skein_block.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782
  1. /***********************************************************************
  2. **
  3. ** Implementation of the Skein block functions.
  4. **
  5. ** Source code author: Doug Whiting, 2008.
  6. **
  7. ** This algorithm and source code is released to the public domain.
  8. **
  9. ** Compile-time switches:
  10. **
  11. ** SKEIN_USE_ASM -- set bits (256/512/1024) to select which
  12. ** versions use ASM code for block processing
  13. ** [default: use C for all block sizes]
  14. **
  15. ************************************************************************/
  16. #include <linux/string.h>
  17. #include "skein_base.h"
  18. #include "skein_block.h"
  19. #ifndef SKEIN_USE_ASM
  20. #define SKEIN_USE_ASM (0) /* default is all C code (no ASM) */
  21. #endif
  22. #ifndef SKEIN_LOOP
  23. #define SKEIN_LOOP 001 /* default: unroll 256 and 512, but not 1024 */
  24. #endif
  25. #define BLK_BITS (WCNT * 64) /* some useful definitions for code here */
  26. #define KW_TWK_BASE (0)
  27. #define KW_KEY_BASE (3)
  28. #define ks (kw + KW_KEY_BASE)
  29. #define ts (kw + KW_TWK_BASE)
  30. #ifdef SKEIN_DEBUG
  31. #define debug_save_tweak(ctx) \
  32. { \
  33. ctx->h.tweak[0] = ts[0]; \
  34. ctx->h.tweak[1] = ts[1]; \
  35. }
  36. #else
  37. #define debug_save_tweak(ctx)
  38. #endif
  39. #if !(SKEIN_USE_ASM & 256)
  40. #undef RCNT
  41. #define RCNT (SKEIN_256_ROUNDS_TOTAL / 8)
  42. #ifdef SKEIN_LOOP /* configure how much to unroll the loop */
  43. #define SKEIN_UNROLL_256 (((SKEIN_LOOP) / 100) % 10)
  44. #else
  45. #define SKEIN_UNROLL_256 (0)
  46. #endif
  47. #if SKEIN_UNROLL_256
  48. #if (RCNT % SKEIN_UNROLL_256)
  49. #error "Invalid SKEIN_UNROLL_256" /* sanity check on unroll count */
  50. #endif
  51. #endif
  52. #define ROUND256(p0, p1, p2, p3, ROT, r_num) \
  53. do { \
  54. X##p0 += X##p1; \
  55. X##p1 = rotl_64(X##p1, ROT##_0); \
  56. X##p1 ^= X##p0; \
  57. X##p2 += X##p3; \
  58. X##p3 = rotl_64(X##p3, ROT##_1); \
  59. X##p3 ^= X##p2; \
  60. } while (0)
  61. #if SKEIN_UNROLL_256 == 0
  62. #define R256(p0, p1, p2, p3, ROT, r_num) /* fully unrolled */ \
  63. ROUND256(p0, p1, p2, p3, ROT, r_num)
  64. #define I256(R) \
  65. do { \
  66. /* inject the key schedule value */ \
  67. X0 += ks[((R) + 1) % 5]; \
  68. X1 += ks[((R) + 2) % 5] + ts[((R) + 1) % 3]; \
  69. X2 += ks[((R) + 3) % 5] + ts[((R) + 2) % 3]; \
  70. X3 += ks[((R) + 4) % 5] + (R) + 1; \
  71. } while (0)
  72. #else
  73. /* looping version */
  74. #define R256(p0, p1, p2, p3, ROT, r_num) ROUND256(p0, p1, p2, p3, ROT, r_num)
  75. #define I256(R) \
  76. do { \
  77. /* inject the key schedule value */ \
  78. X0 += ks[r + (R) + 0]; \
  79. X1 += ks[r + (R) + 1] + ts[r + (R) + 0];\
  80. X2 += ks[r + (R) + 2] + ts[r + (R) + 1];\
  81. X3 += ks[r + (R) + 3] + r + (R); \
  82. /* rotate key schedule */ \
  83. ks[r + (R) + 4] = ks[r + (R) - 1]; \
  84. ts[r + (R) + 2] = ts[r + (R) - 1]; \
  85. } while (0)
