ibmphp_ebda.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211
  1. /*
  2. * IBM Hot Plug Controller Driver
  3. *
  4. * Written By: Tong Yu, IBM Corporation
  5. *
  6. * Copyright (C) 2001,2003 Greg Kroah-Hartman (greg@kroah.com)
  7. * Copyright (C) 2001-2003 IBM Corp.
  8. *
  9. * All rights reserved.
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License, or (at
  14. * your option) any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful, but
  17. * WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  19. * NON INFRINGEMENT. See the GNU General Public License for more
  20. * details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. *
  26. * Send feedback to <gregkh@us.ibm.com>
  27. *
  28. */
  29. #include <linux/module.h>
  30. #include <linux/errno.h>
  31. #include <linux/mm.h>
  32. #include <linux/slab.h>
  33. #include <linux/pci.h>
  34. #include <linux/list.h>
  35. #include <linux/init.h>
  36. #include "ibmphp.h"
  37. /*
  38. * POST builds data blocks(in this data block definition, a char-1
  39. * byte, short(or word)-2 byte, long(dword)-4 byte) in the Extended
  40. * BIOS Data Area which describe the configuration of the hot-plug
  41. * controllers and resources used by the PCI Hot-Plug devices.
  42. *
  43. * This file walks EBDA, maps data block from physical addr,
  44. * reconstruct linked lists about all system resource(MEM, PFM, IO)
  45. * already assigned by POST, as well as linked lists about hot plug
  46. * controllers (ctlr#, slot#, bus&slot features...)
  47. */
  48. /* Global lists */
  49. LIST_HEAD (ibmphp_ebda_pci_rsrc_head);
  50. LIST_HEAD (ibmphp_slot_head);
  51. /* Local variables */
  52. static struct ebda_hpc_list *hpc_list_ptr;
  53. static struct ebda_rsrc_list *rsrc_list_ptr;
  54. static struct rio_table_hdr *rio_table_ptr = NULL;
  55. static LIST_HEAD (ebda_hpc_head);
  56. static LIST_HEAD (bus_info_head);
  57. static LIST_HEAD (rio_vg_head);
  58. static LIST_HEAD (rio_lo_head);
  59. static LIST_HEAD (opt_vg_head);
  60. static LIST_HEAD (opt_lo_head);
  61. static void __iomem *io_mem;
  62. /* Local functions */
  63. static int ebda_rsrc_controller (void);
  64. static int ebda_rsrc_rsrc (void);
  65. static int ebda_rio_table (void);
  66. static struct ebda_hpc_list * __init alloc_ebda_hpc_list (void)
  67. {
  68. return kzalloc(sizeof(struct ebda_hpc_list), GFP_KERNEL);
  69. }
  70. static struct controller *alloc_ebda_hpc (u32 slot_count, u32 bus_count)
  71. {
  72. struct controller *controller;
  73. struct ebda_hpc_slot *slots;
  74. struct ebda_hpc_bus *buses;
  75. controller = kzalloc(sizeof(struct controller), GFP_KERNEL);
  76. if (!controller)
  77. goto error;
  78. slots = kcalloc(slot_count, sizeof(struct ebda_hpc_slot), GFP_KERNEL);
  79. if (!slots)
  80. goto error_contr;
  81. controller->slots = slots;
  82. buses = kcalloc(bus_count, sizeof(struct ebda_hpc_bus), GFP_KERNEL);
  83. if (!buses)
  84. goto error_slots;
  85. controller->buses = buses;
  86. return controller;
  87. error_slots:
  88. kfree(controller->slots);
  89. error_contr:
  90. kfree(controller);
  91. error:
  92. return NULL;
  93. }
  94. static void free_ebda_hpc (struct controller *controller)
  95. {
  96. kfree (controller->slots);
  97. kfree (controller->buses);
  98. kfree (controller);
  99. }
  100. static struct ebda_rsrc_list * __init alloc_ebda_rsrc_list (void)
  101. {
  102. return kzalloc(sizeof(struct ebda_rsrc_list), GFP_KERNEL);
  103. }
  104. static struct ebda_pci_rsrc *alloc_ebda_pci_rsrc (void)
  105. {
  106. return kzalloc(sizeof(struct ebda_pci_rsrc), GFP_KERNEL);
  107. }
  108. static void __init print_bus_info (void)
  109. {
  110. struct bus_info *ptr;
  111. list_for_each_entry(ptr, &bus_info_head, bus_info_list) {
  112. debug ("%s - slot_min = %x\n", __func__, ptr->slot_min);
  113. debug ("%s - slot_max = %x\n", __func__, ptr->slot_max);
  114. debug ("%s - slot_count = %x\n", __func__, ptr->slot_count);
  115. debug ("%s - bus# = %x\n", __func__, ptr->busno);
  116. debug ("%s - current_speed = %x\n", __func__, ptr->current_speed);
  117. debug ("%s - controller_id = %x\n", __func__, ptr->controller_id);
  118. debug ("%s - slots_at_33_conv = %x\n", __func__, ptr->slots_at_33_conv);
  119. debug ("%s - slots_at_66_conv = %x\n", __func__, ptr->slots_at_66_conv);
  120. debug ("%s - slots_at_66_pcix = %x\n", __func__, ptr->slots_at_66_pcix);
  121. debug ("%s - slots_at_100_pcix = %x\n", __func__, ptr->slots_at_100_pcix);
  122. debug ("%s - slots_at_133_pcix = %x\n", __func__, ptr->slots_at_133_pcix);
  123. }
  124. }
  125. static void print_lo_info (void)
  126. {
  127. struct rio_detail *ptr;
  128. debug ("print_lo_info ----\n");
  129. list_for_each_entry(ptr, &rio_lo_head, rio_detail_list) {
  130. debug ("%s - rio_node_id = %x\n", __func__, ptr->rio_node_id);
  131. debug ("%s - rio_type = %x\n", __func__, ptr->rio_type);
  132. debug ("%s - owner_id = %x\n", __func__, ptr->owner_id);
