core.c 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882
  1. /*
  2. * Core driver for the pin control subsystem
  3. *
  4. * Copyright (C) 2011-2012 ST-Ericsson SA
  5. * Written on behalf of Linaro for ST-Ericsson
  6. * Based on bits of regulator core, gpio core and clk core
  7. *
  8. * Author: Linus Walleij <linus.walleij@linaro.org>
  9. *
  10. * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
  11. *
  12. * License terms: GNU General Public License (GPL) version 2
  13. */
  14. #define pr_fmt(fmt) "pinctrl core: " fmt
  15. #include <linux/kernel.h>
  16. #include <linux/kref.h>
  17. #include <linux/export.h>
  18. #include <linux/init.h>
  19. #include <linux/device.h>
  20. #include <linux/slab.h>
  21. #include <linux/err.h>
  22. #include <linux/list.h>
  23. #include <linux/sysfs.h>
  24. #include <linux/debugfs.h>
  25. #include <linux/seq_file.h>
  26. #include <linux/pinctrl/consumer.h>
  27. #include <linux/pinctrl/pinctrl.h>
  28. #include <linux/pinctrl/machine.h>
  29. #ifdef CONFIG_GPIOLIB
  30. #include <asm-generic/gpio.h>
  31. #endif
  32. #include "core.h"
  33. #include "devicetree.h"
  34. #include "pinmux.h"
  35. #include "pinconf.h"
  36. static bool pinctrl_dummy_state;
  37. /* Mutex taken to protect pinctrl_list */
  38. static DEFINE_MUTEX(pinctrl_list_mutex);
  39. /* Mutex taken to protect pinctrl_maps */
  40. DEFINE_MUTEX(pinctrl_maps_mutex);
  41. /* Mutex taken to protect pinctrldev_list */
  42. static DEFINE_MUTEX(pinctrldev_list_mutex);
  43. /* Global list of pin control devices (struct pinctrl_dev) */
  44. static LIST_HEAD(pinctrldev_list);
  45. /* List of pin controller handles (struct pinctrl) */
  46. static LIST_HEAD(pinctrl_list);
  47. /* List of pinctrl maps (struct pinctrl_maps) */
  48. LIST_HEAD(pinctrl_maps);
  49. /**
  50. * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
  51. *
  52. * Usually this function is called by platforms without pinctrl driver support
  53. * but run with some shared drivers using pinctrl APIs.
  54. * After calling this function, the pinctrl core will return successfully
  55. * with creating a dummy state for the driver to keep going smoothly.
  56. */
  57. void pinctrl_provide_dummies(void)
  58. {
  59. pinctrl_dummy_state = true;
  60. }
  61. const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
  62. {
  63. /* We're not allowed to register devices without name */
  64. return pctldev->desc->name;
  65. }
  66. EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
  67. const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
  68. {
  69. return dev_name(pctldev->dev);
  70. }
  71. EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
  72. void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
  73. {
  74. return pctldev->driver_data;
  75. }
  76. EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
  77. /**
  78. * get_pinctrl_dev_from_devname() - look up pin controller device
  79. * @devname: the name of a device instance, as returned by dev_name()
  80. *
  81. * Looks up a pin control device matching a certain device name or pure device
  82. * pointer, the pure device pointer will take precedence.
  83. */
  84. struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
  85. {
  86. struct pinctrl_dev *pctldev = NULL;
  87. if (!devname)
  88. return NULL;
  89. mutex_lock(&pinctrldev_list_mutex);
  90. list_for_each_entry(pctldev, &pinctrldev_list, node) {
  91. if (!strcmp(dev_name(pctldev->dev), devname)) {
  92. /* Matched on device name */
  93. mutex_unlock(&pinctrldev_list_mutex);
  94. return pctldev;
  95. }
  96. }
  97. mutex_unlock(&pinctrldev_list_mutex);
  98. return NULL;
  99. }
  100. struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
  101. {
  102. struct pinctrl_dev *pctldev;
  103. mutex_lock(&pinctrldev_list_mutex);
  104. list_for_each_entry(pctldev, &pinctrldev_list, node)
  105. if (pctldev->dev->of_node == np) {
  106. mutex_unlock(&pinctrldev_list_mutex);
  107. return pctldev;
  108. }
  109. mutex_unlock(&pinctrldev_list_mutex);
  110. return NULL;
  111. }
  112. /**
  113. * pin_get_from_name() - look up a pin number from a name
  114. * @pctldev: the pin control device to lookup the pin on
  115. * @name: the name of the pin to look up
  116. */
  117. int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
  118. {
  119. unsigned i, pin;
  120. /* The pin number can be retrived from the pin controller descriptor */
  121. for (i = 0; i < pctldev->desc->npins; i++) {
  122. struct pin_desc *desc;
  123. pin = pctldev->desc->pins[i].number;
  124. desc = pin_desc_get(pctldev, pin);
  125. /* Pin space may be sparse */
  126. if (desc && !strcmp(name, desc->name))
  127. return pin;
  128. }
  129. return -EINVAL;
  130. }
  131. /**
  132. * pin_get_name_from_id() - look up a pin name from a pin id
  133. * @pctldev: the pin control device to lookup the pin on
  134. * @name: the name of the pin to look up
  135. */
  136. const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
  137. {
  138. const struct pin_desc *desc;
  139. desc = pin_desc_get(pctldev, pin);
  140. if (desc == NULL) {
  141. dev_err(pctldev->dev, "failed to get pin(%d) name\n",
  142. pin);
  143. return NULL;
  144. }
  145. return desc->name;
  146. }
  147. /**
  148. * pin_is_valid() - check if pin exists on controller
  149. * @pctldev: the pin control device to check the pin on
  150. * @pin: pin to check, use the local pin controller index number
  151. *
  152. * This tells us whether a certain pin exist on a certain pin controller or
  153. * not. Pin lists may be sparse, so some pins may not exist.
  154. */
  155. bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
  156. {
  157. struct pin_desc *pindesc;
  158. if (pin < 0)
  159. return false;
  160. mutex_lock(&pctldev->mutex);
  161. pindesc = pin_desc_get(pctldev, pin);
  162. mutex_unlock(&pctldev->mutex);
  163. return pindesc != NULL;
  164. }
  165. EXPORT_SYMBOL_GPL(pin_is_valid);
  166. /* Deletes a range of pin descriptors */
  167. static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
  168. const struct pinctrl_pin_desc *pins,
  169. unsigned num_pins)
  170. {
  171. int i;
  172. for (i = 0; i < num_pins; i++) {
  173. struct pin_desc *pindesc;
  174. pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
  175. pins[i].number);
  176. if (pindesc != NULL) {
  177. radix_tree_delete(&pctldev->pin_desc_tree,
  178. pins[i].number);
  179. if (pindesc->dynamic_name)
  180. kfree(pindesc->name);
  181. }
  182. kfree(pindesc);
  183. }
  184. }
  185. static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
  186. unsigned number, const char *name)
  187. {
  188. struct pin_desc *pindesc;
  189. pindesc = pin_desc_get(pctldev, number);
  190. if (pindesc != NULL) {
  191. dev_err(pctldev->dev, "pin %d already registered\n", number);
  192. return -EINVAL;
  193. }
  194. pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
  195. if (pindesc == NULL) {
  196. dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
  197. return -ENOMEM;
  198. }
  199. /* Set owner */
  200. pindesc->pctldev = pctldev;
  201. /* Copy basic pin info */
  202. if (name) {
  203. pindesc->name = name;
  204. } else {
  205. pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
  206. if (pindesc->name == NULL) {
  207. kfree(pindesc);
  208. return -ENOMEM;
  209. }
  210. pindesc->dynamic_name = true;
  211. }
  212. radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
  213. pr_debug("registered pin %d (%s) on %s\n",
  214. number, pindesc->name, pctldev->desc->name);
  215. return 0;
  216. }
  217. static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
  218. struct pinctrl_pin_desc const *pins,
  219. unsigned num_descs)
  220. {
  221. unsigned i;
  222. int ret = 0;
  223. for (i = 0; i < num_descs; i++) {
  224. ret = pinctrl_register_one_pin(pctldev,
  225. pins[i].number, pins[i].name);
  226. if (ret)
  227. return ret;
  228. }
  229. return 0;
  230. }
  231. /**
  232. * gpio_to_pin() - GPIO range GPIO number to pin number translation
  233. * @range: GPIO range used for the translation
  234. * @gpio: gpio pin to translate to a pin number
  235. *
  236. * Finds the pin number for a given GPIO using the specified GPIO range
  237. * as a base for translation. The distinction between linear GPIO ranges
  238. * and pin list based GPIO ranges is managed correctly by this function.
