aic94xx_scb.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937
  1. /*
  2. * Aic94xx SAS/SATA driver SCB management.
  3. *
  4. * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
  5. * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
  6. *
  7. * This file is licensed under GPLv2.
  8. *
  9. * This file is part of the aic94xx driver.
  10. *
  11. * The aic94xx driver is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU General Public License as
  13. * published by the Free Software Foundation; version 2 of the
  14. * License.
  15. *
  16. * The aic94xx driver is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with the aic94xx driver; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  24. *
  25. */
  26. #include <linux/gfp.h>
  27. #include <scsi/scsi_host.h>
  28. #include "aic94xx.h"
  29. #include "aic94xx_reg.h"
  30. #include "aic94xx_hwi.h"
  31. #include "aic94xx_seq.h"
  32. #include "aic94xx_dump.h"
  33. /* ---------- EMPTY SCB ---------- */
  34. #define DL_PHY_MASK 7
  35. #define BYTES_DMAED 0
  36. #define PRIMITIVE_RECVD 0x08
  37. #define PHY_EVENT 0x10
  38. #define LINK_RESET_ERROR 0x18
  39. #define TIMER_EVENT 0x20
  40. #define REQ_TASK_ABORT 0xF0
  41. #define REQ_DEVICE_RESET 0xF1
  42. #define SIGNAL_NCQ_ERROR 0xF2
  43. #define CLEAR_NCQ_ERROR 0xF3
  44. #define PHY_EVENTS_STATUS (CURRENT_LOSS_OF_SIGNAL | CURRENT_OOB_DONE \
  45. | CURRENT_SPINUP_HOLD | CURRENT_GTO_TIMEOUT \
  46. | CURRENT_OOB_ERROR)
  47. static void get_lrate_mode(struct asd_phy *phy, u8 oob_mode)
  48. {
  49. struct sas_phy *sas_phy = phy->sas_phy.phy;
  50. switch (oob_mode & 7) {
  51. case PHY_SPEED_60:
  52. /* FIXME: sas transport class doesn't have this */
  53. phy->sas_phy.linkrate = SAS_LINK_RATE_6_0_GBPS;
  54. phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_6_0_GBPS;
  55. break;
  56. case PHY_SPEED_30:
  57. phy->sas_phy.linkrate = SAS_LINK_RATE_3_0_GBPS;
  58. phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_3_0_GBPS;
  59. break;
  60. case PHY_SPEED_15:
  61. phy->sas_phy.linkrate = SAS_LINK_RATE_1_5_GBPS;
  62. phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_1_5_GBPS;
  63. break;
  64. }
  65. sas_phy->negotiated_linkrate = phy->sas_phy.linkrate;
  66. sas_phy->maximum_linkrate_hw = SAS_LINK_RATE_3_0_GBPS;
  67. sas_phy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS;
  68. sas_phy->maximum_linkrate = phy->phy_desc->max_sas_lrate;
  69. sas_phy->minimum_linkrate = phy->phy_desc->min_sas_lrate;
  70. if (oob_mode & SAS_MODE)
  71. phy->sas_phy.oob_mode = SAS_OOB_MODE;
  72. else if (oob_mode & SATA_MODE)
  73. phy->sas_phy.oob_mode = SATA_OOB_MODE;
  74. }
  75. static void asd_phy_event_tasklet(struct asd_ascb *ascb,
  76. struct done_list_struct *dl)
  77. {
  78. struct asd_ha_struct *asd_ha = ascb->ha;
  79. struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;
  80. int phy_id = dl->status_block[0] & DL_PHY_MASK;
  81. struct asd_phy *phy = &asd_ha->phys[phy_id];
  82. u8 oob_status = dl->status_block[1] & PHY_EVENTS_STATUS;
  83. u8 oob_mode = dl->status_block[2];
  84. switch (oob_status) {
  85. case CURRENT_LOSS_OF_SIGNAL:
  86. /* directly attached device was removed */
  87. ASD_DPRINTK("phy%d: device unplugged\n", phy_id);
  88. asd_turn_led(asd_ha, phy_id, 0);
  89. sas_phy_disconnected(&phy->sas_phy);
  90. sas_ha->notify_phy_event(&phy->sas_phy, PHYE_LOSS_OF_SIGNAL);
  91. break;
  92. case CURRENT_OOB_DONE:
  93. /* hot plugged device */
  94. asd_turn_led(asd_ha, phy_id, 1);
  95. get_lrate_mode(phy, oob_mode);
  96. ASD_DPRINTK("phy%d device plugged: lrate:0x%x, proto:0x%x\n",
  97. phy_id, phy->sas_phy.linkrate, phy->sas_phy.iproto);
  98. sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE);
  99. break;
  100. case CURRENT_SPINUP_HOLD:
  101. /* hot plug SATA, no COMWAKE sent */
  102. asd_turn_led(asd_ha, phy_id, 1);
  103. sas_ha->notify_phy_event(&phy->sas_phy, PHYE_SPINUP_HOLD);
  104. break;
  105. case CURRENT_GTO_TIMEOUT:
  106. case CURRENT_OOB_ERROR:
  107. ASD_DPRINTK("phy%d error while OOB: oob status:0x%x\n", phy_id,
  108. dl->status_block[1]);
  109. asd_turn_led(asd_ha, phy_id, 0);
  110. sas_phy_disconnected(&phy->sas_phy);
  111. sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_ERROR);
  112. break;
  113. }
  114. }
  115. /* If phys are enabled sparsely, this will do the right thing. */
  116. static unsigned ord_phy(struct asd_ha_struct *asd_ha, struct asd_phy *phy)
  117. {
  118. u8 enabled_mask = asd_ha->hw_prof.enabled_phys;
  119. int i, k = 0;
  120. for_each_phy(enabled_mask, enabled_mask, i) {
  121. if (&asd_ha->phys[i] == phy)
  122. return k;
  123. k++;
  124. }
  125. return 0;
  126. }
  127. /**
  128. * asd_get_attached_sas_addr -- extract/generate attached SAS address
  129. * phy: pointer to asd_phy
  130. * sas_addr: pointer to buffer where the SAS address is to be written
  131. *
  132. * This function extracts the SAS address from an IDENTIFY frame
  133. * received. If OOB is SATA, then a SAS address is generated from the
  134. * HA tables.
