dir.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650
  1. /*
  2. * linux/fs/ext4/dir.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/dir.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * ext4 directory handling functions
  16. *
  17. * Big-endian to little-endian byte-swapping/bitmaps by
  18. * David S. Miller (davem@caip.rutgers.edu), 1995
  19. *
  20. * Hash Tree Directory indexing (c) 2001 Daniel Phillips
  21. *
  22. */
  23. #include <linux/fs.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/slab.h>
  26. #include "ext4.h"
  27. #include "xattr.h"
  28. static int ext4_dx_readdir(struct file *, struct dir_context *);
  29. /**
  30. * Check if the given dir-inode refers to an htree-indexed directory
  31. * (or a directory which could potentially get converted to use htree
  32. * indexing).
  33. *
  34. * Return 1 if it is a dx dir, 0 if not
  35. */
  36. static int is_dx_dir(struct inode *inode)
  37. {
  38. struct super_block *sb = inode->i_sb;
  39. if (ext4_has_feature_dir_index(inode->i_sb) &&
  40. ((ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) ||
  41. ((inode->i_size >> sb->s_blocksize_bits) == 1) ||
  42. ext4_has_inline_data(inode)))
  43. return 1;
  44. return 0;
  45. }
  46. /*
  47. * Return 0 if the directory entry is OK, and 1 if there is a problem
  48. *
  49. * Note: this is the opposite of what ext2 and ext3 historically returned...
  50. *
  51. * bh passed here can be an inode block or a dir data block, depending
  52. * on the inode inline data flag.
  53. */
  54. int __ext4_check_dir_entry(const char *function, unsigned int line,
  55. struct inode *dir, struct file *filp,
  56. struct ext4_dir_entry_2 *de,
  57. struct buffer_head *bh, char *buf, int size,
  58. unsigned int offset)
  59. {
  60. const char *error_msg = NULL;
  61. const int rlen = ext4_rec_len_from_disk(de->rec_len,
  62. dir->i_sb->s_blocksize);
  63. if (unlikely(rlen < EXT4_DIR_REC_LEN(1)))
  64. error_msg = "rec_len is smaller than minimal";
  65. else if (unlikely(rlen % 4 != 0))
  66. error_msg = "rec_len % 4 != 0";
  67. else if (unlikely(rlen < EXT4_DIR_REC_LEN(de->name_len)))
  68. error_msg = "rec_len is too small for name_len";
  69. else if (unlikely(((char *) de - buf) + rlen > size))
  70. error_msg = "directory entry overrun";
  71. else if (unlikely(le32_to_cpu(de->inode) >
  72. le32_to_cpu(EXT4_SB(dir->i_sb)->s_es->s_inodes_count)))
  73. error_msg = "inode out of bounds";
  74. else
  75. return 0;
  76. if (filp)
  77. ext4_error_file(filp, function, line, bh->b_blocknr,
  78. "bad entry in directory: %s - offset=%u, "
  79. "inode=%u, rec_len=%d, name_len=%d, size=%d",
  80. error_msg, offset, le32_to_cpu(de->inode),
  81. rlen, de->name_len, size);
  82. else
  83. ext4_error_inode(dir, function, line, bh->b_blocknr,
  84. "bad entry in directory: %s - offset=%u, "
  85. "inode=%u, rec_len=%d, name_len=%d, size=%d",
  86. error_msg, offset, le32_to_cpu(de->inode),
  87. rlen, de->name_len, size);
  88. return 1;
  89. }
  90. static int ext4_readdir(struct file *file, struct dir_context *ctx)
  91. {
  92. unsigned int offset;
  93. int i;
  94. struct ext4_dir_entry_2 *de;
  95. int err;
  96. struct inode *inode = file_inode(file);
  97. struct super_block *sb = inode->i_sb;
  98. struct buffer_head *bh = NULL;
  99. int dir_has_error = 0;
  100. struct ext4_str fname_crypto_str = {.name = NULL, .len = 0};
  101. if (ext4_encrypted_inode(inode)) {
  102. err = ext4_get_encryption_info(inode);
  103. if (err && err != -ENOKEY)
  104. return err;
  105. }
  106. if (is_dx_dir(inode)) {
  107. err = ext4_dx_readdir(file, ctx);
  108. if (err != ERR_BAD_DX_DIR) {
  109. return err;
  110. }
  111. /*
  112. * We don't set the inode dirty flag since it's not
  113. * critical that it get flushed back to the disk.