  86. #endif
  87. #define R256_8_ROUNDS(R) \
  88. do { \
  89. R256(0, 1, 2, 3, R_256_0, 8 * (R) + 1); \
  90. R256(0, 3, 2, 1, R_256_1, 8 * (R) + 2); \
  91. R256(0, 1, 2, 3, R_256_2, 8 * (R) + 3); \
  92. R256(0, 3, 2, 1, R_256_3, 8 * (R) + 4); \
  93. I256(2 * (R)); \
  94. R256(0, 1, 2, 3, R_256_4, 8 * (R) + 5); \
  95. R256(0, 3, 2, 1, R_256_5, 8 * (R) + 6); \
  96. R256(0, 1, 2, 3, R_256_6, 8 * (R) + 7); \
  97. R256(0, 3, 2, 1, R_256_7, 8 * (R) + 8); \
  98. I256(2 * (R) + 1); \
  99. } while (0)
  100. #define R256_UNROLL_R(NN) \
  101. ((SKEIN_UNROLL_256 == 0 && \
  102. SKEIN_256_ROUNDS_TOTAL / 8 > (NN)) || \
  103. (SKEIN_UNROLL_256 > (NN)))
  104. #if (SKEIN_UNROLL_256 > 14)
  105. #error "need more unrolling in skein_256_process_block"
  106. #endif
  107. #endif
  108. #if !(SKEIN_USE_ASM & 512)
  109. #undef RCNT
  110. #define RCNT (SKEIN_512_ROUNDS_TOTAL/8)
  111. #ifdef SKEIN_LOOP /* configure how much to unroll the loop */
  112. #define SKEIN_UNROLL_512 (((SKEIN_LOOP)/10)%10)
  113. #else
  114. #define SKEIN_UNROLL_512 (0)
  115. #endif
  116. #if SKEIN_UNROLL_512
  117. #if (RCNT % SKEIN_UNROLL_512)
  118. #error "Invalid SKEIN_UNROLL_512" /* sanity check on unroll count */
  119. #endif
  120. #endif
  121. #define ROUND512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) \
  122. do { \
  123. X##p0 += X##p1; \
  124. X##p1 = rotl_64(X##p1, ROT##_0); \
  125. X##p1 ^= X##p0; \
  126. X##p2 += X##p3; \
  127. X##p3 = rotl_64(X##p3, ROT##_1); \
  128. X##p3 ^= X##p2; \
  129. X##p4 += X##p5; \
  130. X##p5 = rotl_64(X##p5, ROT##_2); \
  131. X##p5 ^= X##p4; \
  132. X##p6 += X##p7; X##p7 = rotl_64(X##p7, ROT##_3);\
  133. X##p7 ^= X##p6; \
  134. } while (0)
  135. #if SKEIN_UNROLL_512 == 0
  136. #define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) /* unrolled */ \
  137. ROUND512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num)
  138. #define I512(R) \
  139. do { \
  140. /* inject the key schedule value */ \
  141. X0 += ks[((R) + 1) % 9]; \
  142. X1 += ks[((R) + 2) % 9]; \
  143. X2 += ks[((R) + 3) % 9]; \
  144. X3 += ks[((R) + 4) % 9]; \
  145. X4 += ks[((R) + 5) % 9]; \
  146. X5 += ks[((R) + 6) % 9] + ts[((R) + 1) % 3]; \
  147. X6 += ks[((R) + 7) % 9] + ts[((R) + 2) % 3]; \
  148. X7 += ks[((R) + 8) % 9] + (R) + 1; \
  149. } while (0)
  150. #else /* looping version */
  151. #define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) \
  152. ROUND512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) \
  153. #define I512(R) \
  154. do { \
  155. /* inject the key schedule value */ \
  156. X0 += ks[r + (R) + 0]; \
  157. X1 += ks[r + (R) + 1]; \
  158. X2 += ks[r + (R) + 2]; \
  159. X3 += ks[r + (R) + 3]; \
  160. X4 += ks[r + (R) + 4]; \
  161. X5 += ks[r + (R) + 5] + ts[r + (R) + 0]; \
  162. X6 += ks[r + (R) + 6] + ts[r + (R) + 1]; \
  163. X7 += ks[r + (R) + 7] + r + (R); \
  164. /* rotate key schedule */ \
  165. ks[r + (R) + 8] = ks[r + (R) - 1]; \
  166. ts[r + (R) + 2] = ts[r + (R) - 1]; \
  167. } while (0)
