chip.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331
  1. /*
  2. * Copyright (c) 2014 Broadcom Corporation
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  11. * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
  13. * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
  14. * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/kernel.h>
  17. #include <linux/delay.h>
  18. #include <linux/list.h>
  19. #include <linux/ssb/ssb_regs.h>
  20. #include <linux/bcma/bcma.h>
  21. #include <linux/bcma/bcma_regs.h>
  22. #include <defs.h>
  23. #include <soc.h>
  24. #include <brcm_hw_ids.h>
  25. #include <brcmu_utils.h>
  26. #include <chipcommon.h>
  27. #include "debug.h"
  28. #include "chip.h"
  29. /* SOC Interconnect types (aka chip types) */
  30. #define SOCI_SB 0
  31. #define SOCI_AI 1
  32. /* PL-368 DMP definitions */
  33. #define DMP_DESC_TYPE_MSK 0x0000000F
  34. #define DMP_DESC_EMPTY 0x00000000
  35. #define DMP_DESC_VALID 0x00000001
  36. #define DMP_DESC_COMPONENT 0x00000001
  37. #define DMP_DESC_MASTER_PORT 0x00000003
  38. #define DMP_DESC_ADDRESS 0x00000005
  39. #define DMP_DESC_ADDRSIZE_GT32 0x00000008
  40. #define DMP_DESC_EOT 0x0000000F
  41. #define DMP_COMP_DESIGNER 0xFFF00000
  42. #define DMP_COMP_DESIGNER_S 20
  43. #define DMP_COMP_PARTNUM 0x000FFF00
  44. #define DMP_COMP_PARTNUM_S 8
  45. #define DMP_COMP_CLASS 0x000000F0
  46. #define DMP_COMP_CLASS_S 4
  47. #define DMP_COMP_REVISION 0xFF000000
  48. #define DMP_COMP_REVISION_S 24
  49. #define DMP_COMP_NUM_SWRAP 0x00F80000
  50. #define DMP_COMP_NUM_SWRAP_S 19
  51. #define DMP_COMP_NUM_MWRAP 0x0007C000
  52. #define DMP_COMP_NUM_MWRAP_S 14
  53. #define DMP_COMP_NUM_SPORT 0x00003E00
  54. #define DMP_COMP_NUM_SPORT_S 9
  55. #define DMP_COMP_NUM_MPORT 0x000001F0
  56. #define DMP_COMP_NUM_MPORT_S 4
  57. #define DMP_MASTER_PORT_UID 0x0000FF00
  58. #define DMP_MASTER_PORT_UID_S 8
  59. #define DMP_MASTER_PORT_NUM 0x000000F0
  60. #define DMP_MASTER_PORT_NUM_S 4
  61. #define DMP_SLAVE_ADDR_BASE 0xFFFFF000
  62. #define DMP_SLAVE_ADDR_BASE_S 12
  63. #define DMP_SLAVE_PORT_NUM 0x00000F00
  64. #define DMP_SLAVE_PORT_NUM_S 8
  65. #define DMP_SLAVE_TYPE 0x000000C0
  66. #define DMP_SLAVE_TYPE_S 6
  67. #define DMP_SLAVE_TYPE_SLAVE 0
  68. #define DMP_SLAVE_TYPE_BRIDGE 1
  69. #define DMP_SLAVE_TYPE_SWRAP 2
  70. #define DMP_SLAVE_TYPE_MWRAP 3
  71. #define DMP_SLAVE_SIZE_TYPE 0x00000030
  72. #define DMP_SLAVE_SIZE_TYPE_S 4
  73. #define DMP_SLAVE_SIZE_4K 0
  74. #define DMP_SLAVE_SIZE_8K 1
  75. #define DMP_SLAVE_SIZE_16K 2
  76. #define DMP_SLAVE_SIZE_DESC 3
  77. /* EROM CompIdentB */
  78. #define CIB_REV_MASK 0xff000000
  79. #define CIB_REV_SHIFT 24
  80. /* ARM CR4 core specific control flag bits */
  81. #define ARMCR4_BCMA_IOCTL_CPUHALT 0x0020
  82. /* D11 core specific control flag bits */
  83. #define D11_BCMA_IOCTL_PHYCLOCKEN 0x0004
  84. #define D11_BCMA_IOCTL_PHYRESET 0x0008
  85. /* chip core base & ramsize */
  86. /* bcm4329 */
  87. /* SDIO device core, ID 0x829 */
  88. #define BCM4329_CORE_BUS_BASE 0x18011000
  89. /* internal memory core, ID 0x80e */
  90. #define BCM4329_CORE_SOCRAM_BASE 0x18003000
  91. /* ARM Cortex M3 core, ID 0x82a */
  92. #define BCM4329_CORE_ARM_BASE 0x18002000
  93. /* Max possibly supported memory size (limited by IO mapped memory) */
  94. #define BRCMF_CHIP_MAX_MEMSIZE (4 * 1024 * 1024)
  95. #define CORE_SB(base, field) \
  96. (base + SBCONFIGOFF + offsetof(struct sbconfig, field))
  97. #define SBCOREREV(sbidh) \
  98. ((((sbidh) & SSB_IDHIGH_RCHI) >> SSB_IDHIGH_RCHI_SHIFT) | \
  99. ((sbidh) & SSB_IDHIGH_RCLO))
  100. struct sbconfig {
  101. u32 PAD[2];
  102. u32 sbipsflag; /* initiator port ocp slave flag */
  103. u32 PAD[3];
  104. u32 sbtpsflag; /* target port ocp slave flag */
  105. u32 PAD[11];
  106. u32 sbtmerrloga; /* (sonics >= 2.3) */
  107. u32 PAD;
  108. u32 sbtmerrlog; /* (sonics >= 2.3) */
  109. u32 PAD[3];
  110. u32 sbadmatch3; /* address match3 */
  111. u32 PAD;
  112. u32 sbadmatch2; /* address match2 */
  113. u32 PAD;
  114. u32 sbadmatch1; /* address match1 */
  115. u32 PAD[7];
  116. u32 sbimstate; /* initiator agent state */
  117. u32 sbintvec; /* interrupt mask */
  118. u32 sbtmstatelow; /* target state */
  119. u32 sbtmstatehigh; /* target state */
  120. u32 sbbwa0; /* bandwidth allocation table0 */
  121. u32 PAD;
  122. u32 sbimconfiglow; /* initiator configuration */
  123. u32 sbimconfighigh; /* initiator configuration */
  124. u32 sbadmatch0; /* address match0 */
  125. u32 PAD;
  126. u32 sbtmconfiglow; /* target configuration */
  127. u32 sbtmconfighigh; /* target configuration */
  128. u32 sbbconfig; /* broadcast configuration */
  129. u32 PAD;
  130. u32 sbbstate; /* broadcast state */
  131. u32 PAD[3];
  132. u32 sbactcnfg; /* activate configuration */
  133. u32 PAD[3];
  134. u32 sbflagst; /* current sbflags */
  135. u32 PAD[3];
  136. u32 sbidlow; /* identification */
  137. u32 sbidhigh; /* identification */
  138. };