  114. */
  115. ext4_clear_inode_flag(file_inode(file),
  116. EXT4_INODE_INDEX);
  117. }
  118. if (ext4_has_inline_data(inode)) {
  119. int has_inline_data = 1;
  120. err = ext4_read_inline_dir(file, ctx,
  121. &has_inline_data);
  122. if (has_inline_data)
  123. return err;
  124. }
  125. if (ext4_encrypted_inode(inode)) {
  126. err = ext4_fname_crypto_alloc_buffer(inode, EXT4_NAME_LEN,
  127. &fname_crypto_str);
  128. if (err < 0)
  129. return err;
  130. }
  131. offset = ctx->pos & (sb->s_blocksize - 1);
  132. while (ctx->pos < inode->i_size) {
  133. struct ext4_map_blocks map;
  134. map.m_lblk = ctx->pos >> EXT4_BLOCK_SIZE_BITS(sb);
  135. map.m_len = 1;
  136. err = ext4_map_blocks(NULL, inode, &map, 0);
  137. if (err > 0) {
  138. pgoff_t index = map.m_pblk >>
  139. (PAGE_CACHE_SHIFT - inode->i_blkbits);
  140. if (!ra_has_index(&file->f_ra, index))
  141. page_cache_sync_readahead(
  142. sb->s_bdev->bd_inode->i_mapping,
  143. &file->f_ra, file,
  144. index, 1);
  145. file->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
  146. bh = ext4_bread(NULL, inode, map.m_lblk, 0);
  147. if (IS_ERR(bh))
  148. return PTR_ERR(bh);
  149. }
  150. if (!bh) {
  151. if (!dir_has_error) {
  152. EXT4_ERROR_FILE(file, 0,
  153. "directory contains a "
  154. "hole at offset %llu",
  155. (unsigned long long) ctx->pos);
  156. dir_has_error = 1;
  157. }
  158. /* corrupt size? Maybe no more blocks to read */
  159. if (ctx->pos > inode->i_blocks << 9)
  160. break;
  161. ctx->pos += sb->s_blocksize - offset;
  162. continue;
  163. }
  164. /* Check the checksum */
  165. if (!buffer_verified(bh) &&
  166. !ext4_dirent_csum_verify(inode,
  167. (struct ext4_dir_entry *)bh->b_data)) {
  168. EXT4_ERROR_FILE(file, 0, "directory fails checksum "
  169. "at offset %llu",
  170. (unsigned long long)ctx->pos);
  171. ctx->pos += sb->s_blocksize - offset;
  172. brelse(bh);
  173. bh = NULL;
  174. continue;
  175. }
  176. set_buffer_verified(bh);
  177. /* If the dir block has changed since the last call to
  178. * readdir(2), then we might be pointing to an invalid
  179. * dirent right now. Scan from the start of the block
  180. * to make sure. */
  181. if (file->f_version != inode->i_version) {
  182. for (i = 0; i < sb->s_blocksize && i < offset; ) {
  183. de = (struct ext4_dir_entry_2 *)
  184. (bh->b_data + i);
  185. /* It's too expensive to do a full
  186. * dirent test each time round this
  187. * loop, but we do have to test at
  188. * least that it is non-zero. A
  189. * failure will be detected in the
  190. * dirent test below. */
  191. if (ext4_rec_len_from_disk(de->rec_len,
  192. sb->s_blocksize) < EXT4_DIR_REC_LEN(1))
  193. break;
  194. i += ext4_rec_len_from_disk(de->rec_len,
  195. sb->s_blocksize);
  196. }
  197. offset = i;
  198. ctx->pos = (ctx->pos & ~(sb->s_blocksize - 1))
  199. | offset;
  200. file->f_version = inode->i_version;
  201. }
  202. while (ctx->pos < inode->i_size
  203. && offset < sb->s_blocksize) {
  204. de = (struct ext4_dir_entry_2 *) (bh->b_data + offset);
  205. if (ext4_check_dir_entry(inode, file, de, bh,
  206. bh->b_data, bh->b_size,
  207. offset)) {
  208. /*
  209. * On error, skip to the next block
  210. */
