rt2400pci.c 53 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850
  1. /*
  2. Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, see <http://www.gnu.org/licenses/>.
  14. */
  15. /*
  16. Module: rt2400pci
  17. Abstract: rt2400pci device specific routines.
  18. Supported chipsets: RT2460.
  19. */
  20. #include <linux/delay.h>
  21. #include <linux/etherdevice.h>
  22. #include <linux/kernel.h>
  23. #include <linux/module.h>
  24. #include <linux/pci.h>
  25. #include <linux/eeprom_93cx6.h>
  26. #include <linux/slab.h>
  27. #include "rt2x00.h"
  28. #include "rt2x00mmio.h"
  29. #include "rt2x00pci.h"
  30. #include "rt2400pci.h"
  31. /*
  32. * Register access.
  33. * All access to the CSR registers will go through the methods
  34. * rt2x00mmio_register_read and rt2x00mmio_register_write.
  35. * BBP and RF register require indirect register access,
  36. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  37. * These indirect registers work with busy bits,
  38. * and we will try maximal REGISTER_BUSY_COUNT times to access
  39. * the register while taking a REGISTER_BUSY_DELAY us delay
  40. * between each attempt. When the busy bit is still set at that time,
  41. * the access attempt is considered to have failed,
  42. * and we will print an error.
  43. */
  44. #define WAIT_FOR_BBP(__dev, __reg) \
  45. rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
  46. #define WAIT_FOR_RF(__dev, __reg) \
  47. rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
  48. static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  49. const unsigned int word, const u8 value)
  50. {
  51. u32 reg;
  52. mutex_lock(&rt2x00dev->csr_mutex);
  53. /*
  54. * Wait until the BBP becomes available, afterwards we
  55. * can safely write the new data into the register.
  56. */
  57. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  58. reg = 0;
  59. rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  60. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  61. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  62. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  63. rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
  64. }
  65. mutex_unlock(&rt2x00dev->csr_mutex);
  66. }
  67. static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  68. const unsigned int word, u8 *value)
  69. {
  70. u32 reg;
  71. mutex_lock(&rt2x00dev->csr_mutex);
  72. /*
  73. * Wait until the BBP becomes available, afterwards we
  74. * can safely write the read request into the register.
  75. * After the data has been written, we wait until hardware
  76. * returns the correct value, if at any time the register
  77. * doesn't become available in time, reg will be 0xffffffff
  78. * which means we return 0xff to the caller.
  79. */
  80. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  81. reg = 0;
  82. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  83. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  84. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
  85. rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
  86. WAIT_FOR_BBP(rt2x00dev, &reg);
  87. }
  88. *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
  89. mutex_unlock(&rt2x00dev->csr_mutex);
  90. }
  91. static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
  92. const unsigned int word, const u32 value)
  93. {
  94. u32 reg;
  95. mutex_lock(&rt2x00dev->csr_mutex);
  96. /*
  97. * Wait until the RF becomes available, afterwards we
  98. * can safely write the new data into the register.
  99. */
  100. if (WAIT_FOR_RF(rt2x00dev, &reg)) {
  101. reg = 0;
  102. rt2x00_set_field32(&reg, RFCSR_VALUE, value);
  103. rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
  104. rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
  105. rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
  106. rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
  107. rt2x00_rf_write(rt2x00dev, word, value);
  108. }
  109. mutex_unlock(&rt2x00dev->csr_mutex);
  110. }
  111. static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  112. {
  113. struct rt2x00_dev *rt2x00dev = eeprom->data;
  114. u32 reg;
  115. rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
  116. eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
  117. eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
  118. eeprom->reg_data_clock =
  119. !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
  120. eeprom->reg_chip_select =
  121. !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
  122. }
  123. static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  124. {
  125. struct rt2x00_dev *rt2x00dev = eeprom->data;
  126. u32 reg = 0;
  127. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
  128. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
  129. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
  130. !!eeprom->reg_data_clock);
  131. rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
  132. !!eeprom->reg_chip_select);
  133. rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
  134. }
  135. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  136. static const struct rt2x00debug rt2400pci_rt2x00debug = {
  137. .owner = THIS_MODULE,
  138. .csr = {
  139. .read = rt2x00mmio_register_read,
  140. .write = rt2x00mmio_register_write,
  141. .flags = RT2X00DEBUGFS_OFFSET,
  142. .word_base = CSR_REG_BASE,
  143. .word_size = sizeof(u32),
  144. .word_count = CSR_REG_SIZE / sizeof(u32),
  145. },
  146. .eeprom = {
  147. .read = rt2x00_eeprom_read,
  148. .write = rt2x00_eeprom_write,
  149. .word_base = EEPROM_BASE,
  150. .word_size = sizeof(u16),
  151. .word_count = EEPROM_SIZE / sizeof(u16),
  152. },
  153. .bbp = {
  154. .read = rt2400pci_bbp_read,
  155. .write = rt2400pci_bbp_write,
  156. .word_base = BBP_BASE,
  157. .word_size = sizeof(u8),
  158. .word_count = BBP_SIZE / sizeof(u8),
  159. },
  160. .rf = {
  161. .read = rt2x00_rf_read,
  162. .write = rt2400pci_rf_write,
  163. .word_base = RF_BASE,
  164. .word_size = sizeof(u32),
  165. .word_count = RF_SIZE / sizeof(u32),
  166. },
  167. };
  168. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  169. static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  170. {
  171. u32 reg;
  172. rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
  173. return rt2x00_get_field32(reg, GPIOCSR_VAL0);
  174. }
  175. #ifdef CONFIG_RT2X00_LIB_LEDS
  176. static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
  177. enum led_brightness brightness)
  178. {
  179. struct rt2x00_led *led =
  180. container_of(led_cdev, struct rt2x00_led, led_dev);
  181. unsigned int enabled = brightness != LED_OFF;
  182. u32 reg;
  183. rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
  184. if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
  185. rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
  186. else if (led->type == LED_TYPE_ACTIVITY)
  187. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
  188. rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
  189. }
  190. static int rt2400pci_blink_set(struct led_classdev *led_cdev,
  191. unsigned long *delay_on,
  192. unsigned long *delay_off)
  193. {
  194. struct rt2x00_led *led =
  195. container_of(led_cdev, struct rt2x00_led, led_dev);
  196. u32 reg;
  197. rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
  198. rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
  199. rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
  200. rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
  201. return 0;
  202. }
  203. static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
  204. struct rt2x00_led *led,
  205. enum led_type type)
  206. {
  207. led->rt2x00dev = rt2x00dev;
  208. led->type = type;
  209. led->led_dev.brightness_set = rt2400pci_brightness_set;
  210. led->led_dev.blink_set = rt2400pci_blink_set;
  211. led->flags = LED_INITIALIZED;
  212. }
  213. #endif /* CONFIG_RT2X00_LIB_LEDS */
  214. /*
  215. * Configuration handlers.
