of_reserved_mem.c 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349
  1. /*
  2. * Device tree based initialization code for reserved memory.
  3. *
  4. * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
  5. * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
  6. * http://www.samsung.com
  7. * Author: Marek Szyprowski <m.szyprowski@samsung.com>
  8. * Author: Josh Cartwright <joshc@codeaurora.org>
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; either version 2 of the
  13. * License or (at your optional) any later version of the license.
  14. */
  15. #include <linux/err.h>
  16. #include <linux/of.h>
  17. #include <linux/of_fdt.h>
  18. #include <linux/of_platform.h>
  19. #include <linux/mm.h>
  20. #include <linux/sizes.h>
  21. #include <linux/of_reserved_mem.h>
  22. #include <linux/sort.h>
  23. #define MAX_RESERVED_REGIONS 16
  24. static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
  25. static int reserved_mem_count;
  26. #if defined(CONFIG_HAVE_MEMBLOCK)
  27. #include <linux/memblock.h>
  28. int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
  29. phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
  30. phys_addr_t *res_base)
  31. {
  32. phys_addr_t base;
  33. /*
  34. * We use __memblock_alloc_base() because memblock_alloc_base()
  35. * panic()s on allocation failure.
  36. */
  37. end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
  38. base = __memblock_alloc_base(size, align, end);
  39. if (!base)
  40. return -ENOMEM;
  41. /*
  42. * Check if the allocated region fits in to start..end window
  43. */
  44. if (base < start) {
  45. memblock_free(base, size);
  46. return -ENOMEM;
  47. }
  48. *res_base = base;
  49. if (nomap)
  50. return memblock_remove(base, size);
  51. return 0;
  52. }
  53. #else
  54. int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
  55. phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
  56. phys_addr_t *res_base)
  57. {
  58. pr_err("Reserved memory not supported, ignoring region 0x%llx%s\n",
  59. size, nomap ? " (nomap)" : "");
  60. return -ENOSYS;
  61. }
  62. #endif
  63. /**
  64. * res_mem_save_node() - save fdt node for second pass initialization
  65. */
  66. void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
  67. phys_addr_t base, phys_addr_t size)
  68. {
  69. struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
  70. if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
  71. pr_err("Reserved memory: not enough space all defined regions.\n");
  72. return;
  73. }
  74. rmem->fdt_node = node;
  75. rmem->name = uname;
  76. rmem->base = base;
  77. rmem->size = size;
  78. reserved_mem_count++;
  79. return;
  80. }
  81. /**
  82. * res_mem_alloc_size() - allocate reserved memory described by 'size', 'align'
  83. * and 'alloc-ranges' properties
  84. */
  85. static int __init __reserved_mem_alloc_size(unsigned long node,
  86. const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
  87. {
  88. int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
  89. phys_addr_t start = 0, end = 0;
  90. phys_addr_t base = 0, align = 0, size;
  91. int len;
  92. const __be32 *prop;
  93. int nomap;
  94. int ret;
  95. prop = of_get_flat_dt_prop(node, "size", &len);
  96. if (!prop)
  97. return -EINVAL;
  98. if (len != dt_root_size_cells * sizeof(__be32)) {
  99. pr_err("Reserved memory: invalid size property in '%s' node.\n",
  100. uname);
  101. return -EINVAL;
  102. }
  103. size = dt_mem_next_cell(dt_root_size_cells, &prop);
  104. nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
  105. prop = of_get_flat_dt_prop(node, "alignment", &len);
  106. if (prop) {
  107. if (len != dt_root_addr_cells * sizeof(__be32)) {
  108. pr_err("Reserved memory: invalid alignment property in '%s' node.\n",
  109. uname);
  110. return -EINVAL;
  111. }
  112. align = dt_mem_next_cell(dt_root_addr_cells, &prop);
  113. }
  114. /* Need adjust the alignment to satisfy the CMA requirement */
  115. if (IS_ENABLED(CONFIG_CMA) && of_flat_dt_is_compatible(node, "shared-dma-pool")) {
  116. unsigned long order =
  117. max_t(unsigned long, MAX_ORDER - 1, pageblock_order);
  118. align = max(align, (phys_addr_t)PAGE_SIZE << order);
  119. }
  120. prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
  121. if (prop) {
  122. if (len % t_len != 0) {
  123. pr_err("Reserved memory: invalid alloc-ranges property in '%s', skipping node.\n",
  124. uname);
  125. return -EINVAL;
  126. }
  127. base = 0;
  128. while (len > 0) {
  129. start = dt_mem_next_cell(dt_root_addr_cells, &prop);
  130. end = start + dt_mem_next_cell(dt_root_size_cells,
  131. &prop);
  132. ret = early_init_dt_alloc_reserved_memory_arch(size,
  133. align, start, end, nomap, &base);
  134. if (ret == 0) {
  135. pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n",
  136. uname, &base,
  137. (unsigned long)size / SZ_1M);
  138. break;
  139. }
  140. len -= t_len;
  141. }
  142. } else {
  143. ret = early_init_dt_alloc_reserved_memory_arch(size, align,