  168. #endif /* end of looped code definitions */
  169. #define R512_8_ROUNDS(R) /* do 8 full rounds */ \
  170. do { \
  171. R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_0, 8 * (R) + 1); \
  172. R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_1, 8 * (R) + 2); \
  173. R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_2, 8 * (R) + 3); \
  174. R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_3, 8 * (R) + 4); \
  175. I512(2 * (R)); \
  176. R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_4, 8 * (R) + 5); \
  177. R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_5, 8 * (R) + 6); \
  178. R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_6, 8 * (R) + 7); \
  179. R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_7, 8 * (R) + 8); \
  180. I512(2 * (R) + 1); /* and key injection */ \
  181. } while (0)
  182. #define R512_UNROLL_R(NN) \
  183. ((SKEIN_UNROLL_512 == 0 && \
  184. SKEIN_512_ROUNDS_TOTAL/8 > (NN)) || \
  185. (SKEIN_UNROLL_512 > (NN)))
  186. #if (SKEIN_UNROLL_512 > 14)
  187. #error "need more unrolling in skein_512_process_block"
  188. #endif
  189. #endif
  190. #if !(SKEIN_USE_ASM & 1024)
  191. #undef RCNT
  192. #define RCNT (SKEIN_1024_ROUNDS_TOTAL/8)
  193. #ifdef SKEIN_LOOP /* configure how much to unroll the loop */
  194. #define SKEIN_UNROLL_1024 ((SKEIN_LOOP) % 10)
  195. #else
  196. #define SKEIN_UNROLL_1024 (0)
  197. #endif
  198. #if (SKEIN_UNROLL_1024 != 0)
  199. #if (RCNT % SKEIN_UNROLL_1024)
  200. #error "Invalid SKEIN_UNROLL_1024" /* sanity check on unroll count */
  201. #endif
  202. #endif
  203. #define ROUND1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \
  204. pF, ROT, r_num) \
  205. do { \
  206. X##p0 += X##p1; \
  207. X##p1 = rotl_64(X##p1, ROT##_0); \
  208. X##p1 ^= X##p0; \
  209. X##p2 += X##p3; \
  210. X##p3 = rotl_64(X##p3, ROT##_1); \
  211. X##p3 ^= X##p2; \
  212. X##p4 += X##p5; \
  213. X##p5 = rotl_64(X##p5, ROT##_2); \
  214. X##p5 ^= X##p4; \
  215. X##p6 += X##p7; \
  216. X##p7 = rotl_64(X##p7, ROT##_3); \
  217. X##p7 ^= X##p6; \
  218. X##p8 += X##p9; \
  219. X##p9 = rotl_64(X##p9, ROT##_4); \
  220. X##p9 ^= X##p8; \
  221. X##pA += X##pB; \
  222. X##pB = rotl_64(X##pB, ROT##_5); \
  223. X##pB ^= X##pA; \
  224. X##pC += X##pD; \
  225. X##pD = rotl_64(X##pD, ROT##_6); \
  226. X##pD ^= X##pC; \
  227. X##pE += X##pF; \
  228. X##pF = rotl_64(X##pF, ROT##_7); \
  229. X##pF ^= X##pE; \
  230. } while (0)
  231. #if SKEIN_UNROLL_1024 == 0
  232. #define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, pF, \
  233. ROT, rn) \
  234. ROUND1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \
  235. pF, ROT, rn) \
  236. #define I1024(R) \
  237. do { \
  238. /* inject the key schedule value */ \
  239. X00 += ks[((R) + 1) % 17]; \
  240. X01 += ks[((R) + 2) % 17]; \
  241. X02 += ks[((R) + 3) % 17]; \
  242. X03 += ks[((R) + 4) % 17]; \
  243. X04 += ks[((R) + 5) % 17]; \
  244. X05 += ks[((R) + 6) % 17]; \
  245. X06 += ks[((R) + 7) % 17]; \