  216. */
  217. static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
  218. const unsigned int filter_flags)
  219. {
  220. u32 reg;
  221. /*
  222. * Start configuration steps.
  223. * Note that the version error will always be dropped
  224. * since there is no filter for it at this time.
  225. */
  226. rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
  227. rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
  228. !(filter_flags & FIF_FCSFAIL));
  229. rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
  230. !(filter_flags & FIF_PLCPFAIL));
  231. rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
  232. !(filter_flags & FIF_CONTROL));
  233. rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME, 1);
  234. rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
  235. !rt2x00dev->intf_ap_count);
  236. rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
  237. rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
  238. }
  239. static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
  240. struct rt2x00_intf *intf,
  241. struct rt2x00intf_conf *conf,
  242. const unsigned int flags)
  243. {
  244. unsigned int bcn_preload;
  245. u32 reg;
  246. if (flags & CONFIG_UPDATE_TYPE) {
  247. /*
  248. * Enable beacon config
  249. */
  250. bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
  251. rt2x00mmio_register_read(rt2x00dev, BCNCSR1, &reg);
  252. rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
  253. rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
  254. /*
  255. * Enable synchronisation.
  256. */
  257. rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
  258. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
  259. rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
  260. }
  261. if (flags & CONFIG_UPDATE_MAC)
  262. rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
  263. conf->mac, sizeof(conf->mac));
  264. if (flags & CONFIG_UPDATE_BSSID)
  265. rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
  266. conf->bssid,
  267. sizeof(conf->bssid));
  268. }
  269. static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
  270. struct rt2x00lib_erp *erp,
  271. u32 changed)
  272. {
  273. int preamble_mask;
  274. u32 reg;
  275. /*
  276. * When short preamble is enabled, we should set bit 0x08
  277. */
  278. if (changed & BSS_CHANGED_ERP_PREAMBLE) {
  279. preamble_mask = erp->short_preamble << 3;
  280. rt2x00mmio_register_read(rt2x00dev, TXCSR1, &reg);
  281. rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x1ff);
  282. rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0x13a);
  283. rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
  284. rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
  285. rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
  286. rt2x00mmio_register_read(rt2x00dev, ARCSR2, &reg);
  287. rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
  288. rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
  289. rt2x00_set_field32(&reg, ARCSR2_LENGTH,
  290. GET_DURATION(ACK_SIZE, 10));
  291. rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
  292. rt2x00mmio_register_read(rt2x00dev, ARCSR3, &reg);
  293. rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
  294. rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
  295. rt2x00_set_field32(&reg, ARCSR2_LENGTH,
  296. GET_DURATION(ACK_SIZE, 20));
  297. rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
  298. rt2x00mmio_register_read(rt2x00dev, ARCSR4, &reg);
  299. rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
  300. rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
  301. rt2x00_set_field32(&reg, ARCSR2_LENGTH,
  302. GET_DURATION(ACK_SIZE, 55));
  303. rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
  304. rt2x00mmio_register_read(rt2x00dev, ARCSR5, &reg);
  305. rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
  306. rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
  307. rt2x00_set_field32(&reg, ARCSR2_LENGTH,
  308. GET_DURATION(ACK_SIZE, 110));
  309. rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
  310. }
  311. if (changed & BSS_CHANGED_BASIC_RATES)
  312. rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
  313. if (changed & BSS_CHANGED_ERP_SLOT) {
  314. rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
  315. rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
  316. rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
  317. rt2x00mmio_register_read(rt2x00dev, CSR18, &reg);
  318. rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
  319. rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
  320. rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
  321. rt2x00mmio_register_read(rt2x00dev, CSR19, &reg);
  322. rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
  323. rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
  324. rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
  325. }
  326. if (changed & BSS_CHANGED_BEACON_INT) {
  327. rt2x00mmio_register_read(rt2x00dev, CSR12, &reg);
  328. rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
  329. erp->beacon_int * 16);
  330. rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
  331. erp->beacon_int * 16);
  332. rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
  333. }
  334. }
  335. static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
  336. struct antenna_setup *ant)
  337. {
  338. u8 r1;
  339. u8 r4;
  340. /*
  341. * We should never come here because rt2x00lib is supposed
  342. * to catch this and send us the correct antenna explicitely.
  343. */
  344. BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
  345. ant->tx == ANTENNA_SW_DIVERSITY);
  346. rt2400pci_bbp_read(rt2x00dev, 4, &r4);
  347. rt2400pci_bbp_read(rt2x00dev, 1, &r1);
  348. /*
  349. * Configure the TX antenna.
  350. */
  351. switch (ant->tx) {
  352. case ANTENNA_HW_DIVERSITY:
  353. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
  354. break;
  355. case ANTENNA_A:
  356. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
  357. break;
  358. case ANTENNA_B:
  359. default:
  360. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
  361. break;
  362. }
  363. /*
  364. * Configure the RX antenna.
  365. */
  366. switch (ant->rx) {
  367. case ANTENNA_HW_DIVERSITY:
  368. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
  369. break;
  370. case ANTENNA_A:
  371. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
  372. break;
  373. case ANTENNA_B:
  374. default:
  375. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
  376. break;
  377. }
  378. rt2400pci_bbp_write(rt2x00dev, 4, r4);
  379. rt2400pci_bbp_write(rt2x00dev, 1, r1);
  380. }
  381. static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
  382. struct rf_channel *rf)
  383. {
  384. /*
  385. * Switch on tuning bits.
  386. */
  387. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
  388. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
  389. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  390. rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
  391. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  392. /*
  393. * RF2420 chipset don't need any additional actions.
  394. */
  395. if (rt2x00_rf(rt2x00dev, RF2420))
  396. return;
  397. /*
  398. * For the RT2421 chipsets we need to write an invalid
  399. * reference clock rate to activate auto_tune.