  133. debug ("%s - first_slot_num = %x\n", __func__, ptr->first_slot_num);
  134. debug ("%s - wpindex = %x\n", __func__, ptr->wpindex);
  135. debug ("%s - chassis_num = %x\n", __func__, ptr->chassis_num);
  136. }
  137. }
  138. static void print_vg_info (void)
  139. {
  140. struct rio_detail *ptr;
  141. debug ("%s ---\n", __func__);
  142. list_for_each_entry(ptr, &rio_vg_head, rio_detail_list) {
  143. debug ("%s - rio_node_id = %x\n", __func__, ptr->rio_node_id);
  144. debug ("%s - rio_type = %x\n", __func__, ptr->rio_type);
  145. debug ("%s - owner_id = %x\n", __func__, ptr->owner_id);
  146. debug ("%s - first_slot_num = %x\n", __func__, ptr->first_slot_num);
  147. debug ("%s - wpindex = %x\n", __func__, ptr->wpindex);
  148. debug ("%s - chassis_num = %x\n", __func__, ptr->chassis_num);
  149. }
  150. }
  151. static void __init print_ebda_pci_rsrc (void)
  152. {
  153. struct ebda_pci_rsrc *ptr;
  154. list_for_each_entry(ptr, &ibmphp_ebda_pci_rsrc_head, ebda_pci_rsrc_list) {
  155. debug ("%s - rsrc type: %x bus#: %x dev_func: %x start addr: %x end addr: %x\n",
  156. __func__, ptr->rsrc_type ,ptr->bus_num, ptr->dev_fun,ptr->start_addr, ptr->end_addr);
  157. }
  158. }
  159. static void __init print_ibm_slot (void)
  160. {
  161. struct slot *ptr;
  162. list_for_each_entry(ptr, &ibmphp_slot_head, ibm_slot_list) {
  163. debug ("%s - slot_number: %x\n", __func__, ptr->number);
  164. }
  165. }
  166. static void __init print_opt_vg (void)
  167. {
  168. struct opt_rio *ptr;
  169. debug ("%s ---\n", __func__);
  170. list_for_each_entry(ptr, &opt_vg_head, opt_rio_list) {
  171. debug ("%s - rio_type %x\n", __func__, ptr->rio_type);
  172. debug ("%s - chassis_num: %x\n", __func__, ptr->chassis_num);
  173. debug ("%s - first_slot_num: %x\n", __func__, ptr->first_slot_num);
  174. debug ("%s - middle_num: %x\n", __func__, ptr->middle_num);
  175. }
  176. }
  177. static void __init print_ebda_hpc (void)
  178. {
  179. struct controller *hpc_ptr;
  180. u16 index;
  181. list_for_each_entry(hpc_ptr, &ebda_hpc_head, ebda_hpc_list) {
  182. for (index = 0; index < hpc_ptr->slot_count; index++) {
  183. debug ("%s - physical slot#: %x\n", __func__, hpc_ptr->slots[index].slot_num);
  184. debug ("%s - pci bus# of the slot: %x\n", __func__, hpc_ptr->slots[index].slot_bus_num);
  185. debug ("%s - index into ctlr addr: %x\n", __func__, hpc_ptr->slots[index].ctl_index);
  186. debug ("%s - cap of the slot: %x\n", __func__, hpc_ptr->slots[index].slot_cap);
  187. }
  188. for (index = 0; index < hpc_ptr->bus_count; index++)
  189. debug ("%s - bus# of each bus controlled by this ctlr: %x\n", __func__, hpc_ptr->buses[index].bus_num);
  190. debug ("%s - type of hpc: %x\n", __func__, hpc_ptr->ctlr_type);
  191. switch (hpc_ptr->ctlr_type) {
  192. case 1:
  193. debug ("%s - bus: %x\n", __func__, hpc_ptr->u.pci_ctlr.bus);
  194. debug ("%s - dev_fun: %x\n", __func__, hpc_ptr->u.pci_ctlr.dev_fun);
  195. debug ("%s - irq: %x\n", __func__, hpc_ptr->irq);
  196. break;
  197. case 0:
  198. debug ("%s - io_start: %x\n", __func__, hpc_ptr->u.isa_ctlr.io_start);
  199. debug ("%s - io_end: %x\n", __func__, hpc_ptr->u.isa_ctlr.io_end);
  200. debug ("%s - irq: %x\n", __func__, hpc_ptr->irq);
  201. break;
  202. case 2:
  203. case 4:
  204. debug ("%s - wpegbbar: %lx\n", __func__, hpc_ptr->u.wpeg_ctlr.wpegbbar);
  205. debug ("%s - i2c_addr: %x\n", __func__, hpc_ptr->u.wpeg_ctlr.i2c_addr);
  206. debug ("%s - irq: %x\n", __func__, hpc_ptr->irq);
  207. break;
  208. }
  209. }
  210. }
  211. int __init ibmphp_access_ebda (void)
  212. {
  213. u8 format, num_ctlrs, rio_complete, hs_complete, ebda_sz;
  214. u16 ebda_seg, num_entries, next_offset, offset, blk_id, sub_addr, re, rc_id, re_id, base;
  215. int rc = 0;
  216. rio_complete = 0;
  217. hs_complete = 0;
  218. io_mem = ioremap ((0x40 << 4) + 0x0e, 2);
  219. if (!io_mem )
  220. return -ENOMEM;
  221. ebda_seg = readw (io_mem);
  222. iounmap (io_mem);
  223. debug ("returned ebda segment: %x\n", ebda_seg);
  224. io_mem = ioremap(ebda_seg<<4, 1);
  225. if (!io_mem)
  226. return -ENOMEM;
  227. ebda_sz = readb(io_mem);
  228. iounmap(io_mem);
  229. debug("ebda size: %d(KiB)\n", ebda_sz);
  230. if (ebda_sz == 0)
  231. return -ENOMEM;
  232. io_mem = ioremap(ebda_seg<<4, (ebda_sz * 1024));
  233. if (!io_mem )
  234. return -ENOMEM;
  235. next_offset = 0x180;
  236. for (;;) {
  237. offset = next_offset;
  238. /* Make sure what we read is still in the mapped section */
  239. if (WARN(offset > (ebda_sz * 1024 - 4),
  240. "ibmphp_ebda: next read is beyond ebda_sz\n"))
  241. break;
  242. next_offset = readw (io_mem + offset); /* offset of next blk */
  243. offset += 2;
  244. if (next_offset == 0) /* 0 indicate it's last blk */
  245. break;
  246. blk_id = readw (io_mem + offset); /* this blk id */
  247. offset += 2;
  248. /* check if it is hot swap block or rio block */
  249. if (blk_id != 0x4853 && blk_id != 0x4752)
