vfio_pci_config.c 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767
  1. /*
  2. * VFIO PCI config space virtualization
  3. *
  4. * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
  5. * Author: Alex Williamson <alex.williamson@redhat.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. *
  11. * Derived from original vfio:
  12. * Copyright 2010 Cisco Systems, Inc. All rights reserved.
  13. * Author: Tom Lyon, pugs@cisco.com
  14. */
  15. /*
  16. * This code handles reading and writing of PCI configuration registers.
  17. * This is hairy because we want to allow a lot of flexibility to the
  18. * user driver, but cannot trust it with all of the config fields.
  19. * Tables determine which fields can be read and written, as well as
  20. * which fields are 'virtualized' - special actions and translations to
  21. * make it appear to the user that he has control, when in fact things
  22. * must be negotiated with the underlying OS.
  23. */
  24. #include <linux/fs.h>
  25. #include <linux/pci.h>
  26. #include <linux/uaccess.h>
  27. #include <linux/vfio.h>
  28. #include <linux/slab.h>
  29. #include "vfio_pci_private.h"
  30. #define PCI_CFG_SPACE_SIZE 256
  31. /* Useful "pseudo" capabilities */
  32. #define PCI_CAP_ID_BASIC 0
  33. #define PCI_CAP_ID_INVALID 0xFF
  34. #define is_bar(offset) \
  35. ((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
  36. (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))
  37. /*
  38. * Lengths of PCI Config Capabilities
  39. * 0: Removed from the user visible capability list
  40. * FF: Variable length
  41. */
  42. static const u8 pci_cap_length[PCI_CAP_ID_MAX + 1] = {
  43. [PCI_CAP_ID_BASIC] = PCI_STD_HEADER_SIZEOF, /* pci config header */
  44. [PCI_CAP_ID_PM] = PCI_PM_SIZEOF,
  45. [PCI_CAP_ID_AGP] = PCI_AGP_SIZEOF,
  46. [PCI_CAP_ID_VPD] = PCI_CAP_VPD_SIZEOF,
  47. [PCI_CAP_ID_SLOTID] = 0, /* bridge - don't care */
  48. [PCI_CAP_ID_MSI] = 0xFF, /* 10, 14, 20, or 24 */
  49. [PCI_CAP_ID_CHSWP] = 0, /* cpci - not yet */
  50. [PCI_CAP_ID_PCIX] = 0xFF, /* 8 or 24 */
  51. [PCI_CAP_ID_HT] = 0xFF, /* hypertransport */
  52. [PCI_CAP_ID_VNDR] = 0xFF, /* variable */
  53. [PCI_CAP_ID_DBG] = 0, /* debug - don't care */
  54. [PCI_CAP_ID_CCRC] = 0, /* cpci - not yet */
  55. [PCI_CAP_ID_SHPC] = 0, /* hotswap - not yet */
  56. [PCI_CAP_ID_SSVID] = 0, /* bridge - don't care */
  57. [PCI_CAP_ID_AGP3] = 0, /* AGP8x - not yet */
  58. [PCI_CAP_ID_SECDEV] = 0, /* secure device not yet */
  59. [PCI_CAP_ID_EXP] = 0xFF, /* 20 or 44 */
  60. [PCI_CAP_ID_MSIX] = PCI_CAP_MSIX_SIZEOF,
  61. [PCI_CAP_ID_SATA] = 0xFF,
  62. [PCI_CAP_ID_AF] = PCI_CAP_AF_SIZEOF,
  63. };
  64. /*
  65. * Lengths of PCIe/PCI-X Extended Config Capabilities
  66. * 0: Removed or masked from the user visible capabilty list
  67. * FF: Variable length
  68. */
  69. static const u16 pci_ext_cap_length[PCI_EXT_CAP_ID_MAX + 1] = {
  70. [PCI_EXT_CAP_ID_ERR] = PCI_ERR_ROOT_COMMAND,
  71. [PCI_EXT_CAP_ID_VC] = 0xFF,
  72. [PCI_EXT_CAP_ID_DSN] = PCI_EXT_CAP_DSN_SIZEOF,
  73. [PCI_EXT_CAP_ID_PWR] = PCI_EXT_CAP_PWR_SIZEOF,
  74. [PCI_EXT_CAP_ID_RCLD] = 0, /* root only - don't care */
  75. [PCI_EXT_CAP_ID_RCILC] = 0, /* root only - don't care */
  76. [PCI_EXT_CAP_ID_RCEC] = 0, /* root only - don't care */
  77. [PCI_EXT_CAP_ID_MFVC] = 0xFF,
  78. [PCI_EXT_CAP_ID_VC9] = 0xFF, /* same as CAP_ID_VC */
  79. [PCI_EXT_CAP_ID_RCRB] = 0, /* root only - don't care */
  80. [PCI_EXT_CAP_ID_VNDR] = 0xFF,
  81. [PCI_EXT_CAP_ID_CAC] = 0, /* obsolete */
  82. [PCI_EXT_CAP_ID_ACS] = 0xFF,
  83. [PCI_EXT_CAP_ID_ARI] = PCI_EXT_CAP_ARI_SIZEOF,
  84. [PCI_EXT_CAP_ID_ATS] = PCI_EXT_CAP_ATS_SIZEOF,
  85. [PCI_EXT_CAP_ID_SRIOV] = PCI_EXT_CAP_SRIOV_SIZEOF,
  86. [PCI_EXT_CAP_ID_MRIOV] = 0, /* not yet */
  87. [PCI_EXT_CAP_ID_MCAST] = PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF,
  88. [PCI_EXT_CAP_ID_PRI] = PCI_EXT_CAP_PRI_SIZEOF,
  89. [PCI_EXT_CAP_ID_AMD_XXX] = 0, /* not yet */
  90. [PCI_EXT_CAP_ID_REBAR] = 0xFF,
  91. [PCI_EXT_CAP_ID_DPA] = 0xFF,
  92. [PCI_EXT_CAP_ID_TPH] = 0xFF,
  93. [PCI_EXT_CAP_ID_LTR] = PCI_EXT_CAP_LTR_SIZEOF,
  94. [PCI_EXT_CAP_ID_SECPCI] = 0, /* not yet */
  95. [PCI_EXT_CAP_ID_PMUX] = 0, /* not yet */
  96. [PCI_EXT_CAP_ID_PASID] = 0, /* not yet */
  97. };
  98. /*
  99. * Read/Write Permission Bits - one bit for each bit in capability
  100. * Any field can be read if it exists, but what is read depends on
  101. * whether the field is 'virtualized', or just pass thru to the
  102. * hardware. Any virtualized field is also virtualized for writes.
  103. * Writes are only permitted if they have a 1 bit here.
