638. int brcmf_sdiod_send_buf(struct brcmf_sdio_dev *sdiodev, u8 *buf, uint nbytes)
  639. {
  640. struct sk_buff *mypkt;
  641. u32 addr = sdiodev->sbwad;
  642. int err;
  643. mypkt = brcmu_pkt_buf_get_skb(nbytes);
  644. if (!mypkt) {
  645. brcmf_err("brcmu_pkt_buf_get_skb failed: len %d\n",
  646. nbytes);
  647. return -EIO;
  648. }
  649. memcpy(mypkt->data, buf, nbytes);
  650. err = brcmf_sdiod_addrprep(sdiodev, 4, &addr);
  651. if (!err)
  652. err = brcmf_sdiod_buffrw(sdiodev, SDIO_FUNC_2, true, addr,
  653. mypkt);
  654. brcmu_pkt_buf_free_skb(mypkt);
  655. return err;
  656. }
  657. int brcmf_sdiod_send_pkt(struct brcmf_sdio_dev *sdiodev,
  658. struct sk_buff_head *pktq)
  659. {
  660. struct sk_buff *skb;
  661. u32 addr = sdiodev->sbwad;
  662. int err;
  663. brcmf_dbg(SDIO, "addr = 0x%x, size = %d\n", addr, pktq->qlen);
  664. err = brcmf_sdiod_addrprep(sdiodev, 4, &addr);
  665. if (err)
  666. return err;
  667. if (pktq->qlen == 1 || !sdiodev->sg_support)
  668. skb_queue_walk(pktq, skb) {
  669. err = brcmf_sdiod_buffrw(sdiodev, SDIO_FUNC_2, true,
  670. addr, skb);
  671. if (err)
  672. break;
  673. }
  674. else
  675. err = brcmf_sdiod_sglist_rw(sdiodev, SDIO_FUNC_2, true, addr,
  676. pktq);
  677. return err;
  678. }
  679. int
  680. brcmf_sdiod_ramrw(struct brcmf_sdio_dev *sdiodev, bool write, u32 address,
  681. u8 *data, uint size)
  682. {
  683. int bcmerror = 0;
  684. struct sk_buff *pkt;
  685. u32 sdaddr;
  686. uint dsize;
  687. dsize = min_t(uint, SBSDIO_SB_OFT_ADDR_LIMIT, size);
  688. pkt = dev_alloc_skb(dsize);
  689. if (!pkt) {
  690. brcmf_err("dev_alloc_skb failed: len %d\n", dsize);
  691. return -EIO;
  692. }
  693. pkt->priority = 0;
  694. /* Determine initial transfer parameters */
  695. sdaddr = address & SBSDIO_SB_OFT_ADDR_MASK;
  696. if ((sdaddr + size) & SBSDIO_SBWINDOW_MASK)
  697. dsize = (SBSDIO_SB_OFT_ADDR_LIMIT - sdaddr);
  698. else
  699. dsize = size;
  700. sdio_claim_host(sdiodev->func[1]);
  701. /* Do the transfer(s) */
  702. while (size) {
  703. /* Set the backplane window to include the start address */
  704. bcmerror = brcmf_sdiod_set_sbaddr_window(sdiodev, address);
  705. if (bcmerror)
  706. break;
  707. brcmf_dbg(SDIO, "%s %d bytes at offset 0x%08x in window 0x%08x\n",
  708. write ? "write" : "read", dsize,
  709. sdaddr, address & SBSDIO_SBWINDOW_MASK);
  710. sdaddr &= SBSDIO_SB_OFT_ADDR_MASK;
  711. sdaddr |= SBSDIO_SB_ACCESS_2_4B_FLAG;
  712. skb_put(pkt, dsize);
  713. if (write)
  714. memcpy(pkt->data, data, dsize);
  715. bcmerror = brcmf_sdiod_buffrw(sdiodev, SDIO_FUNC_1, write,
  716. sdaddr, pkt);
  717. if (bcmerror) {
  718. brcmf_err("membytes transfer failed\n");
  719. break;
  720. }
  721. if (!write)
  722. memcpy(data, pkt->data, dsize);
  723. skb_trim(pkt, 0);
  724. /* Adjust for next transfer (if any) */
  725. size -= dsize;
  726. if (size) {
  727. data += dsize;
  728. address += dsize;
  729. sdaddr = 0;
  730. dsize = min_t(uint, SBSDIO_SB_OFT_ADDR_LIMIT, size);
  731. }
  732. }