  250. continue;
  251. /* found hs table */
  252. if (blk_id == 0x4853) {
  253. debug ("now enter hot swap block---\n");
  254. debug ("hot blk id: %x\n", blk_id);
  255. format = readb (io_mem + offset);
  256. offset += 1;
  257. if (format != 4)
  258. goto error_nodev;
  259. debug ("hot blk format: %x\n", format);
  260. /* hot swap sub blk */
  261. base = offset;
  262. sub_addr = base;
  263. re = readw (io_mem + sub_addr); /* next sub blk */
  264. sub_addr += 2;
  265. rc_id = readw (io_mem + sub_addr); /* sub blk id */
  266. sub_addr += 2;
  267. if (rc_id != 0x5243)
  268. goto error_nodev;
  269. /* rc sub blk signature */
  270. num_ctlrs = readb (io_mem + sub_addr);
  271. sub_addr += 1;
  272. hpc_list_ptr = alloc_ebda_hpc_list ();
  273. if (!hpc_list_ptr) {
  274. rc = -ENOMEM;
  275. goto out;
  276. }
  277. hpc_list_ptr->format = format;
  278. hpc_list_ptr->num_ctlrs = num_ctlrs;
  279. hpc_list_ptr->phys_addr = sub_addr; /* offset of RSRC_CONTROLLER blk */
  280. debug ("info about hpc descriptor---\n");
  281. debug ("hot blk format: %x\n", format);
  282. debug ("num of controller: %x\n", num_ctlrs);
  283. debug ("offset of hpc data structure entries: %x\n ", sub_addr);
  284. sub_addr = base + re; /* re sub blk */
  285. /* FIXME: rc is never used/checked */
  286. rc = readw (io_mem + sub_addr); /* next sub blk */
  287. sub_addr += 2;
  288. re_id = readw (io_mem + sub_addr); /* sub blk id */
  289. sub_addr += 2;
  290. if (re_id != 0x5245)
  291. goto error_nodev;
  292. /* signature of re */
  293. num_entries = readw (io_mem + sub_addr);
  294. sub_addr += 2; /* offset of RSRC_ENTRIES blk */
  295. rsrc_list_ptr = alloc_ebda_rsrc_list ();
  296. if (!rsrc_list_ptr ) {
  297. rc = -ENOMEM;
  298. goto out;
  299. }
  300. rsrc_list_ptr->format = format;
  301. rsrc_list_ptr->num_entries = num_entries;
  302. rsrc_list_ptr->phys_addr = sub_addr;
  303. debug ("info about rsrc descriptor---\n");
  304. debug ("format: %x\n", format);
  305. debug ("num of rsrc: %x\n", num_entries);
  306. debug ("offset of rsrc data structure entries: %x\n ", sub_addr);
  307. hs_complete = 1;
  308. } else {
  309. /* found rio table, blk_id == 0x4752 */
  310. debug ("now enter io table ---\n");
  311. debug ("rio blk id: %x\n", blk_id);
  312. rio_table_ptr = kzalloc(sizeof(struct rio_table_hdr), GFP_KERNEL);
  313. if (!rio_table_ptr) {
  314. rc = -ENOMEM;
  315. goto out;
  316. }
  317. rio_table_ptr->ver_num = readb (io_mem + offset);
  318. rio_table_ptr->scal_count = readb (io_mem + offset + 1);
  319. rio_table_ptr->riodev_count = readb (io_mem + offset + 2);
  320. rio_table_ptr->offset = offset +3 ;
  321. debug("info about rio table hdr ---\n");
  322. debug("ver_num: %x\nscal_count: %x\nriodev_count: %x\noffset of rio table: %x\n ",
  323. rio_table_ptr->ver_num, rio_table_ptr->scal_count,
  324. rio_table_ptr->riodev_count, rio_table_ptr->offset);
  325. rio_complete = 1;
  326. }
  327. }
  328. if (!hs_complete && !rio_complete)
  329. goto error_nodev;
  330. if (rio_table_ptr) {
  331. if (rio_complete && rio_table_ptr->ver_num == 3) {
  332. rc = ebda_rio_table ();
  333. if (rc)
  334. goto out;
  335. }
  336. }
  337. rc = ebda_rsrc_controller ();
  338. if (rc)
  339. goto out;
  340. rc = ebda_rsrc_rsrc ();
  341. goto out;
  342. error_nodev:
  343. rc = -ENODEV;
  344. out:
  345. iounmap (io_mem);
  346. return rc;
  347. }
  348. /*
  349. * map info of scalability details and rio details from physical address
  350. */
  351. static int __init ebda_rio_table (void)
  352. {
  353. u16 offset;
  354. u8 i;
  355. struct rio_detail *rio_detail_ptr;
  356. offset = rio_table_ptr->offset;
  357. offset += 12 * rio_table_ptr->scal_count;
  358. // we do concern about rio details
  359. for (i = 0; i < rio_table_ptr->riodev_count; i++) {
  360. rio_detail_ptr = kzalloc(sizeof(struct rio_detail), GFP_KERNEL);
  361. if (!rio_detail_ptr)
  362. return -ENOMEM;
  363. rio_detail_ptr->rio_node_id = readb (io_mem + offset);
  364. rio_detail_ptr->bbar = readl (io_mem + offset + 1);
  365. rio_detail_ptr->rio_type = readb (io_mem + offset + 5);
  366. rio_detail_ptr->owner_id = readb (io_mem + offset + 6);
  367. rio_detail_ptr->port0_node_connect = readb (io_mem + offset + 7);
  368. rio_detail_ptr->port0_port_connect = readb (io_mem + offset + 8);
  369. rio_detail_ptr->port1_node_connect = readb (io_mem + offset + 9);
  370. rio_detail_ptr->port1_port_connect = readb (io_mem + offset + 10);
  371. rio_detail_ptr->first_slot_num = readb (io_mem + offset + 11);
  372. rio_detail_ptr->status = readb (io_mem + offset + 12);
  373. rio_detail_ptr->wpindex = readb (io_mem + offset + 13);
  374. rio_detail_ptr->chassis_num = readb (io_mem + offset + 14);