  104. */
  105. struct perm_bits {
  106. u8 *virt; /* read/write virtual data, not hw */
  107. u8 *write; /* writeable bits */
  108. int (*readfn)(struct vfio_pci_device *vdev, int pos, int count,
  109. struct perm_bits *perm, int offset, __le32 *val);
  110. int (*writefn)(struct vfio_pci_device *vdev, int pos, int count,
  111. struct perm_bits *perm, int offset, __le32 val);
  112. };
  113. #define NO_VIRT 0
  114. #define ALL_VIRT 0xFFFFFFFFU
  115. #define NO_WRITE 0
  116. #define ALL_WRITE 0xFFFFFFFFU
  117. static int vfio_user_config_read(struct pci_dev *pdev, int offset,
  118. __le32 *val, int count)
  119. {
  120. int ret = -EINVAL;
  121. u32 tmp_val = 0;
  122. switch (count) {
  123. case 1:
  124. {
  125. u8 tmp;
  126. ret = pci_user_read_config_byte(pdev, offset, &tmp);
  127. tmp_val = tmp;
  128. break;
  129. }
  130. case 2:
  131. {
  132. u16 tmp;
  133. ret = pci_user_read_config_word(pdev, offset, &tmp);
  134. tmp_val = tmp;
  135. break;
  136. }
  137. case 4:
  138. ret = pci_user_read_config_dword(pdev, offset, &tmp_val);
  139. break;
  140. }
  141. *val = cpu_to_le32(tmp_val);
  142. return pcibios_err_to_errno(ret);
  143. }
  144. static int vfio_user_config_write(struct pci_dev *pdev, int offset,
  145. __le32 val, int count)
  146. {
  147. int ret = -EINVAL;
  148. u32 tmp_val = le32_to_cpu(val);
  149. switch (count) {
  150. case 1:
  151. ret = pci_user_write_config_byte(pdev, offset, tmp_val);
  152. break;
  153. case 2:
  154. ret = pci_user_write_config_word(pdev, offset, tmp_val);
  155. break;
  156. case 4:
  157. ret = pci_user_write_config_dword(pdev, offset, tmp_val);
  158. break;
  159. }
  160. return pcibios_err_to_errno(ret);
  161. }
  162. static int vfio_default_config_read(struct vfio_pci_device *vdev, int pos,
  163. int count, struct perm_bits *perm,
  164. int offset, __le32 *val)
  165. {
  166. __le32 virt = 0;
  167. memcpy(val, vdev->vconfig + pos, count);
  168. memcpy(&virt, perm->virt + offset, count);
  169. /* Any non-virtualized bits? */
  170. if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) {
  171. struct pci_dev *pdev = vdev->pdev;
  172. __le32 phys_val = 0;
  173. int ret;
  174. ret = vfio_user_config_read(pdev, pos, &phys_val, count);
  175. if (ret)
  176. return ret;
  177. *val = (phys_val & ~virt) | (*val & virt);
  178. }
  179. return count;
  180. }
  181. static int vfio_default_config_write(struct vfio_pci_device *vdev, int pos,
  182. int count, struct perm_bits *perm,
  183. int offset, __le32 val)
  184. {
  185. __le32 virt = 0, write = 0;
  186. memcpy(&write, perm->write + offset, count);
  187. if (!write)
  188. return count; /* drop, no writable bits */
  189. memcpy(&virt, perm->virt + offset, count);
  190. /* Virtualized and writable bits go to vconfig */
  191. if (write & virt) {
  192. __le32 virt_val = 0;
  193. memcpy(&virt_val, vdev->vconfig + pos, count);
  194. virt_val &= ~(write & virt);
  195. virt_val |= (val & (write & virt));
  196. memcpy(vdev->vconfig + pos, &virt_val, count);
  197. }
  198. /* Non-virtualzed and writable bits go to hardware */
  199. if (write & ~virt) {
  200. struct pci_dev *pdev = vdev->pdev;
  201. __le32 phys_val = 0;
  202. int ret;
  203. ret = vfio_user_config_read(pdev, pos, &phys_val, count);
  204. if (ret)
  205. return ret;
  206. phys_val &= ~(write & ~virt);
  207. phys_val |= (val & (write & ~virt));
  208. ret = vfio_user_config_write(pdev, pos, phys_val, count);
  209. if (ret)
  210. return ret;
  211. }
  212. return count;
  213. }
  214. /* Allow direct read from hardware, except for capability next pointer */
  215. static int vfio_direct_config_read(struct vfio_pci_device *vdev, int pos,
  216. int count, struct perm_bits *perm,
  217. int offset, __le32 *val)
  218. {
  219. int ret;
  220. ret = vfio_user_config_read(vdev->pdev, pos, val, count);
  221. if (ret)
  222. return pcibios_err_to_errno(ret);
  223. if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */
  224. if (offset < 4)
  225. memcpy(val, vdev->vconfig + pos, count);
  226. } else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */
  227. if (offset == PCI_CAP_LIST_ID && count > 1)
  228. memcpy(val, vdev->vconfig + pos,
  229. min(PCI_CAP_FLAGS, count));
  230. else if (offset == PCI_CAP_LIST_NEXT)
  231. memcpy(val, vdev->vconfig + pos, 1);
  232. }
  233. return count;
  234. }
  235. /* Raw access skips any kind of virtualization */
  236. static int vfio_raw_config_write(struct vfio_pci_device *vdev, int pos,
  237. int count, struct perm_bits *perm,
  238. int offset, __le32 val)
  239. {
  240. int ret;
  241. ret = vfio_user_config_write(vdev->pdev, pos, val, count);
  242. if (ret)
  243. return ret;
  244. return count;
  245. }
  246. static int vfio_raw_config_read(struct vfio_pci_device *vdev, int pos,
  247. int count, struct perm_bits *perm,
  248. int offset, __le32 *val)
  249. {
  250. int ret;
  251. ret = vfio_user_config_read(vdev->pdev, pos, val, count);
  252. if (ret)
  253. return pcibios_err_to_errno(ret);
  254. return count;
  255. }
  256. /* Default capability regions to read-only, no-virtualization */
  257. static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = {
  258. [0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
  259. };
  260. static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = {
  261. [0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
  262. };
  263. /*
  264. * Default unassigned regions to raw read-write access. Some devices
  265. * require this to function as they hide registers between the gaps in
  266. * config space (be2net). Like MMIO and I/O port registers, we have
  267. * to trust the hardware isolation.
  268. */
  269. static struct perm_bits unassigned_perms = {
  270. .readfn = vfio_raw_config_read,
  271. .writefn = vfio_raw_config_write
  272. };
  273. static void free_perm_bits(struct perm_bits *perm)
  274. {
  275. kfree(perm->virt);
  276. kfree(perm->write);
  277. perm->virt = NULL;
  278. perm->write = NULL;
  279. }
  280. static int alloc_perm_bits(struct perm_bits *perm, int size)
  281. {
  282. /*
  283. * Round up all permission bits to the next dword, this lets us
  284. * ignore whether a read/write exceeds the defined capability
  285. * structure. We can do this because:
  286. * - Standard config space is already dword aligned
  287. * - Capabilities are all dword alinged (bits 0:1 of next reserved)
  288. * - Express capabilities defined as dword aligned
  289. */
  290. size = round_up(size, 4);
  291. /*
  292. * Zero state is
  293. * - All Readable, None Writeable, None Virtualized
  294. */
  295. perm->virt = kzalloc(size, GFP_KERNEL);
  296. perm->write = kzalloc(size, GFP_KERNEL);
  297. if (!perm->virt || !perm->write) {
  298. free_perm_bits(perm);
  299. return -ENOMEM;
  300. }
  301. perm->readfn = vfio_default_config_read;
  302. perm->writefn = vfio_default_config_write;
  303. return 0;
  304. }
  305. /*
  306. * Helper functions for filling in permission tables
  307. */
  308. static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write)
  309. {
  310. p->virt[off] = virt;
  311. p->write[off] = write;
  312. }
  313. /* Handle endian-ness - pci and tables are little-endian */
  314. static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write)
  315. {
  316. *(__le16 *)(&p->virt[off]) = cpu_to_le16(virt);
  317. *(__le16 *)(&p->write[off]) = cpu_to_le16(write);
  318. }
  319. /* Handle endian-ness - pci and tables are little-endian */
  320. static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write)
  321. {
  322. *(__le32 *)(&p->virt[off]) = cpu_to_le32(virt);
  323. *(__le32 *)(&p->write[off]) = cpu_to_le32(write);
  324. }
  325. /*
  326. * Restore the *real* BARs after we detect a FLR or backdoor reset.
