core.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699
  1. /*
  2. * SuperH clock framework
  3. *
  4. * Copyright (C) 2005 - 2010 Paul Mundt
  5. *
  6. * This clock framework is derived from the OMAP version by:
  7. *
  8. * Copyright (C) 2004 - 2008 Nokia Corporation
  9. * Written by Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com>
  10. *
  11. * Modified for omap shared clock framework by Tony Lindgren <tony@atomide.com>
  12. *
  13. * This file is subject to the terms and conditions of the GNU General Public
  14. * License. See the file "COPYING" in the main directory of this archive
  15. * for more details.
  16. */
  17. #define pr_fmt(fmt) "clock: " fmt
  18. #include <linux/kernel.h>
  19. #include <linux/init.h>
  20. #include <linux/module.h>
  21. #include <linux/mutex.h>
  22. #include <linux/list.h>
  23. #include <linux/syscore_ops.h>
  24. #include <linux/seq_file.h>
  25. #include <linux/err.h>
  26. #include <linux/io.h>
  27. #include <linux/cpufreq.h>
  28. #include <linux/clk.h>
  29. #include <linux/sh_clk.h>
  30. static LIST_HEAD(clock_list);
  31. static DEFINE_SPINLOCK(clock_lock);
  32. static DEFINE_MUTEX(clock_list_sem);
  33. /* clock disable operations are not passed on to hardware during boot */
  34. static int allow_disable;
  35. void clk_rate_table_build(struct clk *clk,
  36. struct cpufreq_frequency_table *freq_table,
  37. int nr_freqs,
  38. struct clk_div_mult_table *src_table,
  39. unsigned long *bitmap)
  40. {
  41. unsigned long mult, div;
  42. unsigned long freq;
  43. int i;
  44. clk->nr_freqs = nr_freqs;
  45. for (i = 0; i < nr_freqs; i++) {
  46. div = 1;
  47. mult = 1;
  48. if (src_table->divisors && i < src_table->nr_divisors)
  49. div = src_table->divisors[i];
  50. if (src_table->multipliers && i < src_table->nr_multipliers)
  51. mult = src_table->multipliers[i];
  52. if (!div || !mult || (bitmap && !test_bit(i, bitmap)))
  53. freq = CPUFREQ_ENTRY_INVALID;
  54. else
  55. freq = clk->parent->rate * mult / div;
  56. freq_table[i].driver_data = i;
  57. freq_table[i].frequency = freq;
  58. }
  59. /* Termination entry */
  60. freq_table[i].driver_data = i;
  61. freq_table[i].frequency = CPUFREQ_TABLE_END;
  62. }
  63. struct clk_rate_round_data;
  64. struct clk_rate_round_data {
  65. unsigned long rate;
  66. unsigned int min, max;
  67. long (*func)(unsigned int, struct clk_rate_round_data *);
  68. void *arg;
  69. };
  70. #define for_each_frequency(pos, r, freq) \
  71. for (pos = r->min, freq = r->func(pos, r); \
  72. pos <= r->max; pos++, freq = r->func(pos, r)) \
  73. if (unlikely(freq == 0)) \
  74. ; \
  75. else
  76. static long clk_rate_round_helper(struct clk_rate_round_data *rounder)
  77. {
  78. unsigned long rate_error, rate_error_prev = ~0UL;
  79. unsigned long highest, lowest, freq;
  80. long rate_best_fit = -ENOENT;
  81. int i;
  82. highest = 0;
  83. lowest = ~0UL;
  84. for_each_frequency(i, rounder, freq) {
  85. if (freq > highest)
  86. highest = freq;
  87. if (freq < lowest)
  88. lowest = freq;
  89. rate_error = abs(freq - rounder->rate);
  90. if (rate_error < rate_error_prev) {
  91. rate_best_fit = freq;
  92. rate_error_prev = rate_error;
  93. }
  94. if (rate_error == 0)
  95. break;
  96. }
  97. if (rounder->rate >= highest)
  98. rate_best_fit = highest;
  99. if (rounder->rate <= lowest)
  100. rate_best_fit = lowest;
  101. return rate_best_fit;
  102. }
  103. static long clk_rate_table_iter(unsigned int pos,
  104. struct clk_rate_round_data *rounder)
  105. {
  106. struct cpufreq_frequency_table *freq_table = rounder->arg;
  107. unsigned long freq = freq_table[pos].frequency;
  108. if (freq == CPUFREQ_ENTRY_INVALID)
  109. freq = 0;
  110. return freq;
  111. }
  112. long clk_rate_table_round(struct clk *clk,
  113. struct cpufreq_frequency_table *freq_table,
  114. unsigned long rate)
  115. {
  116. struct clk_rate_round_data table_round = {
  117. .min = 0,
  118. .max = clk->nr_freqs - 1,
  119. .func = clk_rate_table_iter,
  120. .arg = freq_table,
  121. .rate = rate,
  122. };
  123. if (clk->nr_freqs < 1)