  139. /* bankidx and bankinfo reg defines corerev >= 8 */
  140. #define SOCRAM_BANKINFO_RETNTRAM_MASK 0x00010000
  141. #define SOCRAM_BANKINFO_SZMASK 0x0000007f
  142. #define SOCRAM_BANKIDX_ROM_MASK 0x00000100
  143. #define SOCRAM_BANKIDX_MEMTYPE_SHIFT 8
  144. /* socram bankinfo memtype */
  145. #define SOCRAM_MEMTYPE_RAM 0
  146. #define SOCRAM_MEMTYPE_R0M 1
  147. #define SOCRAM_MEMTYPE_DEVRAM 2
  148. #define SOCRAM_BANKINFO_SZBASE 8192
  149. #define SRCI_LSS_MASK 0x00f00000
  150. #define SRCI_LSS_SHIFT 20
  151. #define SRCI_SRNB_MASK 0xf0
  152. #define SRCI_SRNB_SHIFT 4
  153. #define SRCI_SRBSZ_MASK 0xf
  154. #define SRCI_SRBSZ_SHIFT 0
  155. #define SR_BSZ_BASE 14
  156. struct sbsocramregs {
  157. u32 coreinfo;
  158. u32 bwalloc;
  159. u32 extracoreinfo;
  160. u32 biststat;
  161. u32 bankidx;
  162. u32 standbyctrl;
  163. u32 errlogstatus; /* rev 6 */
  164. u32 errlogaddr; /* rev 6 */
  165. /* used for patching rev 3 & 5 */
  166. u32 cambankidx;
  167. u32 cambankstandbyctrl;
  168. u32 cambankpatchctrl;
  169. u32 cambankpatchtblbaseaddr;
  170. u32 cambankcmdreg;
  171. u32 cambankdatareg;
  172. u32 cambankmaskreg;
  173. u32 PAD[1];
  174. u32 bankinfo; /* corev 8 */
  175. u32 bankpda;
  176. u32 PAD[14];
  177. u32 extmemconfig;
  178. u32 extmemparitycsr;
  179. u32 extmemparityerrdata;
  180. u32 extmemparityerrcnt;
  181. u32 extmemwrctrlandsize;
  182. u32 PAD[84];
  183. u32 workaround;
  184. u32 pwrctl; /* corerev >= 2 */
  185. u32 PAD[133];
  186. u32 sr_control; /* corerev >= 15 */
  187. u32 sr_status; /* corerev >= 15 */
  188. u32 sr_address; /* corerev >= 15 */
  189. u32 sr_data; /* corerev >= 15 */
  190. };
  191. #define SOCRAMREGOFFS(_f) offsetof(struct sbsocramregs, _f)
  192. #define SYSMEMREGOFFS(_f) offsetof(struct sbsocramregs, _f)
  193. #define ARMCR4_CAP (0x04)
  194. #define ARMCR4_BANKIDX (0x40)
  195. #define ARMCR4_BANKINFO (0x44)
  196. #define ARMCR4_BANKPDA (0x4C)
  197. #define ARMCR4_TCBBNB_MASK 0xf0
  198. #define ARMCR4_TCBBNB_SHIFT 4
  199. #define ARMCR4_TCBANB_MASK 0xf
  200. #define ARMCR4_TCBANB_SHIFT 0
  201. #define ARMCR4_BSZ_MASK 0x3f
  202. #define ARMCR4_BSZ_MULT 8192
  203. struct brcmf_core_priv {
  204. struct brcmf_core pub;
  205. u32 wrapbase;
  206. struct list_head list;
  207. struct brcmf_chip_priv *chip;
  208. };
  209. struct brcmf_chip_priv {
  210. struct brcmf_chip pub;
  211. const struct brcmf_buscore_ops *ops;
  212. void *ctx;
  213. /* assured first core is chipcommon, second core is buscore */
  214. struct list_head cores;
  215. u16 num_cores;
  216. bool (*iscoreup)(struct brcmf_core_priv *core);
  217. void (*coredisable)(struct brcmf_core_priv *core, u32 prereset,
  218. u32 reset);
  219. void (*resetcore)(struct brcmf_core_priv *core, u32 prereset, u32 reset,
  220. u32 postreset);
  221. };
  222. static void brcmf_chip_sb_corerev(struct brcmf_chip_priv *ci,
  223. struct brcmf_core *core)
  224. {
  225. u32 regdata;
  226. regdata = ci->ops->read32(ci->ctx, CORE_SB(core->base, sbidhigh));
  227. core->rev = SBCOREREV(regdata);
  228. }
  229. static bool brcmf_chip_sb_iscoreup(struct brcmf_core_priv *core)
  230. {
  231. struct brcmf_chip_priv *ci;
  232. u32 regdata;
  233. u32 address;
  234. ci = core->chip;
  235. address = CORE_SB(core->pub.base, sbtmstatelow);
  236. regdata = ci->ops->read32(ci->ctx, address);
  237. regdata &= (SSB_TMSLOW_RESET | SSB_TMSLOW_REJECT |
  238. SSB_IMSTATE_REJECT | SSB_TMSLOW_CLOCK);
  239. return SSB_TMSLOW_CLOCK == regdata;
  240. }
  241. static bool brcmf_chip_ai_iscoreup(struct brcmf_core_priv *core)
  242. {
  243. struct brcmf_chip_priv *ci;
  244. u32 regdata;
  245. bool ret;
  246. ci = core->chip;
  247. regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
  248. ret = (regdata & (BCMA_IOCTL_FGC | BCMA_IOCTL_CLK)) == BCMA_IOCTL_CLK;
  249. regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL);
  250. ret = ret && ((regdata & BCMA_RESET_CTL_RESET) == 0);
  251. return ret;
  252. }
  253. static void brcmf_chip_sb_coredisable(struct brcmf_core_priv *core,
  254. u32 prereset, u32 reset)
  255. {
  256. struct brcmf_chip_priv *ci;
  257. u32 val, base;
  258. ci = core->chip;
  259. base = core->pub.base;
  260. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  261. if (val & SSB_TMSLOW_RESET)
  262. return;
  263. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  264. if ((val & SSB_TMSLOW_CLOCK) != 0) {
  265. /*
  266. * set target reject and spin until busy is clear
  267. * (preserve core-specific bits)
  268. */
  269. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  270. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
  271. val | SSB_TMSLOW_REJECT);
  272. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  273. udelay(1);
  274. SPINWAIT((ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh))
  275. & SSB_TMSHIGH_BUSY), 100000);
  276. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh));
  277. if (val & SSB_TMSHIGH_BUSY)
  278. brcmf_err("core state still busy\n");