  327. * (backdoor = some device specific technique that we didn't catch)
  328. */
  329. static void vfio_bar_restore(struct vfio_pci_device *vdev)
  330. {
  331. struct pci_dev *pdev = vdev->pdev;
  332. u32 *rbar = vdev->rbar;
  333. int i;
  334. if (pdev->is_virtfn)
  335. return;
  336. pr_info("%s: %s reset recovery - restoring bars\n",
  337. __func__, dev_name(&pdev->dev));
  338. for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++)
  339. pci_user_write_config_dword(pdev, i, *rbar);
  340. pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar);
  341. }
  342. static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar)
  343. {
  344. unsigned long flags = pci_resource_flags(pdev, bar);
  345. u32 val;
  346. if (flags & IORESOURCE_IO)
  347. return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO);
  348. val = PCI_BASE_ADDRESS_SPACE_MEMORY;
  349. if (flags & IORESOURCE_PREFETCH)
  350. val |= PCI_BASE_ADDRESS_MEM_PREFETCH;
  351. if (flags & IORESOURCE_MEM_64)
  352. val |= PCI_BASE_ADDRESS_MEM_TYPE_64;
  353. return cpu_to_le32(val);
  354. }
  355. /*
  356. * Pretend we're hardware and tweak the values of the *virtual* PCI BARs
  357. * to reflect the hardware capabilities. This implements BAR sizing.
  358. */
  359. static void vfio_bar_fixup(struct vfio_pci_device *vdev)
  360. {
  361. struct pci_dev *pdev = vdev->pdev;
  362. int i;
  363. __le32 *bar;
  364. u64 mask;
  365. bar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0];
  366. for (i = PCI_STD_RESOURCES; i <= PCI_STD_RESOURCE_END; i++, bar++) {
  367. if (!pci_resource_start(pdev, i)) {
  368. *bar = 0; /* Unmapped by host = unimplemented to user */
  369. continue;
  370. }
  371. mask = ~(pci_resource_len(pdev, i) - 1);
  372. *bar &= cpu_to_le32((u32)mask);
  373. *bar |= vfio_generate_bar_flags(pdev, i);
  374. if (*bar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) {
  375. bar++;
  376. *bar &= cpu_to_le32((u32)(mask >> 32));
  377. i++;
  378. }
  379. }
  380. bar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS];
  381. /*
  382. * NB. we expose the actual BAR size here, regardless of whether
  383. * we can read it. When we report the REGION_INFO for the ROM
  384. * we report what PCI tells us is the actual ROM size.
  385. */
  386. if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) {
  387. mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1);
  388. mask |= PCI_ROM_ADDRESS_ENABLE;
  389. *bar &= cpu_to_le32((u32)mask);
  390. } else
  391. *bar = 0;
  392. vdev->bardirty = false;
  393. }
  394. static int vfio_basic_config_read(struct vfio_pci_device *vdev, int pos,
  395. int count, struct perm_bits *perm,
  396. int offset, __le32 *val)
  397. {
  398. if (is_bar(offset)) /* pos == offset for basic config */
  399. vfio_bar_fixup(vdev);
  400. count = vfio_default_config_read(vdev, pos, count, perm, offset, val);
  401. /* Mask in virtual memory enable for SR-IOV devices */
  402. if (offset == PCI_COMMAND && vdev->pdev->is_virtfn) {
  403. u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
  404. u32 tmp_val = le32_to_cpu(*val);
  405. tmp_val |= cmd & PCI_COMMAND_MEMORY;
  406. *val = cpu_to_le32(tmp_val);
  407. }
  408. return count;
  409. }
  410. static int vfio_basic_config_write(struct vfio_pci_device *vdev, int pos,
  411. int count, struct perm_bits *perm,
  412. int offset, __le32 val)
  413. {
  414. struct pci_dev *pdev = vdev->pdev;
  415. __le16 *virt_cmd;
  416. u16 new_cmd = 0;
  417. int ret;
  418. virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND];
  419. if (offset == PCI_COMMAND) {
  420. bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io;
  421. u16 phys_cmd;
  422. ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd);
  423. if (ret)
  424. return ret;
  425. new_cmd = le32_to_cpu(val);
  426. phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY);
  427. virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY);
  428. new_mem = !!(new_cmd & PCI_COMMAND_MEMORY);
  429. phys_io = !!(phys_cmd & PCI_COMMAND_IO);
  430. virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO);
  431. new_io = !!(new_cmd & PCI_COMMAND_IO);
  432. /*
  433. * If the user is writing mem/io enable (new_mem/io) and we
  434. * think it's already enabled (virt_mem/io), but the hardware
  435. * shows it disabled (phys_mem/io, then the device has
  436. * undergone some kind of backdoor reset and needs to be
  437. * restored before we allow it to enable the bars.
  438. * SR-IOV devices will trigger this, but we catch them later
  439. */
  440. if ((new_mem && virt_mem && !phys_mem) ||
  441. (new_io && virt_io && !phys_io))
  442. vfio_bar_restore(vdev);
  443. }
  444. count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
  445. if (count < 0)
  446. return count;
  447. /*
  448. * Save current memory/io enable bits in vconfig to allow for
  449. * the test above next time.
  450. */
  451. if (offset == PCI_COMMAND) {
  452. u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
  453. *virt_cmd &= cpu_to_le16(~mask);
  454. *virt_cmd |= cpu_to_le16(new_cmd & mask);
  455. }
  456. /* Emulate INTx disable */
  457. if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) {
  458. bool virt_intx_disable;
  459. virt_intx_disable = !!(le16_to_cpu(*virt_cmd) &
  460. PCI_COMMAND_INTX_DISABLE);
  461. if (virt_intx_disable && !vdev->virq_disabled) {
  462. vdev->virq_disabled = true;
  463. vfio_pci_intx_mask(vdev);
  464. } else if (!virt_intx_disable && vdev->virq_disabled) {
  465. vdev->virq_disabled = false;
  466. vfio_pci_intx_unmask(vdev);
  467. }
  468. }
  469. if (is_bar(offset))
  470. vdev->bardirty = true;
  471. return count;
  472. }
  473. /* Permissions for the Basic PCI Header */
  474. static int __init init_pci_cap_basic_perm(struct perm_bits *perm)
  475. {
  476. if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF))
  477. return -ENOMEM;
  478. perm->readfn = vfio_basic_config_read;
  479. perm->writefn = vfio_basic_config_write;
  480. /* Virtualized for SR-IOV functions, which just have FFFF */
  481. p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE);
  482. p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE);
  483. /*
  484. * Virtualize INTx disable, we use it internally for interrupt
  485. * control and can emulate it for non-PCI 2.3 devices.
  486. */
  487. p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE);
  488. /* Virtualize capability list, we might want to skip/disable */
  489. p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE);
  490. /* No harm to write */
  491. p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE);
  492. p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE);
  493. p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE);
  494. /* Virtualize all bars, can't touch the real ones */
  495. p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE);
  496. p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE);
  497. p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE);
  498. p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE);
  499. p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE);
  500. p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE);
  501. p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE);
  502. /* Allow us to adjust capability chain */
  503. p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE);
  504. /* Sometimes used by sw, just virtualize */
  505. p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE);
  506. /* Virtualize interrupt pin to allow hiding INTx */
  507. p_setb(perm, PCI_INTERRUPT_PIN, (u8)ALL_VIRT, (u8)NO_WRITE);
  508. return 0;
  509. }
  510. static int vfio_pm_config_write(struct vfio_pci_device *vdev, int pos,
  511. int count, struct perm_bits *perm,
  512. int offset, __le32 val)
  513. {
  514. count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
  515. if (count < 0)
  516. return count;
  517. if (offset == PCI_PM_CTRL) {
  518. pci_power_t state;
  519. switch (le32_to_cpu(val) & PCI_PM_CTRL_STATE_MASK) {
  520. case 0:
  521. state = PCI_D0;
  522. break;
  523. case 1:
  524. state = PCI_D1;
  525. break;
  526. case 2:
  527. state = PCI_D2;
  528. break;
  529. case 3:
  530. state = PCI_D3hot;
  531. break;
  532. }
  533. pci_set_power_state(vdev->pdev, state);
  534. }
  535. return count;
  536. }
  537. /* Permissions for the Power Management capability */
  538. static int __init init_pci_cap_pm_perm(struct perm_bits *perm)
  539. {
  540. if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM]))
  541. return -ENOMEM;
  542. perm->writefn = vfio_pm_config_write;
  543. /*
  544. * We always virtualize the next field so we can remove
  545. * capabilities from the chain if we want to.