  124. return -ENOSYS;
  125. return clk_rate_round_helper(&table_round);
  126. }
  127. static long clk_rate_div_range_iter(unsigned int pos,
  128. struct clk_rate_round_data *rounder)
  129. {
  130. return clk_get_rate(rounder->arg) / pos;
  131. }
  132. long clk_rate_div_range_round(struct clk *clk, unsigned int div_min,
  133. unsigned int div_max, unsigned long rate)
  134. {
  135. struct clk_rate_round_data div_range_round = {
  136. .min = div_min,
  137. .max = div_max,
  138. .func = clk_rate_div_range_iter,
  139. .arg = clk_get_parent(clk),
  140. .rate = rate,
  141. };
  142. return clk_rate_round_helper(&div_range_round);
  143. }
  144. static long clk_rate_mult_range_iter(unsigned int pos,
  145. struct clk_rate_round_data *rounder)
  146. {
  147. return clk_get_rate(rounder->arg) * pos;
  148. }
  149. long clk_rate_mult_range_round(struct clk *clk, unsigned int mult_min,
  150. unsigned int mult_max, unsigned long rate)
  151. {
  152. struct clk_rate_round_data mult_range_round = {
  153. .min = mult_min,
  154. .max = mult_max,
  155. .func = clk_rate_mult_range_iter,
  156. .arg = clk_get_parent(clk),
  157. .rate = rate,
  158. };
  159. return clk_rate_round_helper(&mult_range_round);
  160. }
  161. int clk_rate_table_find(struct clk *clk,
  162. struct cpufreq_frequency_table *freq_table,
  163. unsigned long rate)
  164. {
  165. struct cpufreq_frequency_table *pos;
  166. cpufreq_for_each_valid_entry(pos, freq_table)
  167. if (pos->frequency == rate)
  168. return pos - freq_table;
  169. return -ENOENT;
  170. }
  171. /* Used for clocks that always have same value as the parent clock */
  172. unsigned long followparent_recalc(struct clk *clk)
  173. {
  174. return clk->parent ? clk->parent->rate : 0;
  175. }
  176. int clk_reparent(struct clk *child, struct clk *parent)
  177. {
  178. list_del_init(&child->sibling);
  179. if (parent)
  180. list_add(&child->sibling, &parent->children);
  181. child->parent = parent;
  182. return 0;
  183. }
  184. /* Propagate rate to children */
  185. void propagate_rate(struct clk *tclk)
  186. {
  187. struct clk *clkp;
  188. list_for_each_entry(clkp, &tclk->children, sibling) {
  189. if (clkp->ops && clkp->ops->recalc)
  190. clkp->rate = clkp->ops->recalc(clkp);
  191. propagate_rate(clkp);
  192. }
  193. }
  194. static void __clk_disable(struct clk *clk)
  195. {
  196. if (WARN(!clk->usecount, "Trying to disable clock %p with 0 usecount\n",
  197. clk))
  198. return;
  199. if (!(--clk->usecount)) {
  200. if (likely(allow_disable && clk->ops && clk->ops->disable))
  201. clk->ops->disable(clk);
  202. if (likely(clk->parent))
  203. __clk_disable(clk->parent);
  204. }
  205. }
  206. void clk_disable(struct clk *clk)
  207. {
  208. unsigned long flags;
  209. if (!clk)
  210. return;
  211. spin_lock_irqsave(&clock_lock, flags);
  212. __clk_disable(clk);
  213. spin_unlock_irqrestore(&clock_lock, flags);
  214. }
  215. EXPORT_SYMBOL_GPL(clk_disable);
  216. static int __clk_enable(struct clk *clk)
  217. {
  218. int ret = 0;
  219. if (clk->usecount++ == 0) {
  220. if (clk->parent) {
  221. ret = __clk_enable(clk->parent);
  222. if (unlikely(ret))
  223. goto err;
  224. }
  225. if (clk->ops && clk->ops->enable) {
  226. ret = clk->ops->enable(clk);
  227. if (ret) {
  228. if (clk->parent)
  229. __clk_disable(clk->parent);
  230. goto err;
  231. }
  232. }
  233. }
  234. return ret;
  235. err:
  236. clk->usecount--;
  237. return ret;
  238. }
  239. int clk_enable(struct clk *clk)
  240. {
  241. unsigned long flags;
  242. int ret;
  243. if (!clk)
  244. return -EINVAL;
  245. spin_lock_irqsave(&clock_lock, flags);
  246. ret = __clk_enable(clk);
  247. spin_unlock_irqrestore(&clock_lock, flags);
  248. return ret;
  249. }
  250. EXPORT_SYMBOL_GPL(clk_enable);
  251. static LIST_HEAD(root_clks);
  252. /**
  253. * recalculate_root_clocks - recalculate and propagate all root clocks
  254. *
  255. * Recalculates all root clocks (clocks with no parent), which if the
  256. * clock's .recalc is set correctly, should also propagate their rates.