  239. *
  240. * This function assumes the gpio is part of the specified GPIO range, use
  241. * only after making sure this is the case (e.g. by calling it on the
  242. * result of successful pinctrl_get_device_gpio_range calls)!
  243. */
  244. static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
  245. unsigned int gpio)
  246. {
  247. unsigned int offset = gpio - range->base;
  248. if (range->pins)
  249. return range->pins[offset];
  250. else
  251. return range->pin_base + offset;
  252. }
  253. /**
  254. * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
  255. * @pctldev: pin controller device to check
  256. * @gpio: gpio pin to check taken from the global GPIO pin space
  257. *
  258. * Tries to match a GPIO pin number to the ranges handled by a certain pin
  259. * controller, return the range or NULL
  260. */
  261. static struct pinctrl_gpio_range *
  262. pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
  263. {
  264. struct pinctrl_gpio_range *range = NULL;
  265. mutex_lock(&pctldev->mutex);
  266. /* Loop over the ranges */
  267. list_for_each_entry(range, &pctldev->gpio_ranges, node) {
  268. /* Check if we're in the valid range */
  269. if (gpio >= range->base &&
  270. gpio < range->base + range->npins) {
  271. mutex_unlock(&pctldev->mutex);
  272. return range;
  273. }
  274. }
  275. mutex_unlock(&pctldev->mutex);
  276. return NULL;
  277. }
  278. /**
  279. * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
  280. * the same GPIO chip are in range
  281. * @gpio: gpio pin to check taken from the global GPIO pin space
  282. *
  283. * This function is complement of pinctrl_match_gpio_range(). If the return
  284. * value of pinctrl_match_gpio_range() is NULL, this function could be used
  285. * to check whether pinctrl device is ready or not. Maybe some GPIO pins
  286. * of the same GPIO chip don't have back-end pinctrl interface.
  287. * If the return value is true, it means that pinctrl device is ready & the
  288. * certain GPIO pin doesn't have back-end pinctrl device. If the return value
  289. * is false, it means that pinctrl device may not be ready.
  290. */
  291. #ifdef CONFIG_GPIOLIB
  292. static bool pinctrl_ready_for_gpio_range(unsigned gpio)
  293. {
  294. struct pinctrl_dev *pctldev;
  295. struct pinctrl_gpio_range *range = NULL;
  296. struct gpio_chip *chip = gpio_to_chip(gpio);
  297. if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
  298. return false;
  299. mutex_lock(&pinctrldev_list_mutex);
  300. /* Loop over the pin controllers */
  301. list_for_each_entry(pctldev, &pinctrldev_list, node) {
  302. /* Loop over the ranges */
  303. mutex_lock(&pctldev->mutex);
  304. list_for_each_entry(range, &pctldev->gpio_ranges, node) {
  305. /* Check if any gpio range overlapped with gpio chip */
  306. if (range->base + range->npins - 1 < chip->base ||
  307. range->base > chip->base + chip->ngpio - 1)
  308. continue;
  309. mutex_unlock(&pctldev->mutex);
  310. mutex_unlock(&pinctrldev_list_mutex);
  311. return true;
  312. }
  313. mutex_unlock(&pctldev->mutex);
  314. }
  315. mutex_unlock(&pinctrldev_list_mutex);
  316. return false;
  317. }
  318. #else
  319. static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
  320. #endif
  321. /**
  322. * pinctrl_get_device_gpio_range() - find device for GPIO range
  323. * @gpio: the pin to locate the pin controller for
  324. * @outdev: the pin control device if found
  325. * @outrange: the GPIO range if found
  326. *
  327. * Find the pin controller handling a certain GPIO pin from the pinspace of
  328. * the GPIO subsystem, return the device and the matching GPIO range. Returns
  329. * -EPROBE_DEFER if the GPIO range could not be found in any device since it
  330. * may still have not been registered.
  331. */
  332. static int pinctrl_get_device_gpio_range(unsigned gpio,
  333. struct pinctrl_dev **outdev,
  334. struct pinctrl_gpio_range **outrange)
  335. {
  336. struct pinctrl_dev *pctldev = NULL;
  337. mutex_lock(&pinctrldev_list_mutex);
  338. /* Loop over the pin controllers */
  339. list_for_each_entry(pctldev, &pinctrldev_list, node) {
  340. struct pinctrl_gpio_range *range;
  341. range = pinctrl_match_gpio_range(pctldev, gpio);
  342. if (range != NULL) {
  343. *outdev = pctldev;
  344. *outrange = range;
  345. mutex_unlock(&pinctrldev_list_mutex);
  346. return 0;
  347. }
  348. }
  349. mutex_unlock(&pinctrldev_list_mutex);
  350. return -EPROBE_DEFER;
  351. }
  352. /**
  353. * pinctrl_add_gpio_range() - register a GPIO range for a controller
  354. * @pctldev: pin controller device to add the range to
  355. * @range: the GPIO range to add
  356. *
  357. * This adds a range of GPIOs to be handled by a certain pin controller. Call
  358. * this to register handled ranges after registering your pin controller.
  359. */
  360. void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
  361. struct pinctrl_gpio_range *range)
  362. {
  363. mutex_lock(&pctldev->mutex);
  364. list_add_tail(&range->node, &pctldev->gpio_ranges);
  365. mutex_unlock(&pctldev->mutex);
  366. }
  367. EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
  368. void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
  369. struct pinctrl_gpio_range *ranges,
  370. unsigned nranges)
  371. {
  372. int i;
  373. for (i = 0; i < nranges; i++)
  374. pinctrl_add_gpio_range(pctldev, &ranges[i]);
  375. }
  376. EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
  377. struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
  378. struct pinctrl_gpio_range *range)
  379. {
  380. struct pinctrl_dev *pctldev;
  381. pctldev = get_pinctrl_dev_from_devname(devname);
  382. /*
  383. * If we can't find this device, let's assume that is because
  384. * it has not probed yet, so the driver trying to register this
  385. * range need to defer probing.