  546. */
  547. p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
  548. /*
  549. * Power management is defined *per function*, so we can let
  550. * the user change power state, but we trap and initiate the
  551. * change ourselves, so the state bits are read-only.
  552. */
  553. p_setd(perm, PCI_PM_CTRL, NO_VIRT, ~PCI_PM_CTRL_STATE_MASK);
  554. return 0;
  555. }
  556. static int vfio_vpd_config_write(struct vfio_pci_device *vdev, int pos,
  557. int count, struct perm_bits *perm,
  558. int offset, __le32 val)
  559. {
  560. struct pci_dev *pdev = vdev->pdev;
  561. __le16 *paddr = (__le16 *)(vdev->vconfig + pos - offset + PCI_VPD_ADDR);
  562. __le32 *pdata = (__le32 *)(vdev->vconfig + pos - offset + PCI_VPD_DATA);
  563. u16 addr;
  564. u32 data;
  565. /*
  566. * Write through to emulation. If the write includes the upper byte
  567. * of PCI_VPD_ADDR, then the PCI_VPD_ADDR_F bit is written and we
  568. * have work to do.
  569. */
  570. count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
  571. if (count < 0 || offset > PCI_VPD_ADDR + 1 ||
  572. offset + count <= PCI_VPD_ADDR + 1)
  573. return count;
  574. addr = le16_to_cpu(*paddr);
  575. if (addr & PCI_VPD_ADDR_F) {
  576. data = le32_to_cpu(*pdata);
  577. if (pci_write_vpd(pdev, addr & ~PCI_VPD_ADDR_F, 4, &data) != 4)
  578. return count;
  579. } else {
  580. if (pci_read_vpd(pdev, addr, 4, &data) != 4)
  581. return count;
  582. *pdata = cpu_to_le32(data);
  583. }
  584. /*
  585. * Toggle PCI_VPD_ADDR_F in the emulated PCI_VPD_ADDR register to
  586. * signal completion. If an error occurs above, we assume that not
  587. * toggling this bit will induce a driver timeout.
  588. */
  589. addr ^= PCI_VPD_ADDR_F;
  590. *paddr = cpu_to_le16(addr);
  591. return count;
  592. }
  593. /* Permissions for Vital Product Data capability */
  594. static int __init init_pci_cap_vpd_perm(struct perm_bits *perm)
  595. {
  596. if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_VPD]))
  597. return -ENOMEM;
  598. perm->writefn = vfio_vpd_config_write;
  599. /*
  600. * We always virtualize the next field so we can remove
  601. * capabilities from the chain if we want to.
  602. */
  603. p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
  604. /*
  605. * Both the address and data registers are virtualized to
  606. * enable access through the pci_vpd_read/write functions
  607. */
  608. p_setw(perm, PCI_VPD_ADDR, (u16)ALL_VIRT, (u16)ALL_WRITE);
  609. p_setd(perm, PCI_VPD_DATA, ALL_VIRT, ALL_WRITE);
  610. return 0;
  611. }
  612. /* Permissions for PCI-X capability */
  613. static int __init init_pci_cap_pcix_perm(struct perm_bits *perm)
  614. {
  615. /* Alloc 24, but only 8 are used in v0 */
  616. if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2))
  617. return -ENOMEM;
  618. p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
  619. p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE);
  620. p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE);
  621. return 0;
  622. }
  623. static int vfio_exp_config_write(struct vfio_pci_device *vdev, int pos,
  624. int count, struct perm_bits *perm,
  625. int offset, __le32 val)
  626. {
  627. __le16 *ctrl = (__le16 *)(vdev->vconfig + pos -
  628. offset + PCI_EXP_DEVCTL);
  629. int readrq = le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ;
  630. count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
  631. if (count < 0)
  632. return count;
  633. /*
  634. * The FLR bit is virtualized, if set and the device supports PCIe
  635. * FLR, issue a reset_function. Regardless, clear the bit, the spec
  636. * requires it to be always read as zero. NB, reset_function might
  637. * not use a PCIe FLR, we don't have that level of granularity.
  638. */
  639. if (*ctrl & cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR)) {
  640. u32 cap;
  641. int ret;
  642. *ctrl &= ~cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR);
  643. ret = pci_user_read_config_dword(vdev->pdev,
  644. pos - offset + PCI_EXP_DEVCAP,
  645. &cap);
  646. if (!ret && (cap & PCI_EXP_DEVCAP_FLR))
  647. pci_try_reset_function(vdev->pdev);
  648. }
  649. /*
  650. * MPS is virtualized to the user, writes do not change the physical
  651. * register since determining a proper MPS value requires a system wide
  652. * device view. The MRRS is largely independent of MPS, but since the
  653. * user does not have that system-wide view, they might set a safe, but
  654. * inefficiently low value. Here we allow writes through to hardware,
  655. * but we set the floor to the physical device MPS setting, so that
  656. * we can at least use full TLPs, as defined by the MPS value.
  657. *
  658. * NB, if any devices actually depend on an artificially low MRRS
  659. * setting, this will need to be revisited, perhaps with a quirk
  660. * though pcie_set_readrq().
  661. */
  662. if (readrq != (le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ)) {
  663. readrq = 128 <<
  664. ((le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ) >> 12);
  665. readrq = max(readrq, pcie_get_mps(vdev->pdev));
  666. pcie_set_readrq(vdev->pdev, readrq);
  667. }
  668. return count;
  669. }
  670. /* Permissions for PCI Express capability */
  671. static int __init init_pci_cap_exp_perm(struct perm_bits *perm)
  672. {
  673. /* Alloc larger of two possible sizes */
  674. if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2))
  675. return -ENOMEM;
  676. perm->writefn = vfio_exp_config_write;
  677. p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
  678. /*
  679. * Allow writes to device control fields, except devctl_phantom,
  680. * which could confuse IOMMU, MPS, which can break communication
  681. * with other physical devices, and the ARI bit in devctl2, which
  682. * is set at probe time. FLR and MRRS get virtualized via our
  683. * writefn.
  684. */
  685. p_setw(perm, PCI_EXP_DEVCTL,
  686. PCI_EXP_DEVCTL_BCR_FLR | PCI_EXP_DEVCTL_PAYLOAD |
  687. PCI_EXP_DEVCTL_READRQ, ~PCI_EXP_DEVCTL_PHANTOM);
  688. p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI);
  689. return 0;
  690. }
  691. static int vfio_af_config_write(struct vfio_pci_device *vdev, int pos,
  692. int count, struct perm_bits *perm,
  693. int offset, __le32 val)
  694. {
  695. u8 *ctrl = vdev->vconfig + pos - offset + PCI_AF_CTRL;
  696. count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
  697. if (count < 0)
  698. return count;
  699. /*
  700. * The FLR bit is virtualized, if set and the device supports AF
  701. * FLR, issue a reset_function. Regardless, clear the bit, the spec
  702. * requires it to be always read as zero. NB, reset_function might
  703. * not use an AF FLR, we don't have that level of granularity.