  279. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow));
  280. if (val & SSB_IDLOW_INITIATOR) {
  281. val = ci->ops->read32(ci->ctx,
  282. CORE_SB(base, sbimstate));
  283. val |= SSB_IMSTATE_REJECT;
  284. ci->ops->write32(ci->ctx,
  285. CORE_SB(base, sbimstate), val);
  286. val = ci->ops->read32(ci->ctx,
  287. CORE_SB(base, sbimstate));
  288. udelay(1);
  289. SPINWAIT((ci->ops->read32(ci->ctx,
  290. CORE_SB(base, sbimstate)) &
  291. SSB_IMSTATE_BUSY), 100000);
  292. }
  293. /* set reset and reject while enabling the clocks */
  294. val = SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
  295. SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET;
  296. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), val);
  297. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  298. udelay(10);
  299. /* clear the initiator reject bit */
  300. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow));
  301. if (val & SSB_IDLOW_INITIATOR) {
  302. val = ci->ops->read32(ci->ctx,
  303. CORE_SB(base, sbimstate));
  304. val &= ~SSB_IMSTATE_REJECT;
  305. ci->ops->write32(ci->ctx,
  306. CORE_SB(base, sbimstate), val);
  307. }
  308. }
  309. /* leave reset and reject asserted */
  310. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
  311. (SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET));
  312. udelay(1);
  313. }
  314. static void brcmf_chip_ai_coredisable(struct brcmf_core_priv *core,
  315. u32 prereset, u32 reset)
  316. {
  317. struct brcmf_chip_priv *ci;
  318. u32 regdata;
  319. ci = core->chip;
  320. /* if core is already in reset, skip reset */
  321. regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL);
  322. if ((regdata & BCMA_RESET_CTL_RESET) != 0)
  323. goto in_reset_configure;
  324. /* configure reset */
  325. ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
  326. prereset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK);
  327. ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
  328. /* put in reset */
  329. ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL,
  330. BCMA_RESET_CTL_RESET);
  331. usleep_range(10, 20);
  332. /* wait till reset is 1 */
  333. SPINWAIT(ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) !=
  334. BCMA_RESET_CTL_RESET, 300);
  335. in_reset_configure:
  336. /* in-reset configure */
  337. ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
  338. reset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK);
  339. ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
  340. }
  341. static void brcmf_chip_sb_resetcore(struct brcmf_core_priv *core, u32 prereset,
  342. u32 reset, u32 postreset)
  343. {
  344. struct brcmf_chip_priv *ci;
  345. u32 regdata;
  346. u32 base;
  347. ci = core->chip;
  348. base = core->pub.base;
  349. /*
  350. * Must do the disable sequence first to work for
  351. * arbitrary current core state.
  352. */
  353. brcmf_chip_sb_coredisable(core, 0, 0);
  354. /*
  355. * Now do the initialization sequence.
  356. * set reset while enabling the clock and
  357. * forcing them on throughout the core
  358. */
  359. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
  360. SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
  361. SSB_TMSLOW_RESET);
  362. regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  363. udelay(1);
  364. /* clear any serror */
  365. regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh));
  366. if (regdata & SSB_TMSHIGH_SERR)
  367. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatehigh), 0);
  368. regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbimstate));
  369. if (regdata & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO)) {
  370. regdata &= ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO);
  371. ci->ops->write32(ci->ctx, CORE_SB(base, sbimstate), regdata);
  372. }
  373. /* clear reset and allow it to propagate throughout the core */
  374. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
  375. SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK);
  376. regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  377. udelay(1);
  378. /* leave clock enabled */
  379. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
  380. SSB_TMSLOW_CLOCK);
  381. regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  382. udelay(1);
  383. }
  384. static void brcmf_chip_ai_resetcore(struct brcmf_core_priv *core, u32 prereset,
  385. u32 reset, u32 postreset)
  386. {
  387. struct brcmf_chip_priv *ci;
  388. int count;
  389. ci = core->chip;
  390. /* must disable first to work for arbitrary current core state */
  391. brcmf_chip_ai_coredisable(core, prereset, reset);
  392. count = 0;
  393. while (ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) &
  394. BCMA_RESET_CTL_RESET) {
  395. ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL, 0);
  396. count++;
  397. if (count > 50)
  398. break;
  399. usleep_range(40, 60);
  400. }
  401. ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
  402. postreset | BCMA_IOCTL_CLK);