  400. * After that we set the value back to the correct channel.
  401. */
  402. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  403. rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
  404. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  405. msleep(1);
  406. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  407. rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
  408. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  409. msleep(1);
  410. /*
  411. * Switch off tuning bits.
  412. */
  413. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
  414. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
  415. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  416. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  417. /*
  418. * Clear false CRC during channel switch.
  419. */
  420. rt2x00mmio_register_read(rt2x00dev, CNT0, &rf->rf1);
  421. }
  422. static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
  423. {
  424. rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
  425. }
  426. static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
  427. struct rt2x00lib_conf *libconf)
  428. {
  429. u32 reg;
  430. rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
  431. rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
  432. libconf->conf->long_frame_max_tx_count);
  433. rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
  434. libconf->conf->short_frame_max_tx_count);
  435. rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
  436. }
  437. static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
  438. struct rt2x00lib_conf *libconf)
  439. {
  440. enum dev_state state =
  441. (libconf->conf->flags & IEEE80211_CONF_PS) ?
  442. STATE_SLEEP : STATE_AWAKE;
  443. u32 reg;
  444. if (state == STATE_SLEEP) {
  445. rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
  446. rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
  447. (rt2x00dev->beacon_int - 20) * 16);
  448. rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
  449. libconf->conf->listen_interval - 1);
  450. /* We must first disable autowake before it can be enabled */
  451. rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
  452. rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
  453. rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
  454. rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
  455. } else {
  456. rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
  457. rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
  458. rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
  459. }
  460. rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
  461. }
  462. static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
  463. struct rt2x00lib_conf *libconf,
  464. const unsigned int flags)
  465. {
  466. if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
  467. rt2400pci_config_channel(rt2x00dev, &libconf->rf);
  468. if (flags & IEEE80211_CONF_CHANGE_POWER)
  469. rt2400pci_config_txpower(rt2x00dev,
  470. libconf->conf->power_level);
  471. if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
  472. rt2400pci_config_retry_limit(rt2x00dev, libconf);
  473. if (flags & IEEE80211_CONF_CHANGE_PS)
  474. rt2400pci_config_ps(rt2x00dev, libconf);
  475. }
  476. static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
  477. const int cw_min, const int cw_max)
  478. {
  479. u32 reg;
  480. rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
  481. rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
  482. rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
  483. rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
  484. }
  485. /*
  486. * Link tuning
  487. */
  488. static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
  489. struct link_qual *qual)
  490. {
  491. u32 reg;
  492. u8 bbp;
  493. /*
  494. * Update FCS error count from register.
  495. */
  496. rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
  497. qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
  498. /*
  499. * Update False CCA count from register.
  500. */
  501. rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
  502. qual->false_cca = bbp;
  503. }
  504. static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
  505. struct link_qual *qual, u8 vgc_level)
  506. {
  507. if (qual->vgc_level_reg != vgc_level) {
  508. rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
  509. qual->vgc_level = vgc_level;
  510. qual->vgc_level_reg = vgc_level;
  511. }
  512. }
  513. static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
  514. struct link_qual *qual)
  515. {
  516. rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
  517. }
  518. static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
  519. struct link_qual *qual, const u32 count)
  520. {
  521. /*
  522. * The link tuner should not run longer then 60 seconds,
  523. * and should run once every 2 seconds.
  524. */
  525. if (count > 60 || !(count & 1))
  526. return;
  527. /*
  528. * Base r13 link tuning on the false cca count.
  529. */
  530. if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
  531. rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
  532. else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
  533. rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
  534. }
  535. /*
  536. * Queue handlers.
  537. */
  538. static void rt2400pci_start_queue(struct data_queue *queue)
  539. {
  540. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  541. u32 reg;
  542. switch (queue->qid) {
  543. case QID_RX:
  544. rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
  545. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
  546. rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
  547. break;
  548. case QID_BEACON:
  549. rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
  550. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  551. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  552. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  553. rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
  554. break;
  555. default:
  556. break;
  557. }
  558. }
  559. static void rt2400pci_kick_queue(struct data_queue *queue)
  560. {
  561. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  562. u32 reg;
  563. switch (queue->qid) {
  564. case QID_AC_VO:
  565. rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
  566. rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
  567. rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
  568. break;
  569. case QID_AC_VI:
  570. rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
  571. rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
  572. rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
  573. break;
  574. case QID_ATIM:
  575. rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
  576. rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
  577. rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
  578. break;
  579. default:
  580. break;
  581. }
  582. }
  583. static void rt2400pci_stop_queue(struct data_queue *queue)
  584. {
  585. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  586. u32 reg;
  587. switch (queue->qid) {
  588. case QID_AC_VO:
  589. case QID_AC_VI:
  590. case QID_ATIM:
  591. rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
  592. rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
  593. rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
  594. break;
  595. case QID_RX:
  596. rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
  597. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
  598. rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
  599. break;
  600. case QID_BEACON:
  601. rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
  602. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  603. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  604. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  605. rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
  606. /*
  607. * Wait for possibly running tbtt tasklets.
  608. */
  609. tasklet_kill(&rt2x00dev->tbtt_tasklet);
  610. break;
  611. default:
  612. break;
  613. }
  614. }
  615. /*
  616. * Initialization functions.
  617. */
  618. static bool rt2400pci_get_entry_state(struct queue_entry *entry)
  619. {
  620. struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
  621. u32 word;
  622. if (entry->queue->qid == QID_RX) {
  623. rt2x00_desc_read(entry_priv->desc, 0, &word);
  624. return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
  625. } else {
  626. rt2x00_desc_read(entry_priv->desc, 0, &word);
  627. return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  628. rt2x00_get_field32(word, TXD_W0_VALID));
  629. }
  630. }
  631. static void rt2400pci_clear_entry(struct queue_entry *entry)
  632. {
  633. struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
  634. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  635. u32 word;
  636. if (entry->queue->qid == QID_RX) {
  637. rt2x00_desc_read(entry_priv->desc, 2, &word);
  638. rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
  639. rt2x00_desc_write(entry_priv->desc, 2, word);
  640. rt2x00_desc_read(entry_priv->desc, 1, &word);
  641. rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  642. rt2x00_desc_write(entry_priv->desc, 1, word);
  643. rt2x00_desc_read(entry_priv->desc, 0, &word);
  644. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  645. rt2x00_desc_write(entry_priv->desc, 0, word);
  646. } else {
  647. rt2x00_desc_read(entry_priv->desc, 0, &word);
  648. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  649. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  650. rt2x00_desc_write(entry_priv->desc, 0, word);
  651. }
  652. }
  653. static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
  654. {
  655. struct queue_entry_priv_mmio *entry_priv;
  656. u32 reg;
  657. /*
  658. * Initialize registers.