  257. * Called at init.
  258. */
  259. void recalculate_root_clocks(void)
  260. {
  261. struct clk *clkp;
  262. list_for_each_entry(clkp, &root_clks, sibling) {
  263. if (clkp->ops && clkp->ops->recalc)
  264. clkp->rate = clkp->ops->recalc(clkp);
  265. propagate_rate(clkp);
  266. }
  267. }
  268. static struct clk_mapping dummy_mapping;
  269. static struct clk *lookup_root_clock(struct clk *clk)
  270. {
  271. while (clk->parent)
  272. clk = clk->parent;
  273. return clk;
  274. }
  275. static int clk_establish_mapping(struct clk *clk)
  276. {
  277. struct clk_mapping *mapping = clk->mapping;
  278. /*
  279. * Propagate mappings.
  280. */
  281. if (!mapping) {
  282. struct clk *clkp;
  283. /*
  284. * dummy mapping for root clocks with no specified ranges
  285. */
  286. if (!clk->parent) {
  287. clk->mapping = &dummy_mapping;
  288. goto out;
  289. }
  290. /*
  291. * If we're on a child clock and it provides no mapping of its
  292. * own, inherit the mapping from its root clock.
  293. */
  294. clkp = lookup_root_clock(clk);
  295. mapping = clkp->mapping;
  296. BUG_ON(!mapping);
  297. }
  298. /*
  299. * Establish initial mapping.
  300. */
  301. if (!mapping->base && mapping->phys) {
  302. kref_init(&mapping->ref);
  303. mapping->base = ioremap_nocache(mapping->phys, mapping->len);
  304. if (unlikely(!mapping->base))
  305. return -ENXIO;
  306. } else if (mapping->base) {
  307. /*
  308. * Bump the refcount for an existing mapping
  309. */
  310. kref_get(&mapping->ref);
  311. }
  312. clk->mapping = mapping;
  313. out:
  314. clk->mapped_reg = clk->mapping->base;
  315. clk->mapped_reg += (phys_addr_t)clk->enable_reg - clk->mapping->phys;
  316. return 0;
  317. }
  318. static void clk_destroy_mapping(struct kref *kref)
  319. {
  320. struct clk_mapping *mapping;
  321. mapping = container_of(kref, struct clk_mapping, ref);
  322. iounmap(mapping->base);
  323. }
  324. static void clk_teardown_mapping(struct clk *clk)
  325. {
  326. struct clk_mapping *mapping = clk->mapping;
  327. /* Nothing to do */
  328. if (mapping == &dummy_mapping)
  329. goto out;
  330. kref_put(&mapping->ref, clk_destroy_mapping);
  331. clk->mapping = NULL;
  332. out:
  333. clk->mapped_reg = NULL;
  334. }
  335. int clk_register(struct clk *clk)
  336. {
  337. int ret;
  338. if (IS_ERR_OR_NULL(clk))
  339. return -EINVAL;
  340. /*
  341. * trap out already registered clocks
  342. */
  343. if (clk->node.next || clk->node.prev)
  344. return 0;
  345. mutex_lock(&clock_list_sem);
  346. INIT_LIST_HEAD(&clk->children);
  347. clk->usecount = 0;
  348. ret = clk_establish_mapping(clk);
  349. if (unlikely(ret))
  350. goto out_unlock;
  351. if (clk->parent)
  352. list_add(&clk->sibling, &clk->parent->children);
  353. else
  354. list_add(&clk->sibling, &root_clks);
  355. list_add(&clk->node, &clock_list);
  356. #ifdef CONFIG_SH_CLK_CPG_LEGACY
  357. if (clk->ops && clk->ops->init)
  358. clk->ops->init(clk);
  359. #endif
  360. out_unlock:
  361. mutex_unlock(&clock_list_sem);
  362. return ret;
  363. }
  364. EXPORT_SYMBOL_GPL(clk_register);
  365. void clk_unregister(struct clk *clk)