  403. ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
  404. }
  405. static char *brcmf_chip_name(uint chipid, char *buf, uint len)
  406. {
  407. const char *fmt;
  408. fmt = ((chipid > 0xa000) || (chipid < 0x4000)) ? "%d" : "%x";
  409. snprintf(buf, len, fmt, chipid);
  410. return buf;
  411. }
  412. static struct brcmf_core *brcmf_chip_add_core(struct brcmf_chip_priv *ci,
  413. u16 coreid, u32 base,
  414. u32 wrapbase)
  415. {
  416. struct brcmf_core_priv *core;
  417. core = kzalloc(sizeof(*core), GFP_KERNEL);
  418. if (!core)
  419. return ERR_PTR(-ENOMEM);
  420. core->pub.id = coreid;
  421. core->pub.base = base;
  422. core->chip = ci;
  423. core->wrapbase = wrapbase;
  424. list_add_tail(&core->list, &ci->cores);
  425. return &core->pub;
  426. }
  427. /* safety check for chipinfo */
  428. static int brcmf_chip_cores_check(struct brcmf_chip_priv *ci)
  429. {
  430. struct brcmf_core_priv *core;
  431. bool need_socram = false;
  432. bool has_socram = false;
  433. bool cpu_found = false;
  434. int idx = 1;
  435. list_for_each_entry(core, &ci->cores, list) {
  436. brcmf_dbg(INFO, " [%-2d] core 0x%x:%-2d base 0x%08x wrap 0x%08x\n",
  437. idx++, core->pub.id, core->pub.rev, core->pub.base,
  438. core->wrapbase);
  439. switch (core->pub.id) {
  440. case BCMA_CORE_ARM_CM3:
  441. cpu_found = true;
  442. need_socram = true;
  443. break;
  444. case BCMA_CORE_INTERNAL_MEM:
  445. has_socram = true;
  446. break;
  447. case BCMA_CORE_ARM_CR4:
  448. cpu_found = true;
  449. break;
  450. case BCMA_CORE_ARM_CA7:
  451. cpu_found = true;
  452. break;
  453. default:
  454. break;
  455. }
  456. }
  457. if (!cpu_found) {
  458. brcmf_err("CPU core not detected\n");
  459. return -ENXIO;
  460. }
  461. /* check RAM core presence for ARM CM3 core */
  462. if (need_socram && !has_socram) {
  463. brcmf_err("RAM core not provided with ARM CM3 core\n");
  464. return -ENODEV;
  465. }
  466. return 0;
  467. }
  468. static u32 brcmf_chip_core_read32(struct brcmf_core_priv *core, u16 reg)
  469. {
  470. return core->chip->ops->read32(core->chip->ctx, core->pub.base + reg);
  471. }
  472. static void brcmf_chip_core_write32(struct brcmf_core_priv *core,
  473. u16 reg, u32 val)
  474. {
  475. core->chip->ops->write32(core->chip->ctx, core->pub.base + reg, val);
  476. }
  477. static bool brcmf_chip_socram_banksize(struct brcmf_core_priv *core, u8 idx,
  478. u32 *banksize)
  479. {
  480. u32 bankinfo;
  481. u32 bankidx = (SOCRAM_MEMTYPE_RAM << SOCRAM_BANKIDX_MEMTYPE_SHIFT);
  482. bankidx |= idx;
  483. brcmf_chip_core_write32(core, SOCRAMREGOFFS(bankidx), bankidx);
  484. bankinfo = brcmf_chip_core_read32(core, SOCRAMREGOFFS(bankinfo));
  485. *banksize = (bankinfo & SOCRAM_BANKINFO_SZMASK) + 1;
  486. *banksize *= SOCRAM_BANKINFO_SZBASE;
  487. return !!(bankinfo & SOCRAM_BANKINFO_RETNTRAM_MASK);
  488. }
  489. static void brcmf_chip_socram_ramsize(struct brcmf_core_priv *sr, u32 *ramsize,
  490. u32 *srsize)
  491. {
  492. u32 coreinfo;
  493. uint nb, banksize, lss;
  494. bool retent;
  495. int i;
  496. *ramsize = 0;
  497. *srsize = 0;
  498. if (WARN_ON(sr->pub.rev < 4))
  499. return;
  500. if (!brcmf_chip_iscoreup(&sr->pub))
  501. brcmf_chip_resetcore(&sr->pub, 0, 0, 0);
  502. /* Get info for determining size */
  503. coreinfo = brcmf_chip_core_read32(sr, SOCRAMREGOFFS(coreinfo));
  504. nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
  505. if ((sr->pub.rev <= 7) || (sr->pub.rev == 12)) {
  506. banksize = (coreinfo & SRCI_SRBSZ_MASK);
  507. lss = (coreinfo & SRCI_LSS_MASK) >> SRCI_LSS_SHIFT;
  508. if (lss != 0)
  509. nb--;
  510. *ramsize = nb * (1 << (banksize + SR_BSZ_BASE));
  511. if (lss != 0)
  512. *ramsize += (1 << ((lss - 1) + SR_BSZ_BASE));
  513. } else {
  514. nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
  515. for (i = 0; i < nb; i++) {
  516. retent = brcmf_chip_socram_banksize(sr, i, &banksize);
  517. *ramsize += banksize;
  518. if (retent)
  519. *srsize += banksize;
  520. }
  521. }
  522. /* hardcoded save&restore memory sizes */
  523. switch (sr->chip->pub.chip) {
  524. case BRCM_CC_4334_CHIP_ID:
  525. if (sr->chip->pub.chiprev < 2)
  526. *srsize = (32 * 1024);
  527. break;
  528. case BRCM_CC_43430_CHIP_ID:
  529. /* assume sr for now as we can not check
  530. * firmware sr capability at this point.
  531. */
  532. *srsize = (64 * 1024);
  533. break;
  534. default:
  535. break;
  536. }
  537. }
  538. /** Return the SYS MEM size */
  539. static u32 brcmf_chip_sysmem_ramsize(struct brcmf_core_priv *sysmem)
  540. {
  541. u32 memsize = 0;
  542. u32 coreinfo;
  543. u32 idx;
  544. u32 nb;
  545. u32 banksize;
  546. if (!brcmf_chip_iscoreup(&sysmem->pub))
  547. brcmf_chip_resetcore(&sysmem->pub, 0, 0, 0);
  548. coreinfo = brcmf_chip_core_read32(sysmem, SYSMEMREGOFFS(coreinfo));
  549. nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
  550. for (idx = 0; idx < nb; idx++) {
  551. brcmf_chip_socram_banksize(sysmem, idx, &banksize);