  135. *
  136. * LOCKING: the frame_rcvd_lock needs to be held since this parses the frame
  137. * buffer.
  138. */
  139. static void asd_get_attached_sas_addr(struct asd_phy *phy, u8 *sas_addr)
  140. {
  141. if (phy->sas_phy.frame_rcvd[0] == 0x34
  142. && phy->sas_phy.oob_mode == SATA_OOB_MODE) {
  143. struct asd_ha_struct *asd_ha = phy->sas_phy.ha->lldd_ha;
  144. /* FIS device-to-host */
  145. u64 addr = be64_to_cpu(*(__be64 *)phy->phy_desc->sas_addr);
  146. addr += asd_ha->hw_prof.sata_name_base + ord_phy(asd_ha, phy);
  147. *(__be64 *)sas_addr = cpu_to_be64(addr);
  148. } else {
  149. struct sas_identify_frame *idframe =
  150. (void *) phy->sas_phy.frame_rcvd;
  151. memcpy(sas_addr, idframe->sas_addr, SAS_ADDR_SIZE);
  152. }
  153. }
  154. static void asd_form_port(struct asd_ha_struct *asd_ha, struct asd_phy *phy)
  155. {
  156. int i;
  157. struct asd_port *free_port = NULL;
  158. struct asd_port *port;
  159. struct asd_sas_phy *sas_phy = &phy->sas_phy;
  160. unsigned long flags;
  161. spin_lock_irqsave(&asd_ha->asd_ports_lock, flags);
  162. if (!phy->asd_port) {
  163. for (i = 0; i < ASD_MAX_PHYS; i++) {
  164. port = &asd_ha->asd_ports[i];
  165. /* Check for wide port */
  166. if (port->num_phys > 0 &&
  167. memcmp(port->sas_addr, sas_phy->sas_addr,
  168. SAS_ADDR_SIZE) == 0 &&
  169. memcmp(port->attached_sas_addr,
  170. sas_phy->attached_sas_addr,
  171. SAS_ADDR_SIZE) == 0) {
  172. break;
  173. }
  174. /* Find a free port */
  175. if (port->num_phys == 0 && free_port == NULL) {
  176. free_port = port;
  177. }
  178. }
  179. /* Use a free port if this doesn't form a wide port */
  180. if (i >= ASD_MAX_PHYS) {
  181. port = free_port;
  182. BUG_ON(!port);
  183. memcpy(port->sas_addr, sas_phy->sas_addr,
  184. SAS_ADDR_SIZE);
  185. memcpy(port->attached_sas_addr,
  186. sas_phy->attached_sas_addr,
  187. SAS_ADDR_SIZE);
  188. }
  189. port->num_phys++;
  190. port->phy_mask |= (1U << sas_phy->id);
  191. phy->asd_port = port;
  192. }
  193. ASD_DPRINTK("%s: updating phy_mask 0x%x for phy%d\n",
  194. __func__, phy->asd_port->phy_mask, sas_phy->id);
  195. asd_update_port_links(asd_ha, phy);
  196. spin_unlock_irqrestore(&asd_ha->asd_ports_lock, flags);
  197. }
  198. static void asd_deform_port(struct asd_ha_struct *asd_ha, struct asd_phy *phy)
  199. {
  200. struct asd_port *port = phy->asd_port;
  201. struct asd_sas_phy *sas_phy = &phy->sas_phy;
  202. unsigned long flags;
  203. spin_lock_irqsave(&asd_ha->asd_ports_lock, flags);
  204. if (port) {
  205. port->num_phys--;
  206. port->phy_mask &= ~(1U << sas_phy->id);
  207. phy->asd_port = NULL;
  208. }
  209. spin_unlock_irqrestore(&asd_ha->asd_ports_lock, flags);
  210. }
  211. static void asd_bytes_dmaed_tasklet(struct asd_ascb *ascb,
  212. struct done_list_struct *dl,
  213. int edb_id, int phy_id)
  214. {
  215. unsigned long flags;
  216. int edb_el = edb_id + ascb->edb_index;
  217. struct asd_dma_tok *edb = ascb->ha->seq.edb_arr[edb_el];
  218. struct asd_phy *phy = &ascb->ha->phys[phy_id];
  219. struct sas_ha_struct *sas_ha = phy->sas_phy.ha;
  220. u16 size = ((dl->status_block[3] & 7) << 8) | dl->status_block[2];
  221. size = min(size, (u16) sizeof(phy->frame_rcvd));
  222. spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags);
  223. memcpy(phy->sas_phy.frame_rcvd, edb->vaddr, size);