  659. */
  660. rt2x00mmio_register_read(rt2x00dev, TXCSR2, &reg);
  661. rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
  662. rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
  663. rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
  664. rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
  665. rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
  666. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  667. rt2x00mmio_register_read(rt2x00dev, TXCSR3, &reg);
  668. rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
  669. entry_priv->desc_dma);
  670. rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
  671. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  672. rt2x00mmio_register_read(rt2x00dev, TXCSR5, &reg);
  673. rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
  674. entry_priv->desc_dma);
  675. rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
  676. entry_priv = rt2x00dev->atim->entries[0].priv_data;
  677. rt2x00mmio_register_read(rt2x00dev, TXCSR4, &reg);
  678. rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
  679. entry_priv->desc_dma);
  680. rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
  681. entry_priv = rt2x00dev->bcn->entries[0].priv_data;
  682. rt2x00mmio_register_read(rt2x00dev, TXCSR6, &reg);
  683. rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
  684. entry_priv->desc_dma);
  685. rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
  686. rt2x00mmio_register_read(rt2x00dev, RXCSR1, &reg);
  687. rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
  688. rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
  689. rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
  690. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  691. rt2x00mmio_register_read(rt2x00dev, RXCSR2, &reg);
  692. rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
  693. entry_priv->desc_dma);
  694. rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
  695. return 0;
  696. }
  697. static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
  698. {
  699. u32 reg;
  700. rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
  701. rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
  702. rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00023f20);
  703. rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
  704. rt2x00mmio_register_read(rt2x00dev, TIMECSR, &reg);
  705. rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
  706. rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
  707. rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
  708. rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
  709. rt2x00mmio_register_read(rt2x00dev, CSR9, &reg);
  710. rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
  711. (rt2x00dev->rx->data_size / 128));
  712. rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
  713. rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
  714. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  715. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
  716. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  717. rt2x00_set_field32(&reg, CSR14_TCFP, 0);
  718. rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
  719. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  720. rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
  721. rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
  722. rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
  723. rt2x00mmio_register_write(rt2x00dev, CNT3, 0x3f080000);
  724. rt2x00mmio_register_read(rt2x00dev, ARCSR0, &reg);
  725. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
  726. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
  727. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
  728. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
  729. rt2x00mmio_register_write(rt2x00dev, ARCSR0, reg);
  730. rt2x00mmio_register_read(rt2x00dev, RXCSR3, &reg);
  731. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
  732. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
  733. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
  734. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
  735. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
  736. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
  737. rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
  738. rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
  739. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  740. return -EBUSY;
  741. rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00217223);
  742. rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
  743. rt2x00mmio_register_read(rt2x00dev, MACCSR2, &reg);
  744. rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
  745. rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
  746. rt2x00mmio_register_read(rt2x00dev, RALINKCSR, &reg);
  747. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
  748. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
  749. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
  750. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
  751. rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
  752. rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
  753. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
  754. rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
  755. rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
  756. rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
  757. rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
  758. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
  759. rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
  760. rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
  761. /*
  762. * We must clear the FCS and FIFO error count.
  763. * These registers are cleared on read,
  764. * so we may pass a useless variable to store the value.
  765. */
  766. rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
  767. rt2x00mmio_register_read(rt2x00dev, CNT4, &reg);
  768. return 0;
  769. }
  770. static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
  771. {
  772. unsigned int i;
  773. u8 value;
  774. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  775. rt2400pci_bbp_read(rt2x00dev, 0, &value);
  776. if ((value != 0xff) && (value != 0x00))
  777. return 0;
  778. udelay(REGISTER_BUSY_DELAY);
  779. }
  780. rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
  781. return -EACCES;
  782. }
  783. static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  784. {
  785. unsigned int i;
  786. u16 eeprom;
  787. u8 reg_id;
  788. u8 value;
  789. if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
  790. return -EACCES;
  791. rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
  792. rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
  793. rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
  794. rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
  795. rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
  796. rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
  797. rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
  798. rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
  799. rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
  800. rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
  801. rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
  802. rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
  803. rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
  804. rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
  805. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  806. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  807. if (eeprom != 0xffff && eeprom != 0x0000) {
  808. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  809. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  810. rt2400pci_bbp_write(rt2x00dev, reg_id, value);
  811. }
  812. }
  813. return 0;
  814. }
  815. /*
  816. * Device state switch handlers.
  817. */
  818. static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  819. enum dev_state state)
  820. {
  821. int mask = (state == STATE_RADIO_IRQ_OFF);
  822. u32 reg;
  823. unsigned long flags;
  824. /*
  825. * When interrupts are being enabled, the interrupt registers
  826. * should clear the register to assure a clean state.
  827. */
  828. if (state == STATE_RADIO_IRQ_ON) {
  829. rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
  830. rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
  831. }
  832. /*
  833. * Only toggle the interrupts bits we are going to use.
  834. * Non-checked interrupt bits are disabled by default.
  835. */
  836. spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
  837. rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
  838. rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
  839. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
  840. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
  841. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
  842. rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
  843. rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
  844. spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
  845. if (state == STATE_RADIO_IRQ_OFF) {
  846. /*
  847. * Ensure that all tasklets are finished before
  848. * disabling the interrupts.
  849. */
  850. tasklet_kill(&rt2x00dev->txstatus_tasklet);
  851. tasklet_kill(&rt2x00dev->rxdone_tasklet);
  852. tasklet_kill(&rt2x00dev->tbtt_tasklet);
  853. }
  854. }
  855. static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  856. {
  857. /*
  858. * Initialize all registers.