  386. */
  387. if (!pctldev) {
  388. return ERR_PTR(-EPROBE_DEFER);
  389. }
  390. pinctrl_add_gpio_range(pctldev, range);
  391. return pctldev;
  392. }
  393. EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
  394. int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
  395. const unsigned **pins, unsigned *num_pins)
  396. {
  397. const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
  398. int gs;
  399. if (!pctlops->get_group_pins)
  400. return -EINVAL;
  401. gs = pinctrl_get_group_selector(pctldev, pin_group);
  402. if (gs < 0)
  403. return gs;
  404. return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
  405. }
  406. EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
  407. /**
  408. * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
  409. * @pctldev: the pin controller device to look in
  410. * @pin: a controller-local number to find the range for
  411. */
  412. struct pinctrl_gpio_range *
  413. pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
  414. unsigned int pin)
  415. {
  416. struct pinctrl_gpio_range *range;
  417. mutex_lock(&pctldev->mutex);
  418. /* Loop over the ranges */
  419. list_for_each_entry(range, &pctldev->gpio_ranges, node) {
  420. /* Check if we're in the valid range */
  421. if (range->pins) {
  422. int a;
  423. for (a = 0; a < range->npins; a++) {
  424. if (range->pins[a] == pin)
  425. goto out;
  426. }
  427. } else if (pin >= range->pin_base &&
  428. pin < range->pin_base + range->npins)
  429. goto out;
  430. }
  431. range = NULL;
  432. out:
  433. mutex_unlock(&pctldev->mutex);
  434. return range;
  435. }
  436. EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
  437. /**
  438. * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
  439. * @pctldev: pin controller device to remove the range from
  440. * @range: the GPIO range to remove
  441. */
  442. void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
  443. struct pinctrl_gpio_range *range)
  444. {
  445. mutex_lock(&pctldev->mutex);
  446. list_del(&range->node);
  447. mutex_unlock(&pctldev->mutex);
  448. }
  449. EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
  450. /**
  451. * pinctrl_get_group_selector() - returns the group selector for a group
  452. * @pctldev: the pin controller handling the group
  453. * @pin_group: the pin group to look up
  454. */
  455. int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
  456. const char *pin_group)
  457. {
  458. const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
  459. unsigned ngroups = pctlops->get_groups_count(pctldev);
  460. unsigned group_selector = 0;
  461. while (group_selector < ngroups) {
  462. const char *gname = pctlops->get_group_name(pctldev,
  463. group_selector);
  464. if (!strcmp(gname, pin_group)) {
  465. dev_dbg(pctldev->dev,
  466. "found group selector %u for %s\n",
  467. group_selector,
  468. pin_group);
  469. return group_selector;
  470. }
  471. group_selector++;
  472. }
  473. dev_err(pctldev->dev, "does not have pin group %s\n",
  474. pin_group);
  475. return -EINVAL;
  476. }
  477. /**
  478. * pinctrl_request_gpio() - request a single pin to be used as GPIO
  479. * @gpio: the GPIO pin number from the GPIO subsystem number space
  480. *
  481. * This function should *ONLY* be used from gpiolib-based GPIO drivers,
  482. * as part of their gpio_request() semantics, platforms and individual drivers
  483. * shall *NOT* request GPIO pins to be muxed in.
  484. */
  485. int pinctrl_request_gpio(unsigned gpio)
  486. {
  487. struct pinctrl_dev *pctldev;
  488. struct pinctrl_gpio_range *range;
  489. int ret;
  490. int pin;
  491. ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
  492. if (ret) {
  493. if (pinctrl_ready_for_gpio_range(gpio))
  494. ret = 0;
  495. return ret;
  496. }
  497. mutex_lock(&pctldev->mutex);
  498. /* Convert to the pin controllers number space */
  499. pin = gpio_to_pin(range, gpio);
  500. ret = pinmux_request_gpio(pctldev, range, pin, gpio);
  501. mutex_unlock(&pctldev->mutex);
  502. return ret;
  503. }
  504. EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
  505. /**
  506. * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
  507. * @gpio: the GPIO pin number from the GPIO subsystem number space
  508. *
  509. * This function should *ONLY* be used from gpiolib-based GPIO drivers,
  510. * as part of their gpio_free() semantics, platforms and individual drivers
  511. * shall *NOT* request GPIO pins to be muxed out.
  512. */
  513. void pinctrl_free_gpio(unsigned gpio)
  514. {
  515. struct pinctrl_dev *pctldev;
  516. struct pinctrl_gpio_range *range;
  517. int ret;
  518. int pin;
  519. ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
  520. if (ret) {
  521. return;
  522. }
  523. mutex_lock(&pctldev->mutex);
  524. /* Convert to the pin controllers number space */
  525. pin = gpio_to_pin(range, gpio);
  526. pinmux_free_gpio(pctldev, pin, range);
  527. mutex_unlock(&pctldev->mutex);
  528. }
  529. EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
  530. static int pinctrl_gpio_direction(unsigned gpio, bool input)
  531. {
  532. struct pinctrl_dev *pctldev;
  533. struct pinctrl_gpio_range *range;
  534. int ret;
  535. int pin;
  536. ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
  537. if (ret) {
  538. return ret;
  539. }
  540. mutex_lock(&pctldev->mutex);
  541. /* Convert to the pin controllers number space */
  542. pin = gpio_to_pin(range, gpio);
  543. ret = pinmux_gpio_direction(pctldev, range, pin, input);
  544. mutex_unlock(&pctldev->mutex);
  545. return ret;
  546. }
  547. /**
  548. * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
  549. * @gpio: the GPIO pin number from the GPIO subsystem number space
  550. *
  551. * This function should *ONLY* be used from gpiolib-based GPIO drivers,
  552. * as part of their gpio_direction_input() semantics, platforms and individual
  553. * drivers shall *NOT* touch pin control GPIO calls.
  554. */
  555. int pinctrl_gpio_direction_input(unsigned gpio)
  556. {
  557. return pinctrl_gpio_direction(gpio, true);
  558. }
  559. EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
  560. /**
  561. * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
  562. * @gpio: the GPIO pin number from the GPIO subsystem number space
  563. *
  564. * This function should *ONLY* be used from gpiolib-based GPIO drivers,
  565. * as part of their gpio_direction_output() semantics, platforms and individual
  566. * drivers shall *NOT* touch pin control GPIO calls.
  567. */
  568. int pinctrl_gpio_direction_output(unsigned gpio)
  569. {
  570. return pinctrl_gpio_direction(gpio, false);
  571. }
  572. EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
  573. static struct pinctrl_state *find_state(struct pinctrl *p,
  574. const char *name)
  575. {
  576. struct pinctrl_state *state;
  577. list_for_each_entry(state, &p->states, node)
  578. if (!strcmp(state->name, name))
  579. return state;
  580. return NULL;
  581. }
  582. static struct pinctrl_state *create_state(struct pinctrl *p,
  583. const char *name)
  584. {
  585. struct pinctrl_state *state;
  586. state = kzalloc(sizeof(*state), GFP_KERNEL);
  587. if (state == NULL) {
  588. dev_err(p->dev,
  589. "failed to alloc struct pinctrl_state\n");
  590. return ERR_PTR(-ENOMEM);
  591. }
  592. state->name = name;
  593. INIT_LIST_HEAD(&state->settings);
  594. list_add_tail(&state->node, &p->states);
  595. return state;
  596. }
  597. static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
  598. {
  599. struct pinctrl_state *state;
  600. struct pinctrl_setting *setting;
  601. int ret;
  602. state = find_state(p, map->name);
  603. if (!state)
  604. state = create_state(p, map->name);
  605. if (IS_ERR(state))
  606. return PTR_ERR(state);
  607. if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
  608. return 0;
  609. setting = kzalloc(sizeof(*setting), GFP_KERNEL);
  610. if (setting == NULL) {
  611. dev_err(p->dev,
  612. "failed to alloc struct pinctrl_setting\n");
  613. return -ENOMEM;
  614. }
  615. setting->type = map->type;
  616. setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
  617. if (setting->pctldev == NULL) {
  618. kfree(setting);
  619. /* Do not defer probing of hogs (circular loop) */
  620. if (!strcmp(map->ctrl_dev_name, map->dev_name))
  621. return -ENODEV;
  622. /*
  623. * OK let us guess that the driver is not there yet, and
  624. * let's defer obtaining this pinctrl handle to later...
