hcd.h 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760
  1. /*
  2. * hcd.h - DesignWare HS OTG Controller host-mode declarations
  3. *
  4. * Copyright (C) 2004-2013 Synopsys, Inc.
  5. *
  6. * Redistribution and use in source and binary forms, with or without
  7. * modification, are permitted provided that the following conditions
  8. * are met:
  9. * 1. Redistributions of source code must retain the above copyright
  10. * notice, this list of conditions, and the following disclaimer,
  11. * without modification.
  12. * 2. Redistributions in binary form must reproduce the above copyright
  13. * notice, this list of conditions and the following disclaimer in the
  14. * documentation and/or other materials provided with the distribution.
  15. * 3. The names of the above-listed copyright holders may not be used
  16. * to endorse or promote products derived from this software without
  17. * specific prior written permission.
  18. *
  19. * ALTERNATIVELY, this software may be distributed under the terms of the
  20. * GNU General Public License ("GPL") as published by the Free Software
  21. * Foundation; either version 2 of the License, or (at your option) any
  22. * later version.
  23. *
  24. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
  25. * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
  26. * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  27. * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
  28. * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  29. * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  30. * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  31. * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  32. * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  33. * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  34. * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  35. */
  36. #ifndef __DWC2_HCD_H__
  37. #define __DWC2_HCD_H__
  38. /*
  39. * This file contains the structures, constants, and interfaces for the
  40. * Host Contoller Driver (HCD)
  41. *
  42. * The Host Controller Driver (HCD) is responsible for translating requests
  43. * from the USB Driver into the appropriate actions on the DWC_otg controller.
  44. * It isolates the USBD from the specifics of the controller by providing an
  45. * API to the USBD.
  46. */
  47. struct dwc2_qh;
  48. /**
  49. * struct dwc2_host_chan - Software host channel descriptor
  50. *
  51. * @hc_num: Host channel number, used for register address lookup
  52. * @dev_addr: Address of the device
  53. * @ep_num: Endpoint of the device
  54. * @ep_is_in: Endpoint direction
  55. * @speed: Device speed. One of the following values:
  56. * - USB_SPEED_LOW
  57. * - USB_SPEED_FULL
  58. * - USB_SPEED_HIGH
  59. * @ep_type: Endpoint type. One of the following values:
  60. * - USB_ENDPOINT_XFER_CONTROL: 0
  61. * - USB_ENDPOINT_XFER_ISOC: 1
  62. * - USB_ENDPOINT_XFER_BULK: 2
  63. * - USB_ENDPOINT_XFER_INTR: 3
  64. * @max_packet: Max packet size in bytes
  65. * @data_pid_start: PID for initial transaction.
  66. * 0: DATA0
  67. * 1: DATA2
  68. * 2: DATA1
  69. * 3: MDATA (non-Control EP),
  70. * SETUP (Control EP)
  71. * @multi_count: Number of additional periodic transactions per
  72. * (micro)frame
  73. * @xfer_buf: Pointer to current transfer buffer position
  74. * @xfer_dma: DMA address of xfer_buf
  75. * @align_buf: In Buffer DMA mode this will be used if xfer_buf is not
  76. * DWORD aligned
  77. * @xfer_len: Total number of bytes to transfer
  78. * @xfer_count: Number of bytes transferred so far
  79. * @start_pkt_count: Packet count at start of transfer
  80. * @xfer_started: True if the transfer has been started
  81. * @ping: True if a PING request should be issued on this channel
  82. * @error_state: True if the error count for this transaction is non-zero
  83. * @halt_on_queue: True if this channel should be halted the next time a
  84. * request is queued for the channel. This is necessary in
  85. * slave mode if no request queue space is available when
  86. * an attempt is made to halt the channel.