  859. */
  860. if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
  861. rt2400pci_init_registers(rt2x00dev) ||
  862. rt2400pci_init_bbp(rt2x00dev)))
  863. return -EIO;
  864. return 0;
  865. }
  866. static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  867. {
  868. /*
  869. * Disable power
  870. */
  871. rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
  872. }
  873. static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
  874. enum dev_state state)
  875. {
  876. u32 reg, reg2;
  877. unsigned int i;
  878. char put_to_sleep;
  879. char bbp_state;
  880. char rf_state;
  881. put_to_sleep = (state != STATE_AWAKE);
  882. rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg);
  883. rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
  884. rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
  885. rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
  886. rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
  887. rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
  888. /*
  889. * Device is not guaranteed to be in the requested state yet.
  890. * We must wait until the register indicates that the
  891. * device has entered the correct state.
  892. */
  893. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  894. rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg2);
  895. bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
  896. rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
  897. if (bbp_state == state && rf_state == state)
  898. return 0;
  899. rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
  900. msleep(10);
  901. }
  902. return -EBUSY;
  903. }
  904. static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  905. enum dev_state state)
  906. {
  907. int retval = 0;
  908. switch (state) {
  909. case STATE_RADIO_ON:
  910. retval = rt2400pci_enable_radio(rt2x00dev);
  911. break;
  912. case STATE_RADIO_OFF:
  913. rt2400pci_disable_radio(rt2x00dev);
  914. break;
  915. case STATE_RADIO_IRQ_ON:
  916. case STATE_RADIO_IRQ_OFF:
  917. rt2400pci_toggle_irq(rt2x00dev, state);
  918. break;
  919. case STATE_DEEP_SLEEP:
  920. case STATE_SLEEP:
  921. case STATE_STANDBY:
  922. case STATE_AWAKE:
  923. retval = rt2400pci_set_state(rt2x00dev, state);
  924. break;
  925. default:
  926. retval = -ENOTSUPP;
  927. break;
  928. }
  929. if (unlikely(retval))
  930. rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
  931. state, retval);
  932. return retval;
  933. }
  934. /*
  935. * TX descriptor initialization
  936. */
  937. static void rt2400pci_write_tx_desc(struct queue_entry *entry,
  938. struct txentry_desc *txdesc)
  939. {
  940. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  941. struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
  942. __le32 *txd = entry_priv->desc;
  943. u32 word;
  944. /*
  945. * Start writing the descriptor words.
  946. */
  947. rt2x00_desc_read(txd, 1, &word);
  948. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  949. rt2x00_desc_write(txd, 1, word);
  950. rt2x00_desc_read(txd, 2, &word);
  951. rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, txdesc->length);
  952. rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, txdesc->length);
  953. rt2x00_desc_write(txd, 2, word);
  954. rt2x00_desc_read(txd, 3, &word);
  955. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
  956. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
  957. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
  958. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
  959. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
  960. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
  961. rt2x00_desc_write(txd, 3, word);
  962. rt2x00_desc_read(txd, 4, &word);
  963. rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW,
  964. txdesc->u.plcp.length_low);
  965. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
  966. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
  967. rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH,
  968. txdesc->u.plcp.length_high);
  969. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
  970. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
  971. rt2x00_desc_write(txd, 4, word);
  972. /*
  973. * Writing TXD word 0 must the last to prevent a race condition with
  974. * the device, whereby the device may take hold of the TXD before we
  975. * finished updating it.
  976. */
  977. rt2x00_desc_read(txd, 0, &word);
  978. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  979. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  980. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  981. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  982. rt2x00_set_field32(&word, TXD_W0_ACK,
  983. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  984. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  985. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  986. rt2x00_set_field32(&word, TXD_W0_RTS,
  987. test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
  988. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
  989. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  990. test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
  991. rt2x00_desc_write(txd, 0, word);
  992. /*
  993. * Register descriptor details in skb frame descriptor.
  994. */
  995. skbdesc->desc = txd;
  996. skbdesc->desc_len = TXD_DESC_SIZE;
  997. }
  998. /*
  999. * TX data initialization
  1000. */
  1001. static void rt2400pci_write_beacon(struct queue_entry *entry,
  1002. struct txentry_desc *txdesc)
  1003. {
  1004. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  1005. u32 reg;
  1006. /*
  1007. * Disable beaconing while we are reloading the beacon data,
  1008. * otherwise we might be sending out invalid data.
  1009. */
  1010. rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
  1011. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  1012. rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
  1013. if (rt2x00queue_map_txskb(entry)) {
  1014. rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
  1015. goto out;
  1016. }
  1017. /*
  1018. * Enable beaconing again.
  1019. */
  1020. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  1021. /*
  1022. * Write the TX descriptor for the beacon.
  1023. */
  1024. rt2400pci_write_tx_desc(entry, txdesc);
  1025. /*
  1026. * Dump beacon to userspace through debugfs.
  1027. */
  1028. rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
  1029. out:
  1030. /*
  1031. * Enable beaconing again.
  1032. */
  1033. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  1034. rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
  1035. }
  1036. /*
  1037. * RX control handlers
  1038. */
  1039. static void rt2400pci_fill_rxdone(struct queue_entry *entry,
  1040. struct rxdone_entry_desc *rxdesc)
  1041. {
  1042. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  1043. struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
  1044. u32 word0;
  1045. u32 word2;
  1046. u32 word3;
  1047. u32 word4;
  1048. u64 tsf;
  1049. u32 rx_low;
  1050. u32 rx_high;
  1051. rt2x00_desc_read(entry_priv->desc, 0, &word0);
  1052. rt2x00_desc_read(entry_priv->desc, 2, &word2);
  1053. rt2x00_desc_read(entry_priv->desc, 3, &word3);
  1054. rt2x00_desc_read(entry_priv->desc, 4, &word4);
  1055. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  1056. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  1057. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  1058. rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  1059. /*
  1060. * We only get the lower 32bits from the timestamp,
  1061. * to get the full 64bits we must complement it with
  1062. * the timestamp from get_tsf().
  1063. * Note that when a wraparound of the lower 32bits
  1064. * has occurred between the frame arrival and the get_tsf()
  1065. * call, we must decrease the higher 32bits with 1 to get
  1066. * to correct value.
  1067. */
  1068. tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw, NULL);
  1069. rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
  1070. rx_high = upper_32_bits(tsf);
  1071. if ((u32)tsf <= rx_low)
  1072. rx_high--;
  1073. /*
  1074. * Obtain the status about this packet.
  1075. * The signal is the PLCP value, and needs to be stripped
  1076. * of the preamble bit (0x08).