  704. */
  705. if (*ctrl & PCI_AF_CTRL_FLR) {
  706. u8 cap;
  707. int ret;
  708. *ctrl &= ~PCI_AF_CTRL_FLR;
  709. ret = pci_user_read_config_byte(vdev->pdev,
  710. pos - offset + PCI_AF_CAP,
  711. &cap);
  712. if (!ret && (cap & PCI_AF_CAP_FLR) && (cap & PCI_AF_CAP_TP))
  713. pci_try_reset_function(vdev->pdev);
  714. }
  715. return count;
  716. }
  717. /* Permissions for Advanced Function capability */
  718. static int __init init_pci_cap_af_perm(struct perm_bits *perm)
  719. {
  720. if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF]))
  721. return -ENOMEM;
  722. perm->writefn = vfio_af_config_write;
  723. p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
  724. p_setb(perm, PCI_AF_CTRL, PCI_AF_CTRL_FLR, PCI_AF_CTRL_FLR);
  725. return 0;
  726. }
  727. /* Permissions for Advanced Error Reporting extended capability */
  728. static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm)
  729. {
  730. u32 mask;
  731. if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR]))
  732. return -ENOMEM;
  733. /*
  734. * Virtualize the first dword of all express capabilities
  735. * because it includes the next pointer. This lets us later
  736. * remove capabilities from the chain if we need to.
  737. */
  738. p_setd(perm, 0, ALL_VIRT, NO_WRITE);
  739. /* Writable bits mask */
  740. mask = PCI_ERR_UNC_UND | /* Undefined */
  741. PCI_ERR_UNC_DLP | /* Data Link Protocol */
  742. PCI_ERR_UNC_SURPDN | /* Surprise Down */
  743. PCI_ERR_UNC_POISON_TLP | /* Poisoned TLP */
  744. PCI_ERR_UNC_FCP | /* Flow Control Protocol */
  745. PCI_ERR_UNC_COMP_TIME | /* Completion Timeout */
  746. PCI_ERR_UNC_COMP_ABORT | /* Completer Abort */
  747. PCI_ERR_UNC_UNX_COMP | /* Unexpected Completion */
  748. PCI_ERR_UNC_RX_OVER | /* Receiver Overflow */
  749. PCI_ERR_UNC_MALF_TLP | /* Malformed TLP */
  750. PCI_ERR_UNC_ECRC | /* ECRC Error Status */
  751. PCI_ERR_UNC_UNSUP | /* Unsupported Request */
  752. PCI_ERR_UNC_ACSV | /* ACS Violation */
  753. PCI_ERR_UNC_INTN | /* internal error */
  754. PCI_ERR_UNC_MCBTLP | /* MC blocked TLP */
  755. PCI_ERR_UNC_ATOMEG | /* Atomic egress blocked */
  756. PCI_ERR_UNC_TLPPRE; /* TLP prefix blocked */
  757. p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask);
  758. p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask);
  759. p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask);
  760. mask = PCI_ERR_COR_RCVR | /* Receiver Error Status */
  761. PCI_ERR_COR_BAD_TLP | /* Bad TLP Status */
  762. PCI_ERR_COR_BAD_DLLP | /* Bad DLLP Status */
  763. PCI_ERR_COR_REP_ROLL | /* REPLAY_NUM Rollover */
  764. PCI_ERR_COR_REP_TIMER | /* Replay Timer Timeout */
  765. PCI_ERR_COR_ADV_NFAT | /* Advisory Non-Fatal */
  766. PCI_ERR_COR_INTERNAL | /* Corrected Internal */
  767. PCI_ERR_COR_LOG_OVER; /* Header Log Overflow */
  768. p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask);
  769. p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask);
  770. mask = PCI_ERR_CAP_ECRC_GENE | /* ECRC Generation Enable */
  771. PCI_ERR_CAP_ECRC_CHKE; /* ECRC Check Enable */
  772. p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask);
  773. return 0;
  774. }
  775. /* Permissions for Power Budgeting extended capability */
  776. static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm)
  777. {
  778. if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR]))
  779. return -ENOMEM;
  780. p_setd(perm, 0, ALL_VIRT, NO_WRITE);
  781. /* Writing the data selector is OK, the info is still read-only */
  782. p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE);
  783. return 0;
  784. }
  785. /*
  786. * Initialize the shared permission tables
  787. */
  788. void vfio_pci_uninit_perm_bits(void)
  789. {
  790. free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]);
  791. free_perm_bits(&cap_perms[PCI_CAP_ID_PM]);
  792. free_perm_bits(&cap_perms[PCI_CAP_ID_VPD]);
  793. free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]);
  794. free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]);
  795. free_perm_bits(&cap_perms[PCI_CAP_ID_AF]);
  796. free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
  797. free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
  798. }
  799. int __init vfio_pci_init_perm_bits(void)
  800. {
  801. int ret;
  802. /* Basic config space */
  803. ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]);
  804. /* Capabilities */
  805. ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]);
  806. ret |= init_pci_cap_vpd_perm(&cap_perms[PCI_CAP_ID_VPD]);
  807. ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]);
  808. cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_raw_config_write;
  809. ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]);
  810. ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]);
  811. /* Extended capabilities */
  812. ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
  813. ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
  814. ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_raw_config_write;
  815. if (ret)
  816. vfio_pci_uninit_perm_bits();
  817. return ret;
  818. }
  819. static int vfio_find_cap_start(struct vfio_pci_device *vdev, int pos)
  820. {
  821. u8 cap;
  822. int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE :
  823. PCI_STD_HEADER_SIZEOF;
  824. cap = vdev->pci_config_map[pos];
  825. if (cap == PCI_CAP_ID_BASIC)
  826. return 0;
  827. /* XXX Can we have to abutting capabilities of the same type? */
  828. while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap)
  829. pos--;
  830. return pos;
  831. }
  832. static int vfio_msi_config_read(struct vfio_pci_device *vdev, int pos,
  833. int count, struct perm_bits *perm,
  834. int offset, __le32 *val)
  835. {
  836. /* Update max available queue size from msi_qmax */
  837. if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
  838. __le16 *flags;
  839. int start;
  840. start = vfio_find_cap_start(vdev, pos);
  841. flags = (__le16 *)&vdev->vconfig[start];
  842. *flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK);
  843. *flags |= cpu_to_le16(vdev->msi_qmax << 1);
  844. }
  845. return vfio_default_config_read(vdev, pos, count, perm, offset, val);
  846. }
  847. static int vfio_msi_config_write(struct vfio_pci_device *vdev, int pos,
  848. int count, struct perm_bits *perm,
  849. int offset, __le32 val)
  850. {
  851. count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
  852. if (count < 0)
  853. return count;
  854. /* Fixup and write configured queue size and enable to hardware */
  855. if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
  856. __le16 *pflags;
  857. u16 flags;
  858. int start, ret;
  859. start = vfio_find_cap_start(vdev, pos);
  860. pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS];
  861. flags = le16_to_cpu(*pflags);
  862. /* MSI is enabled via ioctl */
  863. if (!is_msi(vdev))
  864. flags &= ~PCI_MSI_FLAGS_ENABLE;
  865. /* Check queue size */
  866. if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) {
  867. flags &= ~PCI_MSI_FLAGS_QSIZE;
  868. flags |= vdev->msi_qmax << 4;
  869. }
  870. /* Write back to virt and to hardware */
  871. *pflags = cpu_to_le16(flags);
  872. ret = pci_user_write_config_word(vdev->pdev,
  873. start + PCI_MSI_FLAGS,
  874. flags);
  875. if (ret)
  876. return pcibios_err_to_errno(ret);
  877. }
  878. return count;
  879. }
  880. /*
  881. * MSI determination is per-device, so this routine gets used beyond
  882. * initialization time. Don't add __init
  883. */
  884. static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags)
  885. {
  886. if (alloc_perm_bits(perm, len))
  887. return -ENOMEM;
  888. perm->readfn = vfio_msi_config_read;
  889. perm->writefn = vfio_msi_config_write;
  890. p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
  891. /*
  892. * The upper byte of the control register is reserved,
  893. * just setup the lower byte.