  211. ctx->pos = (ctx->pos |
  212. (sb->s_blocksize - 1)) + 1;
  213. break;
  214. }
  215. offset += ext4_rec_len_from_disk(de->rec_len,
  216. sb->s_blocksize);
  217. if (le32_to_cpu(de->inode)) {
  218. if (!ext4_encrypted_inode(inode)) {
  219. if (!dir_emit(ctx, de->name,
  220. de->name_len,
  221. le32_to_cpu(de->inode),
  222. get_dtype(sb, de->file_type)))
  223. goto done;
  224. } else {
  225. int save_len = fname_crypto_str.len;
  226. /* Directory is encrypted */
  227. err = ext4_fname_disk_to_usr(inode,
  228. NULL, de, &fname_crypto_str);
  229. fname_crypto_str.len = save_len;
  230. if (err < 0)
  231. goto errout;
  232. if (!dir_emit(ctx,
  233. fname_crypto_str.name, err,
  234. le32_to_cpu(de->inode),
  235. get_dtype(sb, de->file_type)))
  236. goto done;
  237. }
  238. }
  239. ctx->pos += ext4_rec_len_from_disk(de->rec_len,
  240. sb->s_blocksize);
  241. }
  242. if ((ctx->pos < inode->i_size) && !dir_relax(inode))
  243. goto done;
  244. brelse(bh);
  245. bh = NULL;
  246. offset = 0;
  247. }
  248. done:
  249. err = 0;
  250. errout:
  251. #ifdef CONFIG_EXT4_FS_ENCRYPTION
  252. ext4_fname_crypto_free_buffer(&fname_crypto_str);
  253. #endif
  254. brelse(bh);
  255. return err;
  256. }
  257. static inline int is_32bit_api(void)
  258. {
  259. #ifdef CONFIG_COMPAT
  260. return is_compat_task();
  261. #else
  262. return (BITS_PER_LONG == 32);
  263. #endif
  264. }
  265. /*
  266. * These functions convert from the major/minor hash to an f_pos
  267. * value for dx directories
  268. *
  269. * Upper layer (for example NFS) should specify FMODE_32BITHASH or
  270. * FMODE_64BITHASH explicitly. On the other hand, we allow ext4 to be mounted
  271. * directly on both 32-bit and 64-bit nodes, under such case, neither
  272. * FMODE_32BITHASH nor FMODE_64BITHASH is specified.
  273. */
  274. static inline loff_t hash2pos(struct file *filp, __u32 major, __u32 minor)
  275. {
  276. if ((filp->f_mode & FMODE_32BITHASH) ||
  277. (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
  278. return major >> 1;
  279. else
  280. return ((__u64)(major >> 1) << 32) | (__u64)minor;
  281. }
  282. static inline __u32 pos2maj_hash(struct file *filp, loff_t pos)
  283. {
  284. if ((filp->f_mode & FMODE_32BITHASH) ||
  285. (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
  286. return (pos << 1) & 0xffffffff;
  287. else
  288. return ((pos >> 32) << 1) & 0xffffffff;
  289. }
  290. static inline __u32 pos2min_hash(struct file *filp, loff_t pos)
  291. {
  292. if ((filp->f_mode & FMODE_32BITHASH) ||
  293. (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
  294. return 0;
  295. else
  296. return pos & 0xffffffff;
  297. }
  298. /*
  299. * Return 32- or 64-bit end-of-file for dx directories
  300. */
  301. static inline loff_t ext4_get_htree_eof(struct file *filp)
  302. {
  303. if ((filp->f_mode & FMODE_32BITHASH) ||
  304. (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
  305. return EXT4_HTREE_EOF_32BIT;
  306. else
  307. return EXT4_HTREE_EOF_64BIT;
  308. }
  309. /*
  310. * ext4_dir_llseek() calls generic_file_llseek_size to handle htree
  311. * directories, where the "offset" is in terms of the filename hash
  312. * value instead of the byte offset.