  1077. */
  1078. rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
  1079. rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
  1080. rxdesc->rssi = rt2x00_get_field32(word3, RXD_W3_RSSI) -
  1081. entry->queue->rt2x00dev->rssi_offset;
  1082. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1083. rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
  1084. if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
  1085. rxdesc->dev_flags |= RXDONE_MY_BSS;
  1086. }
  1087. /*
  1088. * Interrupt functions.
  1089. */
  1090. static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
  1091. const enum data_queue_qid queue_idx)
  1092. {
  1093. struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
  1094. struct queue_entry_priv_mmio *entry_priv;
  1095. struct queue_entry *entry;
  1096. struct txdone_entry_desc txdesc;
  1097. u32 word;
  1098. while (!rt2x00queue_empty(queue)) {
  1099. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  1100. entry_priv = entry->priv_data;
  1101. rt2x00_desc_read(entry_priv->desc, 0, &word);
  1102. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  1103. !rt2x00_get_field32(word, TXD_W0_VALID))
  1104. break;
  1105. /*
  1106. * Obtain the status about this packet.
  1107. */
  1108. txdesc.flags = 0;
  1109. switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
  1110. case 0: /* Success */
  1111. case 1: /* Success with retry */
  1112. __set_bit(TXDONE_SUCCESS, &txdesc.flags);
  1113. break;
  1114. case 2: /* Failure, excessive retries */
  1115. __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
  1116. /* Don't break, this is a failed frame! */
  1117. default: /* Failure */
  1118. __set_bit(TXDONE_FAILURE, &txdesc.flags);
  1119. }
  1120. txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
  1121. rt2x00lib_txdone(entry, &txdesc);
  1122. }
  1123. }
  1124. static inline void rt2400pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
  1125. struct rt2x00_field32 irq_field)
  1126. {
  1127. u32 reg;
  1128. /*
  1129. * Enable a single interrupt. The interrupt mask register
  1130. * access needs locking.
  1131. */
  1132. spin_lock_irq(&rt2x00dev->irqmask_lock);
  1133. rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
  1134. rt2x00_set_field32(&reg, irq_field, 0);
  1135. rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
  1136. spin_unlock_irq(&rt2x00dev->irqmask_lock);
  1137. }
  1138. static void rt2400pci_txstatus_tasklet(unsigned long data)
  1139. {
  1140. struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
  1141. u32 reg;
  1142. /*
  1143. * Handle all tx queues.
  1144. */
  1145. rt2400pci_txdone(rt2x00dev, QID_ATIM);
  1146. rt2400pci_txdone(rt2x00dev, QID_AC_VO);
  1147. rt2400pci_txdone(rt2x00dev, QID_AC_VI);
  1148. /*
  1149. * Enable all TXDONE interrupts again.
  1150. */
  1151. if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
  1152. spin_lock_irq(&rt2x00dev->irqmask_lock);
  1153. rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
  1154. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
  1155. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
  1156. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
  1157. rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
  1158. spin_unlock_irq(&rt2x00dev->irqmask_lock);
  1159. }
  1160. }
  1161. static void rt2400pci_tbtt_tasklet(unsigned long data)
  1162. {
  1163. struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
  1164. rt2x00lib_beacondone(rt2x00dev);
  1165. if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1166. rt2400pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
  1167. }
  1168. static void rt2400pci_rxdone_tasklet(unsigned long data)
  1169. {
  1170. struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
  1171. if (rt2x00mmio_rxdone(rt2x00dev))
  1172. tasklet_schedule(&rt2x00dev->rxdone_tasklet);
  1173. else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1174. rt2400pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
  1175. }
  1176. static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
  1177. {
  1178. struct rt2x00_dev *rt2x00dev = dev_instance;
  1179. u32 reg, mask;
  1180. /*
  1181. * Get the interrupt sources & saved to local variable.
  1182. * Write register value back to clear pending interrupts.
  1183. */
  1184. rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
  1185. rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
  1186. if (!reg)
  1187. return IRQ_NONE;
  1188. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1189. return IRQ_HANDLED;
  1190. mask = reg;
  1191. /*
  1192. * Schedule tasklets for interrupt handling.
  1193. */
  1194. if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
  1195. tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
  1196. if (rt2x00_get_field32(reg, CSR7_RXDONE))
  1197. tasklet_schedule(&rt2x00dev->rxdone_tasklet);
  1198. if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
  1199. rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
  1200. rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
  1201. tasklet_schedule(&rt2x00dev->txstatus_tasklet);
  1202. /*
  1203. * Mask out all txdone interrupts.
  1204. */
  1205. rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
  1206. rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
  1207. rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
  1208. }
  1209. /*
  1210. * Disable all interrupts for which a tasklet was scheduled right now,
  1211. * the tasklet will reenable the appropriate interrupts.
  1212. */
  1213. spin_lock(&rt2x00dev->irqmask_lock);
  1214. rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
  1215. reg |= mask;
  1216. rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
  1217. spin_unlock(&rt2x00dev->irqmask_lock);
  1218. return IRQ_HANDLED;
  1219. }
  1220. /*
  1221. * Device probe functions.
  1222. */
  1223. static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1224. {
  1225. struct eeprom_93cx6 eeprom;
  1226. u32 reg;
  1227. u16 word;
  1228. u8 *mac;
  1229. rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
  1230. eeprom.data = rt2x00dev;
  1231. eeprom.register_read = rt2400pci_eepromregister_read;
  1232. eeprom.register_write = rt2400pci_eepromregister_write;
  1233. eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
  1234. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1235. eeprom.reg_data_in = 0;
  1236. eeprom.reg_data_out = 0;
  1237. eeprom.reg_data_clock = 0;
  1238. eeprom.reg_chip_select = 0;
  1239. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1240. EEPROM_SIZE / sizeof(u16));
  1241. /*
  1242. * Start validation of the data that has been read.
  1243. */
  1244. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1245. if (!is_valid_ether_addr(mac)) {
  1246. eth_random_addr(mac);
  1247. rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
  1248. }
  1249. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1250. if (word == 0xffff) {
  1251. rt2x00_err(rt2x00dev, "Invalid EEPROM data detected\n");
  1252. return -EINVAL;
  1253. }
  1254. return 0;
  1255. }
  1256. static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1257. {
  1258. u32 reg;
  1259. u16 value;
  1260. u16 eeprom;
  1261. /*
  1262. * Read EEPROM word for configuration.
