w1_ds2433.c 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320
  1. /*
  2. * w1_ds2433.c - w1 family 23 (DS2433) driver
  3. *
  4. * Copyright (c) 2005 Ben Gardner <bgardner@wabtec.com>
  5. *
  6. * This source code is licensed under the GNU General Public License,
  7. * Version 2. See the file COPYING for more details.
  8. */
  9. #include <linux/kernel.h>
  10. #include <linux/module.h>
  11. #include <linux/moduleparam.h>
  12. #include <linux/device.h>
  13. #include <linux/types.h>
  14. #include <linux/delay.h>
  15. #include <linux/slab.h>
  16. #ifdef CONFIG_W1_SLAVE_DS2433_CRC
  17. #include <linux/crc16.h>
  18. #define CRC16_INIT 0
  19. #define CRC16_VALID 0xb001
  20. #endif
  21. #include "../w1.h"
  22. #include "../w1_int.h"
  23. #include "../w1_family.h"
  24. MODULE_LICENSE("GPL");
  25. MODULE_AUTHOR("Ben Gardner <bgardner@wabtec.com>");
  26. MODULE_DESCRIPTION("w1 family 23 driver for DS2433, 4kb EEPROM");
  27. MODULE_ALIAS("w1-family-" __stringify(W1_EEPROM_DS2433));
  28. #define W1_EEPROM_SIZE 512
  29. #define W1_PAGE_COUNT 16
  30. #define W1_PAGE_SIZE 32
  31. #define W1_PAGE_BITS 5
  32. #define W1_PAGE_MASK 0x1F
  33. #define W1_F23_TIME 300
  34. #define W1_F23_READ_EEPROM 0xF0
  35. #define W1_F23_WRITE_SCRATCH 0x0F
  36. #define W1_F23_READ_SCRATCH 0xAA
  37. #define W1_F23_COPY_SCRATCH 0x55
  38. struct w1_f23_data {
  39. u8 memory[W1_EEPROM_SIZE];
  40. u32 validcrc;
  41. };
  42. /**
  43. * Check the file size bounds and adjusts count as needed.
  44. * This would not be needed if the file size didn't reset to 0 after a write.
  45. */
  46. static inline size_t w1_f23_fix_count(loff_t off, size_t count, size_t size)
  47. {
  48. if (off > size)
  49. return 0;
  50. if ((off + count) > size)
  51. return (size - off);
  52. return count;
  53. }
  54. #ifdef CONFIG_W1_SLAVE_DS2433_CRC
  55. static int w1_f23_refresh_block(struct w1_slave *sl, struct w1_f23_data *data,
  56. int block)
  57. {
  58. u8 wrbuf[3];
  59. int off = block * W1_PAGE_SIZE;
  60. if (data->validcrc & (1 << block))
  61. return 0;
  62. if (w1_reset_select_slave(sl)) {
  63. data->validcrc = 0;
  64. return -EIO;
  65. }
  66. wrbuf[0] = W1_F23_READ_EEPROM;
  67. wrbuf[1] = off & 0xff;
  68. wrbuf[2] = off >> 8;
  69. w1_write_block(sl->master, wrbuf, 3);
  70. w1_read_block(sl->master, &data->memory[off], W1_PAGE_SIZE);
  71. /* cache the block if the CRC is valid */
  72. if (crc16(CRC16_INIT, &data->memory[off], W1_PAGE_SIZE) == CRC16_VALID)
  73. data->validcrc |= (1 << block);
  74. return 0;
  75. }
  76. #endif /* CONFIG_W1_SLAVE_DS2433_CRC */
  77. static ssize_t eeprom_read(struct file *filp, struct kobject *kobj,
  78. struct bin_attribute *bin_attr, char *buf,
  79. loff_t off, size_t count)
  80. {
  81. struct w1_slave *sl = kobj_to_w1_slave(kobj);
  82. #ifdef CONFIG_W1_SLAVE_DS2433_CRC
  83. struct w1_f23_data *data = sl->family_data;
  84. int i, min_page, max_page;
  85. #else