  733. dev_kfree_skb(pkt);
  734. /* Return the window to backplane enumeration space for core access */
  735. if (brcmf_sdiod_set_sbaddr_window(sdiodev, sdiodev->sbwad))
  736. brcmf_err("FAILED to set window back to 0x%x\n",
  737. sdiodev->sbwad);
  738. sdio_release_host(sdiodev->func[1]);
  739. return bcmerror;
  740. }
  741. int brcmf_sdiod_abort(struct brcmf_sdio_dev *sdiodev, uint fn)
  742. {
  743. char t_func = (char)fn;
  744. brcmf_dbg(SDIO, "Enter\n");
  745. /* issue abort cmd52 command through F0 */
  746. brcmf_sdiod_request_data(sdiodev, SDIO_FUNC_0, SDIO_CCCR_ABORT,
  747. sizeof(t_func), &t_func, true);
  748. brcmf_dbg(SDIO, "Exit\n");
  749. return 0;
  750. }
  751. static void brcmf_sdiod_sgtable_alloc(struct brcmf_sdio_dev *sdiodev)
  752. {
  753. uint nents;
  754. int err;
  755. if (!sdiodev->sg_support)
  756. return;
  757. nents = max_t(uint, BRCMF_DEFAULT_RXGLOM_SIZE, brcmf_sdiod_txglomsz);
  758. nents += (nents >> 4) + 1;
  759. WARN_ON(nents > sdiodev->max_segment_count);
  760. brcmf_dbg(TRACE, "nents=%d\n", nents);
  761. err = sg_alloc_table(&sdiodev->sgtable, nents, GFP_KERNEL);
  762. if (err < 0) {
  763. brcmf_err("allocation failed: disable scatter-gather");
  764. sdiodev->sg_support = false;
  765. }
  766. sdiodev->txglomsz = brcmf_sdiod_txglomsz;
  767. }
  768. #ifdef CONFIG_PM_SLEEP
  769. static int brcmf_sdiod_freezer_attach(struct brcmf_sdio_dev *sdiodev)
  770. {
  771. sdiodev->freezer = kzalloc(sizeof(*sdiodev->freezer), GFP_KERNEL);
  772. if (!sdiodev->freezer)
  773. return -ENOMEM;
  774. atomic_set(&sdiodev->freezer->thread_count, 0);
  775. atomic_set(&sdiodev->freezer->freezing, 0);
  776. init_waitqueue_head(&sdiodev->freezer->thread_freeze);
  777. init_completion(&sdiodev->freezer->resumed);
  778. return 0;
  779. }
  780. static void brcmf_sdiod_freezer_detach(struct brcmf_sdio_dev *sdiodev)
  781. {
  782. if (sdiodev->freezer) {
  783. WARN_ON(atomic_read(&sdiodev->freezer->freezing));
  784. kfree(sdiodev->freezer);
  785. }
  786. }
  787. static int brcmf_sdiod_freezer_on(struct brcmf_sdio_dev *sdiodev)
  788. {
  789. atomic_t *expect = &sdiodev->freezer->thread_count;
  790. int res = 0;
  791. sdiodev->freezer->frozen_count = 0;
  792. reinit_completion(&sdiodev->freezer->resumed);
  793. atomic_set(&sdiodev->freezer->freezing, 1);
  794. brcmf_sdio_trigger_dpc(sdiodev->bus);
  795. wait_event(sdiodev->freezer->thread_freeze,
  796. atomic_read(expect) == sdiodev->freezer->frozen_count);
  797. sdio_claim_host(sdiodev->func[1]);
  798. res = brcmf_sdio_sleep(sdiodev->bus, true);
  799. sdio_release_host(sdiodev->func[1]);
  800. return res;
  801. }
  802. static void brcmf_sdiod_freezer_off(struct brcmf_sdio_dev *sdiodev)
  803. {
  804. sdio_claim_host(sdiodev->func[1]);
  805. brcmf_sdio_sleep(sdiodev->bus, false);
  806. sdio_release_host(sdiodev->func[1]);
  807. atomic_set(&sdiodev->freezer->freezing, 0);
  808. complete_all(&sdiodev->freezer->resumed);
  809. }
  810. bool brcmf_sdiod_freezing(struct brcmf_sdio_dev *sdiodev)
  811. {