  625. */
  626. dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
  627. map->ctrl_dev_name);
  628. return -EPROBE_DEFER;
  629. }
  630. setting->dev_name = map->dev_name;
  631. switch (map->type) {
  632. case PIN_MAP_TYPE_MUX_GROUP:
  633. ret = pinmux_map_to_setting(map, setting);
  634. break;
  635. case PIN_MAP_TYPE_CONFIGS_PIN:
  636. case PIN_MAP_TYPE_CONFIGS_GROUP:
  637. ret = pinconf_map_to_setting(map, setting);
  638. break;
  639. default:
  640. ret = -EINVAL;
  641. break;
  642. }
  643. if (ret < 0) {
  644. kfree(setting);
  645. return ret;
  646. }
  647. list_add_tail(&setting->node, &state->settings);
  648. return 0;
  649. }
  650. static struct pinctrl *find_pinctrl(struct device *dev)
  651. {
  652. struct pinctrl *p;
  653. mutex_lock(&pinctrl_list_mutex);
  654. list_for_each_entry(p, &pinctrl_list, node)
  655. if (p->dev == dev) {
  656. mutex_unlock(&pinctrl_list_mutex);
  657. return p;
  658. }
  659. mutex_unlock(&pinctrl_list_mutex);
  660. return NULL;
  661. }
  662. static void pinctrl_free(struct pinctrl *p, bool inlist);
  663. static struct pinctrl *create_pinctrl(struct device *dev)
  664. {
  665. struct pinctrl *p;
  666. const char *devname;
  667. struct pinctrl_maps *maps_node;
  668. int i;
  669. struct pinctrl_map const *map;
  670. int ret;
  671. /*
  672. * create the state cookie holder struct pinctrl for each
  673. * mapping, this is what consumers will get when requesting
  674. * a pin control handle with pinctrl_get()
  675. */
  676. p = kzalloc(sizeof(*p), GFP_KERNEL);
  677. if (p == NULL) {
  678. dev_err(dev, "failed to alloc struct pinctrl\n");
  679. return ERR_PTR(-ENOMEM);
  680. }
  681. p->dev = dev;
  682. INIT_LIST_HEAD(&p->states);
  683. INIT_LIST_HEAD(&p->dt_maps);
  684. ret = pinctrl_dt_to_map(p);
  685. if (ret < 0) {
  686. kfree(p);
  687. return ERR_PTR(ret);
  688. }
  689. devname = dev_name(dev);
  690. mutex_lock(&pinctrl_maps_mutex);
  691. /* Iterate over the pin control maps to locate the right ones */
  692. for_each_maps(maps_node, i, map) {
  693. /* Map must be for this device */
  694. if (strcmp(map->dev_name, devname))
  695. continue;
  696. ret = add_setting(p, map);
  697. /*
  698. * At this point the adding of a setting may:
  699. *
  700. * - Defer, if the pinctrl device is not yet available
  701. * - Fail, if the pinctrl device is not yet available,
  702. * AND the setting is a hog. We cannot defer that, since
  703. * the hog will kick in immediately after the device
  704. * is registered.
  705. *
  706. * If the error returned was not -EPROBE_DEFER then we
  707. * accumulate the errors to see if we end up with
  708. * an -EPROBE_DEFER later, as that is the worst case.
  709. */
  710. if (ret == -EPROBE_DEFER) {
  711. pinctrl_free(p, false);
  712. mutex_unlock(&pinctrl_maps_mutex);
  713. return ERR_PTR(ret);
  714. }
  715. }
  716. mutex_unlock(&pinctrl_maps_mutex);
  717. if (ret < 0) {
  718. /* If some other error than deferral occured, return here */
  719. pinctrl_free(p, false);
  720. return ERR_PTR(ret);
  721. }
  722. kref_init(&p->users);
  723. /* Add the pinctrl handle to the global list */
  724. mutex_lock(&pinctrl_list_mutex);
  725. list_add_tail(&p->node, &pinctrl_list);
  726. mutex_unlock(&pinctrl_list_mutex);
  727. return p;
  728. }
  729. /**
  730. * pinctrl_get() - retrieves the pinctrl handle for a device
  731. * @dev: the device to obtain the handle for
  732. */
  733. struct pinctrl *pinctrl_get(struct device *dev)
  734. {
  735. struct pinctrl *p;
  736. if (WARN_ON(!dev))
  737. return ERR_PTR(-EINVAL);
  738. /*
  739. * See if somebody else (such as the device core) has already
  740. * obtained a handle to the pinctrl for this device. In that case,
  741. * return another pointer to it.
  742. */
  743. p = find_pinctrl(dev);
  744. if (p != NULL) {
  745. dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
  746. kref_get(&p->users);
  747. return p;
  748. }
  749. return create_pinctrl(dev);
  750. }
  751. EXPORT_SYMBOL_GPL(pinctrl_get);
  752. static void pinctrl_free_setting(bool disable_setting,
  753. struct pinctrl_setting *setting)
  754. {
  755. switch (setting->type) {
  756. case PIN_MAP_TYPE_MUX_GROUP:
  757. if (disable_setting)
  758. pinmux_disable_setting(setting);
  759. pinmux_free_setting(setting);
  760. break;
  761. case PIN_MAP_TYPE_CONFIGS_PIN:
  762. case PIN_MAP_TYPE_CONFIGS_GROUP:
  763. pinconf_free_setting(setting);
  764. break;
  765. default:
  766. break;
  767. }
  768. }
  769. static void pinctrl_free(struct pinctrl *p, bool inlist)
  770. {
  771. struct pinctrl_state *state, *n1;
  772. struct pinctrl_setting *setting, *n2;
  773. mutex_lock(&pinctrl_list_mutex);
  774. list_for_each_entry_safe(state, n1, &p->states, node) {
  775. list_for_each_entry_safe(setting, n2, &state->settings, node) {
  776. pinctrl_free_setting(state == p->state, setting);
  777. list_del(&setting->node);
  778. kfree(setting);
  779. }
  780. list_del(&state->node);
  781. kfree(state);
  782. }
  783. pinctrl_dt_free_maps(p);
  784. if (inlist)
  785. list_del(&p->node);
  786. kfree(p);
  787. mutex_unlock(&pinctrl_list_mutex);
  788. }
  789. /**
  790. * pinctrl_release() - release the pinctrl handle
  791. * @kref: the kref in the pinctrl being released
  792. */
  793. static void pinctrl_release(struct kref *kref)
  794. {
  795. struct pinctrl *p = container_of(kref, struct pinctrl, users);
  796. pinctrl_free(p, true);
  797. }
  798. /**
  799. * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
  800. * @p: the pinctrl handle to release
  801. */
  802. void pinctrl_put(struct pinctrl *p)
  803. {
  804. kref_put(&p->users, pinctrl_release);
  805. }
  806. EXPORT_SYMBOL_GPL(pinctrl_put);
  807. /**
  808. * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
  809. * @p: the pinctrl handle to retrieve the state from
  810. * @name: the state name to retrieve
  811. */
  812. struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
  813. const char *name)
  814. {
  815. struct pinctrl_state *state;
  816. state = find_state(p, name);
  817. if (!state) {
  818. if (pinctrl_dummy_state) {
  819. /* create dummy state */
  820. dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
  821. name);
  822. state = create_state(p, name);
  823. } else
  824. state = ERR_PTR(-ENODEV);
  825. }
  826. return state;
  827. }
  828. EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
  829. /**
  830. * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
  831. * @p: the pinctrl handle for the device that requests configuration
  832. * @state: the state handle to select/activate/program
  833. */
  834. static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
  835. {
  836. struct pinctrl_setting *setting, *setting2;
  837. struct pinctrl_state *old_state = p->state;
  838. int ret;
  839. if (p->state) {
  840. /*
  841. * For each pinmux setting in the old state, forget SW's record
  842. * of mux owner for that pingroup. Any pingroups which are
  843. * still owned by the new state will be re-acquired by the call
  844. * to pinmux_enable_setting() in the loop below.