  224. phy->sas_phy.frame_rcvd_size = size;
  225. asd_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr);
  226. spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags);
  227. asd_dump_frame_rcvd(phy, dl);
  228. asd_form_port(ascb->ha, phy);
  229. sas_ha->notify_port_event(&phy->sas_phy, PORTE_BYTES_DMAED);
  230. }
  231. static void asd_link_reset_err_tasklet(struct asd_ascb *ascb,
  232. struct done_list_struct *dl,
  233. int phy_id)
  234. {
  235. struct asd_ha_struct *asd_ha = ascb->ha;
  236. struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;
  237. struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id];
  238. struct asd_phy *phy = &asd_ha->phys[phy_id];
  239. u8 lr_error = dl->status_block[1];
  240. u8 retries_left = dl->status_block[2];
  241. switch (lr_error) {
  242. case 0:
  243. ASD_DPRINTK("phy%d: Receive ID timer expired\n", phy_id);
  244. break;
  245. case 1:
  246. ASD_DPRINTK("phy%d: Loss of signal\n", phy_id);
  247. break;
  248. case 2:
  249. ASD_DPRINTK("phy%d: Loss of dword sync\n", phy_id);
  250. break;
  251. case 3:
  252. ASD_DPRINTK("phy%d: Receive FIS timeout\n", phy_id);
  253. break;
  254. default:
  255. ASD_DPRINTK("phy%d: unknown link reset error code: 0x%x\n",
  256. phy_id, lr_error);
  257. break;
  258. }
  259. asd_turn_led(asd_ha, phy_id, 0);
  260. sas_phy_disconnected(sas_phy);
  261. asd_deform_port(asd_ha, phy);
  262. sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
  263. if (retries_left == 0) {
  264. int num = 1;
  265. struct asd_ascb *cp = asd_ascb_alloc_list(ascb->ha, &num,
  266. GFP_ATOMIC);
  267. if (!cp) {
  268. asd_printk("%s: out of memory\n", __func__);
  269. goto out;
  270. }
  271. ASD_DPRINTK("phy%d: retries:0 performing link reset seq\n",
  272. phy_id);
  273. asd_build_control_phy(cp, phy_id, ENABLE_PHY);
  274. if (asd_post_ascb_list(ascb->ha, cp, 1) != 0)
  275. asd_ascb_free(cp);
  276. }
  277. out:
  278. ;
  279. }
  280. static void asd_primitive_rcvd_tasklet(struct asd_ascb *ascb,
  281. struct done_list_struct *dl,
  282. int phy_id)
  283. {
  284. unsigned long flags;
  285. struct sas_ha_struct *sas_ha = &ascb->ha->sas_ha;
  286. struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id];
  287. struct asd_ha_struct *asd_ha = ascb->ha;
  288. struct asd_phy *phy = &asd_ha->phys[phy_id];
  289. u8 reg = dl->status_block[1];
  290. u32 cont = dl->status_block[2] << ((reg & 3)*8);
  291. reg &= ~3;
  292. switch (reg) {
  293. case LmPRMSTAT0BYTE0:
  294. switch (cont) {
  295. case LmBROADCH:
  296. case LmBROADRVCH0:
  297. case LmBROADRVCH1:
  298. case LmBROADSES:
  299. ASD_DPRINTK("phy%d: BROADCAST change received:%d\n",
  300. phy_id, cont);
  301. spin_lock_irqsave(&sas_phy->sas_prim_lock, flags);
  302. sas_phy->sas_prim = ffs(cont);
  303. spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags);
  304. sas_ha->notify_port_event(sas_phy,PORTE_BROADCAST_RCVD);
  305. break;
  306. case LmUNKNOWNP:
  307. ASD_DPRINTK("phy%d: unknown BREAK\n", phy_id);
  308. break;
  309. default:
  310. ASD_DPRINTK("phy%d: primitive reg:0x%x, cont:0x%04x\n",
  311. phy_id, reg, cont);
  312. break;
  313. }
  314. break;
  315. case LmPRMSTAT1BYTE0:
  316. switch (cont) {
  317. case LmHARDRST:
  318. ASD_DPRINTK("phy%d: HARD_RESET primitive rcvd\n",
  319. phy_id);
  320. /* The sequencer disables all phys on that port.