  812. return atomic_read(&sdiodev->freezer->freezing);
  813. }
  814. void brcmf_sdiod_try_freeze(struct brcmf_sdio_dev *sdiodev)
  815. {
  816. if (!brcmf_sdiod_freezing(sdiodev))
  817. return;
  818. sdiodev->freezer->frozen_count++;
  819. wake_up(&sdiodev->freezer->thread_freeze);
  820. wait_for_completion(&sdiodev->freezer->resumed);
  821. }
  822. void brcmf_sdiod_freezer_count(struct brcmf_sdio_dev *sdiodev)
  823. {
  824. atomic_inc(&sdiodev->freezer->thread_count);
  825. }
  826. void brcmf_sdiod_freezer_uncount(struct brcmf_sdio_dev *sdiodev)
  827. {
  828. atomic_dec(&sdiodev->freezer->thread_count);
  829. }
  830. #else
  831. static int brcmf_sdiod_freezer_attach(struct brcmf_sdio_dev *sdiodev)
  832. {
  833. return 0;
  834. }
  835. static void brcmf_sdiod_freezer_detach(struct brcmf_sdio_dev *sdiodev)
  836. {
  837. }
  838. #endif /* CONFIG_PM_SLEEP */
  839. static int brcmf_sdiod_remove(struct brcmf_sdio_dev *sdiodev)
  840. {
  841. sdiodev->state = BRCMF_SDIOD_DOWN;
  842. if (sdiodev->bus) {
  843. brcmf_sdio_remove(sdiodev->bus);
  844. sdiodev->bus = NULL;
  845. }
  846. brcmf_sdiod_freezer_detach(sdiodev);
  847. /* Disable Function 2 */
  848. sdio_claim_host(sdiodev->func[2]);
  849. sdio_disable_func(sdiodev->func[2]);
  850. sdio_release_host(sdiodev->func[2]);
  851. /* Disable Function 1 */
  852. sdio_claim_host(sdiodev->func[1]);
  853. sdio_disable_func(sdiodev->func[1]);
  854. sdio_release_host(sdiodev->func[1]);
  855. sg_free_table(&sdiodev->sgtable);
  856. sdiodev->sbwad = 0;
  857. pm_runtime_allow(sdiodev->func[1]->card->host->parent);
  858. return 0;
  859. }
  860. static void brcmf_sdiod_host_fixup(struct mmc_host *host)
  861. {
  862. /* runtime-pm powers off the device */
  863. pm_runtime_forbid(host->parent);
  864. /* avoid removal detection upon resume */
  865. host->caps |= MMC_CAP_NONREMOVABLE;
  866. }
  867. static int brcmf_sdiod_probe(struct brcmf_sdio_dev *sdiodev)
  868. {
  869. struct sdio_func *func;
  870. struct mmc_host *host;
  871. uint max_blocks;
  872. int ret = 0;
  873. sdiodev->num_funcs = 2;
  874. sdio_claim_host(sdiodev->func[1]);
  875. ret = sdio_set_block_size(sdiodev->func[1], SDIO_FUNC1_BLOCKSIZE);
  876. if (ret) {
  877. brcmf_err("Failed to set F1 blocksize\n");
  878. sdio_release_host(sdiodev->func[1]);
  879. goto out;
  880. }
  881. ret = sdio_set_block_size(sdiodev->func[2], SDIO_FUNC2_BLOCKSIZE);
  882. if (ret) {
  883. brcmf_err("Failed to set F2 blocksize\n");
  884. sdio_release_host(sdiodev->func[1]);
  885. goto out;
  886. }
  887. /* increase F2 timeout */
  888. sdiodev->func[2]->enable_timeout = SDIO_WAIT_F2RDY;
  889. /* Enable Function 1 */
  890. ret = sdio_enable_func(sdiodev->func[1]);
  891. sdio_release_host(sdiodev->func[1]);
  892. if (ret) {
  893. brcmf_err("Failed to enable F1: err=%d\n", ret);
  894. goto out;
  895. }
  896. /*
  897. * determine host related variables after brcmf_sdiod_probe()
  898. * as func->cur_blksize is properly set and F2 init has been
  899. * completed successfully.