  246. X07 += ks[((R) + 8) % 17]; \
  247. X08 += ks[((R) + 9) % 17]; \
  248. X09 += ks[((R) + 10) % 17]; \
  249. X10 += ks[((R) + 11) % 17]; \
  250. X11 += ks[((R) + 12) % 17]; \
  251. X12 += ks[((R) + 13) % 17]; \
  252. X13 += ks[((R) + 14) % 17] + ts[((R) + 1) % 3]; \
  253. X14 += ks[((R) + 15) % 17] + ts[((R) + 2) % 3]; \
  254. X15 += ks[((R) + 16) % 17] + (R) + 1; \
  255. } while (0)
  256. #else /* looping version */
  257. #define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, pF, \
  258. ROT, rn) \
  259. ROUND1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \
  260. pF, ROT, rn) \
  261. #define I1024(R) \
  262. do { \
  263. /* inject the key schedule value */ \
  264. X00 += ks[r + (R) + 0]; \
  265. X01 += ks[r + (R) + 1]; \
  266. X02 += ks[r + (R) + 2]; \
  267. X03 += ks[r + (R) + 3]; \
  268. X04 += ks[r + (R) + 4]; \
  269. X05 += ks[r + (R) + 5]; \
  270. X06 += ks[r + (R) + 6]; \
  271. X07 += ks[r + (R) + 7]; \
  272. X08 += ks[r + (R) + 8]; \
  273. X09 += ks[r + (R) + 9]; \
  274. X10 += ks[r + (R) + 10]; \
  275. X11 += ks[r + (R) + 11]; \
  276. X12 += ks[r + (R) + 12]; \
  277. X13 += ks[r + (R) + 13] + ts[r + (R) + 0]; \
  278. X14 += ks[r + (R) + 14] + ts[r + (R) + 1]; \
  279. X15 += ks[r + (R) + 15] + r + (R); \
  280. /* rotate key schedule */ \
  281. ks[r + (R) + 16] = ks[r + (R) - 1]; \
  282. ts[r + (R) + 2] = ts[r + (R) - 1]; \
  283. } while (0)
  284. #endif
  285. #define R1024_8_ROUNDS(R) \
  286. do { \
  287. R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, \
  288. 13, 14, 15, R1024_0, 8*(R) + 1); \
  289. R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, \
  290. 05, 08, 01, R1024_1, 8*(R) + 2); \
  291. R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, \
  292. 11, 10, 09, R1024_2, 8*(R) + 3); \
  293. R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, \
  294. 03, 12, 07, R1024_3, 8*(R) + 4); \
  295. I1024(2*(R)); \
  296. R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, \
  297. 13, 14, 15, R1024_4, 8*(R) + 5); \
  298. R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, \
  299. 05, 08, 01, R1024_5, 8*(R) + 6); \
  300. R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, \
  301. 11, 10, 09, R1024_6, 8*(R) + 7); \
  302. R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, \
  303. 03, 12, 07, R1024_7, 8*(R) + 8); \
  304. I1024(2*(R)+1); \
  305. } while (0)
  306. #define R1024_UNROLL_R(NN) \
  307. ((SKEIN_UNROLL_1024 == 0 && \
  308. SKEIN_1024_ROUNDS_TOTAL/8 > (NN)) || \
  309. (SKEIN_UNROLL_1024 > (NN)))
  310. #if (SKEIN_UNROLL_1024 > 14)
  311. #error "need more unrolling in Skein_1024_Process_Block"
  312. #endif
  313. #endif
  314. /***************************** SKEIN_256 ******************************/
  315. #if !(SKEIN_USE_ASM & 256)
  316. void skein_256_process_block(struct skein_256_ctx *ctx, const u8 *blk_ptr,
  317. size_t blk_cnt, size_t byte_cnt_add)
  318. { /* do it in C */
  319. enum {
  320. WCNT = SKEIN_256_STATE_WORDS
  321. };
  322. size_t r;