  894. */
  895. p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE);
  896. p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE);
  897. if (flags & PCI_MSI_FLAGS_64BIT) {
  898. p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE);
  899. p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE);
  900. if (flags & PCI_MSI_FLAGS_MASKBIT) {
  901. p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE);
  902. p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE);
  903. }
  904. } else {
  905. p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE);
  906. if (flags & PCI_MSI_FLAGS_MASKBIT) {
  907. p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE);
  908. p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE);
  909. }
  910. }
  911. return 0;
  912. }
  913. /* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
  914. static int vfio_msi_cap_len(struct vfio_pci_device *vdev, u8 pos)
  915. {
  916. struct pci_dev *pdev = vdev->pdev;
  917. int len, ret;
  918. u16 flags;
  919. ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags);
  920. if (ret)
  921. return pcibios_err_to_errno(ret);
  922. len = 10; /* Minimum size */
  923. if (flags & PCI_MSI_FLAGS_64BIT)
  924. len += 4;
  925. if (flags & PCI_MSI_FLAGS_MASKBIT)
  926. len += 10;
  927. if (vdev->msi_perm)
  928. return len;
  929. vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL);
  930. if (!vdev->msi_perm)
  931. return -ENOMEM;
  932. ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags);
  933. if (ret)
  934. return ret;
  935. return len;
  936. }
  937. /* Determine extended capability length for VC (2 & 9) and MFVC */
  938. static int vfio_vc_cap_len(struct vfio_pci_device *vdev, u16 pos)
  939. {
  940. struct pci_dev *pdev = vdev->pdev;
  941. u32 tmp;
  942. int ret, evcc, phases, vc_arb;
  943. int len = PCI_CAP_VC_BASE_SIZEOF;
  944. ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP1, &tmp);
  945. if (ret)
  946. return pcibios_err_to_errno(ret);
  947. evcc = tmp & PCI_VC_CAP1_EVCC; /* extended vc count */
  948. ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP2, &tmp);
  949. if (ret)
  950. return pcibios_err_to_errno(ret);
  951. if (tmp & PCI_VC_CAP2_128_PHASE)
  952. phases = 128;
  953. else if (tmp & PCI_VC_CAP2_64_PHASE)
  954. phases = 64;
  955. else if (tmp & PCI_VC_CAP2_32_PHASE)
  956. phases = 32;
  957. else
  958. phases = 0;
  959. vc_arb = phases * 4;
  960. /*
  961. * Port arbitration tables are root & switch only;
  962. * function arbitration tables are function 0 only.
  963. * In either case, we'll never let user write them so
  964. * we don't care how big they are
  965. */
  966. len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF;
  967. if (vc_arb) {
  968. len = round_up(len, 16);
  969. len += vc_arb / 8;
  970. }
  971. return len;
  972. }
  973. static int vfio_cap_len(struct vfio_pci_device *vdev, u8 cap, u8 pos)
  974. {
  975. struct pci_dev *pdev = vdev->pdev;
  976. u32 dword;
  977. u16 word;
  978. u8 byte;
  979. int ret;
  980. switch (cap) {
  981. case PCI_CAP_ID_MSI:
  982. return vfio_msi_cap_len(vdev, pos);
  983. case PCI_CAP_ID_PCIX:
  984. ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word);
  985. if (ret)
  986. return pcibios_err_to_errno(ret);
  987. if (PCI_X_CMD_VERSION(word)) {
  988. /* Test for extended capabilities */
  989. pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, &dword);
  990. vdev->extended_caps = (dword != 0);
  991. return PCI_CAP_PCIX_SIZEOF_V2;
  992. } else
  993. return PCI_CAP_PCIX_SIZEOF_V0;
  994. case PCI_CAP_ID_VNDR:
  995. /* length follows next field */
  996. ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte);
  997. if (ret)
  998. return pcibios_err_to_errno(ret);
  999. return byte;
  1000. case PCI_CAP_ID_EXP:
  1001. /* Test for extended capabilities */
  1002. pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, &dword);
  1003. vdev->extended_caps = (dword != 0);
  1004. /* length based on version */
  1005. if ((pcie_caps_reg(pdev) & PCI_EXP_FLAGS_VERS) == 1)
  1006. return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1;
  1007. else
  1008. return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2;
  1009. case PCI_CAP_ID_HT:
  1010. ret = pci_read_config_byte(pdev, pos + 3, &byte);
  1011. if (ret)
  1012. return pcibios_err_to_errno(ret);
  1013. return (byte & HT_3BIT_CAP_MASK) ?
  1014. HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG;
  1015. case PCI_CAP_ID_SATA:
  1016. ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte);
  1017. if (ret)
  1018. return pcibios_err_to_errno(ret);
  1019. byte &= PCI_SATA_REGS_MASK;
  1020. if (byte == PCI_SATA_REGS_INLINE)
  1021. return PCI_SATA_SIZEOF_LONG;
  1022. else
  1023. return PCI_SATA_SIZEOF_SHORT;
  1024. default:
  1025. pr_warn("%s: %s unknown length for pci cap 0x%x@0x%x\n",
  1026. dev_name(&pdev->dev), __func__, cap, pos);
  1027. }
  1028. return 0;
  1029. }
  1030. static int vfio_ext_cap_len(struct vfio_pci_device *vdev, u16 ecap, u16 epos)
  1031. {
  1032. struct pci_dev *pdev = vdev->pdev;
  1033. u8 byte;
  1034. u32 dword;
  1035. int ret;
  1036. switch (ecap) {
  1037. case PCI_EXT_CAP_ID_VNDR:
  1038. ret = pci_read_config_dword(pdev, epos + PCI_VSEC_HDR, &dword);
  1039. if (ret)
  1040. return pcibios_err_to_errno(ret);
  1041. return dword >> PCI_VSEC_HDR_LEN_SHIFT;
  1042. case PCI_EXT_CAP_ID_VC:
  1043. case PCI_EXT_CAP_ID_VC9:
  1044. case PCI_EXT_CAP_ID_MFVC:
  1045. return vfio_vc_cap_len(vdev, epos);
  1046. case PCI_EXT_CAP_ID_ACS:
  1047. ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte);
  1048. if (ret)
  1049. return pcibios_err_to_errno(ret);
  1050. if (byte & PCI_ACS_EC) {
  1051. int bits;
  1052. ret = pci_read_config_byte(pdev,
  1053. epos + PCI_ACS_EGRESS_BITS,
  1054. &byte);
  1055. if (ret)
  1056. return pcibios_err_to_errno(ret);
  1057. bits = byte ? round_up(byte, 32) : 256;
  1058. return 8 + (bits / 8);
  1059. }
  1060. return 8;
  1061. case PCI_EXT_CAP_ID_REBAR:
  1062. ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte);
  1063. if (ret)
  1064. return pcibios_err_to_errno(ret);
  1065. byte &= PCI_REBAR_CTRL_NBAR_MASK;
  1066. byte >>= PCI_REBAR_CTRL_NBAR_SHIFT;
  1067. return 4 + (byte * 8);
  1068. case PCI_EXT_CAP_ID_DPA:
  1069. ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte);
  1070. if (ret)
  1071. return pcibios_err_to_errno(ret);
  1072. byte &= PCI_DPA_CAP_SUBSTATE_MASK;
  1073. return PCI_DPA_BASE_SIZEOF + byte + 1;
  1074. case PCI_EXT_CAP_ID_TPH:
  1075. ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword);
  1076. if (ret)
  1077. return pcibios_err_to_errno(ret);
  1078. if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) {
  1079. int sts;
  1080. sts = dword & PCI_TPH_CAP_ST_MASK;
  1081. sts >>= PCI_TPH_CAP_ST_SHIFT;
  1082. return PCI_TPH_BASE_SIZEOF + (sts * 2) + 2;
  1083. }
  1084. return PCI_TPH_BASE_SIZEOF;
  1085. default:
  1086. pr_warn("%s: %s unknown length for pci ecap 0x%x@0x%x\n",
  1087. dev_name(&pdev->dev), __func__, ecap, epos);
  1088. }
  1089. return 0;
  1090. }
  1091. static int vfio_fill_vconfig_bytes(struct vfio_pci_device *vdev,
  1092. int offset, int size)
  1093. {
  1094. struct pci_dev *pdev = vdev->pdev;
  1095. int ret = 0;
  1096. /*
  1097. * We try to read physical config space in the largest chunks
  1098. * we can, assuming that all of the fields support dword access.