  552. memsize += banksize;
  553. }
  554. return memsize;
  555. }
  556. /** Return the TCM-RAM size of the ARMCR4 core. */
  557. static u32 brcmf_chip_tcm_ramsize(struct brcmf_core_priv *cr4)
  558. {
  559. u32 corecap;
  560. u32 memsize = 0;
  561. u32 nab;
  562. u32 nbb;
  563. u32 totb;
  564. u32 bxinfo;
  565. u32 idx;
  566. corecap = brcmf_chip_core_read32(cr4, ARMCR4_CAP);
  567. nab = (corecap & ARMCR4_TCBANB_MASK) >> ARMCR4_TCBANB_SHIFT;
  568. nbb = (corecap & ARMCR4_TCBBNB_MASK) >> ARMCR4_TCBBNB_SHIFT;
  569. totb = nab + nbb;
  570. for (idx = 0; idx < totb; idx++) {
  571. brcmf_chip_core_write32(cr4, ARMCR4_BANKIDX, idx);
  572. bxinfo = brcmf_chip_core_read32(cr4, ARMCR4_BANKINFO);
  573. memsize += ((bxinfo & ARMCR4_BSZ_MASK) + 1) * ARMCR4_BSZ_MULT;
  574. }
  575. return memsize;
  576. }
  577. static u32 brcmf_chip_tcm_rambase(struct brcmf_chip_priv *ci)
  578. {
  579. switch (ci->pub.chip) {
  580. case BRCM_CC_4345_CHIP_ID:
  581. return 0x198000;
  582. case BRCM_CC_4335_CHIP_ID:
  583. case BRCM_CC_4339_CHIP_ID:
  584. case BRCM_CC_4350_CHIP_ID:
  585. case BRCM_CC_4354_CHIP_ID:
  586. case BRCM_CC_4356_CHIP_ID:
  587. case BRCM_CC_43567_CHIP_ID:
  588. case BRCM_CC_43569_CHIP_ID:
  589. case BRCM_CC_43570_CHIP_ID:
  590. case BRCM_CC_4358_CHIP_ID:
  591. case BRCM_CC_43602_CHIP_ID:
  592. case BRCM_CC_4371_CHIP_ID:
  593. return 0x180000;
  594. case BRCM_CC_4365_CHIP_ID:
  595. case BRCM_CC_4366_CHIP_ID:
  596. return 0x200000;
  597. default:
  598. brcmf_err("unknown chip: %s\n", ci->pub.name);
  599. break;
  600. }
  601. return 0;
  602. }
  603. static int brcmf_chip_get_raminfo(struct brcmf_chip_priv *ci)
  604. {
  605. struct brcmf_core_priv *mem_core;
  606. struct brcmf_core *mem;
  607. mem = brcmf_chip_get_core(&ci->pub, BCMA_CORE_ARM_CR4);
  608. if (mem) {
  609. mem_core = container_of(mem, struct brcmf_core_priv, pub);
  610. ci->pub.ramsize = brcmf_chip_tcm_ramsize(mem_core);
  611. ci->pub.rambase = brcmf_chip_tcm_rambase(ci);
  612. if (!ci->pub.rambase) {
  613. brcmf_err("RAM base not provided with ARM CR4 core\n");
  614. return -EINVAL;
  615. }
  616. } else {
  617. mem = brcmf_chip_get_core(&ci->pub, BCMA_CORE_SYS_MEM);
  618. if (mem) {
  619. mem_core = container_of(mem, struct brcmf_core_priv,
  620. pub);
  621. ci->pub.ramsize = brcmf_chip_sysmem_ramsize(mem_core);
  622. ci->pub.rambase = brcmf_chip_tcm_rambase(ci);
  623. if (!ci->pub.rambase) {
  624. brcmf_err("RAM base not provided with ARM CA7 core\n");
  625. return -EINVAL;
  626. }
  627. } else {
  628. mem = brcmf_chip_get_core(&ci->pub,
  629. BCMA_CORE_INTERNAL_MEM);
  630. if (!mem) {
  631. brcmf_err("No memory cores found\n");
  632. return -ENOMEM;
  633. }
  634. mem_core = container_of(mem, struct brcmf_core_priv,
  635. pub);
  636. brcmf_chip_socram_ramsize(mem_core, &ci->pub.ramsize,
  637. &ci->pub.srsize);
  638. }
  639. }
  640. brcmf_dbg(INFO, "RAM: base=0x%x size=%d (0x%x) sr=%d (0x%x)\n",
  641. ci->pub.rambase, ci->pub.ramsize, ci->pub.ramsize,
  642. ci->pub.srsize, ci->pub.srsize);
  643. if (!ci->pub.ramsize) {
  644. brcmf_err("RAM size is undetermined\n");
  645. return -ENOMEM;
  646. }
  647. if (ci->pub.ramsize > BRCMF_CHIP_MAX_MEMSIZE) {
  648. brcmf_err("RAM size is incorrect\n");
  649. return -ENOMEM;
  650. }
  651. return 0;
  652. }
  653. static u32 brcmf_chip_dmp_get_desc(struct brcmf_chip_priv *ci, u32 *eromaddr,
  654. u8 *type)
  655. {
  656. u32 val;
  657. /* read next descriptor */
  658. val = ci->ops->read32(ci->ctx, *eromaddr);
  659. *eromaddr += 4;
  660. if (!type)
  661. return val;
  662. /* determine descriptor type */
  663. *type = (val & DMP_DESC_TYPE_MSK);
  664. if ((*type & ~DMP_DESC_ADDRSIZE_GT32) == DMP_DESC_ADDRESS)
  665. *type = DMP_DESC_ADDRESS;
  666. return val;
  667. }
  668. static int brcmf_chip_dmp_get_regaddr(struct brcmf_chip_priv *ci, u32 *eromaddr,
  669. u32 *regbase, u32 *wrapbase)
  670. {
  671. u8 desc;
  672. u32 val;
  673. u8 mpnum = 0;
  674. u8 stype, sztype, wraptype;
  675. *regbase = 0;
  676. *wrapbase = 0;
  677. val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc);
  678. if (desc == DMP_DESC_MASTER_PORT) {
  679. mpnum = (val & DMP_MASTER_PORT_NUM) >> DMP_MASTER_PORT_NUM_S;
  680. wraptype = DMP_SLAVE_TYPE_MWRAP;
  681. } else if (desc == DMP_DESC_ADDRESS) {
  682. /* revert erom address */
  683. *eromaddr -= 4;
  684. wraptype = DMP_SLAVE_TYPE_SWRAP;
  685. } else {
  686. *eromaddr -= 4;
  687. return -EILSEQ;
  688. }
  689. do {
  690. /* locate address descriptor */
  691. do {
  692. val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc);
  693. /* unexpected table end */
  694. if (desc == DMP_DESC_EOT) {
  695. *eromaddr -= 4;
  696. return -EFAULT;
  697. }
  698. } while (desc != DMP_DESC_ADDRESS);
  699. /* skip upper 32-bit address descriptor */
  700. if (val & DMP_DESC_ADDRSIZE_GT32)
  701. brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
  702. sztype = (val & DMP_SLAVE_SIZE_TYPE) >> DMP_SLAVE_SIZE_TYPE_S;