  323. #if SKEIN_UNROLL_256
  324. /* key schedule: chaining vars + tweak + "rot"*/
  325. u64 kw[WCNT+4+RCNT*2];
  326. #else
  327. /* key schedule words : chaining vars + tweak */
  328. u64 kw[WCNT+4];
  329. #endif
  330. u64 X0, X1, X2, X3; /* local copy of context vars, for speed */
  331. u64 w[WCNT]; /* local copy of input block */
  332. #ifdef SKEIN_DEBUG
  333. const u64 *X_ptr[4]; /* use for debugging (help cc put Xn in regs) */
  334. X_ptr[0] = &X0;
  335. X_ptr[1] = &X1;
  336. X_ptr[2] = &X2;
  337. X_ptr[3] = &X3;
  338. #endif
  339. skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */
  340. ts[0] = ctx->h.tweak[0];
  341. ts[1] = ctx->h.tweak[1];
  342. do {
  343. /*
  344. * this implementation only supports 2**64 input bytes
  345. * (no carry out here)
  346. */
  347. ts[0] += byte_cnt_add; /* update processed length */
  348. /* precompute the key schedule for this block */
  349. ks[0] = ctx->x[0];
  350. ks[1] = ctx->x[1];
  351. ks[2] = ctx->x[2];
  352. ks[3] = ctx->x[3];
  353. ks[4] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ SKEIN_KS_PARITY;
  354. ts[2] = ts[0] ^ ts[1];
  355. /* get input block in little-endian format */
  356. skein_get64_lsb_first(w, blk_ptr, WCNT);
  357. debug_save_tweak(ctx);
  358. /* do the first full key injection */
  359. X0 = w[0] + ks[0];
  360. X1 = w[1] + ks[1] + ts[0];
  361. X2 = w[2] + ks[2] + ts[1];
  362. X3 = w[3] + ks[3];
  363. blk_ptr += SKEIN_256_BLOCK_BYTES;
  364. /* run the rounds */
  365. for (r = 1;
  366. r < (SKEIN_UNROLL_256 ? 2 * RCNT : 2);
  367. r += (SKEIN_UNROLL_256 ? 2 * SKEIN_UNROLL_256 : 1)) {
  368. R256_8_ROUNDS(0);
  369. #if R256_UNROLL_R(1)
  370. R256_8_ROUNDS(1);
  371. #endif
  372. #if R256_UNROLL_R(2)
  373. R256_8_ROUNDS(2);
  374. #endif
  375. #if R256_UNROLL_R(3)
  376. R256_8_ROUNDS(3);
  377. #endif
  378. #if R256_UNROLL_R(4)
  379. R256_8_ROUNDS(4);
  380. #endif
  381. #if R256_UNROLL_R(5)
  382. R256_8_ROUNDS(5);
  383. #endif
  384. #if R256_UNROLL_R(6)
  385. R256_8_ROUNDS(6);
  386. #endif
  387. #if R256_UNROLL_R(7)
  388. R256_8_ROUNDS(7);
  389. #endif
  390. #if R256_UNROLL_R(8)
  391. R256_8_ROUNDS(8);
  392. #endif
  393. #if R256_UNROLL_R(9)
  394. R256_8_ROUNDS(9);
  395. #endif
  396. #if R256_UNROLL_R(10)
  397. R256_8_ROUNDS(10);
  398. #endif
  399. #if R256_UNROLL_R(11)
  400. R256_8_ROUNDS(11);
  401. #endif
  402. #if R256_UNROLL_R(12)
  403. R256_8_ROUNDS(12);
  404. #endif
  405. #if R256_UNROLL_R(13)
  406. R256_8_ROUNDS(13);
  407. #endif
  408. #if R256_UNROLL_R(14)
  409. R256_8_ROUNDS(14);
  410. #endif
  411. }
  412. /* do the final "feedforward" xor, update context chaining */
  413. ctx->x[0] = X0 ^ w[0];
  414. ctx->x[1] = X1 ^ w[1];
  415. ctx->x[2] = X2 ^ w[2];
  416. ctx->x[3] = X3 ^ w[3];
  417. ts[1] &= ~SKEIN_T1_FLAG_FIRST;
  418. } while (--blk_cnt);
  419. ctx->h.tweak[0] = ts[0];
  420. ctx->h.tweak[1] = ts[1];
  421. }
  422. #if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
  423. size_t skein_256_process_block_code_size(void)