  1263. */
  1264. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1265. /*
  1266. * Identify RF chipset.
  1267. */
  1268. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1269. rt2x00mmio_register_read(rt2x00dev, CSR0, &reg);
  1270. rt2x00_set_chip(rt2x00dev, RT2460, value,
  1271. rt2x00_get_field32(reg, CSR0_REVISION));
  1272. if (!rt2x00_rf(rt2x00dev, RF2420) && !rt2x00_rf(rt2x00dev, RF2421)) {
  1273. rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
  1274. return -ENODEV;
  1275. }
  1276. /*
  1277. * Identify default antenna configuration.
  1278. */
  1279. rt2x00dev->default_ant.tx =
  1280. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1281. rt2x00dev->default_ant.rx =
  1282. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1283. /*
  1284. * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
  1285. * I am not 100% sure about this, but the legacy drivers do not
  1286. * indicate antenna swapping in software is required when
  1287. * diversity is enabled.
  1288. */
  1289. if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
  1290. rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
  1291. if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
  1292. rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
  1293. /*
  1294. * Store led mode, for correct led behaviour.
  1295. */
  1296. #ifdef CONFIG_RT2X00_LIB_LEDS
  1297. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1298. rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
  1299. if (value == LED_MODE_TXRX_ACTIVITY ||
  1300. value == LED_MODE_DEFAULT ||
  1301. value == LED_MODE_ASUS)
  1302. rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
  1303. LED_TYPE_ACTIVITY);
  1304. #endif /* CONFIG_RT2X00_LIB_LEDS */
  1305. /*
  1306. * Detect if this device has an hardware controlled radio.
  1307. */
  1308. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1309. __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
  1310. /*
  1311. * Check if the BBP tuning should be enabled.
  1312. */
  1313. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
  1314. __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
  1315. return 0;
  1316. }
  1317. /*
  1318. * RF value list for RF2420 & RF2421
  1319. * Supports: 2.4 GHz
  1320. */
  1321. static const struct rf_channel rf_vals_b[] = {
  1322. { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
  1323. { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
  1324. { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
  1325. { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
  1326. { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
  1327. { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
  1328. { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
  1329. { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
  1330. { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
  1331. { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
  1332. { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
  1333. { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
  1334. { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
  1335. { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
  1336. };
  1337. static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1338. {
  1339. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1340. struct channel_info *info;
  1341. char *tx_power;
  1342. unsigned int i;
  1343. /*
  1344. * Initialize all hw fields.
  1345. */
  1346. ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
  1347. ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
  1348. ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
  1349. ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
  1350. SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
  1351. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1352. rt2x00_eeprom_addr(rt2x00dev,
  1353. EEPROM_MAC_ADDR_0));
  1354. /*
  1355. * Initialize hw_mode information.
  1356. */
  1357. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1358. spec->supported_rates = SUPPORT_RATE_CCK;
  1359. spec->num_channels = ARRAY_SIZE(rf_vals_b);
  1360. spec->channels = rf_vals_b;
  1361. /*
  1362. * Create channel information array
  1363. */
  1364. info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
  1365. if (!info)
  1366. return -ENOMEM;
  1367. spec->channels_info = info;
  1368. tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1369. for (i = 0; i < 14; i++) {
  1370. info[i].max_power = TXPOWER_FROM_DEV(MAX_TXPOWER);
  1371. info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
  1372. }
  1373. return 0;
  1374. }
  1375. static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1376. {
  1377. int retval;
  1378. u32 reg;
  1379. /*
  1380. * Allocate eeprom data.
  1381. */
  1382. retval = rt2400pci_validate_eeprom(rt2x00dev);
  1383. if (retval)
  1384. return retval;
  1385. retval = rt2400pci_init_eeprom(rt2x00dev);
  1386. if (retval)
  1387. return retval;
  1388. /*
  1389. * Enable rfkill polling by setting GPIO direction of the
  1390. * rfkill switch GPIO pin correctly.
  1391. */
  1392. rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
  1393. rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
  1394. rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
  1395. /*
  1396. * Initialize hw specifications.
  1397. */
  1398. retval = rt2400pci_probe_hw_mode(rt2x00dev);
  1399. if (retval)
  1400. return retval;
  1401. /*
  1402. * This device requires the atim queue and DMA-mapped skbs.
  1403. */
  1404. __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
  1405. __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
  1406. __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
  1407. /*
  1408. * Set the rssi offset.
  1409. */
  1410. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1411. return 0;
  1412. }
  1413. /*
  1414. * IEEE80211 stack callback functions.
  1415. */
  1416. static int rt2400pci_conf_tx(struct ieee80211_hw *hw,
  1417. struct ieee80211_vif *vif, u16 queue,
  1418. const struct ieee80211_tx_queue_params *params)
  1419. {
  1420. struct rt2x00_dev *rt2x00dev = hw->priv;
  1421. /*
  1422. * We don't support variating cw_min and cw_max variables
  1423. * per queue. So by default we only configure the TX queue,
  1424. * and ignore all other configurations.
  1425. */
  1426. if (queue != 0)
  1427. return -EINVAL;
  1428. if (rt2x00mac_conf_tx(hw, vif, queue, params))
  1429. return -EINVAL;
  1430. /*
  1431. * Write configuration to register.