  313. *
  314. * Because we may return a 64-bit hash that is well beyond offset limits,
  315. * we need to pass the max hash as the maximum allowable offset in
  316. * the htree directory case.
  317. *
  318. * For non-htree, ext4_llseek already chooses the proper max offset.
  319. */
  320. static loff_t ext4_dir_llseek(struct file *file, loff_t offset, int whence)
  321. {
  322. struct inode *inode = file->f_mapping->host;
  323. int dx_dir = is_dx_dir(inode);
  324. loff_t htree_max = ext4_get_htree_eof(file);
  325. if (likely(dx_dir))
  326. return generic_file_llseek_size(file, offset, whence,
  327. htree_max, htree_max);
  328. else
  329. return ext4_llseek(file, offset, whence);
  330. }
  331. /*
  332. * This structure holds the nodes of the red-black tree used to store
  333. * the directory entry in hash order.
  334. */
  335. struct fname {
  336. __u32 hash;
  337. __u32 minor_hash;
  338. struct rb_node rb_hash;
  339. struct fname *next;
  340. __u32 inode;
  341. __u8 name_len;
  342. __u8 file_type;
  343. char name[0];
  344. };
  345. /*
  346. * This functoin implements a non-recursive way of freeing all of the
  347. * nodes in the red-black tree.
  348. */
  349. static void free_rb_tree_fname(struct rb_root *root)
  350. {
  351. struct fname *fname, *next;
  352. rbtree_postorder_for_each_entry_safe(fname, next, root, rb_hash)
  353. while (fname) {
  354. struct fname *old = fname;
  355. fname = fname->next;
  356. kfree(old);
  357. }
  358. *root = RB_ROOT;
  359. }
  360. static struct dir_private_info *ext4_htree_create_dir_info(struct file *filp,
  361. loff_t pos)
  362. {
  363. struct dir_private_info *p;
  364. p = kzalloc(sizeof(struct dir_private_info), GFP_KERNEL);
  365. if (!p)
  366. return NULL;
  367. p->curr_hash = pos2maj_hash(filp, pos);
  368. p->curr_minor_hash = pos2min_hash(filp, pos);
  369. return p;
  370. }
  371. void ext4_htree_free_dir_info(struct dir_private_info *p)
  372. {
  373. free_rb_tree_fname(&p->root);
  374. kfree(p);
  375. }
  376. /*
  377. * Given a directory entry, enter it into the fname rb tree.
  378. *
  379. * When filename encryption is enabled, the dirent will hold the
  380. * encrypted filename, while the htree will hold decrypted filename.
  381. * The decrypted filename is passed in via ent_name. parameter.