  424. {
  425. return ((u8 *) skein_256_process_block_code_size) -
  426. ((u8 *) skein_256_process_block);
  427. }
  428. unsigned int skein_256_unroll_cnt(void)
  429. {
  430. return SKEIN_UNROLL_256;
  431. }
  432. #endif
  433. #endif
  434. /***************************** SKEIN_512 ******************************/
  435. #if !(SKEIN_USE_ASM & 512)
  436. void skein_512_process_block(struct skein_512_ctx *ctx, const u8 *blk_ptr,
  437. size_t blk_cnt, size_t byte_cnt_add)
  438. { /* do it in C */
  439. enum {
  440. WCNT = SKEIN_512_STATE_WORDS
  441. };
  442. size_t r;
  443. #if SKEIN_UNROLL_512
  444. u64 kw[WCNT+4+RCNT*2]; /* key sched: chaining vars + tweak + "rot"*/
  445. #else
  446. u64 kw[WCNT+4]; /* key schedule words : chaining vars + tweak */
  447. #endif
  448. u64 X0, X1, X2, X3, X4, X5, X6, X7; /* local copies, for speed */
  449. u64 w[WCNT]; /* local copy of input block */
  450. #ifdef SKEIN_DEBUG
  451. const u64 *X_ptr[8]; /* use for debugging (help cc put Xn in regs) */
  452. X_ptr[0] = &X0;
  453. X_ptr[1] = &X1;
  454. X_ptr[2] = &X2;
  455. X_ptr[3] = &X3;
  456. X_ptr[4] = &X4;
  457. X_ptr[5] = &X5;
  458. X_ptr[6] = &X6;
  459. X_ptr[7] = &X7;
  460. #endif
  461. skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */
  462. ts[0] = ctx->h.tweak[0];
  463. ts[1] = ctx->h.tweak[1];
  464. do {
  465. /*
  466. * this implementation only supports 2**64 input bytes
  467. * (no carry out here)
  468. */
  469. ts[0] += byte_cnt_add; /* update processed length */
  470. /* precompute the key schedule for this block */
  471. ks[0] = ctx->x[0];
  472. ks[1] = ctx->x[1];
  473. ks[2] = ctx->x[2];
  474. ks[3] = ctx->x[3];
  475. ks[4] = ctx->x[4];
  476. ks[5] = ctx->x[5];
  477. ks[6] = ctx->x[6];
  478. ks[7] = ctx->x[7];
  479. ks[8] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
  480. ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^ SKEIN_KS_PARITY;
  481. ts[2] = ts[0] ^ ts[1];
  482. /* get input block in little-endian format */
  483. skein_get64_lsb_first(w, blk_ptr, WCNT);
  484. debug_save_tweak(ctx);
  485. /* do the first full key injection */
  486. X0 = w[0] + ks[0];
  487. X1 = w[1] + ks[1];
  488. X2 = w[2] + ks[2];
  489. X3 = w[3] + ks[3];
  490. X4 = w[4] + ks[4];
  491. X5 = w[5] + ks[5] + ts[0];
  492. X6 = w[6] + ks[6] + ts[1];
  493. X7 = w[7] + ks[7];
  494. blk_ptr += SKEIN_512_BLOCK_BYTES;
  495. /* run the rounds */
  496. for (r = 1;
  497. r < (SKEIN_UNROLL_512 ? 2 * RCNT : 2);
  498. r += (SKEIN_UNROLL_512 ? 2 * SKEIN_UNROLL_512 : 1)) {
  499. R512_8_ROUNDS(0);
  500. #if R512_UNROLL_R(1)
  501. R512_8_ROUNDS(1);
  502. #endif
  503. #if R512_UNROLL_R(2)
  504. R512_8_ROUNDS(2);
  505. #endif
  506. #if R512_UNROLL_R(3)
  507. R512_8_ROUNDS(3);
  508. #endif
  509. #if R512_UNROLL_R(4)
  510. R512_8_ROUNDS(4);
  511. #endif
  512. #if R512_UNROLL_R(5)
  513. R512_8_ROUNDS(5);
  514. #endif
  515. #if R512_UNROLL_R(6)
  516. R512_8_ROUNDS(6);
  517. #endif
  518. #if R512_UNROLL_R(7)
  519. R512_8_ROUNDS(7);