  321. * We have to re-enable the phys ourselves. */
  322. asd_deform_port(asd_ha, phy);
  323. sas_ha->notify_port_event(sas_phy, PORTE_HARD_RESET);
  324. break;
  325. default:
  326. ASD_DPRINTK("phy%d: primitive reg:0x%x, cont:0x%04x\n",
  327. phy_id, reg, cont);
  328. break;
  329. }
  330. break;
  331. default:
  332. ASD_DPRINTK("unknown primitive register:0x%x\n",
  333. dl->status_block[1]);
  334. break;
  335. }
  336. }
  337. /**
  338. * asd_invalidate_edb -- invalidate an EDB and if necessary post the ESCB
  339. * @ascb: pointer to Empty SCB
  340. * @edb_id: index [0,6] to the empty data buffer which is to be invalidated
  341. *
  342. * After an EDB has been invalidated, if all EDBs in this ESCB have been
  343. * invalidated, the ESCB is posted back to the sequencer.
  344. * Context is tasklet/IRQ.
  345. */
  346. void asd_invalidate_edb(struct asd_ascb *ascb, int edb_id)
  347. {
  348. struct asd_seq_data *seq = &ascb->ha->seq;
  349. struct empty_scb *escb = &ascb->scb->escb;
  350. struct sg_el *eb = &escb->eb[edb_id];
  351. struct asd_dma_tok *edb = seq->edb_arr[ascb->edb_index + edb_id];
  352. memset(edb->vaddr, 0, ASD_EDB_SIZE);
  353. eb->flags |= ELEMENT_NOT_VALID;
  354. escb->num_valid--;
  355. if (escb->num_valid == 0) {
  356. int i;
  357. /* ASD_DPRINTK("reposting escb: vaddr: 0x%p, "
  358. "dma_handle: 0x%08llx, next: 0x%08llx, "
  359. "index:%d, opcode:0x%02x\n",
  360. ascb->dma_scb.vaddr,
  361. (u64)ascb->dma_scb.dma_handle,
  362. le64_to_cpu(ascb->scb->header.next_scb),
  363. le16_to_cpu(ascb->scb->header.index),
  364. ascb->scb->header.opcode);
  365. */
  366. escb->num_valid = ASD_EDBS_PER_SCB;
  367. for (i = 0; i < ASD_EDBS_PER_SCB; i++)
  368. escb->eb[i].flags = 0;
  369. if (!list_empty(&ascb->list))
  370. list_del_init(&ascb->list);
  371. i = asd_post_escb_list(ascb->ha, ascb, 1);
  372. if (i)
  373. asd_printk("couldn't post escb, err:%d\n", i);
  374. }
  375. }
  376. static void escb_tasklet_complete(struct asd_ascb *ascb,
  377. struct done_list_struct *dl)
  378. {
  379. struct asd_ha_struct *asd_ha = ascb->ha;
  380. struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;
  381. int edb = (dl->opcode & DL_PHY_MASK) - 1; /* [0xc1,0xc7] -> [0,6] */
  382. u8 sb_opcode = dl->status_block[0];
  383. int phy_id = sb_opcode & DL_PHY_MASK;
  384. struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id];
  385. struct asd_phy *phy = &asd_ha->phys[phy_id];
  386. if (edb > 6 || edb < 0) {
  387. ASD_DPRINTK("edb is 0x%x! dl->opcode is 0x%x\n",
  388. edb, dl->opcode);
  389. ASD_DPRINTK("sb_opcode : 0x%x, phy_id: 0x%x\n",
  390. sb_opcode, phy_id);
  391. ASD_DPRINTK("escb: vaddr: 0x%p, "
  392. "dma_handle: 0x%llx, next: 0x%llx, "
  393. "index:%d, opcode:0x%02x\n",
  394. ascb->dma_scb.vaddr,
  395. (unsigned long long)ascb->dma_scb.dma_handle,
  396. (unsigned long long)
  397. le64_to_cpu(ascb->scb->header.next_scb),
  398. le16_to_cpu(ascb->scb->header.index),
  399. ascb->scb->header.opcode);
  400. }
  401. /* Catch these before we mask off the sb_opcode bits */
  402. switch (sb_opcode) {
  403. case REQ_TASK_ABORT: {
  404. struct asd_ascb *a, *b;
  405. u16 tc_abort;
  406. struct domain_device *failed_dev = NULL;
  407. ASD_DPRINTK("%s: REQ_TASK_ABORT, reason=0x%X\n",
  408. __func__, dl->status_block[3]);
  409. /*
  410. * Find the task that caused the abort and abort it first.
  411. * The sequencer won't put anything on the done list until
  412. * that happens.
  413. */
  414. tc_abort = *((u16*)(&dl->status_block[1]));
  415. tc_abort = le16_to_cpu(tc_abort);
  416. list_for_each_entry_safe(a, b, &asd_ha->seq.pend_q, list) {
  417. struct sas_task *task = a->uldd_task;
  418. if (a->tc_index != tc_abort)
  419. continue;
  420. if (task) {
  421. failed_dev = task->dev;
  422. sas_task_abort(task);
  423. } else {
  424. ASD_DPRINTK("R_T_A for non TASK scb 0x%x\n",
  425. a->scb->header.opcode);
  426. }
  427. break;
  428. }
  429. if (!failed_dev) {
  430. ASD_DPRINTK("%s: Can't find task (tc=%d) to abort!\n",
  431. __func__, tc_abort);
  432. goto out;
  433. }
  434. /*
  435. * Now abort everything else for that device (hba?) so
  436. * that the EH will wake up and do something.