  1432. */
  1433. rt2400pci_config_cw(rt2x00dev,
  1434. rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
  1435. return 0;
  1436. }
  1437. static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw,
  1438. struct ieee80211_vif *vif)
  1439. {
  1440. struct rt2x00_dev *rt2x00dev = hw->priv;
  1441. u64 tsf;
  1442. u32 reg;
  1443. rt2x00mmio_register_read(rt2x00dev, CSR17, &reg);
  1444. tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
  1445. rt2x00mmio_register_read(rt2x00dev, CSR16, &reg);
  1446. tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
  1447. return tsf;
  1448. }
  1449. static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
  1450. {
  1451. struct rt2x00_dev *rt2x00dev = hw->priv;
  1452. u32 reg;
  1453. rt2x00mmio_register_read(rt2x00dev, CSR15, &reg);
  1454. return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
  1455. }
  1456. static const struct ieee80211_ops rt2400pci_mac80211_ops = {
  1457. .tx = rt2x00mac_tx,
  1458. .start = rt2x00mac_start,
  1459. .stop = rt2x00mac_stop,
  1460. .add_interface = rt2x00mac_add_interface,
  1461. .remove_interface = rt2x00mac_remove_interface,
  1462. .config = rt2x00mac_config,
  1463. .configure_filter = rt2x00mac_configure_filter,
  1464. .sw_scan_start = rt2x00mac_sw_scan_start,
  1465. .sw_scan_complete = rt2x00mac_sw_scan_complete,
  1466. .get_stats = rt2x00mac_get_stats,
  1467. .bss_info_changed = rt2x00mac_bss_info_changed,
  1468. .conf_tx = rt2400pci_conf_tx,
  1469. .get_tsf = rt2400pci_get_tsf,
  1470. .tx_last_beacon = rt2400pci_tx_last_beacon,
  1471. .rfkill_poll = rt2x00mac_rfkill_poll,
  1472. .flush = rt2x00mac_flush,
  1473. .set_antenna = rt2x00mac_set_antenna,
  1474. .get_antenna = rt2x00mac_get_antenna,
  1475. .get_ringparam = rt2x00mac_get_ringparam,
  1476. .tx_frames_pending = rt2x00mac_tx_frames_pending,
  1477. };
  1478. static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
  1479. .irq_handler = rt2400pci_interrupt,
  1480. .txstatus_tasklet = rt2400pci_txstatus_tasklet,
  1481. .tbtt_tasklet = rt2400pci_tbtt_tasklet,
  1482. .rxdone_tasklet = rt2400pci_rxdone_tasklet,
  1483. .probe_hw = rt2400pci_probe_hw,
  1484. .initialize = rt2x00mmio_initialize,
  1485. .uninitialize = rt2x00mmio_uninitialize,
  1486. .get_entry_state = rt2400pci_get_entry_state,
  1487. .clear_entry = rt2400pci_clear_entry,
  1488. .set_device_state = rt2400pci_set_device_state,
  1489. .rfkill_poll = rt2400pci_rfkill_poll,
  1490. .link_stats = rt2400pci_link_stats,
  1491. .reset_tuner = rt2400pci_reset_tuner,
  1492. .link_tuner = rt2400pci_link_tuner,
  1493. .start_queue = rt2400pci_start_queue,
  1494. .kick_queue = rt2400pci_kick_queue,
  1495. .stop_queue = rt2400pci_stop_queue,
  1496. .flush_queue = rt2x00mmio_flush_queue,
  1497. .write_tx_desc = rt2400pci_write_tx_desc,
  1498. .write_beacon = rt2400pci_write_beacon,
  1499. .fill_rxdone = rt2400pci_fill_rxdone,
  1500. .config_filter = rt2400pci_config_filter,
  1501. .config_intf = rt2400pci_config_intf,
  1502. .config_erp = rt2400pci_config_erp,
  1503. .config_ant = rt2400pci_config_ant,
  1504. .config = rt2400pci_config,
  1505. };
  1506. static void rt2400pci_queue_init(struct data_queue *queue)
  1507. {
  1508. switch (queue->qid) {
  1509. case QID_RX:
  1510. queue->limit = 24;
  1511. queue->data_size = DATA_FRAME_SIZE;
  1512. queue->desc_size = RXD_DESC_SIZE;
  1513. queue->priv_size = sizeof(struct queue_entry_priv_mmio);
  1514. break;
  1515. case QID_AC_VO:
  1516. case QID_AC_VI:
  1517. case QID_AC_BE:
  1518. case QID_AC_BK:
  1519. queue->limit = 24;
  1520. queue->data_size = DATA_FRAME_SIZE;
  1521. queue->desc_size = TXD_DESC_SIZE;
  1522. queue->priv_size = sizeof(struct queue_entry_priv_mmio);
  1523. break;
  1524. case QID_BEACON:
  1525. queue->limit = 1;
  1526. queue->data_size = MGMT_FRAME_SIZE;
  1527. queue->desc_size = TXD_DESC_SIZE;
  1528. queue->priv_size = sizeof(struct queue_entry_priv_mmio);
  1529. break;
  1530. case QID_ATIM:
  1531. queue->limit = 8;
  1532. queue->data_size = DATA_FRAME_SIZE;
  1533. queue->desc_size = TXD_DESC_SIZE;
  1534. queue->priv_size = sizeof(struct queue_entry_priv_mmio);
  1535. break;
  1536. default:
  1537. BUG();
  1538. break;
  1539. }
  1540. }
  1541. static const struct rt2x00_ops rt2400pci_ops = {
  1542. .name = KBUILD_MODNAME,
  1543. .max_ap_intf = 1,
  1544. .eeprom_size = EEPROM_SIZE,
  1545. .rf_size = RF_SIZE,
  1546. .tx_queues = NUM_TX_QUEUES,
  1547. .queue_init = rt2400pci_queue_init,
  1548. .lib = &rt2400pci_rt2x00_ops,
  1549. .hw = &rt2400pci_mac80211_ops,
  1550. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1551. .debugfs = &rt2400pci_rt2x00debug,
  1552. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1553. };
  1554. /*
  1555. * RT2400pci module information.
  1556. */
  1557. static const struct pci_device_id rt2400pci_device_table[] = {
  1558. { PCI_DEVICE(0x1814, 0x0101) },
  1559. { 0, }
  1560. };
  1561. MODULE_AUTHOR(DRV_PROJECT);
  1562. MODULE_VERSION(DRV_VERSION);
  1563. MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
  1564. MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
  1565. MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
  1566. MODULE_LICENSE("GPL");
  1567. static int rt2400pci_probe(struct pci_dev *pci_dev,
  1568. const struct pci_device_id *id)
  1569. {
  1570. return rt2x00pci_probe(pci_dev, &rt2400pci_ops);
  1571. }
  1572. static struct pci_driver rt2400pci_driver = {
  1573. .name = KBUILD_MODNAME,
  1574. .id_table = rt2400pci_device_table,
  1575. .probe = rt2400pci_probe,
  1576. .remove = rt2x00pci_remove,
  1577. .suspend = rt2x00pci_suspend,
  1578. .resume = rt2x00pci_resume,
  1579. };
  1580. module_pci_driver(rt2400pci_driver);