  703. /* next size descriptor can be skipped */
  704. if (sztype == DMP_SLAVE_SIZE_DESC) {
  705. val = brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
  706. /* skip upper size descriptor if present */
  707. if (val & DMP_DESC_ADDRSIZE_GT32)
  708. brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
  709. }
  710. /* only look for 4K register regions */
  711. if (sztype != DMP_SLAVE_SIZE_4K)
  712. continue;
  713. stype = (val & DMP_SLAVE_TYPE) >> DMP_SLAVE_TYPE_S;
  714. /* only regular slave and wrapper */
  715. if (*regbase == 0 && stype == DMP_SLAVE_TYPE_SLAVE)
  716. *regbase = val & DMP_SLAVE_ADDR_BASE;
  717. if (*wrapbase == 0 && stype == wraptype)
  718. *wrapbase = val & DMP_SLAVE_ADDR_BASE;
  719. } while (*regbase == 0 || *wrapbase == 0);
  720. return 0;
  721. }
  722. static
  723. int brcmf_chip_dmp_erom_scan(struct brcmf_chip_priv *ci)
  724. {
  725. struct brcmf_core *core;
  726. u32 eromaddr;
  727. u8 desc_type = 0;
  728. u32 val;
  729. u16 id;
  730. u8 nmp, nsp, nmw, nsw, rev;
  731. u32 base, wrap;
  732. int err;
  733. eromaddr = ci->ops->read32(ci->ctx, CORE_CC_REG(SI_ENUM_BASE, eromptr));
  734. while (desc_type != DMP_DESC_EOT) {
  735. val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type);
  736. if (!(val & DMP_DESC_VALID))
  737. continue;
  738. if (desc_type == DMP_DESC_EMPTY)
  739. continue;
  740. /* need a component descriptor */
  741. if (desc_type != DMP_DESC_COMPONENT)
  742. continue;
  743. id = (val & DMP_COMP_PARTNUM) >> DMP_COMP_PARTNUM_S;
  744. /* next descriptor must be component as well */
  745. val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type);
  746. if (WARN_ON((val & DMP_DESC_TYPE_MSK) != DMP_DESC_COMPONENT))
  747. return -EFAULT;
  748. /* only look at cores with master port(s) */
  749. nmp = (val & DMP_COMP_NUM_MPORT) >> DMP_COMP_NUM_MPORT_S;
  750. nsp = (val & DMP_COMP_NUM_SPORT) >> DMP_COMP_NUM_SPORT_S;
  751. nmw = (val & DMP_COMP_NUM_MWRAP) >> DMP_COMP_NUM_MWRAP_S;
  752. nsw = (val & DMP_COMP_NUM_SWRAP) >> DMP_COMP_NUM_SWRAP_S;
  753. rev = (val & DMP_COMP_REVISION) >> DMP_COMP_REVISION_S;
  754. /* need core with ports */
  755. if (nmw + nsw == 0)
  756. continue;
  757. /* try to obtain register address info */
  758. err = brcmf_chip_dmp_get_regaddr(ci, &eromaddr, &base, &wrap);
  759. if (err)
  760. continue;
  761. /* finally a core to be added */
  762. core = brcmf_chip_add_core(ci, id, base, wrap);
  763. if (IS_ERR(core))
  764. return PTR_ERR(core);
  765. core->rev = rev;
  766. }
  767. return 0;
  768. }
  769. static int brcmf_chip_recognition(struct brcmf_chip_priv *ci)
  770. {
  771. struct brcmf_core *core;
  772. u32 regdata;
  773. u32 socitype;
  774. int ret;
  775. /* Get CC core rev
  776. * Chipid is assume to be at offset 0 from SI_ENUM_BASE
  777. * For different chiptypes or old sdio hosts w/o chipcommon,
  778. * other ways of recognition should be added here.
  779. */
  780. regdata = ci->ops->read32(ci->ctx, CORE_CC_REG(SI_ENUM_BASE, chipid));
  781. ci->pub.chip = regdata & CID_ID_MASK;
  782. ci->pub.chiprev = (regdata & CID_REV_MASK) >> CID_REV_SHIFT;
  783. socitype = (regdata & CID_TYPE_MASK) >> CID_TYPE_SHIFT;
  784. brcmf_chip_name(ci->pub.chip, ci->pub.name, sizeof(ci->pub.name));
  785. brcmf_dbg(INFO, "found %s chip: BCM%s, rev=%d\n",
  786. socitype == SOCI_SB ? "SB" : "AXI", ci->pub.name,
  787. ci->pub.chiprev);
  788. if (socitype == SOCI_SB) {
  789. if (ci->pub.chip != BRCM_CC_4329_CHIP_ID) {
  790. brcmf_err("SB chip is not supported\n");
  791. return -ENODEV;
  792. }
  793. ci->iscoreup = brcmf_chip_sb_iscoreup;
  794. ci->coredisable = brcmf_chip_sb_coredisable;
  795. ci->resetcore = brcmf_chip_sb_resetcore;
  796. core = brcmf_chip_add_core(ci, BCMA_CORE_CHIPCOMMON,
  797. SI_ENUM_BASE, 0);
  798. brcmf_chip_sb_corerev(ci, core);
  799. core = brcmf_chip_add_core(ci, BCMA_CORE_SDIO_DEV,
  800. BCM4329_CORE_BUS_BASE, 0);
  801. brcmf_chip_sb_corerev(ci, core);
  802. core = brcmf_chip_add_core(ci, BCMA_CORE_INTERNAL_MEM,
  803. BCM4329_CORE_SOCRAM_BASE, 0);
  804. brcmf_chip_sb_corerev(ci, core);
  805. core = brcmf_chip_add_core(ci, BCMA_CORE_ARM_CM3,
  806. BCM4329_CORE_ARM_BASE, 0);
  807. brcmf_chip_sb_corerev(ci, core);
  808. core = brcmf_chip_add_core(ci, BCMA_CORE_80211, 0x18001000, 0);
  809. brcmf_chip_sb_corerev(ci, core);
  810. } else if (socitype == SOCI_AI) {
  811. ci->iscoreup = brcmf_chip_ai_iscoreup;
  812. ci->coredisable = brcmf_chip_ai_coredisable;
  813. ci->resetcore = brcmf_chip_ai_resetcore;
  814. brcmf_chip_dmp_erom_scan(ci);
  815. } else {
  816. brcmf_err("chip backplane type %u is not supported\n",
  817. socitype);
  818. return -ENODEV;
  819. }
  820. ret = brcmf_chip_cores_check(ci);
  821. if (ret)
  822. return ret;
  823. /* assure chip is passive for core access */
  824. brcmf_chip_set_passive(&ci->pub);
  825. /* Call bus specific reset function now. Cores have been determined
  826. * but further access may require a chip specific reset at this point.