  437. */
  438. list_for_each_entry_safe(a, b, &asd_ha->seq.pend_q, list) {
  439. struct sas_task *task = a->uldd_task;
  440. if (task &&
  441. task->dev == failed_dev &&
  442. a->tc_index != tc_abort)
  443. sas_task_abort(task);
  444. }
  445. goto out;
  446. }
  447. case REQ_DEVICE_RESET: {
  448. struct asd_ascb *a;
  449. u16 conn_handle;
  450. unsigned long flags;
  451. struct sas_task *last_dev_task = NULL;
  452. conn_handle = *((u16*)(&dl->status_block[1]));
  453. conn_handle = le16_to_cpu(conn_handle);
  454. ASD_DPRINTK("%s: REQ_DEVICE_RESET, reason=0x%X\n", __func__,
  455. dl->status_block[3]);
  456. /* Find the last pending task for the device... */
  457. list_for_each_entry(a, &asd_ha->seq.pend_q, list) {
  458. u16 x;
  459. struct domain_device *dev;
  460. struct sas_task *task = a->uldd_task;
  461. if (!task)
  462. continue;
  463. dev = task->dev;
  464. x = (unsigned long)dev->lldd_dev;
  465. if (x == conn_handle)
  466. last_dev_task = task;
  467. }
  468. if (!last_dev_task) {
  469. ASD_DPRINTK("%s: Device reset for idle device %d?\n",
  470. __func__, conn_handle);
  471. goto out;
  472. }
  473. /* ...and set the reset flag */
  474. spin_lock_irqsave(&last_dev_task->task_state_lock, flags);
  475. last_dev_task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
  476. spin_unlock_irqrestore(&last_dev_task->task_state_lock, flags);
  477. /* Kill all pending tasks for the device */
  478. list_for_each_entry(a, &asd_ha->seq.pend_q, list) {
  479. u16 x;
  480. struct domain_device *dev;
  481. struct sas_task *task = a->uldd_task;
  482. if (!task)
  483. continue;
  484. dev = task->dev;
  485. x = (unsigned long)dev->lldd_dev;
  486. if (x == conn_handle)
  487. sas_task_abort(task);
  488. }
  489. goto out;
  490. }
  491. case SIGNAL_NCQ_ERROR:
  492. ASD_DPRINTK("%s: SIGNAL_NCQ_ERROR\n", __func__);
  493. goto out;
  494. case CLEAR_NCQ_ERROR:
  495. ASD_DPRINTK("%s: CLEAR_NCQ_ERROR\n", __func__);
  496. goto out;
  497. }
  498. sb_opcode &= ~DL_PHY_MASK;
  499. switch (sb_opcode) {
  500. case BYTES_DMAED:
  501. ASD_DPRINTK("%s: phy%d: BYTES_DMAED\n", __func__, phy_id);
  502. asd_bytes_dmaed_tasklet(ascb, dl, edb, phy_id);
  503. break;
  504. case PRIMITIVE_RECVD:
  505. ASD_DPRINTK("%s: phy%d: PRIMITIVE_RECVD\n", __func__,
  506. phy_id);
  507. asd_primitive_rcvd_tasklet(ascb, dl, phy_id);
  508. break;
  509. case PHY_EVENT:
  510. ASD_DPRINTK("%s: phy%d: PHY_EVENT\n", __func__, phy_id);
  511. asd_phy_event_tasklet(ascb, dl);
  512. break;
  513. case LINK_RESET_ERROR:
  514. ASD_DPRINTK("%s: phy%d: LINK_RESET_ERROR\n", __func__,
  515. phy_id);
  516. asd_link_reset_err_tasklet(ascb, dl, phy_id);
  517. break;
  518. case TIMER_EVENT:
  519. ASD_DPRINTK("%s: phy%d: TIMER_EVENT, lost dw sync\n",
  520. __func__, phy_id);
  521. asd_turn_led(asd_ha, phy_id, 0);
  522. /* the device is gone */
  523. sas_phy_disconnected(sas_phy);
  524. asd_deform_port(asd_ha, phy);
  525. sas_ha->notify_port_event(sas_phy, PORTE_TIMER_EVENT);
  526. break;
  527. default:
  528. ASD_DPRINTK("%s: phy%d: unknown event:0x%x\n", __func__,
  529. phy_id, sb_opcode);
  530. ASD_DPRINTK("edb is 0x%x! dl->opcode is 0x%x\n",
  531. edb, dl->opcode);
  532. ASD_DPRINTK("sb_opcode : 0x%x, phy_id: 0x%x\n",
  533. sb_opcode, phy_id);
  534. ASD_DPRINTK("escb: vaddr: 0x%p, "
  535. "dma_handle: 0x%llx, next: 0x%llx, "
  536. "index:%d, opcode:0x%02x\n",
  537. ascb->dma_scb.vaddr,
  538. (unsigned long long)ascb->dma_scb.dma_handle,
  539. (unsigned long long)
  540. le64_to_cpu(ascb->scb->header.next_scb),
  541. le16_to_cpu(ascb->scb->header.index),
  542. ascb->scb->header.opcode);