  86. u8 wrbuf[3];
  87. #endif
  88. if ((count = w1_f23_fix_count(off, count, W1_EEPROM_SIZE)) == 0)
  89. return 0;
  90. mutex_lock(&sl->master->bus_mutex);
  91. #ifdef CONFIG_W1_SLAVE_DS2433_CRC
  92. min_page = (off >> W1_PAGE_BITS);
  93. max_page = (off + count - 1) >> W1_PAGE_BITS;
  94. for (i = min_page; i <= max_page; i++) {
  95. if (w1_f23_refresh_block(sl, data, i)) {
  96. count = -EIO;
  97. goto out_up;
  98. }
  99. }
  100. memcpy(buf, &data->memory[off], count);
  101. #else /* CONFIG_W1_SLAVE_DS2433_CRC */
  102. /* read directly from the EEPROM */
  103. if (w1_reset_select_slave(sl)) {
  104. count = -EIO;
  105. goto out_up;
  106. }
  107. wrbuf[0] = W1_F23_READ_EEPROM;
  108. wrbuf[1] = off & 0xff;
  109. wrbuf[2] = off >> 8;
  110. w1_write_block(sl->master, wrbuf, 3);
  111. w1_read_block(sl->master, buf, count);
  112. #endif /* CONFIG_W1_SLAVE_DS2433_CRC */
  113. out_up:
  114. mutex_unlock(&sl->master->bus_mutex);
  115. return count;
  116. }
  117. /**
  118. * Writes to the scratchpad and reads it back for verification.
  119. * Then copies the scratchpad to EEPROM.
  120. * The data must be on one page.
  121. * The master must be locked.
  122. *
  123. * @param sl The slave structure
  124. * @param addr Address for the write
  125. * @param len length must be <= (W1_PAGE_SIZE - (addr & W1_PAGE_MASK))
  126. * @param data The data to write
  127. * @return 0=Success -1=failure
  128. */
  129. static int w1_f23_write(struct w1_slave *sl, int addr, int len, const u8 *data)
  130. {
  131. #ifdef CONFIG_W1_SLAVE_DS2433_CRC
  132. struct w1_f23_data *f23 = sl->family_data;
  133. #endif
  134. u8 wrbuf[4];
  135. u8 rdbuf[W1_PAGE_SIZE + 3];
  136. u8 es = (addr + len - 1) & 0x1f;
  137. /* Write the data to the scratchpad */
  138. if (w1_reset_select_slave(sl))
  139. return -1;
  140. wrbuf[0] = W1_F23_WRITE_SCRATCH;
  141. wrbuf[1] = addr & 0xff;
  142. wrbuf[2] = addr >> 8;
  143. w1_write_block(sl->master, wrbuf, 3);
  144. w1_write_block(sl->master, data, len);
  145. /* Read the scratchpad and verify */
  146. if (w1_reset_select_slave(sl))
  147. return -1;
  148. w1_write_8(sl->master, W1_F23_READ_SCRATCH);
  149. w1_read_block(sl->master, rdbuf, len + 3);
  150. /* Compare what was read against the data written */
  151. if ((rdbuf[0] != wrbuf[1]) || (rdbuf[1] != wrbuf[2]) ||
  152. (rdbuf[2] != es) || (memcmp(data, &rdbuf[3], len) != 0))
  153. return -1;
  154. /* Copy the scratchpad to EEPROM */
  155. if (w1_reset_select_slave(sl))
  156. return -1;
  157. wrbuf[0] = W1_F23_COPY_SCRATCH;
  158. wrbuf[3] = es;
  159. w1_write_block(sl->master, wrbuf, 4);
  160. /* Sleep for 5 ms to wait for the write to complete */
  161. msleep(5);
  162. /* Reset the bus to wake up the EEPROM (this may not be needed) */
  163. w1_reset_bus(sl->master);
  164. #ifdef CONFIG_W1_SLAVE_DS2433_CRC
  165. f23->validcrc &= ~(1 << (addr >> W1_PAGE_BITS));
  166. #endif
  167. return 0;
  168. }