  382. */
  383. int ext4_htree_store_dirent(struct file *dir_file, __u32 hash,
  384. __u32 minor_hash,
  385. struct ext4_dir_entry_2 *dirent,
  386. struct ext4_str *ent_name)
  387. {
  388. struct rb_node **p, *parent = NULL;
  389. struct fname *fname, *new_fn;
  390. struct dir_private_info *info;
  391. int len;
  392. info = dir_file->private_data;
  393. p = &info->root.rb_node;
  394. /* Create and allocate the fname structure */
  395. len = sizeof(struct fname) + ent_name->len + 1;
  396. new_fn = kzalloc(len, GFP_KERNEL);
  397. if (!new_fn)
  398. return -ENOMEM;
  399. new_fn->hash = hash;
  400. new_fn->minor_hash = minor_hash;
  401. new_fn->inode = le32_to_cpu(dirent->inode);
  402. new_fn->name_len = ent_name->len;
  403. new_fn->file_type = dirent->file_type;
  404. memcpy(new_fn->name, ent_name->name, ent_name->len);
  405. new_fn->name[ent_name->len] = 0;
  406. while (*p) {
  407. parent = *p;
  408. fname = rb_entry(parent, struct fname, rb_hash);
  409. /*
  410. * If the hash and minor hash match up, then we put
  411. * them on a linked list. This rarely happens...
  412. */
  413. if ((new_fn->hash == fname->hash) &&
  414. (new_fn->minor_hash == fname->minor_hash)) {
  415. new_fn->next = fname->next;
  416. fname->next = new_fn;
  417. return 0;
  418. }
  419. if (new_fn->hash < fname->hash)
  420. p = &(*p)->rb_left;
  421. else if (new_fn->hash > fname->hash)
  422. p = &(*p)->rb_right;
  423. else if (new_fn->minor_hash < fname->minor_hash)
  424. p = &(*p)->rb_left;
  425. else /* if (new_fn->minor_hash > fname->minor_hash) */
  426. p = &(*p)->rb_right;
  427. }
  428. rb_link_node(&new_fn->rb_hash, parent, p);
  429. rb_insert_color(&new_fn->rb_hash, &info->root);
  430. return 0;
  431. }
  432. /*
  433. * This is a helper function for ext4_dx_readdir. It calls filldir
  434. * for all entres on the fname linked list. (Normally there is only
  435. * one entry on the linked list, unless there are 62 bit hash collisions.)
  436. */
  437. static int call_filldir(struct file *file, struct dir_context *ctx,
  438. struct fname *fname)
  439. {
  440. struct dir_private_info *info = file->private_data;
  441. struct inode *inode = file_inode(file);
  442. struct super_block *sb = inode->i_sb;
  443. if (!fname) {
  444. ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: comm %s: "
  445. "called with null fname?!?", __func__, __LINE__,
  446. inode->i_ino, current->comm);
  447. return 0;
  448. }
  449. ctx->pos = hash2pos(file, fname->hash, fname->minor_hash);
  450. while (fname) {
  451. if (!dir_emit(ctx, fname->name,
  452. fname->name_len,
  453. fname->inode,
  454. get_dtype(sb, fname->file_type))) {
  455. info->extra_fname = fname;
  456. return 1;
  457. }
  458. fname = fname->next;
  459. }
  460. return 0;
  461. }
  462. static int ext4_dx_readdir(struct file *file, struct dir_context *ctx)
  463. {
  464. struct dir_private_info *info = file->private_data;
  465. struct inode *inode = file_inode(file);
  466. struct fname *fname;
  467. int ret;
  468. if (!info) {
  469. info = ext4_htree_create_dir_info(file, ctx->pos);
  470. if (!info)
  471. return -ENOMEM;
  472. file->private_data = info;
  473. }
  474. if (ctx->pos == ext4_get_htree_eof(file))
  475. return 0; /* EOF */
  476. /* Some one has messed with f_pos; reset the world */
  477. if (info->last_pos != ctx->pos) {
  478. free_rb_tree_fname(&info->root);
  479. info->curr_node = NULL;
  480. info->extra_fname = NULL;
  481. info->curr_hash = pos2maj_hash(file, ctx->pos);
  482. info->curr_minor_hash = pos2min_hash(file, ctx->pos);
  483. }
  484. /*
  485. * If there are any leftover names on the hash collision
  486. * chain, return them first.