  845. */
  846. list_for_each_entry(setting, &p->state->settings, node) {
  847. if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
  848. continue;
  849. pinmux_disable_setting(setting);
  850. }
  851. }
  852. p->state = NULL;
  853. /* Apply all the settings for the new state */
  854. list_for_each_entry(setting, &state->settings, node) {
  855. switch (setting->type) {
  856. case PIN_MAP_TYPE_MUX_GROUP:
  857. ret = pinmux_enable_setting(setting);
  858. break;
  859. case PIN_MAP_TYPE_CONFIGS_PIN:
  860. case PIN_MAP_TYPE_CONFIGS_GROUP:
  861. ret = pinconf_apply_setting(setting);
  862. break;
  863. default:
  864. ret = -EINVAL;
  865. break;
  866. }
  867. if (ret < 0) {
  868. goto unapply_new_state;
  869. }
  870. }
  871. p->state = state;
  872. return 0;
  873. unapply_new_state:
  874. dev_err(p->dev, "Error applying setting, reverse things back\n");
  875. list_for_each_entry(setting2, &state->settings, node) {
  876. if (&setting2->node == &setting->node)
  877. break;
  878. /*
  879. * All we can do here is pinmux_disable_setting.
  880. * That means that some pins are muxed differently now
  881. * than they were before applying the setting (We can't
  882. * "unmux a pin"!), but it's not a big deal since the pins
  883. * are free to be muxed by another apply_setting.
  884. */
  885. if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
  886. pinmux_disable_setting(setting2);
  887. }
  888. /* There's no infinite recursive loop here because p->state is NULL */
  889. if (old_state)
  890. pinctrl_select_state(p, old_state);
  891. return ret;
  892. }
  893. /**
  894. * pinctrl_select_state() - select/activate/program a pinctrl state to HW
  895. * @p: the pinctrl handle for the device that requests configuration
  896. * @state: the state handle to select/activate/program
  897. */
  898. int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
  899. {
  900. if (p->state == state)
  901. return 0;
  902. return pinctrl_commit_state(p, state);
  903. }
  904. EXPORT_SYMBOL_GPL(pinctrl_select_state);
  905. static void devm_pinctrl_release(struct device *dev, void *res)
  906. {
  907. pinctrl_put(*(struct pinctrl **)res);
  908. }
  909. /**
  910. * struct devm_pinctrl_get() - Resource managed pinctrl_get()
  911. * @dev: the device to obtain the handle for
  912. *
  913. * If there is a need to explicitly destroy the returned struct pinctrl,
  914. * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
  915. */
  916. struct pinctrl *devm_pinctrl_get(struct device *dev)
  917. {
  918. struct pinctrl **ptr, *p;
  919. ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
  920. if (!ptr)
  921. return ERR_PTR(-ENOMEM);
  922. p = pinctrl_get(dev);
  923. if (!IS_ERR(p)) {
  924. *ptr = p;
  925. devres_add(dev, ptr);
  926. } else {
  927. devres_free(ptr);
  928. }
  929. return p;
  930. }
  931. EXPORT_SYMBOL_GPL(devm_pinctrl_get);
  932. static int devm_pinctrl_match(struct device *dev, void *res, void *data)
  933. {
  934. struct pinctrl **p = res;
  935. return *p == data;
  936. }
  937. /**
  938. * devm_pinctrl_put() - Resource managed pinctrl_put()
  939. * @p: the pinctrl handle to release
  940. *
  941. * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
  942. * this function will not need to be called and the resource management
  943. * code will ensure that the resource is freed.
  944. */
  945. void devm_pinctrl_put(struct pinctrl *p)
  946. {
  947. WARN_ON(devres_release(p->dev, devm_pinctrl_release,
  948. devm_pinctrl_match, p));
  949. }
  950. EXPORT_SYMBOL_GPL(devm_pinctrl_put);
  951. int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
  952. bool dup)
  953. {
  954. int i, ret;
  955. struct pinctrl_maps *maps_node;
  956. pr_debug("add %u pinctrl maps\n", num_maps);
  957. /* First sanity check the new mapping */
  958. for (i = 0; i < num_maps; i++) {
  959. if (!maps[i].dev_name) {
  960. pr_err("failed to register map %s (%d): no device given\n",
  961. maps[i].name, i);
  962. return -EINVAL;
  963. }
  964. if (!maps[i].name) {
  965. pr_err("failed to register map %d: no map name given\n",
  966. i);
  967. return -EINVAL;
  968. }
  969. if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
  970. !maps[i].ctrl_dev_name) {
  971. pr_err("failed to register map %s (%d): no pin control device given\n",
  972. maps[i].name, i);
  973. return -EINVAL;
  974. }
  975. switch (maps[i].type) {
  976. case PIN_MAP_TYPE_DUMMY_STATE:
  977. break;
  978. case PIN_MAP_TYPE_MUX_GROUP:
  979. ret = pinmux_validate_map(&maps[i], i);
  980. if (ret < 0)
  981. return ret;
  982. break;
  983. case PIN_MAP_TYPE_CONFIGS_PIN:
  984. case PIN_MAP_TYPE_CONFIGS_GROUP:
  985. ret = pinconf_validate_map(&maps[i], i);
  986. if (ret < 0)
  987. return ret;
  988. break;
  989. default:
  990. pr_err("failed to register map %s (%d): invalid type given\n",
  991. maps[i].name, i);
  992. return -EINVAL;
  993. }
  994. }
  995. maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
  996. if (!maps_node) {
  997. pr_err("failed to alloc struct pinctrl_maps\n");
  998. return -ENOMEM;
  999. }
  1000. maps_node->num_maps = num_maps;
  1001. if (dup) {
  1002. maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
  1003. GFP_KERNEL);
  1004. if (!maps_node->maps) {
  1005. pr_err("failed to duplicate mapping table\n");
  1006. kfree(maps_node);
  1007. return -ENOMEM;
  1008. }
  1009. } else {
  1010. maps_node->maps = maps;
  1011. }
  1012. mutex_lock(&pinctrl_maps_mutex);
  1013. list_add_tail(&maps_node->node, &pinctrl_maps);
  1014. mutex_unlock(&pinctrl_maps_mutex);
  1015. return 0;
  1016. }
  1017. /**
  1018. * pinctrl_register_mappings() - register a set of pin controller mappings
  1019. * @maps: the pincontrol mappings table to register. This should probably be
  1020. * marked with __initdata so it can be discarded after boot. This
  1021. * function will perform a shallow copy for the mapping entries.