  900. */
  901. func = sdiodev->func[2];
  902. host = func->card->host;
  903. sdiodev->sg_support = host->max_segs > 1;
  904. max_blocks = min_t(uint, host->max_blk_count, 511u);
  905. sdiodev->max_request_size = min_t(uint, host->max_req_size,
  906. max_blocks * func->cur_blksize);
  907. sdiodev->max_segment_count = min_t(uint, host->max_segs,
  908. SG_MAX_SINGLE_ALLOC);
  909. sdiodev->max_segment_size = host->max_seg_size;
  910. /* allocate scatter-gather table. sg support
  911. * will be disabled upon allocation failure.
  912. */
  913. brcmf_sdiod_sgtable_alloc(sdiodev);
  914. ret = brcmf_sdiod_freezer_attach(sdiodev);
  915. if (ret)
  916. goto out;
  917. /* try to attach to the target device */
  918. sdiodev->bus = brcmf_sdio_probe(sdiodev);
  919. if (!sdiodev->bus) {
  920. ret = -ENODEV;
  921. goto out;
  922. }
  923. brcmf_sdiod_host_fixup(host);
  924. out:
  925. if (ret)
  926. brcmf_sdiod_remove(sdiodev);
  927. return ret;
  928. }
  929. #define BRCMF_SDIO_DEVICE(dev_id) \
  930. {SDIO_DEVICE(SDIO_VENDOR_ID_BROADCOM, dev_id)}
  931. /* devices we support, null terminated */
  932. static const struct sdio_device_id brcmf_sdmmc_ids[] = {
  933. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_43143),
  934. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_43241),
  935. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_4329),
  936. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_4330),
  937. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_4334),
  938. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_43340),
  939. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_43341),
  940. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_43362),
  941. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_43364),
  942. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_4335_4339),
  943. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_43430),
  944. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_4345),
  945. BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_4354),
  946. { /* end: all zeroes */ }
  947. };
  948. MODULE_DEVICE_TABLE(sdio, brcmf_sdmmc_ids);
  949. static struct brcmfmac_sdio_platform_data *brcmfmac_sdio_pdata;
  950. static void brcmf_sdiod_acpi_set_power_manageable(struct device *dev,
  951. int val)
  952. {
  953. #if IS_ENABLED(CONFIG_ACPI)
  954. struct acpi_device *adev;
  955. adev = ACPI_COMPANION(dev);
  956. if (adev)
  957. adev->flags.power_manageable = 0;
  958. #endif
  959. }
  960. static int brcmf_ops_sdio_probe(struct sdio_func *func,
  961. const struct sdio_device_id *id)
  962. {
  963. int err;
  964. struct brcmf_sdio_dev *sdiodev;
  965. struct brcmf_bus *bus_if;
  966. struct device *dev;
  967. brcmf_dbg(SDIO, "Enter\n");
  968. brcmf_dbg(SDIO, "Class=%x\n", func->class);
  969. brcmf_dbg(SDIO, "sdio vendor ID: 0x%04x\n", func->vendor);
  970. brcmf_dbg(SDIO, "sdio device ID: 0x%04x\n", func->device);
  971. brcmf_dbg(SDIO, "Function#: %d\n", func->num);
  972. dev = &func->dev;
  973. /* prohibit ACPI power management for this device */
  974. brcmf_sdiod_acpi_set_power_manageable(dev, 0);
  975. /* Consume func num 1 but dont do anything with it. */
  976. if (func->num == 1)
  977. return 0;
  978. /* Ignore anything but func 2 */
  979. if (func->num != 2)
  980. return -ENODEV;
  981. bus_if = kzalloc(sizeof(struct brcmf_bus), GFP_KERNEL);
  982. if (!bus_if)
  983. return -ENOMEM;
  984. sdiodev = kzalloc(sizeof(struct brcmf_sdio_dev), GFP_KERNEL);
  985. if (!sdiodev) {
  986. kfree(bus_if);
  987. return -ENOMEM;
  988. }
  989. /* store refs to functions used. mmc_card does
  990. * not hold the F0 function pointer.