  520. #endif
  521. #if R512_UNROLL_R(8)
  522. R512_8_ROUNDS(8);
  523. #endif
  524. #if R512_UNROLL_R(9)
  525. R512_8_ROUNDS(9);
  526. #endif
  527. #if R512_UNROLL_R(10)
  528. R512_8_ROUNDS(10);
  529. #endif
  530. #if R512_UNROLL_R(11)
  531. R512_8_ROUNDS(11);
  532. #endif
  533. #if R512_UNROLL_R(12)
  534. R512_8_ROUNDS(12);
  535. #endif
  536. #if R512_UNROLL_R(13)
  537. R512_8_ROUNDS(13);
  538. #endif
  539. #if R512_UNROLL_R(14)
  540. R512_8_ROUNDS(14);
  541. #endif
  542. }
  543. /* do the final "feedforward" xor, update context chaining */
  544. ctx->x[0] = X0 ^ w[0];
  545. ctx->x[1] = X1 ^ w[1];
  546. ctx->x[2] = X2 ^ w[2];
  547. ctx->x[3] = X3 ^ w[3];
  548. ctx->x[4] = X4 ^ w[4];
  549. ctx->x[5] = X5 ^ w[5];
  550. ctx->x[6] = X6 ^ w[6];
  551. ctx->x[7] = X7 ^ w[7];
  552. ts[1] &= ~SKEIN_T1_FLAG_FIRST;
  553. } while (--blk_cnt);
  554. ctx->h.tweak[0] = ts[0];
  555. ctx->h.tweak[1] = ts[1];
  556. }
  557. #if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
  558. size_t skein_512_process_block_code_size(void)
  559. {
  560. return ((u8 *) skein_512_process_block_code_size) -
  561. ((u8 *) skein_512_process_block);
  562. }
  563. unsigned int skein_512_unroll_cnt(void)
  564. {
  565. return SKEIN_UNROLL_512;
  566. }
  567. #endif
  568. #endif
  569. /***************************** SKEIN_1024 ******************************/
  570. #if !(SKEIN_USE_ASM & 1024)
  571. void skein_1024_process_block(struct skein_1024_ctx *ctx, const u8 *blk_ptr,
  572. size_t blk_cnt, size_t byte_cnt_add)
  573. { /* do it in C, always looping (unrolled is bigger AND slower!) */
  574. enum {
  575. WCNT = SKEIN_1024_STATE_WORDS
  576. };
  577. size_t r;
  578. #if (SKEIN_UNROLL_1024 != 0)
  579. u64 kw[WCNT+4+RCNT*2]; /* key sched: chaining vars + tweak + "rot" */
  580. #else
  581. u64 kw[WCNT+4]; /* key schedule words : chaining vars + tweak */
  582. #endif
  583. /* local copy of vars, for speed */
  584. u64 X00, X01, X02, X03, X04, X05, X06, X07,
  585. X08, X09, X10, X11, X12, X13, X14, X15;
  586. u64 w[WCNT]; /* local copy of input block */
  587. skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */
  588. ts[0] = ctx->h.tweak[0];
  589. ts[1] = ctx->h.tweak[1];
  590. do {
  591. /*
  592. * this implementation only supports 2**64 input bytes
  593. * (no carry out here)
  594. */
  595. ts[0] += byte_cnt_add; /* update processed length */
  596. /* precompute the key schedule for this block */
  597. ks[0] = ctx->x[0];
  598. ks[1] = ctx->x[1];
  599. ks[2] = ctx->x[2];
  600. ks[3] = ctx->x[3];
  601. ks[4] = ctx->x[4];
  602. ks[5] = ctx->x[5];
  603. ks[6] = ctx->x[6];
  604. ks[7] = ctx->x[7];
  605. ks[8] = ctx->x[8];
  606. ks[9] = ctx->x[9];
  607. ks[10] = ctx->x[10];
  608. ks[11] = ctx->x[11];
  609. ks[12] = ctx->x[12];
  610. ks[13] = ctx->x[13];
  611. ks[14] = ctx->x[14];
  612. ks[15] = ctx->x[15];
  613. ks[16] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
  614. ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^