  87. * @halt_pending: True if the host channel has been halted, but the core
  88. * is not finished flushing queued requests
  89. * @do_split: Enable split for the channel
  90. * @complete_split: Enable complete split
  91. * @hub_addr: Address of high speed hub for the split
  92. * @hub_port: Port of the low/full speed device for the split
  93. * @xact_pos: Split transaction position. One of the following values:
  94. * - DWC2_HCSPLT_XACTPOS_MID
  95. * - DWC2_HCSPLT_XACTPOS_BEGIN
  96. * - DWC2_HCSPLT_XACTPOS_END
  97. * - DWC2_HCSPLT_XACTPOS_ALL
  98. * @requests: Number of requests issued for this channel since it was
  99. * assigned to the current transfer (not counting PINGs)
  100. * @schinfo: Scheduling micro-frame bitmap
  101. * @ntd: Number of transfer descriptors for the transfer
  102. * @halt_status: Reason for halting the host channel
  103. * @hcint Contents of the HCINT register when the interrupt came
  104. * @qh: QH for the transfer being processed by this channel
  105. * @hc_list_entry: For linking to list of host channels
  106. * @desc_list_addr: Current QH's descriptor list DMA address
  107. *
  108. * This structure represents the state of a single host channel when acting in
  109. * host mode. It contains the data items needed to transfer packets to an
  110. * endpoint via a host channel.
  111. */
  112. struct dwc2_host_chan {
  113. u8 hc_num;
  114. unsigned dev_addr:7;
  115. unsigned ep_num:4;
  116. unsigned ep_is_in:1;
  117. unsigned speed:4;
  118. unsigned ep_type:2;
  119. unsigned max_packet:11;
  120. unsigned data_pid_start:2;
  121. #define DWC2_HC_PID_DATA0 TSIZ_SC_MC_PID_DATA0
  122. #define DWC2_HC_PID_DATA2 TSIZ_SC_MC_PID_DATA2
  123. #define DWC2_HC_PID_DATA1 TSIZ_SC_MC_PID_DATA1
  124. #define DWC2_HC_PID_MDATA TSIZ_SC_MC_PID_MDATA
  125. #define DWC2_HC_PID_SETUP TSIZ_SC_MC_PID_SETUP
  126. unsigned multi_count:2;
  127. u8 *xfer_buf;
  128. dma_addr_t xfer_dma;
  129. dma_addr_t align_buf;
  130. u32 xfer_len;
  131. u32 xfer_count;
  132. u16 start_pkt_count;
  133. u8 xfer_started;
  134. u8 do_ping;
  135. u8 error_state;
  136. u8 halt_on_queue;
  137. u8 halt_pending;
  138. u8 do_split;
  139. u8 complete_split;
  140. u8 hub_addr;
  141. u8 hub_port;
  142. u8 xact_pos;
  143. #define DWC2_HCSPLT_XACTPOS_MID HCSPLT_XACTPOS_MID
  144. #define DWC2_HCSPLT_XACTPOS_END HCSPLT_XACTPOS_END
  145. #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
  146. #define DWC2_HCSPLT_XACTPOS_ALL HCSPLT_XACTPOS_ALL
  147. u8 requests;
  148. u8 schinfo;
  149. u16 ntd;
  150. enum dwc2_halt_status halt_status;
  151. u32 hcint;
  152. struct dwc2_qh *qh;
  153. struct list_head hc_list_entry;
  154. dma_addr_t desc_list_addr;
  155. };
  156. struct dwc2_hcd_pipe_info {
  157. u8 dev_addr;
  158. u8 ep_num;
  159. u8 pipe_type;
  160. u8 pipe_dir;
  161. u16 mps;
  162. };
  163. struct dwc2_hcd_iso_packet_desc {
  164. u32 offset;
  165. u32 length;
  166. u32 actual_length;
  167. u32 status;
  168. };
  169. struct dwc2_qtd;
  170. struct dwc2_hcd_urb {
  171. void *priv;
  172. struct dwc2_qtd *qtd;
  173. void *buf;
  174. dma_addr_t dma;
  175. void *setup_packet;
  176. dma_addr_t setup_dma;
  177. u32 length;
  178. u32 actual_length;
  179. u32 status;
  180. u32 error_count;
  181. u32 packet_count;
  182. u32 flags;
  183. u16 interval;
  184. struct dwc2_hcd_pipe_info pipe_info;
  185. struct dwc2_hcd_iso_packet_desc iso_descs[0];
  186. };
  187. /* Phases for control transfers */
  188. enum dwc2_control_phase {
  189. DWC2_CONTROL_SETUP,
  190. DWC2_CONTROL_DATA,
  191. DWC2_CONTROL_STATUS,
  192. };
  193. /* Transaction types */
  194. enum dwc2_transaction_type {
  195. DWC2_TRANSACTION_NONE,
  196. DWC2_TRANSACTION_PERIODIC,
  197. DWC2_TRANSACTION_NON_PERIODIC,
  198. DWC2_TRANSACTION_ALL,
  199. };
  200. /**
  201. * struct dwc2_qh - Software queue head structure
  202. *
  203. * @ep_type: Endpoint type. One of the following values:
  204. * - USB_ENDPOINT_XFER_CONTROL
  205. * - USB_ENDPOINT_XFER_BULK
  206. * - USB_ENDPOINT_XFER_INT
  207. * - USB_ENDPOINT_XFER_ISOC
  208. * @ep_is_in: Endpoint direction
  209. * @maxp: Value from wMaxPacketSize field of Endpoint Descriptor
  210. * @dev_speed: Device speed. One of the following values:
  211. * - USB_SPEED_LOW
  212. * - USB_SPEED_FULL
  213. * - USB_SPEED_HIGH
  214. * @data_toggle: Determines the PID of the next data packet for
  215. * non-controltransfers. Ignored for control transfers.