  375. // debug ("rio_node_id: %x\nbbar: %x\nrio_type: %x\nowner_id: %x\nport0_node: %x\nport0_port: %x\nport1_node: %x\nport1_port: %x\nfirst_slot_num: %x\nstatus: %x\n", rio_detail_ptr->rio_node_id, rio_detail_ptr->bbar, rio_detail_ptr->rio_type, rio_detail_ptr->owner_id, rio_detail_ptr->port0_node_connect, rio_detail_ptr->port0_port_connect, rio_detail_ptr->port1_node_connect, rio_detail_ptr->port1_port_connect, rio_detail_ptr->first_slot_num, rio_detail_ptr->status);
  376. //create linked list of chassis
  377. if (rio_detail_ptr->rio_type == 4 || rio_detail_ptr->rio_type == 5)
  378. list_add (&rio_detail_ptr->rio_detail_list, &rio_vg_head);
  379. //create linked list of expansion box
  380. else if (rio_detail_ptr->rio_type == 6 || rio_detail_ptr->rio_type == 7)
  381. list_add (&rio_detail_ptr->rio_detail_list, &rio_lo_head);
  382. else
  383. // not in my concern
  384. kfree (rio_detail_ptr);
  385. offset += 15;
  386. }
  387. print_lo_info ();
  388. print_vg_info ();
  389. return 0;
  390. }
  391. /*
  392. * reorganizing linked list of chassis
  393. */
  394. static struct opt_rio *search_opt_vg (u8 chassis_num)
  395. {
  396. struct opt_rio *ptr;
  397. list_for_each_entry(ptr, &opt_vg_head, opt_rio_list) {
  398. if (ptr->chassis_num == chassis_num)
  399. return ptr;
  400. }
  401. return NULL;
  402. }
  403. static int __init combine_wpg_for_chassis (void)
  404. {
  405. struct opt_rio *opt_rio_ptr = NULL;
  406. struct rio_detail *rio_detail_ptr = NULL;
  407. list_for_each_entry(rio_detail_ptr, &rio_vg_head, rio_detail_list) {
  408. opt_rio_ptr = search_opt_vg (rio_detail_ptr->chassis_num);
  409. if (!opt_rio_ptr) {
  410. opt_rio_ptr = kzalloc(sizeof(struct opt_rio), GFP_KERNEL);
  411. if (!opt_rio_ptr)
  412. return -ENOMEM;
  413. opt_rio_ptr->rio_type = rio_detail_ptr->rio_type;
  414. opt_rio_ptr->chassis_num = rio_detail_ptr->chassis_num;
  415. opt_rio_ptr->first_slot_num = rio_detail_ptr->first_slot_num;
  416. opt_rio_ptr->middle_num = rio_detail_ptr->first_slot_num;
  417. list_add (&opt_rio_ptr->opt_rio_list, &opt_vg_head);
  418. } else {
  419. opt_rio_ptr->first_slot_num = min (opt_rio_ptr->first_slot_num, rio_detail_ptr->first_slot_num);
  420. opt_rio_ptr->middle_num = max (opt_rio_ptr->middle_num, rio_detail_ptr->first_slot_num);
  421. }
  422. }
  423. print_opt_vg ();
  424. return 0;
  425. }
  426. /*
  427. * reorganizing linked list of expansion box
  428. */
  429. static struct opt_rio_lo *search_opt_lo (u8 chassis_num)
  430. {
  431. struct opt_rio_lo *ptr;
  432. list_for_each_entry(ptr, &opt_lo_head, opt_rio_lo_list) {
  433. if (ptr->chassis_num == chassis_num)
  434. return ptr;
  435. }
  436. return NULL;
  437. }
  438. static int combine_wpg_for_expansion (void)
  439. {
  440. struct opt_rio_lo *opt_rio_lo_ptr = NULL;
  441. struct rio_detail *rio_detail_ptr = NULL;
  442. list_for_each_entry(rio_detail_ptr, &rio_lo_head, rio_detail_list) {
  443. opt_rio_lo_ptr = search_opt_lo (rio_detail_ptr->chassis_num);
  444. if (!opt_rio_lo_ptr) {
  445. opt_rio_lo_ptr = kzalloc(sizeof(struct opt_rio_lo), GFP_KERNEL);
  446. if (!opt_rio_lo_ptr)
  447. return -ENOMEM;
  448. opt_rio_lo_ptr->rio_type = rio_detail_ptr->rio_type;
  449. opt_rio_lo_ptr->chassis_num = rio_detail_ptr->chassis_num;
  450. opt_rio_lo_ptr->first_slot_num = rio_detail_ptr->first_slot_num;
  451. opt_rio_lo_ptr->middle_num = rio_detail_ptr->first_slot_num;
  452. opt_rio_lo_ptr->pack_count = 1;
  453. list_add (&opt_rio_lo_ptr->opt_rio_lo_list, &opt_lo_head);
  454. } else {
  455. opt_rio_lo_ptr->first_slot_num = min (opt_rio_lo_ptr->first_slot_num, rio_detail_ptr->first_slot_num);
  456. opt_rio_lo_ptr->middle_num = max (opt_rio_lo_ptr->middle_num, rio_detail_ptr->first_slot_num);
  457. opt_rio_lo_ptr->pack_count = 2;
  458. }
  459. }
  460. return 0;
  461. }
  462. /* Since we don't know the max slot number per each chassis, hence go
  463. * through the list of all chassis to find out the range
  464. * Arguments: slot_num, 1st slot number of the chassis we think we are on,
  465. * var (0 = chassis, 1 = expansion box)
  466. */
  467. static int first_slot_num (u8 slot_num, u8 first_slot, u8 var)
  468. {
  469. struct opt_rio *opt_vg_ptr = NULL;
  470. struct opt_rio_lo *opt_lo_ptr = NULL;
  471. int rc = 0;
  472. if (!var) {
  473. list_for_each_entry(opt_vg_ptr, &opt_vg_head, opt_rio_list) {
  474. if ((first_slot < opt_vg_ptr->first_slot_num) && (slot_num >= opt_vg_ptr->first_slot_num)) {
  475. rc = -ENODEV;
  476. break;
  477. }
  478. }
  479. } else {
  480. list_for_each_entry(opt_lo_ptr, &opt_lo_head, opt_rio_lo_list) {
  481. if ((first_slot < opt_lo_ptr->first_slot_num) && (slot_num >= opt_lo_ptr->first_slot_num)) {
  482. rc = -ENODEV;
  483. break;
  484. }
  485. }
  486. }
  487. return rc;
  488. }
  489. static struct opt_rio_lo *find_rxe_num (u8 slot_num)
  490. {
  491. struct opt_rio_lo *opt_lo_ptr;
  492. list_for_each_entry(opt_lo_ptr, &opt_lo_head, opt_rio_lo_list) {
  493. //check to see if this slot_num belongs to expansion box
  494. if ((slot_num >= opt_lo_ptr->first_slot_num) && (!first_slot_num (slot_num, opt_lo_ptr->first_slot_num, 1)))