  615. ks[8] ^ ks[9] ^ ks[10] ^ ks[11] ^
  616. ks[12] ^ ks[13] ^ ks[14] ^ ks[15] ^ SKEIN_KS_PARITY;
  617. ts[2] = ts[0] ^ ts[1];
  618. /* get input block in little-endian format */
  619. skein_get64_lsb_first(w, blk_ptr, WCNT);
  620. debug_save_tweak(ctx);
  621. /* do the first full key injection */
  622. X00 = w[0] + ks[0];
  623. X01 = w[1] + ks[1];
  624. X02 = w[2] + ks[2];
  625. X03 = w[3] + ks[3];
  626. X04 = w[4] + ks[4];
  627. X05 = w[5] + ks[5];
  628. X06 = w[6] + ks[6];
  629. X07 = w[7] + ks[7];
  630. X08 = w[8] + ks[8];
  631. X09 = w[9] + ks[9];
  632. X10 = w[10] + ks[10];
  633. X11 = w[11] + ks[11];
  634. X12 = w[12] + ks[12];
  635. X13 = w[13] + ks[13] + ts[0];
  636. X14 = w[14] + ks[14] + ts[1];
  637. X15 = w[15] + ks[15];
  638. for (r = 1;
  639. r < (SKEIN_UNROLL_1024 ? 2 * RCNT : 2);
  640. r += (SKEIN_UNROLL_1024 ? 2 * SKEIN_UNROLL_1024 : 1)) {
  641. R1024_8_ROUNDS(0);
  642. #if R1024_UNROLL_R(1)
  643. R1024_8_ROUNDS(1);
  644. #endif
  645. #if R1024_UNROLL_R(2)
  646. R1024_8_ROUNDS(2);
  647. #endif
  648. #if R1024_UNROLL_R(3)
  649. R1024_8_ROUNDS(3);
  650. #endif
  651. #if R1024_UNROLL_R(4)
  652. R1024_8_ROUNDS(4);
  653. #endif
  654. #if R1024_UNROLL_R(5)
  655. R1024_8_ROUNDS(5);
  656. #endif
  657. #if R1024_UNROLL_R(6)
  658. R1024_8_ROUNDS(6);
  659. #endif
  660. #if R1024_UNROLL_R(7)
  661. R1024_8_ROUNDS(7);
  662. #endif
  663. #if R1024_UNROLL_R(8)
  664. R1024_8_ROUNDS(8);
  665. #endif
  666. #if R1024_UNROLL_R(9)
  667. R1024_8_ROUNDS(9);
  668. #endif
  669. #if R1024_UNROLL_R(10)
  670. R1024_8_ROUNDS(10);
  671. #endif
  672. #if R1024_UNROLL_R(11)
  673. R1024_8_ROUNDS(11);
  674. #endif
  675. #if R1024_UNROLL_R(12)
  676. R1024_8_ROUNDS(12);
  677. #endif
  678. #if R1024_UNROLL_R(13)
  679. R1024_8_ROUNDS(13);
  680. #endif
  681. #if R1024_UNROLL_R(14)
  682. R1024_8_ROUNDS(14);
  683. #endif
  684. }
  685. /* do the final "feedforward" xor, update context chaining */
  686. ctx->x[0] = X00 ^ w[0];
  687. ctx->x[1] = X01 ^ w[1];
  688. ctx->x[2] = X02 ^ w[2];
  689. ctx->x[3] = X03 ^ w[3];
  690. ctx->x[4] = X04 ^ w[4];
  691. ctx->x[5] = X05 ^ w[5];
  692. ctx->x[6] = X06 ^ w[6];
  693. ctx->x[7] = X07 ^ w[7];
  694. ctx->x[8] = X08 ^ w[8];
  695. ctx->x[9] = X09 ^ w[9];
  696. ctx->x[10] = X10 ^ w[10];
  697. ctx->x[11] = X11 ^ w[11];
  698. ctx->x[12] = X12 ^ w[12];
  699. ctx->x[13] = X13 ^ w[13];
  700. ctx->x[14] = X14 ^ w[14];
  701. ctx->x[15] = X15 ^ w[15];
  702. ts[1] &= ~SKEIN_T1_FLAG_FIRST;
  703. blk_ptr += SKEIN_1024_BLOCK_BYTES;
  704. } while (--blk_cnt);
  705. ctx->h.tweak[0] = ts[0];
  706. ctx->h.tweak[1] = ts[1];
  707. }
  708. #if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
  709. size_t skein_1024_process_block_code_size(void)
  710. {
  711. return ((u8 *) skein_1024_process_block_code_size) -
  712. ((u8 *) skein_1024_process_block);
  713. }
  714. unsigned int skein_1024_unroll_cnt(void)
  715. {
  716. return SKEIN_UNROLL_1024;
  717. }
  718. #endif
  719. #endif