  1022. * @num_maps: the number of maps in the mapping table
  1023. */
  1024. int pinctrl_register_mappings(struct pinctrl_map const *maps,
  1025. unsigned num_maps)
  1026. {
  1027. return pinctrl_register_map(maps, num_maps, true);
  1028. }
  1029. void pinctrl_unregister_map(struct pinctrl_map const *map)
  1030. {
  1031. struct pinctrl_maps *maps_node;
  1032. mutex_lock(&pinctrl_maps_mutex);
  1033. list_for_each_entry(maps_node, &pinctrl_maps, node) {
  1034. if (maps_node->maps == map) {
  1035. list_del(&maps_node->node);
  1036. kfree(maps_node);
  1037. mutex_unlock(&pinctrl_maps_mutex);
  1038. return;
  1039. }
  1040. }
  1041. mutex_unlock(&pinctrl_maps_mutex);
  1042. }
  1043. /**
  1044. * pinctrl_force_sleep() - turn a given controller device into sleep state
  1045. * @pctldev: pin controller device
  1046. */
  1047. int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
  1048. {
  1049. if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
  1050. return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
  1051. return 0;
  1052. }
  1053. EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
  1054. /**
  1055. * pinctrl_force_default() - turn a given controller device into default state
  1056. * @pctldev: pin controller device
  1057. */
  1058. int pinctrl_force_default(struct pinctrl_dev *pctldev)
  1059. {
  1060. if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
  1061. return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
  1062. return 0;
  1063. }
  1064. EXPORT_SYMBOL_GPL(pinctrl_force_default);
  1065. /**
  1066. * pinctrl_init_done() - tell pinctrl probe is done
  1067. *
  1068. * We'll use this time to switch the pins from "init" to "default" unless the
  1069. * driver selected some other state.
  1070. *
  1071. * @dev: device to that's done probing
  1072. */
  1073. int pinctrl_init_done(struct device *dev)
  1074. {
  1075. struct dev_pin_info *pins = dev->pins;
  1076. int ret;
  1077. if (!pins)
  1078. return 0;
  1079. if (IS_ERR(pins->init_state))
  1080. return 0; /* No such state */
  1081. if (pins->p->state != pins->init_state)
  1082. return 0; /* Not at init anyway */
  1083. if (IS_ERR(pins->default_state))
  1084. return 0; /* No default state */
  1085. ret = pinctrl_select_state(pins->p, pins->default_state);
  1086. if (ret)
  1087. dev_err(dev, "failed to activate default pinctrl state\n");
  1088. return ret;
  1089. }
  1090. #ifdef CONFIG_PM
  1091. /**
  1092. * pinctrl_pm_select_state() - select pinctrl state for PM
  1093. * @dev: device to select default state for
  1094. * @state: state to set
  1095. */
  1096. static int pinctrl_pm_select_state(struct device *dev,
  1097. struct pinctrl_state *state)
  1098. {
  1099. struct dev_pin_info *pins = dev->pins;
  1100. int ret;
  1101. if (IS_ERR(state))
  1102. return 0; /* No such state */
  1103. ret = pinctrl_select_state(pins->p, state);
  1104. if (ret)
  1105. dev_err(dev, "failed to activate pinctrl state %s\n",
  1106. state->name);
  1107. return ret;
  1108. }
  1109. /**
  1110. * pinctrl_pm_select_default_state() - select default pinctrl state for PM
  1111. * @dev: device to select default state for
  1112. */
  1113. int pinctrl_pm_select_default_state(struct device *dev)
  1114. {
  1115. if (!dev->pins)
  1116. return 0;
  1117. return pinctrl_pm_select_state(dev, dev->pins->default_state);
  1118. }
  1119. EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
  1120. /**
  1121. * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
  1122. * @dev: device to select sleep state for
  1123. */
  1124. int pinctrl_pm_select_sleep_state(struct device *dev)
  1125. {
  1126. if (!dev->pins)
  1127. return 0;
  1128. return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
  1129. }
  1130. EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
  1131. /**
  1132. * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
  1133. * @dev: device to select idle state for
  1134. */
  1135. int pinctrl_pm_select_idle_state(struct device *dev)
  1136. {
  1137. if (!dev->pins)
  1138. return 0;
  1139. return pinctrl_pm_select_state(dev, dev->pins->idle_state);
  1140. }
  1141. EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
  1142. #endif
  1143. #ifdef CONFIG_DEBUG_FS
  1144. static int pinctrl_pins_show(struct seq_file *s, void *what)
  1145. {
  1146. struct pinctrl_dev *pctldev = s->private;
  1147. const struct pinctrl_ops *ops = pctldev->desc->pctlops;
  1148. unsigned i, pin;
  1149. seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
  1150. mutex_lock(&pctldev->mutex);
  1151. /* The pin number can be retrived from the pin controller descriptor */
  1152. for (i = 0; i < pctldev->desc->npins; i++) {
  1153. struct pin_desc *desc;
  1154. pin = pctldev->desc->pins[i].number;
  1155. desc = pin_desc_get(pctldev, pin);
  1156. /* Pin space may be sparse */
  1157. if (desc == NULL)
  1158. continue;
  1159. seq_printf(s, "pin %d (%s) ", pin,
  1160. desc->name ? desc->name : "unnamed");
  1161. /* Driver-specific info per pin */
  1162. if (ops->pin_dbg_show)
  1163. ops->pin_dbg_show(pctldev, s, pin);
  1164. seq_puts(s, "\n");
  1165. }
  1166. mutex_unlock(&pctldev->mutex);
  1167. return 0;
  1168. }
  1169. static int pinctrl_groups_show(struct seq_file *s, void *what)
  1170. {
  1171. struct pinctrl_dev *pctldev = s->private;
  1172. const struct pinctrl_ops *ops = pctldev->desc->pctlops;
  1173. unsigned ngroups, selector = 0;
  1174. mutex_lock(&pctldev->mutex);
  1175. ngroups = ops->get_groups_count(pctldev);
  1176. seq_puts(s, "registered pin groups:\n");
  1177. while (selector < ngroups) {
  1178. const unsigned *pins = NULL;
  1179. unsigned num_pins = 0;
  1180. const char *gname = ops->get_group_name(pctldev, selector);
  1181. const char *pname;
  1182. int ret = 0;
  1183. int i;
  1184. if (ops->get_group_pins)
  1185. ret = ops->get_group_pins(pctldev, selector,
  1186. &pins, &num_pins);
  1187. if (ret)
  1188. seq_printf(s, "%s [ERROR GETTING PINS]\n",
  1189. gname);
  1190. else {
  1191. seq_printf(s, "group: %s\n", gname);
  1192. for (i = 0; i < num_pins; i++) {
  1193. pname = pin_get_name(pctldev, pins[i]);
  1194. if (WARN_ON(!pname)) {
  1195. mutex_unlock(&pctldev->mutex);
  1196. return -EINVAL;
  1197. }
  1198. seq_printf(s, "pin %d (%s)\n", pins[i], pname);
  1199. }
  1200. seq_puts(s, "\n");
  1201. }
  1202. selector++;
  1203. }
  1204. mutex_unlock(&pctldev->mutex);
  1205. return 0;
  1206. }
  1207. static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
  1208. {
  1209. struct pinctrl_dev *pctldev = s->private;