  216. * One of the following values:
  217. * - DWC2_HC_PID_DATA0
  218. * - DWC2_HC_PID_DATA1
  219. * @ping_state: Ping state
  220. * @do_split: Full/low speed endpoint on high-speed hub requires split
  221. * @td_first: Index of first activated isochronous transfer descriptor
  222. * @td_last: Index of last activated isochronous transfer descriptor
  223. * @usecs: Bandwidth in microseconds per (micro)frame
  224. * @interval: Interval between transfers in (micro)frames
  225. * @sched_frame: (Micro)frame to initialize a periodic transfer.
  226. * The transfer executes in the following (micro)frame.
  227. * @frame_usecs: Internal variable used by the microframe scheduler
  228. * @start_split_frame: (Micro)frame at which last start split was initialized
  229. * @ntd: Actual number of transfer descriptors in a list
  230. * @dw_align_buf: Used instead of original buffer if its physical address
  231. * is not dword-aligned
  232. * @dw_align_buf_size: Size of dw_align_buf
  233. * @dw_align_buf_dma: DMA address for dw_align_buf
  234. * @qtd_list: List of QTDs for this QH
  235. * @channel: Host channel currently processing transfers for this QH
  236. * @qh_list_entry: Entry for QH in either the periodic or non-periodic
  237. * schedule
  238. * @desc_list: List of transfer descriptors
  239. * @desc_list_dma: Physical address of desc_list
  240. * @n_bytes: Xfer Bytes array. Each element corresponds to a transfer
  241. * descriptor and indicates original XferSize value for the
  242. * descriptor
  243. * @tt_buffer_dirty True if clear_tt_buffer_complete is pending
  244. *
  245. * A Queue Head (QH) holds the static characteristics of an endpoint and
  246. * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
  247. * be entered in either the non-periodic or periodic schedule.
  248. */
  249. struct dwc2_qh {
  250. u8 ep_type;
  251. u8 ep_is_in;
  252. u16 maxp;
  253. u8 dev_speed;
  254. u8 data_toggle;
  255. u8 ping_state;
  256. u8 do_split;
  257. u8 td_first;
  258. u8 td_last;
  259. u16 usecs;
  260. u16 interval;
  261. u16 sched_frame;
  262. u16 frame_usecs[8];
  263. u16 start_split_frame;
  264. u16 ntd;
  265. u8 *dw_align_buf;
  266. int dw_align_buf_size;
  267. dma_addr_t dw_align_buf_dma;
  268. struct list_head qtd_list;
  269. struct dwc2_host_chan *channel;
  270. struct list_head qh_list_entry;
  271. struct dwc2_hcd_dma_desc *desc_list;
  272. dma_addr_t desc_list_dma;
  273. u32 *n_bytes;
  274. unsigned tt_buffer_dirty:1;
  275. };
  276. /**
  277. * struct dwc2_qtd - Software queue transfer descriptor (QTD)
  278. *
  279. * @control_phase: Current phase for control transfers (Setup, Data, or
  280. * Status)
  281. * @in_process: Indicates if this QTD is currently processed by HW
  282. * @data_toggle: Determines the PID of the next data packet for the
  283. * data phase of control transfers. Ignored for other
  284. * transfer types. One of the following values:
  285. * - DWC2_HC_PID_DATA0
  286. * - DWC2_HC_PID_DATA1
  287. * @complete_split: Keeps track of the current split type for FS/LS
  288. * endpoints on a HS Hub
  289. * @isoc_split_pos: Position of the ISOC split in full/low speed
  290. * @isoc_frame_index: Index of the next frame descriptor for an isochronous
  291. * transfer. A frame descriptor describes the buffer
  292. * position and length of the data to be transferred in the
  293. * next scheduled (micro)frame of an isochronous transfer.