  827. */
  828. if (ci->ops->reset) {
  829. ci->ops->reset(ci->ctx, &ci->pub);
  830. brcmf_chip_set_passive(&ci->pub);
  831. }
  832. return brcmf_chip_get_raminfo(ci);
  833. }
  834. static void brcmf_chip_disable_arm(struct brcmf_chip_priv *chip, u16 id)
  835. {
  836. struct brcmf_core *core;
  837. struct brcmf_core_priv *cpu;
  838. u32 val;
  839. core = brcmf_chip_get_core(&chip->pub, id);
  840. if (!core)
  841. return;
  842. switch (id) {
  843. case BCMA_CORE_ARM_CM3:
  844. brcmf_chip_coredisable(core, 0, 0);
  845. break;
  846. case BCMA_CORE_ARM_CR4:
  847. case BCMA_CORE_ARM_CA7:
  848. cpu = container_of(core, struct brcmf_core_priv, pub);
  849. /* clear all IOCTL bits except HALT bit */
  850. val = chip->ops->read32(chip->ctx, cpu->wrapbase + BCMA_IOCTL);
  851. val &= ARMCR4_BCMA_IOCTL_CPUHALT;
  852. brcmf_chip_resetcore(core, val, ARMCR4_BCMA_IOCTL_CPUHALT,
  853. ARMCR4_BCMA_IOCTL_CPUHALT);
  854. break;
  855. default:
  856. brcmf_err("unknown id: %u\n", id);
  857. break;
  858. }
  859. }
  860. static int brcmf_chip_setup(struct brcmf_chip_priv *chip)
  861. {
  862. struct brcmf_chip *pub;
  863. struct brcmf_core_priv *cc;
  864. u32 base;
  865. u32 val;
  866. int ret = 0;
  867. pub = &chip->pub;
  868. cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list);
  869. base = cc->pub.base;
  870. /* get chipcommon capabilites */
  871. pub->cc_caps = chip->ops->read32(chip->ctx,
  872. CORE_CC_REG(base, capabilities));
  873. /* get pmu caps & rev */
  874. if (pub->cc_caps & CC_CAP_PMU) {
  875. val = chip->ops->read32(chip->ctx,
  876. CORE_CC_REG(base, pmucapabilities));
  877. pub->pmurev = val & PCAP_REV_MASK;
  878. pub->pmucaps = val;
  879. }
  880. brcmf_dbg(INFO, "ccrev=%d, pmurev=%d, pmucaps=0x%x\n",
  881. cc->pub.rev, pub->pmurev, pub->pmucaps);
  882. /* execute bus core specific setup */
  883. if (chip->ops->setup)
  884. ret = chip->ops->setup(chip->ctx, pub);
  885. return ret;
  886. }
  887. struct brcmf_chip *brcmf_chip_attach(void *ctx,
  888. const struct brcmf_buscore_ops *ops)
  889. {
  890. struct brcmf_chip_priv *chip;
  891. int err = 0;
  892. if (WARN_ON(!ops->read32))
  893. err = -EINVAL;
  894. if (WARN_ON(!ops->write32))
  895. err = -EINVAL;
  896. if (WARN_ON(!ops->prepare))
  897. err = -EINVAL;
  898. if (WARN_ON(!ops->activate))
  899. err = -EINVAL;
  900. if (err < 0)
  901. return ERR_PTR(-EINVAL);
  902. chip = kzalloc(sizeof(*chip), GFP_KERNEL);
  903. if (!chip)
  904. return ERR_PTR(-ENOMEM);
  905. INIT_LIST_HEAD(&chip->cores);
  906. chip->num_cores = 0;
  907. chip->ops = ops;
  908. chip->ctx = ctx;
  909. err = ops->prepare(ctx);
  910. if (err < 0)
  911. goto fail;
  912. err = brcmf_chip_recognition(chip);
  913. if (err < 0)
  914. goto fail;
  915. err = brcmf_chip_setup(chip);
  916. if (err < 0)
  917. goto fail;
  918. return &chip->pub;
  919. fail:
  920. brcmf_chip_detach(&chip->pub);
  921. return ERR_PTR(err);
  922. }
  923. void brcmf_chip_detach(struct brcmf_chip *pub)
  924. {
  925. struct brcmf_chip_priv *chip;
  926. struct brcmf_core_priv *core;
  927. struct brcmf_core_priv *tmp;
  928. chip = container_of(pub, struct brcmf_chip_priv, pub);
  929. list_for_each_entry_safe(core, tmp, &chip->cores, list) {
  930. list_del(&core->list);
  931. kfree(core);
  932. }
  933. kfree(chip);
  934. }
  935. struct brcmf_core *brcmf_chip_get_core(struct brcmf_chip *pub, u16 coreid)
  936. {
  937. struct brcmf_chip_priv *chip;
  938. struct brcmf_core_priv *core;
  939. chip = container_of(pub, struct brcmf_chip_priv, pub);
  940. list_for_each_entry(core, &chip->cores, list)
  941. if (core->pub.id == coreid)
  942. return &core->pub;
  943. return NULL;
  944. }
  945. struct brcmf_core *brcmf_chip_get_chipcommon(struct brcmf_chip *pub)
  946. {
  947. struct brcmf_chip_priv *chip;
  948. struct brcmf_core_priv *cc;
  949. chip = container_of(pub, struct brcmf_chip_priv, pub);
  950. cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list);
  951. if (WARN_ON(!cc || cc->pub.id != BCMA_CORE_CHIPCOMMON))
  952. return brcmf_chip_get_core(pub, BCMA_CORE_CHIPCOMMON);
  953. return &cc->pub;
  954. }
  955. bool brcmf_chip_iscoreup(struct brcmf_core *pub)
  956. {
  957. struct brcmf_core_priv *core;
  958. core = container_of(pub, struct brcmf_core_priv, pub);
  959. return core->chip->iscoreup(core);
  960. }
  961. void brcmf_chip_coredisable(struct brcmf_core *pub, u32 prereset, u32 reset)
  962. {
  963. struct brcmf_core_priv *core;
  964. core = container_of(pub, struct brcmf_core_priv, pub);
  965. core->chip->coredisable(core, prereset, reset);
  966. }
  967. void brcmf_chip_resetcore(struct brcmf_core *pub, u32 prereset, u32 reset,
  968. u32 postreset)
  969. {
  970. struct brcmf_core_priv *core;
  971. core = container_of(pub, struct brcmf_core_priv, pub);
  972. core->chip->resetcore(core, prereset, reset, postreset);
  973. }
  974. static void
  975. brcmf_chip_cm3_set_passive(struct brcmf_chip_priv *chip)
  976. {
  977. struct brcmf_core *core;
  978. struct brcmf_core_priv *sr;
  979. brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CM3);
  980. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
  981. brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
  982. D11_BCMA_IOCTL_PHYCLOCKEN,
  983. D11_BCMA_IOCTL_PHYCLOCKEN,
  984. D11_BCMA_IOCTL_PHYCLOCKEN);
  985. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM);
  986. brcmf_chip_resetcore(core, 0, 0, 0);