  495. return opt_lo_ptr;
  496. }
  497. return NULL;
  498. }
  499. static struct opt_rio *find_chassis_num (u8 slot_num)
  500. {
  501. struct opt_rio *opt_vg_ptr;
  502. list_for_each_entry(opt_vg_ptr, &opt_vg_head, opt_rio_list) {
  503. //check to see if this slot_num belongs to chassis
  504. if ((slot_num >= opt_vg_ptr->first_slot_num) && (!first_slot_num (slot_num, opt_vg_ptr->first_slot_num, 0)))
  505. return opt_vg_ptr;
  506. }
  507. return NULL;
  508. }
  509. /* This routine will find out how many slots are in the chassis, so that
  510. * the slot numbers for rxe100 would start from 1, and not from 7, or 6 etc
  511. */
  512. static u8 calculate_first_slot (u8 slot_num)
  513. {
  514. u8 first_slot = 1;
  515. struct slot *slot_cur;
  516. list_for_each_entry(slot_cur, &ibmphp_slot_head, ibm_slot_list) {
  517. if (slot_cur->ctrl) {
  518. if ((slot_cur->ctrl->ctlr_type != 4) && (slot_cur->ctrl->ending_slot_num > first_slot) && (slot_num > slot_cur->ctrl->ending_slot_num))
  519. first_slot = slot_cur->ctrl->ending_slot_num;
  520. }
  521. }
  522. return first_slot + 1;
  523. }
  524. #define SLOT_NAME_SIZE 30
  525. static char *create_file_name (struct slot *slot_cur)
  526. {
  527. struct opt_rio *opt_vg_ptr = NULL;
  528. struct opt_rio_lo *opt_lo_ptr = NULL;
  529. static char str[SLOT_NAME_SIZE];
  530. int which = 0; /* rxe = 1, chassis = 0 */
  531. u8 number = 1; /* either chassis or rxe # */
  532. u8 first_slot = 1;
  533. u8 slot_num;
  534. u8 flag = 0;
  535. if (!slot_cur) {
  536. err ("Structure passed is empty\n");
  537. return NULL;
  538. }
  539. slot_num = slot_cur->number;
  540. memset (str, 0, sizeof(str));
  541. if (rio_table_ptr) {
  542. if (rio_table_ptr->ver_num == 3) {
  543. opt_vg_ptr = find_chassis_num (slot_num);
  544. opt_lo_ptr = find_rxe_num (slot_num);
  545. }
  546. }
  547. if (opt_vg_ptr) {
  548. if (opt_lo_ptr) {
  549. if ((slot_num - opt_vg_ptr->first_slot_num) > (slot_num - opt_lo_ptr->first_slot_num)) {
  550. number = opt_lo_ptr->chassis_num;
  551. first_slot = opt_lo_ptr->first_slot_num;
  552. which = 1; /* it is RXE */
  553. } else {
  554. first_slot = opt_vg_ptr->first_slot_num;
  555. number = opt_vg_ptr->chassis_num;
  556. which = 0;
  557. }
  558. } else {
  559. first_slot = opt_vg_ptr->first_slot_num;
  560. number = opt_vg_ptr->chassis_num;
  561. which = 0;
  562. }
  563. ++flag;
  564. } else if (opt_lo_ptr) {
  565. number = opt_lo_ptr->chassis_num;
  566. first_slot = opt_lo_ptr->first_slot_num;
  567. which = 1;
  568. ++flag;
  569. } else if (rio_table_ptr) {
  570. if (rio_table_ptr->ver_num == 3) {
  571. /* if both NULL and we DO have correct RIO table in BIOS */
  572. return NULL;
  573. }
  574. }
  575. if (!flag) {
  576. if (slot_cur->ctrl->ctlr_type == 4) {
  577. first_slot = calculate_first_slot (slot_num);
  578. which = 1;
  579. } else {
  580. which = 0;
  581. }
  582. }
  583. sprintf(str, "%s%dslot%d",
  584. which == 0 ? "chassis" : "rxe",
  585. number, slot_num - first_slot + 1);
  586. return str;
  587. }
  588. static int fillslotinfo(struct hotplug_slot *hotplug_slot)
  589. {
  590. struct slot *slot;
  591. int rc = 0;
  592. if (!hotplug_slot || !hotplug_slot->private)
  593. return -EINVAL;
  594. slot = hotplug_slot->private;
  595. rc = ibmphp_hpc_readslot(slot, READ_ALLSTAT, NULL);
  596. if (rc)
  597. return rc;
  598. // power - enabled:1 not:0
  599. hotplug_slot->info->power_status = SLOT_POWER(slot->status);
  600. // attention - off:0, on:1, blinking:2
  601. hotplug_slot->info->attention_status = SLOT_ATTN(slot->status, slot->ext_status);
  602. // latch - open:1 closed:0
  603. hotplug_slot->info->latch_status = SLOT_LATCH(slot->status);
  604. // pci board - present:1 not:0
  605. if (SLOT_PRESENT (slot->status))
  606. hotplug_slot->info->adapter_status = 1;
  607. else
  608. hotplug_slot->info->adapter_status = 0;
  609. /*
  610. if (slot->bus_on->supported_bus_mode
  611. && (slot->bus_on->supported_speed == BUS_SPEED_66))
  612. hotplug_slot->info->max_bus_speed_status = BUS_SPEED_66PCIX;
  613. else
  614. hotplug_slot->info->max_bus_speed_status = slot->bus_on->supported_speed;
  615. */
  616. return rc;
  617. }
  618. static void release_slot(struct hotplug_slot *hotplug_slot)
  619. {
  620. struct slot *slot;
  621. if (!hotplug_slot || !hotplug_slot->private)
  622. return;
  623. slot = hotplug_slot->private;
  624. kfree(slot->hotplug_slot->info);
  625. kfree(slot->hotplug_slot);
  626. slot->ctrl = NULL;
  627. slot->bus_on = NULL;
  628. /* we don't want to actually remove the resources, since free_resources will do just that */
  629. ibmphp_unconfigure_card(&slot, -1);
  630. kfree (slot);
  631. }
  632. static struct pci_driver ibmphp_driver;
  633. /*
  634. * map info (ctlr-id, slot count, slot#.. bus count, bus#, ctlr type...) of
  635. * each hpc from physical address to a list of hot plug controllers based on
  636. * hpc descriptors.