  294. * It also holds status for that transaction. The frame
  295. * index starts at 0.
  296. * @isoc_split_offset: Position of the ISOC split in the buffer for the
  297. * current frame
  298. * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
  299. * @error_count: Holds the number of bus errors that have occurred for
  300. * a transaction within this transfer
  301. * @n_desc: Number of DMA descriptors for this QTD
  302. * @isoc_frame_index_last: Last activated frame (packet) index, used in
  303. * descriptor DMA mode only
  304. * @urb: URB for this transfer
  305. * @qh: Queue head for this QTD
  306. * @qtd_list_entry: For linking to the QH's list of QTDs
  307. *
  308. * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
  309. * interrupt, or isochronous transfer. A single QTD is created for each URB
  310. * (of one of these types) submitted to the HCD. The transfer associated with
  311. * a QTD may require one or multiple transactions.
  312. *
  313. * A QTD is linked to a Queue Head, which is entered in either the
  314. * non-periodic or periodic schedule for execution. When a QTD is chosen for
  315. * execution, some or all of its transactions may be executed. After
  316. * execution, the state of the QTD is updated. The QTD may be retired if all
  317. * its transactions are complete or if an error occurred. Otherwise, it
  318. * remains in the schedule so more transactions can be executed later.
  319. */
  320. struct dwc2_qtd {
  321. enum dwc2_control_phase control_phase;
  322. u8 in_process;
  323. u8 data_toggle;
  324. u8 complete_split;
  325. u8 isoc_split_pos;
  326. u16 isoc_frame_index;
  327. u16 isoc_split_offset;
  328. u32 ssplit_out_xfer_count;
  329. u8 error_count;
  330. u8 n_desc;
  331. u16 isoc_frame_index_last;
  332. struct dwc2_hcd_urb *urb;
  333. struct dwc2_qh *qh;
  334. struct list_head qtd_list_entry;
  335. };
  336. #ifdef DEBUG
  337. struct hc_xfer_info {
  338. struct dwc2_hsotg *hsotg;
  339. struct dwc2_host_chan *chan;
  340. };
  341. #endif
  342. /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
  343. static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
  344. {
  345. return (struct usb_hcd *)hsotg->priv;
  346. }
  347. /*
  348. * Inline used to disable one channel interrupt. Channel interrupts are
  349. * disabled when the channel is halted or released by the interrupt handler.
  350. * There is no need to handle further interrupts of that type until the
  351. * channel is re-assigned. In fact, subsequent handling may cause crashes
  352. * because the channel structures are cleaned up when the channel is released.
  353. */
  354. static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
  355. {
  356. u32 mask = dwc2_readl(hsotg->regs + HCINTMSK(chnum));
  357. mask &= ~intr;
  358. dwc2_writel(mask, hsotg->regs + HCINTMSK(chnum));
  359. }
  360. /*
  361. * Returns the mode of operation, host or device
  362. */
  363. static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
  364. {
  365. return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
  366. }
  367. static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
  368. {
  369. return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
  370. }
  371. /*
  372. * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
  373. * are read as 1, they won't clear when written back.