  487. */
  488. if (info->extra_fname) {
  489. if (call_filldir(file, ctx, info->extra_fname))
  490. goto finished;
  491. info->extra_fname = NULL;
  492. goto next_node;
  493. } else if (!info->curr_node)
  494. info->curr_node = rb_first(&info->root);
  495. while (1) {
  496. /*
  497. * Fill the rbtree if we have no more entries,
  498. * or the inode has changed since we last read in the
  499. * cached entries.
  500. */
  501. if ((!info->curr_node) ||
  502. (file->f_version != inode->i_version)) {
  503. info->curr_node = NULL;
  504. free_rb_tree_fname(&info->root);
  505. file->f_version = inode->i_version;
  506. ret = ext4_htree_fill_tree(file, info->curr_hash,
  507. info->curr_minor_hash,
  508. &info->next_hash);
  509. if (ret < 0)
  510. return ret;
  511. if (ret == 0) {
  512. ctx->pos = ext4_get_htree_eof(file);
  513. break;
  514. }
  515. info->curr_node = rb_first(&info->root);
  516. }
  517. fname = rb_entry(info->curr_node, struct fname, rb_hash);
  518. info->curr_hash = fname->hash;
  519. info->curr_minor_hash = fname->minor_hash;
  520. if (call_filldir(file, ctx, fname))
  521. break;
  522. next_node:
  523. info->curr_node = rb_next(info->curr_node);
  524. if (info->curr_node) {
  525. fname = rb_entry(info->curr_node, struct fname,
  526. rb_hash);
  527. info->curr_hash = fname->hash;
  528. info->curr_minor_hash = fname->minor_hash;
  529. } else {
  530. if (info->next_hash == ~0) {
  531. ctx->pos = ext4_get_htree_eof(file);
  532. break;
  533. }
  534. info->curr_hash = info->next_hash;
  535. info->curr_minor_hash = 0;
  536. }
  537. }
  538. finished:
  539. info->last_pos = ctx->pos;
  540. return 0;
  541. }
  542. static int ext4_dir_open(struct inode * inode, struct file * filp)
  543. {
  544. if (ext4_encrypted_inode(inode))
  545. return ext4_get_encryption_info(inode) ? -EACCES : 0;
  546. return 0;
  547. }
  548. static int ext4_release_dir(struct inode *inode, struct file *filp)
  549. {
  550. if (filp->private_data)
  551. ext4_htree_free_dir_info(filp->private_data);
  552. return 0;
  553. }
  554. int ext4_check_all_de(struct inode *dir, struct buffer_head *bh, void *buf,
  555. int buf_size)
  556. {
  557. struct ext4_dir_entry_2 *de;
  558. int nlen, rlen;
  559. unsigned int offset = 0;
  560. char *top;
  561. de = (struct ext4_dir_entry_2 *)buf;
  562. top = buf + buf_size;
  563. while ((char *) de < top) {
  564. if (ext4_check_dir_entry(dir, NULL, de, bh,
  565. buf, buf_size, offset))
  566. return -EFSCORRUPTED;
  567. nlen = EXT4_DIR_REC_LEN(de->name_len);
  568. rlen = ext4_rec_len_from_disk(de->rec_len, buf_size);
  569. de = (struct ext4_dir_entry_2 *)((char *)de + rlen);
  570. offset += rlen;
  571. }
  572. if ((char *) de > top)
  573. return -EFSCORRUPTED;
  574. return 0;
  575. }
  576. const struct file_operations ext4_dir_operations = {
  577. .llseek = ext4_dir_llseek,
  578. .read = generic_read_dir,
  579. .iterate = ext4_readdir,
  580. .unlocked_ioctl = ext4_ioctl,
  581. #ifdef CONFIG_COMPAT
  582. .compat_ioctl = ext4_compat_ioctl,
  583. #endif
  584. .fsync = ext4_sync_file,
  585. .open = ext4_dir_open,
  586. .release = ext4_release_dir,
  587. };