  366. {
  367. mutex_lock(&clock_list_sem);
  368. list_del(&clk->sibling);
  369. list_del(&clk->node);
  370. clk_teardown_mapping(clk);
  371. mutex_unlock(&clock_list_sem);
  372. }
  373. EXPORT_SYMBOL_GPL(clk_unregister);
  374. void clk_enable_init_clocks(void)
  375. {
  376. struct clk *clkp;
  377. list_for_each_entry(clkp, &clock_list, node)
  378. if (clkp->flags & CLK_ENABLE_ON_INIT)
  379. clk_enable(clkp);
  380. }
  381. unsigned long clk_get_rate(struct clk *clk)
  382. {
  383. return clk->rate;
  384. }
  385. EXPORT_SYMBOL_GPL(clk_get_rate);
  386. int clk_set_rate(struct clk *clk, unsigned long rate)
  387. {
  388. int ret = -EOPNOTSUPP;
  389. unsigned long flags;
  390. spin_lock_irqsave(&clock_lock, flags);
  391. if (likely(clk->ops && clk->ops->set_rate)) {
  392. ret = clk->ops->set_rate(clk, rate);
  393. if (ret != 0)
  394. goto out_unlock;
  395. } else {
  396. clk->rate = rate;
  397. ret = 0;
  398. }
  399. if (clk->ops && clk->ops->recalc)
  400. clk->rate = clk->ops->recalc(clk);
  401. propagate_rate(clk);
  402. out_unlock:
  403. spin_unlock_irqrestore(&clock_lock, flags);
  404. return ret;
  405. }
  406. EXPORT_SYMBOL_GPL(clk_set_rate);
  407. int clk_set_parent(struct clk *clk, struct clk *parent)
  408. {
  409. unsigned long flags;
  410. int ret = -EINVAL;
  411. if (!parent || !clk)
  412. return ret;
  413. if (clk->parent == parent)
  414. return 0;
  415. spin_lock_irqsave(&clock_lock, flags);
  416. if (clk->usecount == 0) {
  417. if (clk->ops->set_parent)
  418. ret = clk->ops->set_parent(clk, parent);
  419. else
  420. ret = clk_reparent(clk, parent);
  421. if (ret == 0) {
  422. if (clk->ops->recalc)
  423. clk->rate = clk->ops->recalc(clk);
  424. pr_debug("set parent of %p to %p (new rate %ld)\n",
  425. clk, clk->parent, clk->rate);
  426. propagate_rate(clk);
  427. }
  428. } else
  429. ret = -EBUSY;
  430. spin_unlock_irqrestore(&clock_lock, flags);
  431. return ret;
  432. }
  433. EXPORT_SYMBOL_GPL(clk_set_parent);
  434. struct clk *clk_get_parent(struct clk *clk)
  435. {
  436. return clk->parent;
  437. }
  438. EXPORT_SYMBOL_GPL(clk_get_parent);
  439. long clk_round_rate(struct clk *clk, unsigned long rate)
  440. {
  441. if (likely(clk->ops && clk->ops->round_rate)) {
  442. unsigned long flags, rounded;
  443. spin_lock_irqsave(&clock_lock, flags);
  444. rounded = clk->ops->round_rate(clk, rate);
  445. spin_unlock_irqrestore(&clock_lock, flags);
  446. return rounded;
  447. }
  448. return clk_get_rate(clk);
  449. }
  450. EXPORT_SYMBOL_GPL(clk_round_rate);
  451. long clk_round_parent(struct clk *clk, unsigned long target,
  452. unsigned long *best_freq, unsigned long *parent_freq,
  453. unsigned int div_min, unsigned int div_max)
  454. {
  455. struct cpufreq_frequency_table *freq, *best = NULL;
  456. unsigned long error = ULONG_MAX, freq_high, freq_low, div;
  457. struct clk *parent = clk_get_parent(clk);
  458. if (!parent) {
  459. *parent_freq = 0;
  460. *best_freq = clk_round_rate(clk, target);
  461. return abs(target - *best_freq);
  462. }
  463. cpufreq_for_each_valid_entry(freq, parent->freq_table) {