  169. static ssize_t eeprom_write(struct file *filp, struct kobject *kobj,
  170. struct bin_attribute *bin_attr, char *buf,
  171. loff_t off, size_t count)
  172. {
  173. struct w1_slave *sl = kobj_to_w1_slave(kobj);
  174. int addr, len, idx;
  175. if ((count = w1_f23_fix_count(off, count, W1_EEPROM_SIZE)) == 0)
  176. return 0;
  177. #ifdef CONFIG_W1_SLAVE_DS2433_CRC
  178. /* can only write full blocks in cached mode */
  179. if ((off & W1_PAGE_MASK) || (count & W1_PAGE_MASK)) {
  180. dev_err(&sl->dev, "invalid offset/count off=%d cnt=%zd\n",
  181. (int)off, count);
  182. return -EINVAL;
  183. }
  184. /* make sure the block CRCs are valid */
  185. for (idx = 0; idx < count; idx += W1_PAGE_SIZE) {
  186. if (crc16(CRC16_INIT, &buf[idx], W1_PAGE_SIZE) != CRC16_VALID) {
  187. dev_err(&sl->dev, "bad CRC at offset %d\n", (int)off);
  188. return -EINVAL;
  189. }
  190. }
  191. #endif /* CONFIG_W1_SLAVE_DS2433_CRC */
  192. mutex_lock(&sl->master->bus_mutex);
  193. /* Can only write data to one page at a time */
  194. idx = 0;
  195. while (idx < count) {
  196. addr = off + idx;
  197. len = W1_PAGE_SIZE - (addr & W1_PAGE_MASK);
  198. if (len > (count - idx))
  199. len = count - idx;
  200. if (w1_f23_write(sl, addr, len, &buf[idx]) < 0) {
  201. count = -EIO;
  202. goto out_up;
  203. }
  204. idx += len;
  205. }
  206. out_up:
  207. mutex_unlock(&sl->master->bus_mutex);
  208. return count;
  209. }
  210. static BIN_ATTR_RW(eeprom, W1_EEPROM_SIZE);
  211. static struct bin_attribute *w1_f23_bin_attributes[] = {
  212. &bin_attr_eeprom,
  213. NULL,
  214. };
  215. static const struct attribute_group w1_f23_group = {
  216. .bin_attrs = w1_f23_bin_attributes,
  217. };
  218. static const struct attribute_group *w1_f23_groups[] = {
  219. &w1_f23_group,
  220. NULL,
  221. };
  222. static int w1_f23_add_slave(struct w1_slave *sl)
  223. {
  224. #ifdef CONFIG_W1_SLAVE_DS2433_CRC
  225. struct w1_f23_data *data;
  226. data = kzalloc(sizeof(struct w1_f23_data), GFP_KERNEL);
  227. if (!data)
  228. return -ENOMEM;
  229. sl->family_data = data;
  230. #endif /* CONFIG_W1_SLAVE_DS2433_CRC */
  231. return 0;
  232. }
  233. static void w1_f23_remove_slave(struct w1_slave *sl)
  234. {
  235. #ifdef CONFIG_W1_SLAVE_DS2433_CRC
  236. kfree(sl->family_data);
  237. sl->family_data = NULL;
  238. #endif /* CONFIG_W1_SLAVE_DS2433_CRC */
  239. }
  240. static struct w1_family_ops w1_f23_fops = {
  241. .add_slave = w1_f23_add_slave,
  242. .remove_slave = w1_f23_remove_slave,
  243. .groups = w1_f23_groups,
  244. };
  245. static struct w1_family w1_family_23 = {
  246. .fid = W1_EEPROM_DS2433,
  247. .fops = &w1_f23_fops,
  248. };
  249. static int __init w1_f23_init(void)
  250. {
  251. return w1_register_family(&w1_family_23);
  252. }
  253. static void __exit w1_f23_fini(void)
  254. {
  255. w1_unregister_family(&w1_family_23);
  256. }
  257. module_init(w1_f23_init);
  258. module_exit(w1_f23_fini);