  987. /* disable bank #3 remap for this device */
  988. if (chip->pub.chip == BRCM_CC_43430_CHIP_ID) {
  989. sr = container_of(core, struct brcmf_core_priv, pub);
  990. brcmf_chip_core_write32(sr, SOCRAMREGOFFS(bankidx), 3);
  991. brcmf_chip_core_write32(sr, SOCRAMREGOFFS(bankpda), 0);
  992. }
  993. }
  994. static bool brcmf_chip_cm3_set_active(struct brcmf_chip_priv *chip)
  995. {
  996. struct brcmf_core *core;
  997. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM);
  998. if (!brcmf_chip_iscoreup(core)) {
  999. brcmf_err("SOCRAM core is down after reset?\n");
  1000. return false;
  1001. }
  1002. chip->ops->activate(chip->ctx, &chip->pub, 0);
  1003. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CM3);
  1004. brcmf_chip_resetcore(core, 0, 0, 0);
  1005. return true;
  1006. }
  1007. static inline void
  1008. brcmf_chip_cr4_set_passive(struct brcmf_chip_priv *chip)
  1009. {
  1010. struct brcmf_core *core;
  1011. brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CR4);
  1012. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
  1013. brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
  1014. D11_BCMA_IOCTL_PHYCLOCKEN,
  1015. D11_BCMA_IOCTL_PHYCLOCKEN,
  1016. D11_BCMA_IOCTL_PHYCLOCKEN);
  1017. }
  1018. static bool brcmf_chip_cr4_set_active(struct brcmf_chip_priv *chip, u32 rstvec)
  1019. {
  1020. struct brcmf_core *core;
  1021. chip->ops->activate(chip->ctx, &chip->pub, rstvec);
  1022. /* restore ARM */
  1023. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CR4);
  1024. brcmf_chip_resetcore(core, ARMCR4_BCMA_IOCTL_CPUHALT, 0, 0);
  1025. return true;
  1026. }
  1027. static inline void
  1028. brcmf_chip_ca7_set_passive(struct brcmf_chip_priv *chip)
  1029. {
  1030. struct brcmf_core *core;
  1031. brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CA7);
  1032. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
  1033. brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
  1034. D11_BCMA_IOCTL_PHYCLOCKEN,
  1035. D11_BCMA_IOCTL_PHYCLOCKEN,
  1036. D11_BCMA_IOCTL_PHYCLOCKEN);
  1037. }
  1038. static bool brcmf_chip_ca7_set_active(struct brcmf_chip_priv *chip, u32 rstvec)
  1039. {
  1040. struct brcmf_core *core;
  1041. chip->ops->activate(chip->ctx, &chip->pub, rstvec);
  1042. /* restore ARM */
  1043. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CA7);
  1044. brcmf_chip_resetcore(core, ARMCR4_BCMA_IOCTL_CPUHALT, 0, 0);
  1045. return true;
  1046. }
  1047. void brcmf_chip_set_passive(struct brcmf_chip *pub)
  1048. {
  1049. struct brcmf_chip_priv *chip;
  1050. struct brcmf_core *arm;
  1051. brcmf_dbg(TRACE, "Enter\n");
  1052. chip = container_of(pub, struct brcmf_chip_priv, pub);
  1053. arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4);
  1054. if (arm) {
  1055. brcmf_chip_cr4_set_passive(chip);
  1056. return;
  1057. }
  1058. arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CA7);
  1059. if (arm) {
  1060. brcmf_chip_ca7_set_passive(chip);
  1061. return;
  1062. }
  1063. arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CM3);
  1064. if (arm) {
  1065. brcmf_chip_cm3_set_passive(chip);
  1066. return;
  1067. }
  1068. }
  1069. bool brcmf_chip_set_active(struct brcmf_chip *pub, u32 rstvec)
  1070. {
  1071. struct brcmf_chip_priv *chip;
  1072. struct brcmf_core *arm;
  1073. brcmf_dbg(TRACE, "Enter\n");
  1074. chip = container_of(pub, struct brcmf_chip_priv, pub);
  1075. arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4);
  1076. if (arm)
  1077. return brcmf_chip_cr4_set_active(chip, rstvec);
  1078. arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CA7);
  1079. if (arm)
  1080. return brcmf_chip_ca7_set_active(chip, rstvec);
  1081. arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CM3);
  1082. if (arm)
  1083. return brcmf_chip_cm3_set_active(chip);
  1084. return false;
  1085. }
  1086. bool brcmf_chip_sr_capable(struct brcmf_chip *pub)
  1087. {
  1088. u32 base, addr, reg, pmu_cc3_mask = ~0;
  1089. struct brcmf_chip_priv *chip;
  1090. brcmf_dbg(TRACE, "Enter\n");
  1091. /* old chips with PMU version less than 17 don't support save restore */
  1092. if (pub->pmurev < 17)
  1093. return false;
  1094. base = brcmf_chip_get_chipcommon(pub)->base;
  1095. chip = container_of(pub, struct brcmf_chip_priv, pub);
  1096. switch (pub->chip) {
  1097. case BRCM_CC_4354_CHIP_ID:
  1098. /* explicitly check SR engine enable bit */
  1099. pmu_cc3_mask = BIT(2);
  1100. /* fall-through */
  1101. case BRCM_CC_43241_CHIP_ID:
  1102. case BRCM_CC_4335_CHIP_ID:
  1103. case BRCM_CC_4339_CHIP_ID:
  1104. /* read PMU chipcontrol register 3 */
  1105. addr = CORE_CC_REG(base, chipcontrol_addr);
  1106. chip->ops->write32(chip->ctx, addr, 3);
  1107. addr = CORE_CC_REG(base, chipcontrol_data);
  1108. reg = chip->ops->read32(chip->ctx, addr);
  1109. return (reg & pmu_cc3_mask) != 0;
  1110. case BRCM_CC_43430_CHIP_ID:
  1111. addr = CORE_CC_REG(base, sr_control1);
  1112. reg = chip->ops->read32(chip->ctx, addr);
  1113. return reg != 0;
  1114. default:
  1115. addr = CORE_CC_REG(base, pmucapabilities_ext);
  1116. reg = chip->ops->read32(chip->ctx, addr);
  1117. if ((reg & PCAPEXT_SR_SUPPORTED_MASK) == 0)
  1118. return false;
  1119. addr = CORE_CC_REG(base, retention_ctl);
  1120. reg = chip->ops->read32(chip->ctx, addr);
  1121. return (reg & (PMU_RCTL_MACPHY_DISABLE_MASK |
  1122. PMU_RCTL_LOGIC_DISABLE_MASK)) == 0;
  1123. }
  1124. }