  374. */
  375. static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
  376. {
  377. u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
  378. hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
  379. return hprt0;
  380. }
  381. static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
  382. {
  383. return pipe->ep_num;
  384. }
  385. static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
  386. {
  387. return pipe->pipe_type;
  388. }
  389. static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
  390. {
  391. return pipe->mps;
  392. }
  393. static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
  394. {
  395. return pipe->dev_addr;
  396. }
  397. static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
  398. {
  399. return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
  400. }
  401. static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
  402. {
  403. return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
  404. }
  405. static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
  406. {
  407. return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
  408. }
  409. static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
  410. {
  411. return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
  412. }
  413. static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
  414. {
  415. return pipe->pipe_dir == USB_DIR_IN;
  416. }
  417. static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
  418. {
  419. return !dwc2_hcd_is_pipe_in(pipe);
  420. }
  421. extern int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq);
  422. extern void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
  423. /* Transaction Execution Functions */
  424. extern enum dwc2_transaction_type dwc2_hcd_select_transactions(
  425. struct dwc2_hsotg *hsotg);
  426. extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
  427. enum dwc2_transaction_type tr_type);
  428. /* Schedule Queue Functions */
  429. /* Implemented in hcd_queue.c */
  430. extern void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg);
  431. extern struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
  432. struct dwc2_hcd_urb *urb,
  433. gfp_t mem_flags);
  434. extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
  435. extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
  436. extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
  437. extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
  438. int sched_csplit);
  439. extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
  440. extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
  441. struct dwc2_qh *qh);
  442. /* Unlinks and frees a QTD */
  443. static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
  444. struct dwc2_qtd *qtd,
  445. struct dwc2_qh *qh)
  446. {
  447. list_del(&qtd->qtd_list_entry);
  448. kfree(qtd);
  449. }
  450. /* Descriptor DMA support functions */
  451. extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
  452. struct dwc2_qh *qh);
  453. extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
  454. struct dwc2_host_chan *chan, int chnum,
  455. enum dwc2_halt_status halt_status);
  456. extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
  457. gfp_t mem_flags);
  458. extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
  459. /* Check if QH is non-periodic */
  460. #define dwc2_qh_is_non_per(_qh_ptr_) \
  461. ((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
  462. (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
  463. #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
  464. static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
  465. static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
  466. static inline bool dbg_urb(struct urb *urb) { return true; }
  467. static inline bool dbg_perio(void) { return true; }
  468. #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
  469. static inline bool dbg_hc(struct dwc2_host_chan *hc)
  470. {
  471. return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
  472. hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
  473. }
  474. static inline bool dbg_qh(struct dwc2_qh *qh)
  475. {
  476. return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
  477. qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
  478. }
  479. static inline bool dbg_urb(struct urb *urb)
  480. {
  481. return usb_pipetype(urb->pipe) == PIPE_BULK ||
  482. usb_pipetype(urb->pipe) == PIPE_CONTROL;
  483. }
  484. static inline bool dbg_perio(void) { return false; }
  485. #endif
  486. /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
  487. #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
  488. /* Packet size for any kind of endpoint descriptor */
  489. #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
  490. /*
  491. * Returns true if frame1 is less than or equal to frame2. The comparison is
  492. * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
  493. * frame number when the max frame number is reached.
  494. */
  495. static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
  496. {
  497. return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
  498. }
  499. /*
  500. * Returns true if frame1 is greater than frame2. The comparison is done
  501. * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
  502. * number when the max frame number is reached.
  503. */
  504. static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
  505. {
  506. return (frame1 != frame2) &&
  507. ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
  508. }
  509. /*
  510. * Increments frame by the amount specified by inc. The addition is done
  511. * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
  512. */
  513. static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
  514. {
  515. return (frame + inc) & HFNUM_MAX_FRNUM;