  1099. * pci_save_state() makes this same assumption and seems to do ok.
  1100. */
  1101. while (size) {
  1102. int filled;
  1103. if (size >= 4 && !(offset % 4)) {
  1104. __le32 *dwordp = (__le32 *)&vdev->vconfig[offset];
  1105. u32 dword;
  1106. ret = pci_read_config_dword(pdev, offset, &dword);
  1107. if (ret)
  1108. return ret;
  1109. *dwordp = cpu_to_le32(dword);
  1110. filled = 4;
  1111. } else if (size >= 2 && !(offset % 2)) {
  1112. __le16 *wordp = (__le16 *)&vdev->vconfig[offset];
  1113. u16 word;
  1114. ret = pci_read_config_word(pdev, offset, &word);
  1115. if (ret)
  1116. return ret;
  1117. *wordp = cpu_to_le16(word);
  1118. filled = 2;
  1119. } else {
  1120. u8 *byte = &vdev->vconfig[offset];
  1121. ret = pci_read_config_byte(pdev, offset, byte);
  1122. if (ret)
  1123. return ret;
  1124. filled = 1;
  1125. }
  1126. offset += filled;
  1127. size -= filled;
  1128. }
  1129. return ret;
  1130. }
  1131. static int vfio_cap_init(struct vfio_pci_device *vdev)
  1132. {
  1133. struct pci_dev *pdev = vdev->pdev;
  1134. u8 *map = vdev->pci_config_map;
  1135. u16 status;
  1136. u8 pos, *prev, cap;
  1137. int loops, ret, caps = 0;
  1138. /* Any capabilities? */
  1139. ret = pci_read_config_word(pdev, PCI_STATUS, &status);
  1140. if (ret)
  1141. return ret;
  1142. if (!(status & PCI_STATUS_CAP_LIST))
  1143. return 0; /* Done */
  1144. ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
  1145. if (ret)
  1146. return ret;
  1147. /* Mark the previous position in case we want to skip a capability */
  1148. prev = &vdev->vconfig[PCI_CAPABILITY_LIST];
  1149. /* We can bound our loop, capabilities are dword aligned */
  1150. loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF;
  1151. while (pos && loops--) {
  1152. u8 next;
  1153. int i, len = 0;
  1154. ret = pci_read_config_byte(pdev, pos, &cap);
  1155. if (ret)
  1156. return ret;
  1157. ret = pci_read_config_byte(pdev,
  1158. pos + PCI_CAP_LIST_NEXT, &next);
  1159. if (ret)
  1160. return ret;
  1161. if (cap <= PCI_CAP_ID_MAX) {
  1162. len = pci_cap_length[cap];
  1163. if (len == 0xFF) { /* Variable length */
  1164. len = vfio_cap_len(vdev, cap, pos);
  1165. if (len < 0)
  1166. return len;
  1167. }
  1168. }
  1169. if (!len) {
  1170. pr_info("%s: %s hiding cap 0x%x\n",
  1171. __func__, dev_name(&pdev->dev), cap);
  1172. *prev = next;
  1173. pos = next;
  1174. continue;
  1175. }
  1176. /* Sanity check, do we overlap other capabilities? */
  1177. for (i = 0; i < len; i++) {
  1178. if (likely(map[pos + i] == PCI_CAP_ID_INVALID))
  1179. continue;
  1180. pr_warn("%s: %s pci config conflict @0x%x, was cap 0x%x now cap 0x%x\n",
  1181. __func__, dev_name(&pdev->dev),
  1182. pos + i, map[pos + i], cap);
  1183. }
  1184. memset(map + pos, cap, len);
  1185. ret = vfio_fill_vconfig_bytes(vdev, pos, len);
  1186. if (ret)
  1187. return ret;
  1188. prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT];
  1189. pos = next;
  1190. caps++;
  1191. }
  1192. /* If we didn't fill any capabilities, clear the status flag */
  1193. if (!caps) {
  1194. __le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS];
  1195. *vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST);
  1196. }
  1197. return 0;
  1198. }
  1199. static int vfio_ecap_init(struct vfio_pci_device *vdev)
  1200. {
  1201. struct pci_dev *pdev = vdev->pdev;
  1202. u8 *map = vdev->pci_config_map;
  1203. u16 epos;
  1204. __le32 *prev = NULL;
  1205. int loops, ret, ecaps = 0;
  1206. if (!vdev->extended_caps)
  1207. return 0;
  1208. epos = PCI_CFG_SPACE_SIZE;
  1209. loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF;
  1210. while (loops-- && epos >= PCI_CFG_SPACE_SIZE) {
  1211. u32 header;
  1212. u16 ecap;
  1213. int i, len = 0;
  1214. bool hidden = false;
  1215. ret = pci_read_config_dword(pdev, epos, &header);
  1216. if (ret)
  1217. return ret;
  1218. ecap = PCI_EXT_CAP_ID(header);
  1219. if (ecap <= PCI_EXT_CAP_ID_MAX) {
  1220. len = pci_ext_cap_length[ecap];
  1221. if (len == 0xFF) {
  1222. len = vfio_ext_cap_len(vdev, ecap, epos);
  1223. if (len < 0)
  1224. return ret;
  1225. }
  1226. }
  1227. if (!len) {
  1228. pr_info("%s: %s hiding ecap 0x%x@0x%x\n",
  1229. __func__, dev_name(&pdev->dev), ecap, epos);
  1230. /* If not the first in the chain, we can skip over it */
  1231. if (prev) {
  1232. u32 val = epos = PCI_EXT_CAP_NEXT(header);
  1233. *prev &= cpu_to_le32(~(0xffcU << 20));
  1234. *prev |= cpu_to_le32(val << 20);
  1235. continue;
  1236. }
  1237. /*
  1238. * Otherwise, fill in a placeholder, the direct
  1239. * readfn will virtualize this automatically
  1240. */
  1241. len = PCI_CAP_SIZEOF;
  1242. hidden = true;
  1243. }
  1244. for (i = 0; i < len; i++) {
  1245. if (likely(map[epos + i] == PCI_CAP_ID_INVALID))
  1246. continue;
  1247. pr_warn("%s: %s pci config conflict @0x%x, was ecap 0x%x now ecap 0x%x\n",
  1248. __func__, dev_name(&pdev->dev),
  1249. epos + i, map[epos + i], ecap);
  1250. }
  1251. /*
  1252. * Even though ecap is 2 bytes, we're currently a long way
  1253. * from exceeding 1 byte capabilities. If we ever make it
  1254. * up to 0xFF we'll need to up this to a two-byte, byte map.
  1255. */
  1256. BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID);
  1257. memset(map + epos, ecap, len);
  1258. ret = vfio_fill_vconfig_bytes(vdev, epos, len);
  1259. if (ret)
  1260. return ret;
  1261. /*
  1262. * If we're just using this capability to anchor the list,
  1263. * hide the real ID. Only count real ecaps. XXX PCI spec
  1264. * indicates to use cap id = 0, version = 0, next = 0 if
  1265. * ecaps are absent, hope users check all the way to next.