  543. break;
  544. }
  545. out:
  546. asd_invalidate_edb(ascb, edb);
  547. }
  548. int asd_init_post_escbs(struct asd_ha_struct *asd_ha)
  549. {
  550. struct asd_seq_data *seq = &asd_ha->seq;
  551. int i;
  552. for (i = 0; i < seq->num_escbs; i++)
  553. seq->escb_arr[i]->tasklet_complete = escb_tasklet_complete;
  554. ASD_DPRINTK("posting %d escbs\n", i);
  555. return asd_post_escb_list(asd_ha, seq->escb_arr[0], seq->num_escbs);
  556. }
  557. /* ---------- CONTROL PHY ---------- */
  558. #define CONTROL_PHY_STATUS (CURRENT_DEVICE_PRESENT | CURRENT_OOB_DONE \
  559. | CURRENT_SPINUP_HOLD | CURRENT_GTO_TIMEOUT \
  560. | CURRENT_OOB_ERROR)
  561. /**
  562. * control_phy_tasklet_complete -- tasklet complete for CONTROL PHY ascb
  563. * @ascb: pointer to an ascb
  564. * @dl: pointer to the done list entry
  565. *
  566. * This function completes a CONTROL PHY scb and frees the ascb.
  567. * A note on LEDs:
  568. * - an LED blinks if there is IO though it,
  569. * - if a device is connected to the LED, it is lit,
  570. * - if no device is connected to the LED, is is dimmed (off).
  571. */
  572. static void control_phy_tasklet_complete(struct asd_ascb *ascb,
  573. struct done_list_struct *dl)
  574. {
  575. struct asd_ha_struct *asd_ha = ascb->ha;
  576. struct scb *scb = ascb->scb;
  577. struct control_phy *control_phy = &scb->control_phy;
  578. u8 phy_id = control_phy->phy_id;
  579. struct asd_phy *phy = &ascb->ha->phys[phy_id];
  580. u8 status = dl->status_block[0];
  581. u8 oob_status = dl->status_block[1];
  582. u8 oob_mode = dl->status_block[2];
  583. /* u8 oob_signals= dl->status_block[3]; */
  584. if (status != 0) {
  585. ASD_DPRINTK("%s: phy%d status block opcode:0x%x\n",
  586. __func__, phy_id, status);
  587. goto out;
  588. }
  589. switch (control_phy->sub_func) {
  590. case DISABLE_PHY:
  591. asd_ha->hw_prof.enabled_phys &= ~(1 << phy_id);
  592. asd_turn_led(asd_ha, phy_id, 0);
  593. asd_control_led(asd_ha, phy_id, 0);
  594. ASD_DPRINTK("%s: disable phy%d\n", __func__, phy_id);
  595. break;
  596. case ENABLE_PHY:
  597. asd_control_led(asd_ha, phy_id, 1);
  598. if (oob_status & CURRENT_OOB_DONE) {
  599. asd_ha->hw_prof.enabled_phys |= (1 << phy_id);
  600. get_lrate_mode(phy, oob_mode);
  601. asd_turn_led(asd_ha, phy_id, 1);
  602. ASD_DPRINTK("%s: phy%d, lrate:0x%x, proto:0x%x\n",
  603. __func__, phy_id,phy->sas_phy.linkrate,
  604. phy->sas_phy.iproto);
  605. } else if (oob_status & CURRENT_SPINUP_HOLD) {
  606. asd_ha->hw_prof.enabled_phys |= (1 << phy_id);
  607. asd_turn_led(asd_ha, phy_id, 1);
  608. ASD_DPRINTK("%s: phy%d, spinup hold\n", __func__,
  609. phy_id);
  610. } else if (oob_status & CURRENT_ERR_MASK) {
  611. asd_turn_led(asd_ha, phy_id, 0);
  612. ASD_DPRINTK("%s: phy%d: error: oob status:0x%02x\n",
  613. __func__, phy_id, oob_status);
  614. } else if (oob_status & (CURRENT_HOT_PLUG_CNCT
  615. | CURRENT_DEVICE_PRESENT)) {
  616. asd_ha->hw_prof.enabled_phys |= (1 << phy_id);
  617. asd_turn_led(asd_ha, phy_id, 1);
  618. ASD_DPRINTK("%s: phy%d: hot plug or device present\n",
  619. __func__, phy_id);
  620. } else {
  621. asd_ha->hw_prof.enabled_phys |= (1 << phy_id);
  622. asd_turn_led(asd_ha, phy_id, 0);
  623. ASD_DPRINTK("%s: phy%d: no device present: "
  624. "oob_status:0x%x\n",
  625. __func__, phy_id, oob_status);
  626. }
  627. break;
  628. case RELEASE_SPINUP_HOLD:
  629. case PHY_NO_OP:
  630. case EXECUTE_HARD_RESET:
  631. ASD_DPRINTK("%s: phy%d: sub_func:0x%x\n", __func__,
  632. phy_id, control_phy->sub_func);
  633. /* XXX finish */
  634. break;
  635. default:
  636. ASD_DPRINTK("%s: phy%d: sub_func:0x%x?\n", __func__,
  637. phy_id, control_phy->sub_func);
  638. break;
  639. }
  640. out:
  641. asd_ascb_free(ascb);
  642. }
  643. static void set_speed_mask(u8 *speed_mask, struct asd_phy_desc *pd)
  644. {
  645. /* disable all speeds, then enable defaults */
  646. *speed_mask = SAS_SPEED_60_DIS | SAS_SPEED_30_DIS | SAS_SPEED_15_DIS
  647. | SATA_SPEED_30_DIS | SATA_SPEED_15_DIS;
  648. switch (pd->max_sas_lrate) {
  649. case SAS_LINK_RATE_6_0_GBPS:
  650. *speed_mask &= ~SAS_SPEED_60_DIS;
  651. default:
  652. case SAS_LINK_RATE_3_0_GBPS:
  653. *speed_mask &= ~SAS_SPEED_30_DIS;
  654. case SAS_LINK_RATE_1_5_GBPS:
  655. *speed_mask &= ~SAS_SPEED_15_DIS;
  656. }
  657. switch (pd->min_sas_lrate) {
  658. case SAS_LINK_RATE_6_0_GBPS:
  659. *speed_mask |= SAS_SPEED_30_DIS;
  660. case SAS_LINK_RATE_3_0_GBPS:
  661. *speed_mask |= SAS_SPEED_15_DIS;
  662. default:
  663. case SAS_LINK_RATE_1_5_GBPS:
  664. /* nothing to do */
  665. ;
  666. }
  667. switch (pd->max_sata_lrate) {
  668. case SAS_LINK_RATE_3_0_GBPS:
  669. *speed_mask &= ~SATA_SPEED_30_DIS;
  670. default:
  671. case SAS_LINK_RATE_1_5_GBPS:
  672. *speed_mask &= ~SATA_SPEED_15_DIS;
  673. }
  674. switch (pd->min_sata_lrate) {
  675. case SAS_LINK_RATE_3_0_GBPS:
  676. *speed_mask |= SATA_SPEED_15_DIS;
  677. default:
  678. case SAS_LINK_RATE_1_5_GBPS:
  679. /* nothing to do */
  680. ;
  681. }
  682. }
  683. /**
  684. * asd_build_control_phy -- build a CONTROL PHY SCB
  685. * @ascb: pointer to an ascb
  686. * @phy_id: phy id to control, integer
  687. * @subfunc: subfunction, what to actually to do the phy
  688. *
  689. * This function builds a CONTROL PHY scb. No allocation of any kind
  690. * is performed. @ascb is allocated with the list function.
  691. * The caller can override the ascb->tasklet_complete to point
  692. * to its own callback function. It must call asd_ascb_free()
  693. * at its tasklet complete function.
  694. * See the default implementation.
  695. */
  696. void asd_build_control_phy(struct asd_ascb *ascb, int phy_id, u8 subfunc)
  697. {
  698. struct asd_phy *phy = &ascb->ha->phys[phy_id];
  699. struct scb *scb = ascb->scb;
  700. struct control_phy *control_phy = &scb->control_phy;
  701. scb->header.opcode = CONTROL_PHY;
  702. control_phy->phy_id = (u8) phy_id;
  703. control_phy->sub_func = subfunc;
  704. switch (subfunc) {
  705. case EXECUTE_HARD_RESET: /* 0x81 */
  706. case ENABLE_PHY: /* 0x01 */
  707. /* decide hot plug delay */
  708. control_phy->hot_plug_delay = HOTPLUG_DELAY_TIMEOUT;
  709. /* decide speed mask */
  710. set_speed_mask(&control_phy->speed_mask, phy->phy_desc);
  711. /* initiator port settings are in the hi nibble */
  712. if (phy->sas_phy.role == PHY_ROLE_INITIATOR)
  713. control_phy->port_type = SAS_PROTOCOL_ALL << 4;
  714. else if (phy->sas_phy.role == PHY_ROLE_TARGET)
  715. control_phy->port_type = SAS_PROTOCOL_ALL;
  716. else
  717. control_phy->port_type =
  718. (SAS_PROTOCOL_ALL << 4) | SAS_PROTOCOL_ALL;
  719. /* link reset retries, this should be nominal */
  720. control_phy->link_reset_retries = 10;
  721. case RELEASE_SPINUP_HOLD: /* 0x02 */
  722. /* decide the func_mask */
  723. control_phy->func_mask = FUNCTION_MASK_DEFAULT;
  724. if (phy->phy_desc->flags & ASD_SATA_SPINUP_HOLD)
  725. control_phy->func_mask &= ~SPINUP_HOLD_DIS;
  726. else
  727. control_phy->func_mask |= SPINUP_HOLD_DIS;
  728. }
  729. control_phy->conn_handle = cpu_to_le16(0xFFFF);
  730. ascb->tasklet_complete = control_phy_tasklet_complete;
  731. }
  732. /* ---------- INITIATE LINK ADM TASK ---------- */
  733. #if 0