  991. */
  992. sdiodev->func[0] = kmemdup(func, sizeof(*func), GFP_KERNEL);
  993. sdiodev->func[0]->num = 0;
  994. sdiodev->func[1] = func->card->sdio_func[0];
  995. sdiodev->func[2] = func;
  996. sdiodev->bus_if = bus_if;
  997. bus_if->bus_priv.sdio = sdiodev;
  998. bus_if->proto_type = BRCMF_PROTO_BCDC;
  999. dev_set_drvdata(&func->dev, bus_if);
  1000. dev_set_drvdata(&sdiodev->func[1]->dev, bus_if);
  1001. sdiodev->dev = &sdiodev->func[1]->dev;
  1002. sdiodev->pdata = brcmfmac_sdio_pdata;
  1003. if (!sdiodev->pdata)
  1004. brcmf_of_probe(sdiodev);
  1005. #ifdef CONFIG_PM_SLEEP
  1006. /* wowl can be supported when KEEP_POWER is true and (WAKE_SDIO_IRQ
  1007. * is true or when platform data OOB irq is true).
  1008. */
  1009. if ((sdio_get_host_pm_caps(sdiodev->func[1]) & MMC_PM_KEEP_POWER) &&
  1010. ((sdio_get_host_pm_caps(sdiodev->func[1]) & MMC_PM_WAKE_SDIO_IRQ) ||
  1011. (sdiodev->pdata && sdiodev->pdata->oob_irq_supported)))
  1012. bus_if->wowl_supported = true;
  1013. #endif
  1014. brcmf_sdiod_change_state(sdiodev, BRCMF_SDIOD_DOWN);
  1015. brcmf_dbg(SDIO, "F2 found, calling brcmf_sdiod_probe...\n");
  1016. err = brcmf_sdiod_probe(sdiodev);
  1017. if (err) {
  1018. brcmf_err("F2 error, probe failed %d...\n", err);
  1019. goto fail;
  1020. }
  1021. brcmf_dbg(SDIO, "F2 init completed...\n");
  1022. return 0;
  1023. fail:
  1024. dev_set_drvdata(&func->dev, NULL);
  1025. dev_set_drvdata(&sdiodev->func[1]->dev, NULL);
  1026. kfree(sdiodev->func[0]);
  1027. kfree(sdiodev);
  1028. kfree(bus_if);
  1029. return err;
  1030. }
  1031. static void brcmf_ops_sdio_remove(struct sdio_func *func)
  1032. {
  1033. struct brcmf_bus *bus_if;
  1034. struct brcmf_sdio_dev *sdiodev;
  1035. brcmf_dbg(SDIO, "Enter\n");
  1036. brcmf_dbg(SDIO, "sdio vendor ID: 0x%04x\n", func->vendor);
  1037. brcmf_dbg(SDIO, "sdio device ID: 0x%04x\n", func->device);
  1038. brcmf_dbg(SDIO, "Function: %d\n", func->num);
  1039. if (func->num != 1)
  1040. return;
  1041. bus_if = dev_get_drvdata(&func->dev);
  1042. if (bus_if) {
  1043. sdiodev = bus_if->bus_priv.sdio;
  1044. brcmf_sdiod_remove(sdiodev);
  1045. dev_set_drvdata(&sdiodev->func[1]->dev, NULL);
  1046. dev_set_drvdata(&sdiodev->func[2]->dev, NULL);
  1047. kfree(bus_if);
  1048. kfree(sdiodev->func[0]);
  1049. kfree(sdiodev);
  1050. }
  1051. brcmf_dbg(SDIO, "Exit\n");
  1052. }
  1053. void brcmf_sdio_wowl_config(struct device *dev, bool enabled)
  1054. {
  1055. struct brcmf_bus *bus_if = dev_get_drvdata(dev);
  1056. struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio;
  1057. brcmf_dbg(SDIO, "Configuring WOWL, enabled=%d\n", enabled);
  1058. sdiodev->wowl_enabled = enabled;
  1059. }
  1060. #ifdef CONFIG_PM_SLEEP
  1061. static int brcmf_ops_sdio_suspend(struct device *dev)
  1062. {
  1063. struct sdio_func *func;
  1064. struct brcmf_bus *bus_if;
  1065. struct brcmf_sdio_dev *sdiodev;
  1066. mmc_pm_flag_t sdio_flags;
  1067. func = container_of(dev, struct sdio_func, dev);
  1068. brcmf_dbg(SDIO, "Enter: F%d\n", func->num);
  1069. if (func->num != SDIO_FUNC_1)