  637. */
  638. static int __init ebda_rsrc_controller (void)
  639. {
  640. u16 addr, addr_slot, addr_bus;
  641. u8 ctlr_id, temp, bus_index;
  642. u16 ctlr, slot, bus;
  643. u16 slot_num, bus_num, index;
  644. struct hotplug_slot *hp_slot_ptr;
  645. struct controller *hpc_ptr;
  646. struct ebda_hpc_bus *bus_ptr;
  647. struct ebda_hpc_slot *slot_ptr;
  648. struct bus_info *bus_info_ptr1, *bus_info_ptr2;
  649. int rc;
  650. struct slot *tmp_slot;
  651. char name[SLOT_NAME_SIZE];
  652. addr = hpc_list_ptr->phys_addr;
  653. for (ctlr = 0; ctlr < hpc_list_ptr->num_ctlrs; ctlr++) {
  654. bus_index = 1;
  655. ctlr_id = readb (io_mem + addr);
  656. addr += 1;
  657. slot_num = readb (io_mem + addr);
  658. addr += 1;
  659. addr_slot = addr; /* offset of slot structure */
  660. addr += (slot_num * 4);
  661. bus_num = readb (io_mem + addr);
  662. addr += 1;
  663. addr_bus = addr; /* offset of bus */
  664. addr += (bus_num * 9); /* offset of ctlr_type */
  665. temp = readb (io_mem + addr);
  666. addr += 1;
  667. /* init hpc structure */
  668. hpc_ptr = alloc_ebda_hpc (slot_num, bus_num);
  669. if (!hpc_ptr ) {
  670. rc = -ENOMEM;
  671. goto error_no_hpc;
  672. }
  673. hpc_ptr->ctlr_id = ctlr_id;
  674. hpc_ptr->ctlr_relative_id = ctlr;
  675. hpc_ptr->slot_count = slot_num;
  676. hpc_ptr->bus_count = bus_num;
  677. debug ("now enter ctlr data structure ---\n");
  678. debug ("ctlr id: %x\n", ctlr_id);
  679. debug ("ctlr_relative_id: %x\n", hpc_ptr->ctlr_relative_id);
  680. debug ("count of slots controlled by this ctlr: %x\n", slot_num);
  681. debug ("count of buses controlled by this ctlr: %x\n", bus_num);
  682. /* init slot structure, fetch slot, bus, cap... */
  683. slot_ptr = hpc_ptr->slots;
  684. for (slot = 0; slot < slot_num; slot++) {
  685. slot_ptr->slot_num = readb (io_mem + addr_slot);
  686. slot_ptr->slot_bus_num = readb (io_mem + addr_slot + slot_num);
  687. slot_ptr->ctl_index = readb (io_mem + addr_slot + 2*slot_num);
  688. slot_ptr->slot_cap = readb (io_mem + addr_slot + 3*slot_num);
  689. // create bus_info lined list --- if only one slot per bus: slot_min = slot_max
  690. bus_info_ptr2 = ibmphp_find_same_bus_num (slot_ptr->slot_bus_num);
  691. if (!bus_info_ptr2) {
  692. bus_info_ptr1 = kzalloc(sizeof(struct bus_info), GFP_KERNEL);
  693. if (!bus_info_ptr1) {
  694. rc = -ENOMEM;
  695. goto error_no_hp_slot;
  696. }
  697. bus_info_ptr1->slot_min = slot_ptr->slot_num;
  698. bus_info_ptr1->slot_max = slot_ptr->slot_num;
  699. bus_info_ptr1->slot_count += 1;
  700. bus_info_ptr1->busno = slot_ptr->slot_bus_num;
  701. bus_info_ptr1->index = bus_index++;
  702. bus_info_ptr1->current_speed = 0xff;
  703. bus_info_ptr1->current_bus_mode = 0xff;
  704. bus_info_ptr1->controller_id = hpc_ptr->ctlr_id;
  705. list_add_tail (&bus_info_ptr1->bus_info_list, &bus_info_head);
  706. } else {
  707. bus_info_ptr2->slot_min = min (bus_info_ptr2->slot_min, slot_ptr->slot_num);
  708. bus_info_ptr2->slot_max = max (bus_info_ptr2->slot_max, slot_ptr->slot_num);
  709. bus_info_ptr2->slot_count += 1;
  710. }
  711. // end of creating the bus_info linked list
  712. slot_ptr++;
  713. addr_slot += 1;
  714. }
  715. /* init bus structure */
  716. bus_ptr = hpc_ptr->buses;
  717. for (bus = 0; bus < bus_num; bus++) {
  718. bus_ptr->bus_num = readb (io_mem + addr_bus + bus);
  719. bus_ptr->slots_at_33_conv = readb (io_mem + addr_bus + bus_num + 8 * bus);
  720. bus_ptr->slots_at_66_conv = readb (io_mem + addr_bus + bus_num + 8 * bus + 1);
  721. bus_ptr->slots_at_66_pcix = readb (io_mem + addr_bus + bus_num + 8 * bus + 2);
  722. bus_ptr->slots_at_100_pcix = readb (io_mem + addr_bus + bus_num + 8 * bus + 3);
  723. bus_ptr->slots_at_133_pcix = readb (io_mem + addr_bus + bus_num + 8 * bus + 4);
  724. bus_info_ptr2 = ibmphp_find_same_bus_num (bus_ptr->bus_num);
  725. if (bus_info_ptr2) {
  726. bus_info_ptr2->slots_at_33_conv = bus_ptr->slots_at_33_conv;
  727. bus_info_ptr2->slots_at_66_conv = bus_ptr->slots_at_66_conv;
  728. bus_info_ptr2->slots_at_66_pcix = bus_ptr->slots_at_66_pcix;
  729. bus_info_ptr2->slots_at_100_pcix = bus_ptr->slots_at_100_pcix;
  730. bus_info_ptr2->slots_at_133_pcix = bus_ptr->slots_at_133_pcix;
  731. }
  732. bus_ptr++;
  733. }
  734. hpc_ptr->ctlr_type = temp;
  735. switch (hpc_ptr->ctlr_type) {
  736. case 1:
  737. hpc_ptr->u.pci_ctlr.bus = readb (io_mem + addr);