  1266. */
  1267. if (hidden)
  1268. *(__le32 *)&vdev->vconfig[epos] &=
  1269. cpu_to_le32((0xffcU << 20));
  1270. else
  1271. ecaps++;
  1272. prev = (__le32 *)&vdev->vconfig[epos];
  1273. epos = PCI_EXT_CAP_NEXT(header);
  1274. }
  1275. if (!ecaps)
  1276. *(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0;
  1277. return 0;
  1278. }
  1279. /*
  1280. * For each device we allocate a pci_config_map that indicates the
  1281. * capability occupying each dword and thus the struct perm_bits we
  1282. * use for read and write. We also allocate a virtualized config
  1283. * space which tracks reads and writes to bits that we emulate for
  1284. * the user. Initial values filled from device.
  1285. *
  1286. * Using shared stuct perm_bits between all vfio-pci devices saves
  1287. * us from allocating cfg_size buffers for virt and write for every
  1288. * device. We could remove vconfig and allocate individual buffers
  1289. * for each area requring emulated bits, but the array of pointers
  1290. * would be comparable in size (at least for standard config space).
  1291. */
  1292. int vfio_config_init(struct vfio_pci_device *vdev)
  1293. {
  1294. struct pci_dev *pdev = vdev->pdev;
  1295. u8 *map, *vconfig;
  1296. int ret;
  1297. /*
  1298. * Config space, caps and ecaps are all dword aligned, so we could
  1299. * use one byte per dword to record the type. However, there are
  1300. * no requiremenst on the length of a capability, so the gap between
  1301. * capabilities needs byte granularity.
  1302. */
  1303. map = kmalloc(pdev->cfg_size, GFP_KERNEL);
  1304. if (!map)
  1305. return -ENOMEM;
  1306. vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL);
  1307. if (!vconfig) {
  1308. kfree(map);
  1309. return -ENOMEM;
  1310. }
  1311. vdev->pci_config_map = map;
  1312. vdev->vconfig = vconfig;
  1313. memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF);
  1314. memset(map + PCI_STD_HEADER_SIZEOF, PCI_CAP_ID_INVALID,
  1315. pdev->cfg_size - PCI_STD_HEADER_SIZEOF);
  1316. ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF);
  1317. if (ret)
  1318. goto out;
  1319. vdev->bardirty = true;
  1320. /*
  1321. * XXX can we just pci_load_saved_state/pci_restore_state?
  1322. * may need to rebuild vconfig after that
  1323. */
  1324. /* For restore after reset */
  1325. vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]);
  1326. vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]);
  1327. vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]);
  1328. vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]);
  1329. vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]);
  1330. vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]);
  1331. vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]);
  1332. if (pdev->is_virtfn) {
  1333. *(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor);
  1334. *(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device);
  1335. }
  1336. if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX))
  1337. vconfig[PCI_INTERRUPT_PIN] = 0;
  1338. ret = vfio_cap_init(vdev);
  1339. if (ret)
  1340. goto out;
  1341. ret = vfio_ecap_init(vdev);
  1342. if (ret)
  1343. goto out;
  1344. return 0;
  1345. out:
  1346. kfree(map);
  1347. vdev->pci_config_map = NULL;
  1348. kfree(vconfig);
  1349. vdev->vconfig = NULL;
  1350. return pcibios_err_to_errno(ret);
  1351. }
  1352. void vfio_config_free(struct vfio_pci_device *vdev)
  1353. {
  1354. kfree(vdev->vconfig);
  1355. vdev->vconfig = NULL;
  1356. kfree(vdev->pci_config_map);
  1357. vdev->pci_config_map = NULL;
  1358. kfree(vdev->msi_perm);
  1359. vdev->msi_perm = NULL;
  1360. }
  1361. /*
  1362. * Find the remaining number of bytes in a dword that match the given
  1363. * position. Stop at either the end of the capability or the dword boundary.
  1364. */
  1365. static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_device *vdev,
  1366. loff_t pos)
  1367. {
  1368. u8 cap = vdev->pci_config_map[pos];
  1369. size_t i;
  1370. for (i = 1; (pos + i) % 4 && vdev->pci_config_map[pos + i] == cap; i++)
  1371. /* nop */;
  1372. return i;
  1373. }
  1374. static ssize_t vfio_config_do_rw(struct vfio_pci_device *vdev, char __user *buf,
  1375. size_t count, loff_t *ppos, bool iswrite)
  1376. {
  1377. struct pci_dev *pdev = vdev->pdev;
  1378. struct perm_bits *perm;
  1379. __le32 val = 0;
  1380. int cap_start = 0, offset;
  1381. u8 cap_id;
  1382. ssize_t ret;
  1383. if (*ppos < 0 || *ppos >= pdev->cfg_size ||
  1384. *ppos + count > pdev->cfg_size)
  1385. return -EFAULT;
  1386. /*
  1387. * Chop accesses into aligned chunks containing no more than a
  1388. * single capability. Caller increments to the next chunk.
  1389. */
  1390. count = min(count, vfio_pci_cap_remaining_dword(vdev, *ppos));
  1391. if (count >= 4 && !(*ppos % 4))
  1392. count = 4;
  1393. else if (count >= 2 && !(*ppos % 2))
  1394. count = 2;
  1395. else
  1396. count = 1;
  1397. ret = count;
  1398. cap_id = vdev->pci_config_map[*ppos];
  1399. if (cap_id == PCI_CAP_ID_INVALID) {
  1400. perm = &unassigned_perms;
  1401. cap_start = *ppos;
  1402. } else {
  1403. if (*ppos >= PCI_CFG_SPACE_SIZE) {
  1404. WARN_ON(cap_id > PCI_EXT_CAP_ID_MAX);
  1405. perm = &ecap_perms[cap_id];
  1406. cap_start = vfio_find_cap_start(vdev, *ppos);
  1407. } else {
  1408. WARN_ON(cap_id > PCI_CAP_ID_MAX);
  1409. perm = &cap_perms[cap_id];
  1410. if (cap_id == PCI_CAP_ID_MSI)
  1411. perm = vdev->msi_perm;
  1412. if (cap_id > PCI_CAP_ID_BASIC)
  1413. cap_start = vfio_find_cap_start(vdev, *ppos);
  1414. }
  1415. }
  1416. WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC);
  1417. WARN_ON(cap_start > *ppos);
  1418. offset = *ppos - cap_start;
  1419. if (iswrite) {
  1420. if (!perm->writefn)
  1421. return ret;
  1422. if (copy_from_user(&val, buf, count))
  1423. return -EFAULT;
  1424. ret = perm->writefn(vdev, *ppos, count, perm, offset, val);
  1425. } else {
  1426. if (perm->readfn) {
  1427. ret = perm->readfn(vdev, *ppos, count,
  1428. perm, offset, &val);
  1429. if (ret < 0)
  1430. return ret;
  1431. }
  1432. if (copy_to_user(buf, &val, count))
  1433. return -EFAULT;
  1434. }
  1435. return ret;
  1436. }
  1437. ssize_t vfio_pci_config_rw(struct vfio_pci_device *vdev, char __user *buf,
  1438. size_t count, loff_t *ppos, bool iswrite)
  1439. {
  1440. size_t done = 0;
  1441. int ret = 0;
  1442. loff_t pos = *ppos;
  1443. pos &= VFIO_PCI_OFFSET_MASK;
  1444. while (count) {
  1445. ret = vfio_config_do_rw(vdev, buf, count, &pos, iswrite);
  1446. if (ret < 0)
  1447. return ret;
  1448. count -= ret;
  1449. done += ret;
  1450. buf += ret;
  1451. pos += ret;
  1452. }
  1453. *ppos += done;
  1454. return done;
  1455. }