  1070. return 0;
  1071. bus_if = dev_get_drvdata(dev);
  1072. sdiodev = bus_if->bus_priv.sdio;
  1073. brcmf_sdiod_freezer_on(sdiodev);
  1074. brcmf_sdio_wd_timer(sdiodev->bus, 0);
  1075. sdio_flags = MMC_PM_KEEP_POWER;
  1076. if (sdiodev->wowl_enabled) {
  1077. if (sdiodev->pdata->oob_irq_supported)
  1078. enable_irq_wake(sdiodev->pdata->oob_irq_nr);
  1079. else
  1080. sdio_flags |= MMC_PM_WAKE_SDIO_IRQ;
  1081. }
  1082. if (sdio_set_host_pm_flags(sdiodev->func[1], sdio_flags))
  1083. brcmf_err("Failed to set pm_flags %x\n", sdio_flags);
  1084. return 0;
  1085. }
  1086. static int brcmf_ops_sdio_resume(struct device *dev)
  1087. {
  1088. struct brcmf_bus *bus_if = dev_get_drvdata(dev);
  1089. struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio;
  1090. struct sdio_func *func = container_of(dev, struct sdio_func, dev);
  1091. brcmf_dbg(SDIO, "Enter: F%d\n", func->num);
  1092. if (func->num != SDIO_FUNC_2)
  1093. return 0;
  1094. brcmf_sdiod_freezer_off(sdiodev);
  1095. return 0;
  1096. }
  1097. static const struct dev_pm_ops brcmf_sdio_pm_ops = {
  1098. .suspend = brcmf_ops_sdio_suspend,
  1099. .resume = brcmf_ops_sdio_resume,
  1100. };
  1101. #endif /* CONFIG_PM_SLEEP */
  1102. static struct sdio_driver brcmf_sdmmc_driver = {
  1103. .probe = brcmf_ops_sdio_probe,
  1104. .remove = brcmf_ops_sdio_remove,
  1105. .name = BRCMFMAC_SDIO_PDATA_NAME,
  1106. .id_table = brcmf_sdmmc_ids,
  1107. .drv = {
  1108. .owner = THIS_MODULE,
  1109. #ifdef CONFIG_PM_SLEEP
  1110. .pm = &brcmf_sdio_pm_ops,
  1111. #endif /* CONFIG_PM_SLEEP */
  1112. },
  1113. };
  1114. static int __init brcmf_sdio_pd_probe(struct platform_device *pdev)
  1115. {
  1116. brcmf_dbg(SDIO, "Enter\n");
  1117. brcmfmac_sdio_pdata = dev_get_platdata(&pdev->dev);
  1118. if (brcmfmac_sdio_pdata->power_on)
  1119. brcmfmac_sdio_pdata->power_on();
  1120. return 0;
  1121. }
  1122. static int brcmf_sdio_pd_remove(struct platform_device *pdev)
  1123. {
  1124. brcmf_dbg(SDIO, "Enter\n");
  1125. if (brcmfmac_sdio_pdata->power_off)
  1126. brcmfmac_sdio_pdata->power_off();
  1127. sdio_unregister_driver(&brcmf_sdmmc_driver);
  1128. return 0;
  1129. }
  1130. static struct platform_driver brcmf_sdio_pd = {
  1131. .remove = brcmf_sdio_pd_remove,
  1132. .driver = {
  1133. .name = BRCMFMAC_SDIO_PDATA_NAME,
  1134. }
  1135. };
  1136. void brcmf_sdio_register(void)
  1137. {
  1138. int ret;
  1139. ret = sdio_register_driver(&brcmf_sdmmc_driver);
  1140. if (ret)
  1141. brcmf_err("sdio_register_driver failed: %d\n", ret);
  1142. }
  1143. void brcmf_sdio_exit(void)
  1144. {
  1145. brcmf_dbg(SDIO, "Enter\n");
  1146. if (brcmfmac_sdio_pdata)
  1147. platform_driver_unregister(&brcmf_sdio_pd);
  1148. else
  1149. sdio_unregister_driver(&brcmf_sdmmc_driver);
  1150. }
  1151. void __init brcmf_sdio_init(void)
  1152. {
  1153. int ret;
  1154. brcmf_dbg(SDIO, "Enter\n");
  1155. ret = platform_driver_probe(&brcmf_sdio_pd, brcmf_sdio_pd_probe);
  1156. if (ret == -ENODEV)
  1157. brcmf_dbg(SDIO, "No platform data available.\n");
  1158. }