  516. }
  517. static inline u16 dwc2_full_frame_num(u16 frame)
  518. {
  519. return (frame & HFNUM_MAX_FRNUM) >> 3;
  520. }
  521. static inline u16 dwc2_micro_frame_num(u16 frame)
  522. {
  523. return frame & 0x7;
  524. }
  525. /*
  526. * Returns the Core Interrupt Status register contents, ANDed with the Core
  527. * Interrupt Mask register contents
  528. */
  529. static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
  530. {
  531. return dwc2_readl(hsotg->regs + GINTSTS) &
  532. dwc2_readl(hsotg->regs + GINTMSK);
  533. }
  534. static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
  535. {
  536. return dwc2_urb->status;
  537. }
  538. static inline u32 dwc2_hcd_urb_get_actual_length(
  539. struct dwc2_hcd_urb *dwc2_urb)
  540. {
  541. return dwc2_urb->actual_length;
  542. }
  543. static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
  544. {
  545. return dwc2_urb->error_count;
  546. }
  547. static inline void dwc2_hcd_urb_set_iso_desc_params(
  548. struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
  549. u32 length)
  550. {
  551. dwc2_urb->iso_descs[desc_num].offset = offset;
  552. dwc2_urb->iso_descs[desc_num].length = length;
  553. }
  554. static inline u32 dwc2_hcd_urb_get_iso_desc_status(
  555. struct dwc2_hcd_urb *dwc2_urb, int desc_num)
  556. {
  557. return dwc2_urb->iso_descs[desc_num].status;
  558. }
  559. static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
  560. struct dwc2_hcd_urb *dwc2_urb, int desc_num)
  561. {
  562. return dwc2_urb->iso_descs[desc_num].actual_length;
  563. }
  564. static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
  565. struct usb_host_endpoint *ep)
  566. {
  567. struct dwc2_qh *qh = ep->hcpriv;
  568. if (qh && !list_empty(&qh->qh_list_entry))
  569. return 1;
  570. return 0;
  571. }
  572. static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
  573. struct usb_host_endpoint *ep)
  574. {
  575. struct dwc2_qh *qh = ep->hcpriv;
  576. if (!qh) {
  577. WARN_ON(1);
  578. return 0;
  579. }
  580. return qh->usecs;
  581. }
  582. extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
  583. struct dwc2_host_chan *chan, int chnum,
  584. struct dwc2_qtd *qtd);
  585. /* HCD Core API */
  586. /**
  587. * dwc2_handle_hcd_intr() - Called on every hardware interrupt
  588. *
  589. * @hsotg: The DWC2 HCD
  590. *
  591. * Returns IRQ_HANDLED if interrupt is handled
  592. * Return IRQ_NONE if interrupt is not handled
  593. */
  594. extern irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
  595. /**
  596. * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
  597. *
  598. * @hsotg: The DWC2 HCD
  599. */
  600. extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
  601. /**
  602. * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
  603. * and 0 otherwise
  604. *
  605. * @hsotg: The DWC2 HCD
  606. */
  607. extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
  608. /**
  609. * dwc2_hcd_dump_state() - Dumps hsotg state
  610. *
  611. * @hsotg: The DWC2 HCD
  612. *
  613. * NOTE: This function will be removed once the peripheral controller code
  614. * is integrated and the driver is stable
  615. */
  616. extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
  617. /**
  618. * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
  619. *
  620. * @hsotg: The DWC2 HCD
  621. *
  622. * This can be used to determine average interrupt latency. Frame remaining is
  623. * also shown for start transfer and two additional sample points.
  624. *
  625. * NOTE: This function will be removed once the peripheral controller code
  626. * is integrated and the driver is stable
  627. */
  628. extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
  629. /* URB interface */
  630. /* Transfer flags */
  631. #define URB_GIVEBACK_ASAP 0x1
  632. #define URB_SEND_ZERO_PACKET 0x2
  633. /* Host driver callbacks */
  634. extern void dwc2_host_start(struct dwc2_hsotg *hsotg);
  635. extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg);
  636. extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
  637. int *hub_addr, int *hub_port);
  638. extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
  639. extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
  640. int status);
  641. #ifdef DEBUG
  642. /*
  643. * Macro to sample the remaining PHY clocks left in the current frame. This
  644. * may be used during debugging to determine the average time it takes to
  645. * execute sections of code. There are two possible sample points, "a" and
  646. * "b", so the _letter_ argument must be one of these values.
  647. *
  648. * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
  649. * example, "cat /sys/devices/lm0/hcd_frrem".
  650. */
  651. #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) \
  652. do { \
  653. struct hfnum_data _hfnum_; \
  654. struct dwc2_qtd *_qtd_; \
  655. \
  656. _qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd, \
  657. qtd_list_entry); \
  658. if (usb_pipeint(_qtd_->urb->pipe) && \
  659. (_qh_)->start_split_frame != 0 && !_qtd_->complete_split) { \
  660. _hfnum_.d32 = dwc2_readl((_hcd_)->regs + HFNUM); \
  661. switch (_hfnum_.b.frnum & 0x7) { \
  662. case 7: \
  663. (_hcd_)->hfnum_7_samples_##_letter_++; \
  664. (_hcd_)->hfnum_7_frrem_accum_##_letter_ += \
  665. _hfnum_.b.frrem; \
  666. break; \
  667. case 0: \
  668. (_hcd_)->hfnum_0_samples_##_letter_++; \
  669. (_hcd_)->hfnum_0_frrem_accum_##_letter_ += \
  670. _hfnum_.b.frrem; \
  671. break; \
  672. default: \
  673. (_hcd_)->hfnum_other_samples_##_letter_++; \
  674. (_hcd_)->hfnum_other_frrem_accum_##_letter_ += \
  675. _hfnum_.b.frrem; \
  676. break; \
  677. } \
  678. } \
  679. } while (0)
  680. #else
  681. #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) do {} while (0)
  682. #endif
  683. #endif /* __DWC2_HCD_H__ */