  738. hpc_ptr->u.pci_ctlr.dev_fun = readb (io_mem + addr + 1);
  739. hpc_ptr->irq = readb (io_mem + addr + 2);
  740. addr += 3;
  741. debug ("ctrl bus = %x, ctlr devfun = %x, irq = %x\n",
  742. hpc_ptr->u.pci_ctlr.bus,
  743. hpc_ptr->u.pci_ctlr.dev_fun, hpc_ptr->irq);
  744. break;
  745. case 0:
  746. hpc_ptr->u.isa_ctlr.io_start = readw (io_mem + addr);
  747. hpc_ptr->u.isa_ctlr.io_end = readw (io_mem + addr + 2);
  748. if (!request_region (hpc_ptr->u.isa_ctlr.io_start,
  749. (hpc_ptr->u.isa_ctlr.io_end - hpc_ptr->u.isa_ctlr.io_start + 1),
  750. "ibmphp")) {
  751. rc = -ENODEV;
  752. goto error_no_hp_slot;
  753. }
  754. hpc_ptr->irq = readb (io_mem + addr + 4);
  755. addr += 5;
  756. break;
  757. case 2:
  758. case 4:
  759. hpc_ptr->u.wpeg_ctlr.wpegbbar = readl (io_mem + addr);
  760. hpc_ptr->u.wpeg_ctlr.i2c_addr = readb (io_mem + addr + 4);
  761. hpc_ptr->irq = readb (io_mem + addr + 5);
  762. addr += 6;
  763. break;
  764. default:
  765. rc = -ENODEV;
  766. goto error_no_hp_slot;
  767. }
  768. //reorganize chassis' linked list
  769. combine_wpg_for_chassis ();
  770. combine_wpg_for_expansion ();
  771. hpc_ptr->revision = 0xff;
  772. hpc_ptr->options = 0xff;
  773. hpc_ptr->starting_slot_num = hpc_ptr->slots[0].slot_num;
  774. hpc_ptr->ending_slot_num = hpc_ptr->slots[slot_num-1].slot_num;
  775. // register slots with hpc core as well as create linked list of ibm slot
  776. for (index = 0; index < hpc_ptr->slot_count; index++) {
  777. hp_slot_ptr = kzalloc(sizeof(*hp_slot_ptr), GFP_KERNEL);
  778. if (!hp_slot_ptr) {
  779. rc = -ENOMEM;
  780. goto error_no_hp_slot;
  781. }
  782. hp_slot_ptr->info = kzalloc(sizeof(struct hotplug_slot_info), GFP_KERNEL);
  783. if (!hp_slot_ptr->info) {
  784. rc = -ENOMEM;
  785. goto error_no_hp_info;
  786. }
  787. tmp_slot = kzalloc(sizeof(*tmp_slot), GFP_KERNEL);
  788. if (!tmp_slot) {
  789. rc = -ENOMEM;
  790. goto error_no_slot;
  791. }
  792. tmp_slot->flag = 1;
  793. tmp_slot->capabilities = hpc_ptr->slots[index].slot_cap;
  794. if ((hpc_ptr->slots[index].slot_cap & EBDA_SLOT_133_MAX) == EBDA_SLOT_133_MAX)
  795. tmp_slot->supported_speed = 3;
  796. else if ((hpc_ptr->slots[index].slot_cap & EBDA_SLOT_100_MAX) == EBDA_SLOT_100_MAX)
  797. tmp_slot->supported_speed = 2;
  798. else if ((hpc_ptr->slots[index].slot_cap & EBDA_SLOT_66_MAX) == EBDA_SLOT_66_MAX)
  799. tmp_slot->supported_speed = 1;
  800. if ((hpc_ptr->slots[index].slot_cap & EBDA_SLOT_PCIX_CAP) == EBDA_SLOT_PCIX_CAP)
  801. tmp_slot->supported_bus_mode = 1;
  802. else
  803. tmp_slot->supported_bus_mode = 0;
  804. tmp_slot->bus = hpc_ptr->slots[index].slot_bus_num;
  805. bus_info_ptr1 = ibmphp_find_same_bus_num (hpc_ptr->slots[index].slot_bus_num);
  806. if (!bus_info_ptr1) {
  807. kfree(tmp_slot);
  808. rc = -ENODEV;
  809. goto error;
  810. }
  811. tmp_slot->bus_on = bus_info_ptr1;
  812. bus_info_ptr1 = NULL;
  813. tmp_slot->ctrl = hpc_ptr;
  814. tmp_slot->ctlr_index = hpc_ptr->slots[index].ctl_index;
  815. tmp_slot->number = hpc_ptr->slots[index].slot_num;
  816. tmp_slot->hotplug_slot = hp_slot_ptr;
  817. hp_slot_ptr->private = tmp_slot;
  818. hp_slot_ptr->release = release_slot;
  819. rc = fillslotinfo(hp_slot_ptr);
  820. if (rc)
  821. goto error;
  822. rc = ibmphp_init_devno ((struct slot **) &hp_slot_ptr->private);
  823. if (rc)
  824. goto error;
  825. hp_slot_ptr->ops = &ibmphp_hotplug_slot_ops;
  826. // end of registering ibm slot with hotplug core
  827. list_add (& ((struct slot *)(hp_slot_ptr->private))->ibm_slot_list, &ibmphp_slot_head);
  828. }
  829. print_bus_info ();
  830. list_add (&hpc_ptr->ebda_hpc_list, &ebda_hpc_head );
  831. } /* each hpc */
  832. list_for_each_entry(tmp_slot, &ibmphp_slot_head, ibm_slot_list) {
  833. snprintf(name, SLOT_NAME_SIZE, "%s", create_file_name(tmp_slot));
  834. pci_hp_register(tmp_slot->hotplug_slot,
  835. pci_find_bus(0, tmp_slot->bus), tmp_slot->device, name);
  836. }
  837. print_ebda_hpc ();
  838. print_ibm_slot ();
  839. return 0;
  840. error:
  841. kfree (hp_slot_ptr->private);
  842. error_no_slot:
  843. kfree (hp_slot_ptr->info);
  844. error_no_hp_info:
  845. kfree (hp_slot_ptr);
  846. error_no_hp_slot:
  847. free_ebda_hpc (hpc_ptr);
  848. error_no_hpc:
  849. iounmap (io_mem);
  850. return rc;
  851. }
  852. /*
  853. * map info (bus, devfun, start addr, end addr..) of i/o, memory,
  854. * pfm from the physical addr to a list of resource.