  1210. struct pinctrl_gpio_range *range = NULL;
  1211. seq_puts(s, "GPIO ranges handled:\n");
  1212. mutex_lock(&pctldev->mutex);
  1213. /* Loop over the ranges */
  1214. list_for_each_entry(range, &pctldev->gpio_ranges, node) {
  1215. if (range->pins) {
  1216. int a;
  1217. seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
  1218. range->id, range->name,
  1219. range->base, (range->base + range->npins - 1));
  1220. for (a = 0; a < range->npins - 1; a++)
  1221. seq_printf(s, "%u, ", range->pins[a]);
  1222. seq_printf(s, "%u}\n", range->pins[a]);
  1223. }
  1224. else
  1225. seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
  1226. range->id, range->name,
  1227. range->base, (range->base + range->npins - 1),
  1228. range->pin_base,
  1229. (range->pin_base + range->npins - 1));
  1230. }
  1231. mutex_unlock(&pctldev->mutex);
  1232. return 0;
  1233. }
  1234. static int pinctrl_devices_show(struct seq_file *s, void *what)
  1235. {
  1236. struct pinctrl_dev *pctldev;
  1237. seq_puts(s, "name [pinmux] [pinconf]\n");
  1238. mutex_lock(&pinctrldev_list_mutex);
  1239. list_for_each_entry(pctldev, &pinctrldev_list, node) {
  1240. seq_printf(s, "%s ", pctldev->desc->name);
  1241. if (pctldev->desc->pmxops)
  1242. seq_puts(s, "yes ");
  1243. else
  1244. seq_puts(s, "no ");
  1245. if (pctldev->desc->confops)
  1246. seq_puts(s, "yes");
  1247. else
  1248. seq_puts(s, "no");
  1249. seq_puts(s, "\n");
  1250. }
  1251. mutex_unlock(&pinctrldev_list_mutex);
  1252. return 0;
  1253. }
  1254. static inline const char *map_type(enum pinctrl_map_type type)
  1255. {
  1256. static const char * const names[] = {
  1257. "INVALID",
  1258. "DUMMY_STATE",
  1259. "MUX_GROUP",
  1260. "CONFIGS_PIN",
  1261. "CONFIGS_GROUP",
  1262. };
  1263. if (type >= ARRAY_SIZE(names))
  1264. return "UNKNOWN";
  1265. return names[type];
  1266. }
  1267. static int pinctrl_maps_show(struct seq_file *s, void *what)
  1268. {
  1269. struct pinctrl_maps *maps_node;
  1270. int i;
  1271. struct pinctrl_map const *map;
  1272. seq_puts(s, "Pinctrl maps:\n");
  1273. mutex_lock(&pinctrl_maps_mutex);
  1274. for_each_maps(maps_node, i, map) {
  1275. seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
  1276. map->dev_name, map->name, map_type(map->type),
  1277. map->type);
  1278. if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
  1279. seq_printf(s, "controlling device %s\n",
  1280. map->ctrl_dev_name);
  1281. switch (map->type) {
  1282. case PIN_MAP_TYPE_MUX_GROUP:
  1283. pinmux_show_map(s, map);
  1284. break;
  1285. case PIN_MAP_TYPE_CONFIGS_PIN:
  1286. case PIN_MAP_TYPE_CONFIGS_GROUP:
  1287. pinconf_show_map(s, map);
  1288. break;
  1289. default:
  1290. break;
  1291. }
  1292. seq_printf(s, "\n");
  1293. }
  1294. mutex_unlock(&pinctrl_maps_mutex);
  1295. return 0;
  1296. }
  1297. static int pinctrl_show(struct seq_file *s, void *what)
  1298. {
  1299. struct pinctrl *p;
  1300. struct pinctrl_state *state;
  1301. struct pinctrl_setting *setting;
  1302. seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
  1303. mutex_lock(&pinctrl_list_mutex);
  1304. list_for_each_entry(p, &pinctrl_list, node) {
  1305. seq_printf(s, "device: %s current state: %s\n",
  1306. dev_name(p->dev),
  1307. p->state ? p->state->name : "none");
  1308. list_for_each_entry(state, &p->states, node) {
  1309. seq_printf(s, " state: %s\n", state->name);
  1310. list_for_each_entry(setting, &state->settings, node) {
  1311. struct pinctrl_dev *pctldev = setting->pctldev;
  1312. seq_printf(s, " type: %s controller %s ",
  1313. map_type(setting->type),
  1314. pinctrl_dev_get_name(pctldev));
  1315. switch (setting->type) {
  1316. case PIN_MAP_TYPE_MUX_GROUP:
  1317. pinmux_show_setting(s, setting);
  1318. break;
  1319. case PIN_MAP_TYPE_CONFIGS_PIN:
  1320. case PIN_MAP_TYPE_CONFIGS_GROUP:
  1321. pinconf_show_setting(s, setting);
  1322. break;
  1323. default:
  1324. break;
  1325. }
  1326. }
  1327. }
  1328. }
  1329. mutex_unlock(&pinctrl_list_mutex);
  1330. return 0;
  1331. }
  1332. static int pinctrl_pins_open(struct inode *inode, struct file *file)
  1333. {
  1334. return single_open(file, pinctrl_pins_show, inode->i_private);
  1335. }
  1336. static int pinctrl_groups_open(struct inode *inode, struct file *file)
  1337. {
  1338. return single_open(file, pinctrl_groups_show, inode->i_private);
  1339. }
  1340. static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
  1341. {
  1342. return single_open(file, pinctrl_gpioranges_show, inode->i_private);
  1343. }
  1344. static int pinctrl_devices_open(struct inode *inode, struct file *file)
  1345. {
  1346. return single_open(file, pinctrl_devices_show, NULL);
  1347. }
  1348. static int pinctrl_maps_open(struct inode *inode, struct file *file)
  1349. {
  1350. return single_open(file, pinctrl_maps_show, NULL);
  1351. }
  1352. static int pinctrl_open(struct inode *inode, struct file *file)
  1353. {
  1354. return single_open(file, pinctrl_show, NULL);
  1355. }
  1356. static const struct file_operations pinctrl_pins_ops = {
  1357. .open = pinctrl_pins_open,
  1358. .read = seq_read,
  1359. .llseek = seq_lseek,
  1360. .release = single_release,
  1361. };
  1362. static const struct file_operations pinctrl_groups_ops = {
  1363. .open = pinctrl_groups_open,
  1364. .read = seq_read,
  1365. .llseek = seq_lseek,
  1366. .release = single_release,
  1367. };
  1368. static const struct file_operations pinctrl_gpioranges_ops = {
  1369. .open = pinctrl_gpioranges_open,
  1370. .read = seq_read,
  1371. .llseek = seq_lseek,
  1372. .release = single_release,
  1373. };
  1374. static const struct file_operations pinctrl_devices_ops = {
  1375. .open = pinctrl_devices_open,
  1376. .read = seq_read,
  1377. .llseek = seq_lseek,
  1378. .release = single_release,
  1379. };
  1380. static const struct file_operations pinctrl_maps_ops = {
  1381. .open = pinctrl_maps_open,
  1382. .read = seq_read,
  1383. .llseek = seq_lseek,
  1384. .release = single_release,
  1385. };
  1386. static const struct file_operations pinctrl_ops = {
  1387. .open = pinctrl_open,
  1388. .read = seq_read,
  1389. .llseek = seq_lseek,
  1390. .release = single_release,
  1391. };
  1392. static struct dentry *debugfs_root;
  1393. static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
  1394. {
  1395. struct dentry *device_root;
  1396. device_root = debugfs_create_dir(dev_name(pctldev->dev),
  1397. debugfs_root);
  1398. pctldev->device_root = device_root;
  1399. if (IS_ERR(device_root) || !device_root) {