  734. static void link_adm_tasklet_complete(struct asd_ascb *ascb,
  735. struct done_list_struct *dl)
  736. {
  737. u8 opcode = dl->opcode;
  738. struct initiate_link_adm *link_adm = &ascb->scb->link_adm;
  739. u8 phy_id = link_adm->phy_id;
  740. if (opcode != TC_NO_ERROR) {
  741. asd_printk("phy%d: link adm task 0x%x completed with error "
  742. "0x%x\n", phy_id, link_adm->sub_func, opcode);
  743. }
  744. ASD_DPRINTK("phy%d: link adm task 0x%x: 0x%x\n",
  745. phy_id, link_adm->sub_func, opcode);
  746. asd_ascb_free(ascb);
  747. }
  748. void asd_build_initiate_link_adm_task(struct asd_ascb *ascb, int phy_id,
  749. u8 subfunc)
  750. {
  751. struct scb *scb = ascb->scb;
  752. struct initiate_link_adm *link_adm = &scb->link_adm;
  753. scb->header.opcode = INITIATE_LINK_ADM_TASK;
  754. link_adm->phy_id = phy_id;
  755. link_adm->sub_func = subfunc;
  756. link_adm->conn_handle = cpu_to_le16(0xFFFF);
  757. ascb->tasklet_complete = link_adm_tasklet_complete;
  758. }
  759. #endif /* 0 */
  760. /* ---------- SCB timer ---------- */
  761. /**
  762. * asd_ascb_timedout -- called when a pending SCB's timer has expired
  763. * @data: unsigned long, a pointer to the ascb in question
  764. *
  765. * This is the default timeout function which does the most necessary.
  766. * Upper layers can implement their own timeout function, say to free
  767. * resources they have with this SCB, and then call this one at the
  768. * end of their timeout function. To do this, one should initialize
  769. * the ascb->timer.{function, data, expires} prior to calling the post
  770. * function. The timer is started by the post function.
  771. */
  772. void asd_ascb_timedout(unsigned long data)
  773. {
  774. struct asd_ascb *ascb = (void *) data;
  775. struct asd_seq_data *seq = &ascb->ha->seq;
  776. unsigned long flags;
  777. ASD_DPRINTK("scb:0x%x timed out\n", ascb->scb->header.opcode);
  778. spin_lock_irqsave(&seq->pend_q_lock, flags);
  779. seq->pending--;
  780. list_del_init(&ascb->list);
  781. spin_unlock_irqrestore(&seq->pend_q_lock, flags);
  782. asd_ascb_free(ascb);
  783. }
  784. /* ---------- CONTROL PHY ---------- */
  785. /* Given the spec value, return a driver value. */
  786. static const int phy_func_table[] = {
  787. [PHY_FUNC_NOP] = PHY_NO_OP,
  788. [PHY_FUNC_LINK_RESET] = ENABLE_PHY,
  789. [PHY_FUNC_HARD_RESET] = EXECUTE_HARD_RESET,
  790. [PHY_FUNC_DISABLE] = DISABLE_PHY,
  791. [PHY_FUNC_RELEASE_SPINUP_HOLD] = RELEASE_SPINUP_HOLD,
  792. };
  793. int asd_control_phy(struct asd_sas_phy *phy, enum phy_func func, void *arg)
  794. {
  795. struct asd_ha_struct *asd_ha = phy->ha->lldd_ha;
  796. struct asd_phy_desc *pd = asd_ha->phys[phy->id].phy_desc;
  797. struct asd_ascb *ascb;
  798. struct sas_phy_linkrates *rates;
  799. int res = 1;
  800. switch (func) {
  801. case PHY_FUNC_CLEAR_ERROR_LOG:
  802. case PHY_FUNC_GET_EVENTS:
  803. return -ENOSYS;
  804. case PHY_FUNC_SET_LINK_RATE:
  805. rates = arg;
  806. if (rates->minimum_linkrate) {
  807. pd->min_sas_lrate = rates->minimum_linkrate;
  808. pd->min_sata_lrate = rates->minimum_linkrate;
  809. }
  810. if (rates->maximum_linkrate) {
  811. pd->max_sas_lrate = rates->maximum_linkrate;
  812. pd->max_sata_lrate = rates->maximum_linkrate;
  813. }
  814. func = PHY_FUNC_LINK_RESET;
  815. break;
  816. default:
  817. break;
  818. }
  819. ascb = asd_ascb_alloc_list(asd_ha, &res, GFP_KERNEL);
  820. if (!ascb)
  821. return -ENOMEM;
  822. asd_build_control_phy(ascb, phy->id, phy_func_table[func]);
  823. res = asd_post_ascb_list(asd_ha, ascb , 1);
  824. if (res)
  825. asd_ascb_free(ascb);
  826. return res;
  827. }