  855. */
  856. static int __init ebda_rsrc_rsrc (void)
  857. {
  858. u16 addr;
  859. short rsrc;
  860. u8 type, rsrc_type;
  861. struct ebda_pci_rsrc *rsrc_ptr;
  862. addr = rsrc_list_ptr->phys_addr;
  863. debug ("now entering rsrc land\n");
  864. debug ("offset of rsrc: %x\n", rsrc_list_ptr->phys_addr);
  865. for (rsrc = 0; rsrc < rsrc_list_ptr->num_entries; rsrc++) {
  866. type = readb (io_mem + addr);
  867. addr += 1;
  868. rsrc_type = type & EBDA_RSRC_TYPE_MASK;
  869. if (rsrc_type == EBDA_IO_RSRC_TYPE) {
  870. rsrc_ptr = alloc_ebda_pci_rsrc ();
  871. if (!rsrc_ptr) {
  872. iounmap (io_mem);
  873. return -ENOMEM;
  874. }
  875. rsrc_ptr->rsrc_type = type;
  876. rsrc_ptr->bus_num = readb (io_mem + addr);
  877. rsrc_ptr->dev_fun = readb (io_mem + addr + 1);
  878. rsrc_ptr->start_addr = readw (io_mem + addr + 2);
  879. rsrc_ptr->end_addr = readw (io_mem + addr + 4);
  880. addr += 6;
  881. debug ("rsrc from io type ----\n");
  882. debug ("rsrc type: %x bus#: %x dev_func: %x start addr: %x end addr: %x\n",
  883. rsrc_ptr->rsrc_type, rsrc_ptr->bus_num, rsrc_ptr->dev_fun, rsrc_ptr->start_addr, rsrc_ptr->end_addr);
  884. list_add (&rsrc_ptr->ebda_pci_rsrc_list, &ibmphp_ebda_pci_rsrc_head);
  885. }
  886. if (rsrc_type == EBDA_MEM_RSRC_TYPE || rsrc_type == EBDA_PFM_RSRC_TYPE) {
  887. rsrc_ptr = alloc_ebda_pci_rsrc ();
  888. if (!rsrc_ptr ) {
  889. iounmap (io_mem);
  890. return -ENOMEM;
  891. }
  892. rsrc_ptr->rsrc_type = type;
  893. rsrc_ptr->bus_num = readb (io_mem + addr);
  894. rsrc_ptr->dev_fun = readb (io_mem + addr + 1);
  895. rsrc_ptr->start_addr = readl (io_mem + addr + 2);
  896. rsrc_ptr->end_addr = readl (io_mem + addr + 6);
  897. addr += 10;
  898. debug ("rsrc from mem or pfm ---\n");
  899. debug ("rsrc type: %x bus#: %x dev_func: %x start addr: %x end addr: %x\n",
  900. rsrc_ptr->rsrc_type, rsrc_ptr->bus_num, rsrc_ptr->dev_fun, rsrc_ptr->start_addr, rsrc_ptr->end_addr);
  901. list_add (&rsrc_ptr->ebda_pci_rsrc_list, &ibmphp_ebda_pci_rsrc_head);
  902. }
  903. }
  904. kfree (rsrc_list_ptr);
  905. rsrc_list_ptr = NULL;
  906. print_ebda_pci_rsrc ();
  907. return 0;
  908. }
  909. u16 ibmphp_get_total_controllers (void)
  910. {
  911. return hpc_list_ptr->num_ctlrs;
  912. }
  913. struct slot *ibmphp_get_slot_from_physical_num (u8 physical_num)
  914. {
  915. struct slot *slot;
  916. list_for_each_entry(slot, &ibmphp_slot_head, ibm_slot_list) {
  917. if (slot->number == physical_num)
  918. return slot;
  919. }
  920. return NULL;
  921. }
  922. /* To find:
  923. * - the smallest slot number
  924. * - the largest slot number
  925. * - the total number of the slots based on each bus
  926. * (if only one slot per bus slot_min = slot_max )
  927. */
  928. struct bus_info *ibmphp_find_same_bus_num (u32 num)
  929. {
  930. struct bus_info *ptr;
  931. list_for_each_entry(ptr, &bus_info_head, bus_info_list) {
  932. if (ptr->busno == num)
  933. return ptr;
  934. }
  935. return NULL;
  936. }
  937. /* Finding relative bus number, in order to map corresponding
  938. * bus register
  939. */
  940. int ibmphp_get_bus_index (u8 num)
  941. {
  942. struct bus_info *ptr;
  943. list_for_each_entry(ptr, &bus_info_head, bus_info_list) {
  944. if (ptr->busno == num)
  945. return ptr->index;
  946. }
  947. return -ENODEV;
  948. }
  949. void ibmphp_free_bus_info_queue (void)
  950. {
  951. struct bus_info *bus_info;
  952. struct list_head *list;
  953. struct list_head *next;
  954. list_for_each_safe (list, next, &bus_info_head ) {
  955. bus_info = list_entry (list, struct bus_info, bus_info_list);
  956. kfree (bus_info);
  957. }
  958. }
  959. void ibmphp_free_ebda_hpc_queue (void)
  960. {
  961. struct controller *controller = NULL;
  962. struct list_head *list;
  963. struct list_head *next;
  964. int pci_flag = 0;
  965. list_for_each_safe (list, next, &ebda_hpc_head) {
  966. controller = list_entry (list, struct controller, ebda_hpc_list);
  967. if (controller->ctlr_type == 0)
  968. release_region (controller->u.isa_ctlr.io_start, (controller->u.isa_ctlr.io_end - controller->u.isa_ctlr.io_start + 1));
  969. else if ((controller->ctlr_type == 1) && (!pci_flag)) {
  970. ++pci_flag;
  971. pci_unregister_driver (&ibmphp_driver);
  972. }
  973. free_ebda_hpc (controller);
  974. }
  975. }
  976. void ibmphp_free_ebda_pci_rsrc_queue (void)
  977. {
  978. struct ebda_pci_rsrc *resource;
  979. struct list_head *list;
  980. struct list_head *next;
  981. list_for_each_safe (list, next, &ibmphp_ebda_pci_rsrc_head) {
  982. resource = list_entry (list, struct ebda_pci_rsrc, ebda_pci_rsrc_list);
  983. kfree (resource);
  984. resource = NULL;
  985. }
  986. }
  987. static struct pci_device_id id_table[] = {
  988. {
  989. .vendor = PCI_VENDOR_ID_IBM,
  990. .device = HPC_DEVICE_ID,
  991. .subvendor = PCI_VENDOR_ID_IBM,
  992. .subdevice = HPC_SUBSYSTEM_ID,
  993. .class = ((PCI_CLASS_SYSTEM_PCI_HOTPLUG << 8) | 0x00),
  994. }, {}
  995. };
  996. MODULE_DEVICE_TABLE(pci, id_table);
  997. static int ibmphp_probe (struct pci_dev *, const struct pci_device_id *);
  998. static struct pci_driver ibmphp_driver = {
  999. .name = "ibmphp",
  1000. .id_table = id_table,
  1001. .probe = ibmphp_probe,
  1002. };
  1003. int ibmphp_register_pci (void)
  1004. {
  1005. struct controller *ctrl;
  1006. int rc = 0;
  1007. list_for_each_entry(ctrl, &ebda_hpc_head, ebda_hpc_list) {
  1008. if (ctrl->ctlr_type == 1) {
  1009. rc = pci_register_driver(&ibmphp_driver);
  1010. break;
  1011. }
  1012. }
  1013. return rc;
  1014. }
  1015. static int ibmphp_probe (struct pci_dev *dev, const struct pci_device_id *ids)
  1016. {
  1017. struct controller *ctrl;
  1018. debug ("inside ibmphp_probe\n");
  1019. list_for_each_entry(ctrl, &ebda_hpc_head, ebda_hpc_list) {
  1020. if (ctrl->ctlr_type == 1) {
  1021. if ((dev->devfn == ctrl->u.pci_ctlr.dev_fun) && (dev->bus->number == ctrl->u.pci_ctlr.bus)) {
  1022. ctrl->ctrl_dev = dev;
  1023. debug ("found device!!!\n");
  1024. debug ("dev->device = %x, dev->subsystem_device = %x\n", dev->device, dev->subsystem_device);
  1025. return 0;
  1026. }
  1027. }
  1028. }
  1029. return -ENODEV;
  1030. }