  144. 0, 0, nomap, &base);
  145. if (ret == 0)
  146. pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n",
  147. uname, &base, (unsigned long)size / SZ_1M);
  148. }
  149. if (base == 0) {
  150. pr_info("Reserved memory: failed to allocate memory for node '%s'\n",
  151. uname);
  152. return -ENOMEM;
  153. }
  154. *res_base = base;
  155. *res_size = size;
  156. return 0;
  157. }
  158. static const struct of_device_id __rmem_of_table_sentinel
  159. __used __section(__reservedmem_of_table_end);
  160. /**
  161. * res_mem_init_node() - call region specific reserved memory init code
  162. */
  163. static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
  164. {
  165. extern const struct of_device_id __reservedmem_of_table[];
  166. const struct of_device_id *i;
  167. for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
  168. reservedmem_of_init_fn initfn = i->data;
  169. const char *compat = i->compatible;
  170. if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
  171. continue;
  172. if (initfn(rmem) == 0) {
  173. pr_info("Reserved memory: initialized node %s, compatible id %s\n",
  174. rmem->name, compat);
  175. return 0;
  176. }
  177. }
  178. return -ENOENT;
  179. }
  180. static int __init __rmem_cmp(const void *a, const void *b)
  181. {
  182. const struct reserved_mem *ra = a, *rb = b;
  183. if (ra->base < rb->base)
  184. return -1;
  185. if (ra->base > rb->base)
  186. return 1;
  187. return 0;
  188. }
  189. static void __init __rmem_check_for_overlap(void)
  190. {
  191. int i;
  192. if (reserved_mem_count < 2)
  193. return;
  194. sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
  195. __rmem_cmp, NULL);
  196. for (i = 0; i < reserved_mem_count - 1; i++) {
  197. struct reserved_mem *this, *next;
  198. this = &reserved_mem[i];
  199. next = &reserved_mem[i + 1];
  200. if (!(this->base && next->base))
  201. continue;
  202. if (this->base + this->size > next->base) {
  203. phys_addr_t this_end, next_end;
  204. this_end = this->base + this->size;
  205. next_end = next->base + next->size;
  206. pr_err("Reserved memory: OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
  207. this->name, &this->base, &this_end,
  208. next->name, &next->base, &next_end);
  209. }
  210. }
  211. }
  212. /**
  213. * fdt_init_reserved_mem - allocate and init all saved reserved memory regions
  214. */
  215. void __init fdt_init_reserved_mem(void)
  216. {
  217. int i;
  218. /* check for overlapping reserved regions */
  219. __rmem_check_for_overlap();
  220. for (i = 0; i < reserved_mem_count; i++) {
  221. struct reserved_mem *rmem = &reserved_mem[i];
  222. unsigned long node = rmem->fdt_node;
  223. int len;
  224. const __be32 *prop;
  225. int err = 0;
  226. prop = of_get_flat_dt_prop(node, "phandle", &len);
  227. if (!prop)
  228. prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
  229. if (prop)
  230. rmem->phandle = of_read_number(prop, len/4);
  231. if (rmem->size == 0)
  232. err = __reserved_mem_alloc_size(node, rmem->name,
  233. &rmem->base, &rmem->size);
  234. if (err == 0)
  235. __reserved_mem_init_node(rmem);
  236. }
  237. }
  238. static inline struct reserved_mem *__find_rmem(struct device_node *node)
  239. {
  240. unsigned int i;
  241. if (!node->phandle)
  242. return NULL;
  243. for (i = 0; i < reserved_mem_count; i++)
  244. if (reserved_mem[i].phandle == node->phandle)
  245. return &reserved_mem[i];
  246. return NULL;
  247. }
  248. /**
  249. * of_reserved_mem_device_init() - assign reserved memory region to given device
  250. *
  251. * This function assign memory region pointed by "memory-region" device tree
  252. * property to the given device.
  253. */
  254. int of_reserved_mem_device_init(struct device *dev)
  255. {
  256. struct reserved_mem *rmem;
  257. struct device_node *np;
  258. int ret;
  259. np = of_parse_phandle(dev->of_node, "memory-region", 0);
  260. if (!np)
  261. return -ENODEV;
  262. rmem = __find_rmem(np);
  263. of_node_put(np);
  264. if (!rmem || !rmem->ops || !rmem->ops->device_init)
  265. return -EINVAL;
  266. ret = rmem->ops->device_init(rmem, dev);
  267. if (ret == 0)
  268. dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
  269. return ret;
  270. }
  271. EXPORT_SYMBOL_GPL(of_reserved_mem_device_init);
  272. /**
  273. * of_reserved_mem_device_release() - release reserved memory device structures
  274. *
  275. * This function releases structures allocated for memory region handling for
  276. * the given device.
  277. */
  278. void of_reserved_mem_device_release(struct device *dev)
  279. {
  280. struct reserved_mem *rmem;
  281. struct device_node *np;
  282. np = of_parse_phandle(dev->of_node, "memory-region", 0);
  283. if (!np)
  284. return;
  285. rmem = __find_rmem(np);
  286. of_node_put(np);
  287. if (!rmem || !rmem->ops || !rmem->ops->device_release)
  288. return;
  289. rmem->ops->device_release(rmem, dev);
  290. }
  291. EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);