  464. if (unlikely(freq->frequency / target <= div_min - 1)) {
  465. unsigned long freq_max;
  466. freq_max = (freq->frequency + div_min / 2) / div_min;
  467. if (error > target - freq_max) {
  468. error = target - freq_max;
  469. best = freq;
  470. if (best_freq)
  471. *best_freq = freq_max;
  472. }
  473. pr_debug("too low freq %u, error %lu\n", freq->frequency,
  474. target - freq_max);
  475. if (!error)
  476. break;
  477. continue;
  478. }
  479. if (unlikely(freq->frequency / target >= div_max)) {
  480. unsigned long freq_min;
  481. freq_min = (freq->frequency + div_max / 2) / div_max;
  482. if (error > freq_min - target) {
  483. error = freq_min - target;
  484. best = freq;
  485. if (best_freq)
  486. *best_freq = freq_min;
  487. }
  488. pr_debug("too high freq %u, error %lu\n", freq->frequency,
  489. freq_min - target);
  490. if (!error)
  491. break;
  492. continue;
  493. }
  494. div = freq->frequency / target;
  495. freq_high = freq->frequency / div;
  496. freq_low = freq->frequency / (div + 1);
  497. if (freq_high - target < error) {
  498. error = freq_high - target;
  499. best = freq;
  500. if (best_freq)
  501. *best_freq = freq_high;
  502. }
  503. if (target - freq_low < error) {
  504. error = target - freq_low;
  505. best = freq;
  506. if (best_freq)
  507. *best_freq = freq_low;
  508. }
  509. pr_debug("%u / %lu = %lu, / %lu = %lu, best %lu, parent %u\n",
  510. freq->frequency, div, freq_high, div + 1, freq_low,
  511. *best_freq, best->frequency);
  512. if (!error)
  513. break;
  514. }
  515. if (parent_freq)
  516. *parent_freq = best->frequency;
  517. return error;
  518. }
  519. EXPORT_SYMBOL_GPL(clk_round_parent);
  520. #ifdef CONFIG_PM
  521. static void clks_core_resume(void)
  522. {
  523. struct clk *clkp;
  524. list_for_each_entry(clkp, &clock_list, node) {
  525. if (likely(clkp->usecount && clkp->ops)) {
  526. unsigned long rate = clkp->rate;
  527. if (likely(clkp->ops->set_parent))
  528. clkp->ops->set_parent(clkp,
  529. clkp->parent);
  530. if (likely(clkp->ops->set_rate))
  531. clkp->ops->set_rate(clkp, rate);
  532. else if (likely(clkp->ops->recalc))
  533. clkp->rate = clkp->ops->recalc(clkp);
  534. }
  535. }
  536. }
  537. static struct syscore_ops clks_syscore_ops = {
  538. .resume = clks_core_resume,
  539. };
  540. static int __init clk_syscore_init(void)
  541. {
  542. register_syscore_ops(&clks_syscore_ops);
  543. return 0;
  544. }
  545. subsys_initcall(clk_syscore_init);
  546. #endif
  547. static int __init clk_late_init(void)
  548. {
  549. unsigned long flags;
  550. struct clk *clk;
  551. /* disable all clocks with zero use count */
  552. mutex_lock(&clock_list_sem);
  553. spin_lock_irqsave(&clock_lock, flags);
  554. list_for_each_entry(clk, &clock_list, node)
  555. if (!clk->usecount && clk->ops && clk->ops->disable)
  556. clk->ops->disable(clk);
  557. /* from now on allow clock disable operations */
  558. allow_disable = 1;
  559. spin_unlock_irqrestore(&clock_lock, flags);
  560. mutex_unlock(&clock_list_sem);
  561. return 0;
  562. }
  563. late_initcall(clk_late_init);