  1400. pr_warn("failed to create debugfs directory for %s\n",
  1401. dev_name(pctldev->dev));
  1402. return;
  1403. }
  1404. debugfs_create_file("pins", S_IFREG | S_IRUGO,
  1405. device_root, pctldev, &pinctrl_pins_ops);
  1406. debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
  1407. device_root, pctldev, &pinctrl_groups_ops);
  1408. debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
  1409. device_root, pctldev, &pinctrl_gpioranges_ops);
  1410. if (pctldev->desc->pmxops)
  1411. pinmux_init_device_debugfs(device_root, pctldev);
  1412. if (pctldev->desc->confops)
  1413. pinconf_init_device_debugfs(device_root, pctldev);
  1414. }
  1415. static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
  1416. {
  1417. debugfs_remove_recursive(pctldev->device_root);
  1418. }
  1419. static void pinctrl_init_debugfs(void)
  1420. {
  1421. debugfs_root = debugfs_create_dir("pinctrl", NULL);
  1422. if (IS_ERR(debugfs_root) || !debugfs_root) {
  1423. pr_warn("failed to create debugfs directory\n");
  1424. debugfs_root = NULL;
  1425. return;
  1426. }
  1427. debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
  1428. debugfs_root, NULL, &pinctrl_devices_ops);
  1429. debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
  1430. debugfs_root, NULL, &pinctrl_maps_ops);
  1431. debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
  1432. debugfs_root, NULL, &pinctrl_ops);
  1433. }
  1434. #else /* CONFIG_DEBUG_FS */
  1435. static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
  1436. {
  1437. }
  1438. static void pinctrl_init_debugfs(void)
  1439. {
  1440. }
  1441. static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
  1442. {
  1443. }
  1444. #endif
  1445. static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
  1446. {
  1447. const struct pinctrl_ops *ops = pctldev->desc->pctlops;
  1448. if (!ops ||
  1449. !ops->get_groups_count ||
  1450. !ops->get_group_name)
  1451. return -EINVAL;
  1452. if (ops->dt_node_to_map && !ops->dt_free_map)
  1453. return -EINVAL;
  1454. return 0;
  1455. }
  1456. /**
  1457. * pinctrl_register() - register a pin controller device
  1458. * @pctldesc: descriptor for this pin controller
  1459. * @dev: parent device for this pin controller
  1460. * @driver_data: private pin controller data for this pin controller
  1461. */
  1462. struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
  1463. struct device *dev, void *driver_data)
  1464. {
  1465. struct pinctrl_dev *pctldev;
  1466. int ret;
  1467. if (!pctldesc)
  1468. return ERR_PTR(-EINVAL);
  1469. if (!pctldesc->name)
  1470. return ERR_PTR(-EINVAL);
  1471. pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
  1472. if (pctldev == NULL) {
  1473. dev_err(dev, "failed to alloc struct pinctrl_dev\n");
  1474. return ERR_PTR(-ENOMEM);
  1475. }
  1476. /* Initialize pin control device struct */
  1477. pctldev->owner = pctldesc->owner;
  1478. pctldev->desc = pctldesc;
  1479. pctldev->driver_data = driver_data;
  1480. INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
  1481. INIT_LIST_HEAD(&pctldev->gpio_ranges);
  1482. pctldev->dev = dev;
  1483. mutex_init(&pctldev->mutex);
  1484. /* check core ops for sanity */
  1485. ret = pinctrl_check_ops(pctldev);
  1486. if (ret) {
  1487. dev_err(dev, "pinctrl ops lacks necessary functions\n");
  1488. goto out_err;
  1489. }
  1490. /* If we're implementing pinmuxing, check the ops for sanity */
  1491. if (pctldesc->pmxops) {
  1492. ret = pinmux_check_ops(pctldev);
  1493. if (ret)
  1494. goto out_err;
  1495. }
  1496. /* If we're implementing pinconfig, check the ops for sanity */
  1497. if (pctldesc->confops) {
  1498. ret = pinconf_check_ops(pctldev);
  1499. if (ret)
  1500. goto out_err;
  1501. }
  1502. /* Register all the pins */
  1503. dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
  1504. ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
  1505. if (ret) {
  1506. dev_err(dev, "error during pin registration\n");
  1507. pinctrl_free_pindescs(pctldev, pctldesc->pins,
  1508. pctldesc->npins);
  1509. goto out_err;
  1510. }
  1511. mutex_lock(&pinctrldev_list_mutex);
  1512. list_add_tail(&pctldev->node, &pinctrldev_list);
  1513. mutex_unlock(&pinctrldev_list_mutex);
  1514. pctldev->p = pinctrl_get(pctldev->dev);
  1515. if (!IS_ERR(pctldev->p)) {
  1516. pctldev->hog_default =
  1517. pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
  1518. if (IS_ERR(pctldev->hog_default)) {
  1519. dev_dbg(dev, "failed to lookup the default state\n");
  1520. } else {
  1521. if (pinctrl_select_state(pctldev->p,
  1522. pctldev->hog_default))
  1523. dev_err(dev,
  1524. "failed to select default state\n");
  1525. }
  1526. pctldev->hog_sleep =
  1527. pinctrl_lookup_state(pctldev->p,
  1528. PINCTRL_STATE_SLEEP);
  1529. if (IS_ERR(pctldev->hog_sleep))
  1530. dev_dbg(dev, "failed to lookup the sleep state\n");
  1531. }
  1532. pinctrl_init_device_debugfs(pctldev);
  1533. return pctldev;
  1534. out_err:
  1535. mutex_destroy(&pctldev->mutex);
  1536. kfree(pctldev);
  1537. return ERR_PTR(ret);
  1538. }
  1539. EXPORT_SYMBOL_GPL(pinctrl_register);
  1540. /**
  1541. * pinctrl_unregister() - unregister pinmux
  1542. * @pctldev: pin controller to unregister
  1543. *
  1544. * Called by pinmux drivers to unregister a pinmux.
  1545. */
  1546. void pinctrl_unregister(struct pinctrl_dev *pctldev)
  1547. {
  1548. struct pinctrl_gpio_range *range, *n;
  1549. if (pctldev == NULL)
  1550. return;
  1551. mutex_lock(&pctldev->mutex);
  1552. pinctrl_remove_device_debugfs(pctldev);
  1553. mutex_unlock(&pctldev->mutex);
  1554. if (!IS_ERR(pctldev->p))
  1555. pinctrl_put(pctldev->p);
  1556. mutex_lock(&pinctrldev_list_mutex);
  1557. mutex_lock(&pctldev->mutex);
  1558. /* TODO: check that no pinmuxes are still active? */
  1559. list_del(&pctldev->node);
  1560. /* Destroy descriptor tree */
  1561. pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
  1562. pctldev->desc->npins);
  1563. /* remove gpio ranges map */
  1564. list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
  1565. list_del(&range->node);
  1566. mutex_unlock(&pctldev->mutex);
  1567. mutex_destroy(&pctldev->mutex);
  1568. kfree(pctldev);
  1569. mutex_unlock(&pinctrldev_list_mutex);
  1570. }
  1571. EXPORT_SYMBOL_GPL(pinctrl_unregister);
  1572. static int __init pinctrl_init(void)
  1573. {
  1574. pr_info("initialized pinctrl subsystem\n");
  1575. pinctrl_init_debugfs();
  1576. return 0;
  1577. }
  1578. /* init early since many drivers really need to initialized pinmux early */
  1579. core_initcall(pinctrl_init);